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Chapter 1

Financial Time Series

The dynamics of complex systems, from financial markets to the brain, can be
monitored in terms of time series of activity of their fundamental elements (such
as stocks or neurons respectively). While the main focus of time series analysis
is on the magnitude of temporal increments, a significant piece of information is
encoded into the binary projection (i.e. the sign) of such increments. In this chap-
ter we provide further evidence of this by showing strong nonlinear relationships
between binary and non-binary properties of financial time series. We then intro-
duce an information-theoretic approach to the analysis of the binary signature of
single and multiple time series. Through the definition of maximum-entropy en-
sembles of binary matrices, we quantify the information encoded into the simplest
binary properties of real time series and identify the most informative property
given a set of measurements. Our formalism is able to replicate the observed
binary/non-binary relations very well, and to mathematically characterize them.
Moreover, we identify distinct regimes in the collective behaviour of groups of
stocks, corresponding to different levels of coordination that only depend on the
average return of the binary time series. This approach also allows us to con-
nect simple stochastic processes to specific ensembles of time series inferred from
partial information.

The results presented in this chapter have been published in the following reference:
A. Almog and D. Garlaschelli New Journal of Physics 16: 093015 (2014).
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1.1 Introduction

1.1 Introduction
In large systems, the observed dynamics or activity of each unit can be repre-
sented by a discrete time series providing a sequence of measurements of the state
of that unit. One of the main challenges researchers are faced with is that of
extracting meaningful information from the high-dimensional (multiple) time se-
ries characterizing all the elements of a complex system [1, 2, 3, 4, 5, 6, 7, 8, 9].
Traditionally, the main object of time series analysis is the characterization of
patterns in the amplitude of the increments of the quantities of interest. Given a
signal si(t) where i denotes one of the N units of the system and t denotes one
of the T observed temporal snapshots, the generic increment or ‘return’ ri(t) can
be defined as

ri(t) ≡ si(t+ 1)− si(t) i = 1, N t = 1, T (1.1)

and generates a new time series.
While a time series of increments encapsulates all the relevant information

about the amplitude of the fluctuations of the original signal, a significant part of
this information is encoded in the purely ‘binary’ projection of ri(t), i.e. its sign

xi(t) ≡ sign[ri(t)] =

 +1 ri(t) > 0
0 ri(t) = 0
−1 ri(t) < 0

(1.2)

Previous analyses, mainly in the field of finance, have indeed documented various
forms of statistical dependency between the sign and the absolute value of fluctua-
tions, e.g. sign-volume correlations [10, 11] and the leverage effect [12, 13, 14, 15].
Other studies have also documented that the binary projections of various finan-
cial [16] and neural [17] time series exhibit nontrivial dynamical features that
resemble those of the original data. All these results suggest that binary pro-
jections indeed retain a non-trivial piece of information about the original time
series, and call for a deeper analysis of the problem.

Being binary, the sign of the increments is much more robust to noise than
the increments themselves. Moreover, it is scale-invariant (i.e. independent of the
chosen unit of increments) and does not depend on whether the original data have
been preliminarily rescaled or log-transformed (as usually done e.g. for financial
time series). Binary time series can also be analyzed with the aid of much simpler
mathematical models than required by non-binary data (several examples of such
models will be provided in this chapter). Finally, as we show later on, in multiple
financial time series the total binary increment of a given cross section measures
the instantaneous level of synchronization (i.e. the number of stocks moving in
the same direction) of the market, while the total non-binary increment does
not carry this piece of information. For all the above reasons, it is important
to further investigate whether the full ‘weighted’ or ‘valued’ information can, in
some circumstances, be somehow mapped to the binary one, thus providing a
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Financial Time Series

robust, highly simplified, more easily modeled, and informative representation of
the system.

Motivated by the above considerations, in this chapter we further study, both
empirically and theoretically, the relationship between weighted time series and
their binary projections. We first provide robust empirical evidence of novel rela-
tionships between binary and non-binary properties of real financial time series.
To this end, we use the daily closing prices of all stocks of three markets (S&P500,
FTSE100 and NIKKEI225) over the period 2001-2011. We show that the average
daily increment and average daily coupling of an empirical set of multiple time
series are strongly and non-linearly related to the corresponding average incre-
ment of the binary projections of the same time series. These empirical relations
quantify in a novel way the strong correlations existing between the increments
of individual stocks and the overall level of synchronization among all stocks in
the market.

Building on this evidence, we then introduce a formalism to analytically char-
acterize random ensembles of single and multiple time series with desired con-
straints. Specifically, we follow Jaynes’ interpretation and re-derivation of sta-
tistical physics as an inference problem from partial macroscopic information to
the unobservable microscopic configuration [18, 19]. We define statistical ensem-
bles of matrices that maximize Shannon’s entropy [20], subject to a set of desired
constraints. This maximum-entropy approach is widely used in many areas, from
neuroscience [49] to social network analysis [25] (and more recently network sci-
ence in general [21]), where it is known under the name of ERG (Exponential
Random Graph) formalism. In the case of interest here, we introduce ensembles
of maximum-entropy binary matrices that represent projections of single and mul-
tiple binary time series, subject to a set of desired constraints defined as simple
empirical measurements. We discuss the main differences between our matrix
ensembles and other techniques in time series analysis, including other ensembles
of random matrices encountered in random matrix theory [26, 27, 28, 29, 30].

Our approach leads to a family of analytically solved null models that allow
us to quantify the amount of information encoded in the chosen constraints, i.e.
the selected observed properties of the binary projections of real time series. Dif-
ferent choices of the constraints lead to different stochastic processes, a result
that allows us to relate known stochastic processes to the corresponding ‘target’
empirical properties defining the ensemble of time series spanned by the process
itself. After applying the approach to the financial time series in our analysis, we
compare the informativeness of various measured properties and show that differ-
ent properties are more relevant for different time series and temporal windows.
We also identify distinct regimes in the behaviour of multiple stocks and give the
most likely explanation (endogenous, exogenous, or mixed) for the observed level
of coordination or ‘market mode’, given the measured binary return at a given
point in time. Finally, and most importantly, we show that our approach is able to
reproduce and mathematically characterize the observed nonlinear relationships
between binary and non-binary properties of real time series.
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1.2 Empirical results

The rest of the chapter is organized as follows. In sec. 1.2 we describe the
data and provide empirical evidence of the relationships that motivate our work.
In sec. 1.3 we introduce our theoretical formalism in its general form. In sec. 1.4
we apply the formalism to single time series, while in sec. 1.5 we apply it to single
cross-sections (temporal snapshots) of multiple time series. Finally, in sec. 1.6
we consider our method in its full extent and apply it to entire spans of multiple
time series, for different financial markets around the globe. We end with our
conclusions in sec. 1.7.

1.2 Empirical results

1.2.1 Data

We use daily closing prices, for the 10-years period ranging from 24/10/2001 to
18/10/2011, of all stocks from the indices S&P500, FTSE100 and NIKKEI225.
For each index, we restrict our sample to the maximal group of stocks that are
traded continuously throughout the selected period. This results in 445 stocks for
the S&P500, 78 stocks for the FTSE100 and 193 stocks for the NIKKEI225.

We take logarithms of daily closing prices to obtain time series of log-prices
that represent our original ‘signal’ si(t), where i labels stocks and t labels days in
the sample. Correspondingly, we construct time series of log-returns where each
entry represents the increment ri(t) as defined in eq.(1.1). Finally, we take the sign
xi(t) of each log-return ri(t) to obtain an additional, binarized set of time series
as in eq.(1.2). We will refer to the binarized time series as the binary projection of
the original time series. In fig. 1.1 we show a simple example of a weighted time
series, along with the corresponding binary projection. The (multiple) time series
of ri(t) and xi(t) are the main objects of our analysis throughout the chapter.
Note that, while the use of log-returns rather than simple returns (i.e. price
differences) in finance is an important step that allows to remove overall trend
effects over long time spans [5], the binary signature is actually independent of
whether the original prices have been logarithmically transformed.

The main reason for choosing the daily frequency is to achieve an optimal level
of structural compatibility between the data and the models we introduce later.
As we discuss in detail in sec. 1.3, our models are binary, i.e. they only allow the
two values ±1 depending on whether the increment of the original time series is
positive or negative. An increment of 0 is not admitted in the models: consistently,
we choose a frequency for which zero increments are extremely rare in the data.
In financial markets, this is the case for daily (or lower) frequency. Indeed, a
zero return value occurs in less than 0.2 % of the cases in our daily data (when
this happens, we randomly switch the corresponding binary increment to either
+1 or −1 with equal probability). Higher-frequency data feature an increasing
percentage of zero returns, a property that calls for an extension of the models
considered here.
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Figure 1.1: Binary signature of financial time seires. ‘Weighted’ (left) versus
‘binary’ (right) time series of log-returns of the Apple stock over a period of 50
days starting from 7/5/2011.
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Figure 1.2: Empirical relations between binary and non-binary proper-
ties in financial time series. Nonlinear relationship between the average daily
increment (weighted return) and the average daily sign (binary return) over all
stocks in the FTSE100 (left), S&P500 (center) and NIKKEI225 (right) in various
years (2003, 2007, and 2004 respectively). Here each point corresponds to one day
in the time interval of 250 trading days (approximately one year). The red line
represents the best fit with the function y = a ·artanhx, whose use is theoretically
justified later in sec. 1.6.

It should be noted that other types of binary time series, different from the ±1
type considered here, can also be defined. Most notably, 0/1 binary time series
can indicate the occurrence of an event in a time period, i.e. whether the event
happened (1) or not (0). Financial examples include time series of recession indi-
cators [52, 53] or of ‘switching points’ in stock returns. For such 0/1 binary time
series, correlations may not be very informative when measuring a dependence
between the dichotomous variables. To confront this gap, in recent years new
methods were introduced, like the auto-persistence function and auto-persistence
graph. In these methods, the dependence structure among the observations is de-
scribed in terms of conditional probabilities, rather than correlations. Although
throughout this chapter we will be entirely focusing on ±1 binary time series that
naturally descend from the original signed time series of fluctuations, it is inter-
esting to notice that our approach can be extended, with slight modifications, to
0/1 time series as well. To this end, one needs to re-express all quantities in terms
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1.2 Empirical results

of a 0/1 binary variable y ≡ (x + 1)/2, where x is our ±1 binary variable, and
adapt our approach accordingly.

1.2.2 Nonlinear binary/non-binary relationships
We now come to the main empirical findings that motivate our research. For each
index and for each day t in the sample, we first calculate the average (over all
stocks) weighted return, that we denote as {ri(t)} and define as

{ri(t)} ≡
1
N

N∑
i=1

ri(t). (1.3)

Note that the above expression does not depend on the particular stock i, but it
does depend on time t. Our unconventional choice of the symbol {·} to denote
an average over stocks is to avoid confusion with temporal averages, that will be
denoted by the more usual bar (·) later in the chapter. Similarly, we calculate the
corresponding average binary return {xi(t)}, defined as

{xi(t)} ≡
1
N

N∑
i=1

xi(t) (1.4)

In fig.1.2 we plot {ri(t)} as a function of {xi(t)} for all days of various 1-
year intervals and for the three indices separately. We find a strong nonlinear
dependency between the two quantities. Note that the average binary return is
bound between −1 and +1 by construction, but the average weighted return is
unbounded from both sides. While there are in principle infinite values of {ri(t)}
that are consistent with the same value of {xi(t)}, we observe a tight relationship
between the two quantities. This relationship can be fitted by a one-parameter
curve of the form

{ri(t)} = a · artanh
[
{xi(t)}

]
=
a

2
ln

1 + xi(t)
1− xi(t)

(1.5)

(the theoretical justification for this functional form will be given in sec. 1.6),
where a is in general different for different years and different indices. Still, as we
show later, for a given year and market the average weighted return of any day t
is to a large extent predictable (out of sample) from the average binary return of
the same day, once a is known (for instance by fitting the above curve to the data
for a past time window). In sec. 1.6 we will also show that the nonlinear character
of the observed relations is a genuine signature of correlation in the data, as an
uncorrelated null model shows a completely linear behaviour.

There is another empirical relationship, involving a higher-order quantity. For
each index and for each day t in the sample, we calculated what we will call the
average ‘coupling’ over the N(N − 1)/2 distinct pairs of stocks:

{ri(t)rj(t)} ≡
2
∑
i<j ri(t)rj(t)
N(N − 1)

(1.6)
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Figure 1.3: Empirical relations between binary and second-order non-
binary properties in financial time series. Nonlinear relationship between
the average daily coupling (weighted coupling) and the average daily sign (binary
return) over all stocks in the FTSE100 (left), S&P500 (center) and NIKKEI225
(right) in various years (2003, 2007, and 2004 respectively). Here each point
corresponds to one day in the time interval of 250 trading days (approximately
one year). The red line represents the best fit with the function y = b ·(artanhx)2,
whose use is theoretically justified later in sec. 1.6.

(so now the symbol {·} indicates an average over pairs of stocks). In fig. 1.3
we plot {ri(t)rj(t)} as a function of the average binary return {xi(t)}, for the
same data as in fig. 1.2. Again, we find a strong nonlinear dependency, where
for a given value of the average binary return of day t there is a typical value
of the average coupling among all stocks in the same day. The relationship can
be fitted by a one-parameter curve that diverges at {xi} = ±1. As we show in
sec. 1.6, an uncorrelated null model would yield a different, parabolic curve with
no divergences. Again, this means that the empirical trend is due to genuine
correlations, whose nature will be clarified later on in the chapter.

There are even more examples of dependencies that we can find between binary
and non-binary properties in the data. However, in one way or another all these
relationships, including that shown in fig. 1.3, ultimately derive from eq.(1.5). For
this reason, we refrain from showing redundant results and focus on the empirical
findings discussed so far.

The above analysis indicates that the binary signature of financial time series
contains relevant information about the original data. While the binary signature
is a priori a many-to-one projection involving a significant information loss, we
empirically find that there are properties (namely the average return and aver-
age coupling) for which the projection is virtually a one-to-one ‘quasi-stationary’
transformation (on appropriate time scales, as we show in sec. 1.6), allowing
to reconstruct the corresponding original, weighted properties to a great extent.
Rather than exploring the practical aspects of this possibility of reconstruction
of the original signal from its binary projection, in this chapter we are interested
in understanding the origin of this behaviour and providing a simple data-driven
model of it. This will be ultimately achieved in sec. 1.6, where we also show that
the binary/non-binary relations we have documented are a novel quantification
of the fact that extreme price increments occur more often when most stocks
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1.3 Maximum-entropy matrix ensembles

move in the same direction. This is an important type of correlation between the
magnitude of log-returns of individual time series and the level of synchronization
(common sign) of the increments of all stocks in the market.

1.3 Maximum-entropy matrix ensembles

Having established that the binary projections of real time series contain non-
trivial information, in the rest of the chapter we introduce a theory of binary
time series aimed, among other things, at reproducing the observed nonlinear re-
lationships showed in figs. 1.2 and 1.3. In our approach, we regard a synchronous
set of binary time series as a ±1 matrix and we introduce an ensemble of such
matrices via the maximization of Shannon’s entropy, subject to the constraint
that some specified properties of the ensemble match their observed values. An
analogous approach is widely used e.g. in network analysis and known under
the name of Exponential Random Graphs [21]. Moreover, we provide an ana-
lytical maximum-likelihood method to find the optimal values of the paramaters
governing the ensembles, which is again similar in spirit to a method that has
been recently introduced for networks [45, 46, 47]. Finally, we describe Akaike’s
information criterion (AIC) [23], which we will use to rank and compare the per-
formance of different null models when fitted to the same data.

Being entropy-based, our approach automatically allows us to measure the
amount of information encoded into the observed properties chosen as constraints,
i.e. how much information is gained about the original (set of) time series once
those properties are measured. It also allows us to identify, given a set of measured
properties, which ones are more informative and which ones can be discarded, as
we show on specific financial examples. Our framework turns out to reproduce
the observed nonlinear relationships very well, thus providing a simple mathemat-
ical explanation and functional form for the plots shown in the previous section.
Moreover, we are able to identify, as a function of the binary return only, dis-
tinct regimes in the collective behaviour of stocks, namely a ‘coordinated’ regime
dominated by market-wide interactions, an ‘uncoordinated’ regime dominated by
stock-specific noise and an ‘intermediate’ regime where both market-wide and
stock-specific information is relevant.

We incidentally note that, despite the available variety of refined and advanced
techniques in time series analysis [54], how one can quantify (in the sense of sta-
tistical ensembles) how much information is actually encoded into any given,
measurable property of a time series is still not fully understood. While most
studies, starting from the celebrated work by Kolmogorov about the algorithmic
complexity of sequences of symbols [48], have addressed the quantification of the
information content of a single time series, much less is known about the infor-
mation encoded in the measured value of a given time series property (which,
necessarily, involves the idea of an entire ensemble of time series consistent with
the measured value itself). Our approach can provide an answer to such a ques-
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tion, by associating an absolute level of uncertainty (entropy) to each observable of
an empirical (set of) time series. In relative terms, this also allows us to compare
the information content of different properties of a time series, thereby indicating
which measured property is the most informative about the original time series.

As a final consideration, it is worth mentioning that the maximum-entropy
matrix ensembles that we introduce are clearly related to (and, depending on the
specification, potentially overlapping with) some ensembles that are well studied
by random matrix theory [37, 38, 39, 40, 41, 42]. However, our approach is differ-
ent since we generate ensembles of matrices whose probability distributions are
determined by the kind of partial information (empirically measured constraint)
about the real system. In this approach the maximization of Shannon’s entropy,
given some real-world available information, yields the least biased probability
distribution (over the space of possible matrices) consistent with the data. This
formalism allows us to relate the probabilistic structure of each matrix ensemble
with the choice of the original observed property, or constraint. Similarly, since
our matrices represent (multiple) time series, we are able to connect the various
ensembles to simple stochastic processes induced by the associated matrix prob-
abilities and, again, to the chosen empirical property specifying the ensembles
themselves.

1.3.1 Exponential random matrices

We first analytically characterize the properties of families of randomized matri-
ces. More generally, we introduce a matrix ensemble that maximizes Shannon’s
entropy, while enforcing a set of observed constraints (selected time series prop-
erties). This procedure is analogous to e.g. that leading to the definition of
Exponential Random Graphs in network theory [21]. However, we will modify it
to accommodate ±1 matrices, as opposed to 0/1 or non-negative matrices that
describe binary and weighted networks respectively. The resulting ensemble can
thus be denoted as the ‘Maximum-Entropy Matrix’ (MEM) ensemble or equiva-
lently ‘Exponential Random Matrices’ (ERMs) model.

Let us consider the ensemble of all ±1 matrices with dimensions N ×T . Each
such matrix can represent N synchronous time series, all of duration T (for in-
stance, if applied to a set of multiple financial time series, N refers to the number
of stocks and T to the number of time steps). Let X denote a generic matrix
in the ensemble, and xi(t) its entry (1 ≤ i ≤ N , 1 ≤ t ≤ T ). Let X∗ be the
particular real matrix that we observe. In other words, our ensemble is composed
of all possible matrices X of the same type as X∗, and includes X∗ itself. For
any data-dependent property R, we will consider the value R(X) obtained when
R is measured on the particular matrix X. For each matrix X in the ensemble,
we will assign an occurrence probability P (X). The expectation value (ensemble
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1.3 Maximum-entropy matrix ensembles

average) of a property R can be expressed as

〈R〉 =
∑
X

R(X)P (X) (1.7)

where the sum runs over all matrices in the ensemble.
At this point, we introduce a set of constraints denoted by the vector ~C. The

constraints are meant to ensure that a given set of observed properties ~C(X∗) in
the real matrix X∗ is reproduced by the ensemble itself. In our method we will
enforce ‘soft’ constraints by requiring that their expectation value 〈~C〉 equals the
observed one. The resulting ensemble is a canonical one where each matrix X is
assigned a probability P (X) that maximizes Shannon’s entropy

S ≡ −
∑
X

P (X) lnP (X) (1.8)

subject to the normalization constraint∑
X

P (X) = 1 (1.9)

and to the chosen vector of constraints

〈~C〉 =
∑
X

C(X)P (X) = ~C (1.10)

that we are enforced in order to reproduce the desired set of observed quantities.
The solution to the above constrained maximization problem is standard (see

for instance [21] for a recent derivation in the context of networks). We first
introduce the Lagrange multipliers α and ~θ, enforcing eqs.(1.9) and (1.10) respec-
tively, and then require that the functional derivative of Shannon’s entropy (plus
the constraining terms) vanishes:

∂

∂P (X)

{
S + α

[
1−

∑
X

P (X)
]
+
∑
i

θi

[
Ci −

∑
X

C(X)P (X)
]}

= 0

This yields

lnP (X) + 1 + α+
∑
i

θiCi(X) = 0 (1.11)

for any matrix X. Using a notation that makes the dependence of all quantities
on ~θ explicit, we then obtain

P (X|~θ) =
e−H(X,~θ)

Z(~θ)
(1.12)
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where H(X, ~θ) is the Hamiltonian

H(X, ~θ) ≡ ~θ · ~C(X) =
∑
i

θiCi(X), (1.13)

which is a linear combination of the constraints, and Z(~θ) is the partition function

Z(~θ) ≡ eα+1 =
∑
X

e−H(X,~θ), (1.14)

which is the normalizing constant for the probability. Consistently, we can rewrite
eq. (1.7) more explicitly as a function of ~θ:

〈R〉~θ ≡
∑
X

R(X)P (X|~θ) (1.15)

where 〈·〉~θ indicates that the ensemble average is evaluated at the particular pa-
rameter value ~θ.

Equations (1.12) to (1.14) define the MEM or ERM model. Specifically, the
model yields the probability distribution over a specified ensemble of matrices,
which maximizes the entropy under a set of generic constraints. The guiding
principle is that the probability distribution (over microscopic states) which have
maximum entropy, subject to observed (macroscopic) properties, provides the
most unbiased representation of our knowledge of the state of a system [19].
To put it in a more physical frame, this is analogous to the Gibbs-Boltzmann
distribution over the microstates of a large system at a well defined temperature,
given the thermodynamic (macroscopic) observables such as the total energy.

1.3.2 Maximum-likelihood parameter estimation
The above derivation shows that the expectation value of any property of the
ensemble depends functionally on the specific enforced constraints ~C through
the resulting structure of P (X|~θ). Of course, it also depends numerically on
the measured values ~C(X∗) of the constraints themselves, through the particular
parameter value (that we denote by ~θ∗) required in order to enforce that the
expected and observed values of ~C match:

〈~C〉~θ∗ = ~C(X∗). (1.16)

We now show that the value ~θ∗ that satisfies eq.(1.16) coincides with the
value that maximizes the likelihood to generate the empirical data, as in the
corresponding Maximum Likelihood (ML) approach to network ensembles [22, 45].

We start by writing the log-likelihood function of an observed matrix X∗

generated by the parameters ~θ:

λ(~θ) ≡ lnP (X∗|~θ) = −H(X∗, ~θ)− lnZ(~θ) (1.17)
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1.3 Maximum-entropy matrix ensembles

We then look for the particular value ~θ∗ that maximizes λ(~θ), i.e.

~∇λ(~θ∗) =

[
∂λ(~θ)

∂~θ

]
~θ=~θ∗

= ~0 (1.18)

(it is easy to check that the higher-order derivative confirm that ~θ∗ is a point of
maximum). This leads to

~∇λ(~θ∗) =

[
−~C(X∗)− 1

Z(~θ)

∂Z(~θ)

∂~θ

]
~θ=~θ∗

= ~0 (1.19)

the solution for that yields the ML condition

~C(X∗) =
∑
X

~C(X)e−H(X,~θ∗)

Z(~θ∗)
= 〈~C〉~θ∗ . (1.20)

which coincides with eq.(1.16). Thus the likelihood of the real matrix X∗ is
maximized by the specific parameter choice such that the ensemble average of
each constraint equals its empirical value measured on X∗ , automatically ensuring
that the desired constraints are met.

1.3.3 Model selection
We finally show how we can use Akaike’s information criterion (AIC) to rank
the performance of different models, i.e. different choices of the constraints, in
reproducing the same data. The AIC is an information-theoretic measure of the
relative goodness of fit of a model, as compared to a set of alternative models all
used to explain the same data [23]. It offers a relative measure of the information
lost when the given model is used to describe reality. The power of AIC (and
other similar criteria [24]) lies in the possibility to rank a set of models in terms
of their achieved trade-off between accuracy (good fit to the data) and parsimony
(low number of free parameters) [24]. In general, for the k-th model in a set of
selected models, AIC is defined as

AICk = 2nk − 2λ∗k (1.21)

where nk is the number of free parameters in the k-th model and λ∗k is the max-
imized log-likelihood of the data under the same model. The above expression
effectively discounts the number nk of parameters (complexity) from the maxi-
mized likelihood λ∗k (accuracy). The model with the lowest value of AICk (let us
denote this value by AICmin) is the ‘best’ model in the considered set, achieving
the optimal trade-off [24].

In the ERM/MEM family of models we have introduced, a model is uniquely
specified by the choice of the constraints ~C. Given a N × T data matrix X∗ and
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a set {~C1, . . . , ~Cm} of m possible choices of constraints, each of the resulting m
models has an AIC value

AICk = 2nk − 2 lnPk(X∗|~θ∗k) k = 1,m (1.22)

where nk is the dimensionality of the vector ~Ck, lnPk(X∗|~θ∗k) is the maximized
log-likelihood of model k, and ~θ∗k is the parameter value maximizing such log-
likelihood. Within our framework, AIC identifies which measured property ~Ck(X∗)
is most informative about the entire time series X∗.

In order to understand whether models with values of AIC larger than but
close to AICmin are still competitive, it is customary to define the so-called ‘AIC
weights’ which provide a normalized strength of evidence for a model [24]. For
each model k in the set of m models, one first calculates the difference ∆k =
AICk −AICmin and then defines the AIC weight

wk ≡
e−∆k/2∑m
r=1 e

−∆r/2
. (1.23)

The AIC weight wk represents the probability that the k-th model is the best
one among the m selected models. For instance, an AIC weight of wk = 0.75
indicates that, given the data, model k has a 75% chance of being the best model
among them candidate ones. If two or more models have comparable AIC weights
(e.g. w1 = 0.6, w2 = 0.4 or w1 = 0.35, w2 = 0.25, w3 = 0.4), then there is no
evidence that the model with the highest AIC weight (lowest AIC value) is clearly
outperforming the other ones. All the models with comparable weights should be
considered as competing alternatives, in principle leading to the problem of multi-
model inference [24].

1.4 Single time series
In this section we consider the first family of specifications of our general approach
outlined in sec. 1.3. We focus on the simple case of single time series (N = 1),
where the ensemble of N×T matrices reduces to an ensemble of 1×T matrices, or
equivalently of T -dimensional row vectors. Each such vector will still be denoted
by X. We assume long time series, i.e. T � 1.

This first specification of our abstract formalism is not meant to provide real-
istic models for the evolution of the binary increments of real financial time series.
Rather, it allows us to make different sorts of considerations. On one hand, it
allows us to introduce our formalism using simpler examples first, establishing the
basis for the more general cases (leading to the main results of this chapter) that
will be introduced later. On the other hand, it emphasizes that different and well
known (one-dimensional) stochastic processes are found as particular examples
of maximum-entropy ensembles defined by specific constraints that are otherwise
obscure. Identifying these ‘driving constraints’ underlying common stochastic
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processes will help us interpret such processes in the light of the empirical prop-
erties being reproduced. Finally, our approach allows us to identify, given the
data and given a set of simple properties, which of these properties is encoding
the largest amount of information about the original binary signature.

Let X denote a single time series with entries x(t), where 1 ≤ t ≤ T , each
representing a temporal increment. We will denote the average increment (first
moment) as

M1(X) ≡ x(t) =
1
T

T∑
t=1

x(t). (1.24)

Note that the second moment is always

M2(X) ≡ x2(t) =
1
T

T∑
t=1

x2(t) = 1, (1.25)

so the sample variance is

M2(X)−M2
1 (X) = 1− x(t)

2
. (1.26)

We also define the τ -delayed product (with 0 ≤ τ ≤ T )

Bτ (X) ≡ x(t) · x(t+ τ) =
1
T

T∑
t=1

x(t) · x(t+ τ) (1.27)

where we have introduced periodic boundary conditions:

x(T + τ) ≡ x(τ) with 0 ≤ τ ≤ T (1.28)

The above periodicity condition in inessential, since we could have used a defi-
nition avoiding its introduction, but it makes some expressions simpler in what
follows. Periodicity implies that the normalized (between −1 and +1) autocorre-
lation function (with delay τ) can be defined as

Aτ (X) ≡ x(t) · x(t+ τ)− x(t) · x(t+ τ)

x2(t)− x(t)
2

=
Bτ (X)−M2

1 (X)
1−M2

1 (X)
(1.29)

Since a (±1) binary time series can also be regarded as a chain of classical spins
pointing either up or down, it is straightforward to consider simple, analytically
solved spin models as the starting point, since these models are defined in terms of
a ‘physical’ Hamiltonian that has precisely the same structure of our ‘information-
theoretic’ Hamiltonian defined in eq. (1.13). In what follows, we introduce various
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Figure 1.4: Single financial time series as a chain of spins. Illustration of
our mapping from single binary time series to spin models. Each time series is
regarded as a chain of ±1 spins, where the value of the spin indicates if the daily
return of the stock is positive (+1) or negative (−1) . In each model we enforce
different constraints, that imply different spin models and different stochastic
processes. Given the same time series, we consider three possible models. A)
we enforce no constraint, which translates into a chain of non-interacting spins
without external field (uniform random walk). B) we enforce the total temporal
increment, which translates into a chain of non-interacting spins with external
field (biased random walk). C) we enforce both the total increment and the one-
lagged autocorrelation, which translates into a chain of spins with first-neighbour
interactions and external field (markov process).

model specifications. For each model, we introduce the constraints that we enforce
and the resulting Hamiltonian as described in sec. 1.3.1. Different constraints
correspond to different spin models and lead to different stochastic processes.
This is pictorially illustrated in fig. 1.4. The free parameters conjugated to the
constraints will be fitted according to the Maximum Likelihood principle described
in sec. 1.3.2. Different models will be ranked according to the AIC weights
introduced in sec. 1.3.3.

1.4.1 Uniform random walk

The most trivial model is one where we enforce no constraint, i.e. there is no free
parameter and the Hamiltonian is

H(X) = 0. (1.30)

27
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Physically, the above Hamiltonian describes a gas of T non-interacting ‘spins’ in
vacuum, i.e. in absence of an external magnetic field. This model is discussed
in the Appendix. The probability of occurrence of a time series X is completely
uniform over the ensemble of all binary time series of length T . All the T elements
of X are mutually independent and identically distributed. This results in a
completely uniform random walk with zero expected value for each increment:

〈x(t)〉 = 0 (1.31)

While the (ensemble) variance of each increment equals

Var[x(t)] ≡ 〈x2(t)〉 − 〈x(t)〉2 = 1. (1.32)

This trivial model generates a symmetric random walk. Since the expected
return is zero, and the uncertainty is maximal, the variance is also maximal (for
a ±1 binary random variable). Financially, the model assumes that the stock
fluctuates randomly, with no memory, and with no overall ‘price drift’. This is
the most basic model of price dynamics that has been considered in the financial
literature since the pioneering work of Bachelier [1], here adapted to the case of
binary time series.

The model can be used as a basic benchmark for checking the performance of
our other models. This comparison will be studied in sec. 1.4.4. Since here the
likelihood is independent of any parameter, the AIC of the model can be calculated
using eq. (1.22) where the probability is given by eq. (A.3) (see Appendix) and
the number of parameters is nk = 0.

1.4.2 Biased random walk

We now consider the total increment as the simplest non-trivial (one-dimensional)
constraint:

C(X) = T ·M1(X) = T · x(t) (1.33)

This leads to the Hamiltonian

H (X, θ) = θ

T∑
t=1

x(t), (1.34)

which coincides with the physical Hamiltonian for a gas of T non-interacting
‘spins’ in a common external ‘magnetic field’ −θ.

As we show in the Appendix, this model generates a biased random walk where
the probability Pt(x|θ) of a given increment x = ±1 at time t is

Pt(x|θ) =
e−θx

e−θ + e+θ
. (1.35)
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The expected return is the hyperbolic tangent

〈x(t)〉θ = − tanh θ, (1.36)

while the variance is

Var[x(t)] = 1− tanh2 θ. (1.37)

Financially, this model still assumes no memory in the fluctuations of a given
stock, but it introduces a ‘price drift’ in terms of a non-zero expected return.

The maximum likelihood condition (1.16), fixing the value θ∗ of the parameter
θ given a real time series X∗, leads to

θ∗ = −1
2

ln

[
1 + x∗(t)
1− x∗(t)

]
. (1.38)

The maximized likelihood for the model is

P (X∗|θ∗) =
T∏
t=1

Pt
(
x∗(t)|θ∗

)
(1.39)

which, using eq. (1.22) with nk = 1, can be used to measure the AIC (see
sec. 1.3.3) of the model, based on the observed data. This will be done in sec.
1.4.4.

1.4.3 One-lagged model

Let us now explore a more complex model of collective behaviour. The models
considered so far were non-interacting, i.e. each return in the time series was
independent of the previous outcomes. Now we consider a model where, besides
the constraint on the total increment specified in eq. (1.33), we enforce an addi-
tional constraint on the time-delayed (lagged) quantity T ·B1(X), where B1(X) is
defined in eq. (1.27) with τ = 1. Financially, this amounts to enforce the average
return and the average one-step temporal autocorrelation of the time series. In
order words, besides a price drift, we also introduce a short-term memory.

The resulting 2-dimensional constraint can be written as

~C(X) =
(
C1(X)
C2(X)

)
= T ·

(
M1(X)
B1(X)

)
. (1.40)

If we write the corresponding Lagrange multiplier as

~θ =
(
θ1

θ2

)
= −

(
I
K

)
, (1.41)
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then the Hamiltonian reads

H(X, I,K) = −I
T∑
t=1

x(t)−K
T∑
t=1

x(t)x(t+1), (1.42)

where we consider a periodicity condition as in eq. (1.28) with τ = 1, i.e. x(T +
1) ≡ x(1). Note that, when X is a real binary time series of length T , this
condition can be always enforced by adding one last (fictious) timestep T + 1 and
a corresponding increment x(T + 1) chosen equal to x(1). For long time series
(large T ), the effects induced by this addition are negligible.

The above Hamiltonian coincides with that for the one-dimensional Ising
model with periodic boundary conditions [55], which is a model of interacting
spins under the influence of an external ‘magnetic’ field I. The model is ana-
lytically solvable (see Appendix for the complete derivation), which allows us to
apply it to real time series in our formalism. In our setting, each time step t is
seen as a site in an ordered chain of length T , and each value x(t) = ±1 is seen
as the value of a spin sitting at that site. ‘First-neighbour interactions’ along the
chain of spins are here interpreted as one-lagged memory effects. As a result of
these interactions, the model generates time series according to a Markov process
where the probability of an increment x(t+ 1) depends on the realized increment
x(t) at the previous time step t. This is evident from the solution of the model,
see e.g. eq. (A.32) in the Appendix.

The solution of the model yields the following expectation values〈
M1

〉
I,K

=
e2K sinh I√

1 + e4K sinh2 I
(1.43)

〈
Bτ
〉
I,K

=
e4K sinh2 I + (λ1/λ2)τ

1 + e4K sinh2 I
(1.44)

(see Appendix) where

λ1 = eK cosh I +
√
e2K sinh2 I + e−2K , (1.45)

λ2 = eK cosh I −
√
e2K sinh2 I + e−2K . (1.46)

The resulting expected value of the normalized autocorrelation defined in eq.
(1.47) is simply〈

Aτ
〉
I,K

=
(
λ1

λ2

)τ
. (1.47)

The above expressions allow us to calculate all the relevant expected properties
of the time series generated by the model, once the parameters I and K are set
to the values I∗ and K∗ maximizing the likelihood P (X∗|I,K) of the observed
time series X∗. These values are the solutions of the coupled equations

M1(X∗) =
〈
M1

〉
I∗,K∗

(1.48)

B1(X∗) =
〈
B1

〉
I∗,K∗

. (1.49)
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Figure 1.5: Measured versus expected autocorrelation of single time se-
ries. Measured autocorrelation (blue) of three different S&P500 stocks (Qcom,
USB, and MJN respectively) over a period of 800 trading days (approximately
3.5 years), and comparison with the predicted autocorrelation 〈Aτ 〉I,K generated
by the one-lagged (one-dimensional Ising) model (red). The green lines represent
the noise level, calculated as ±2 standard deviations of the Fisher-transformed
autocorrelation.

where M1(X∗) and B1(X∗) are the empirical values measured on the real data
X∗. The maximized likelihood of the model can be calculated as P (X∗|I∗,K∗),
where P (X|I,K) is given by eq. (A.32) in the Appendix. From the maximized
likelihood, the AIC can be easily obtained using eq. (1.22) with nk = 2.

Note that the values I∗ and K∗ are such that the first point of the expected
autocorrelation function, 〈A1〉I∗,K∗ , is necessarily equal to the observed value
A1(X∗). Based on this first value alone, the model will provide the full expected
autocorrelation 〈Aτ 〉I∗,K∗ as follows:

〈
Aτ
〉
I∗,K∗

=
(
λ1

λ2

)τ
I∗,K∗

=
[
A1(X∗)

]τ
. (1.50)

Comparing the above expression, for τ > 1, with the observed autocorrelation
function Aτ (X∗) is an important test of the model. Note that, since −1 ≤
A1(X∗) ≤ +1, the absolute value of the autocorrelation function 〈Aτ

〉
I∗,K∗

is
necessarily decreasing. If A1(X∗) > 0 then 〈Aτ

〉
I∗,K∗

will be positive (and expo-
nentially decreasing) for all values of τ . By contrast, if A1(X∗) < 0 then 〈Aτ

〉
I∗,K∗

will be an oscillating function (modulated by a decreasing exponential), and will
take negative values when τ is odd and positive values when τ is even.

In fig. 1.5 we compare the measured autocorrelation, eq. (1.29), with the pre-
dicted one, eq. (1.50), for three different S&P500 stocks (USB, Qcom, and MJN)
over a period of 800 trading days (approximately 3.5 years). As expected, we see
that the first point (one-lagged autocorrelation) is always reproduced exactly. We
also confirm that, depending on the sign of the first point, the predicted trend is
either exponentially decreasing (e.g. for the USB stock on the left) or oscillating
(e.g. the Qcom and MJN stocks). The dashed lines indicate the noise level, that
we arbitrarily fixed at two standard deviations of the Fisher-transformed 1 auto-

1For a set of T independent and identically distributed pairs of random variables {xi, yi}Ti=1, the
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Figure 1.6: Model performance for single time series. Measured AIC
weights for the three models (black: uniform random walk, orange: biased ran-
dom walk, green: one-lagged model) calculated for three different S&P500 stocks,
as a function of the time horizon T . The latter represents the number of months
elapsed backwards from October 2011: for all stocks, all time series used to calcu-
late the AIC weights have the same endpoint T0 =31 October 2011, and a variable
startpoint T0 − T .

correlation. The behaviour of the USB and Qcom stocks is representative of the
vast majority of stocks, with the autocorrelation within the noise level already at
the minimum delay (τ = 1). This is in good agreement with what we know about
financial time series (no dependencies for daily frequency, the typical time scale
for autocorrelation being of the order of minutes). We also found that the first
point, the autocorrelation between two successive days, is small but negative for
most stocks in our data set. In the rightmost panel (MJN stock) we observe a
rare dynamic, where the one-lagged autocorrelation is breaching the noise level
and then rapidly oscillates to zero.

As clear from the figure, our model reproduces well the observed autocorrela-
tion in all these different cases, and gives a single mathematical explanation for
both the exponentially decaying (from positive one-lagged autocorrelation) and
the oscillating (from negative one-lagged autocorrelation) behaviour. Moreover,
the generic feature of the one-dimensional Ising model, i.e. the absence of a phase
transition characterized by a diverging length (here, time) scale [55], explains why
in real-world time series the memory is always found to be short-ranged.

1.4.4 Comparing the three models on empirical financial
time series

As we illustrated in sec. 1.3.3 in the general case, once we have more than one
model for the same data X∗, we can use the AIC weights to rank all models
in terms of the achieved trade-off between accuray (good fit to the data) and
parsimony (small number of parameters). The AIC weight wk of a specific model

Pearson correlation coefficient ρx,y is distributed around zero, but in a non-Gaussian way. However,
the quantity φx,y ≡ artanh(ρx,y), known as the Fisher tranformation, is normally distributed around
zero, with standard deviation σ = (T − 3)−1/2. The interval −2σ < φx,y < +2σ, representing a 95%
confidence interval for φx,y, can then be mapped back to the interval − tanh(2σ) < ρx,y < + tanh(2σ)
to obtain a 95% confidence interval for ρx,y around zero.
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k represents the probability that the model is the ‘best’ one, among the candidate
models.

We applied this procedure to the three models discussed so far (uniform ran-
dom walk, biased random walk, one-lagged model). As an example, in fig. 1.6 we
show the values of the AIC weights for three different S&P500 stocks. We can
see that the performance of the models is wildly fluctuating and different across
stocks. This suggests that the informativeness of the measured properties is de-
pendent on different factors, which are not entirely revealed to us. However, it is
clear that in all cases the time horizon T plays a key role in the performance of
the models. This means that the outcome depends on how many time steps are
included in the analysis. For instance, we see that in some cases (Citigroup Inc.
stock) the small T regime is oscillatory, while the large T regime appears to set a
preference for a definite model. In other cases (United Health Group), the three
models alternate over quite long periods of time. Most likely, this very irregular
behaviour is due to the strong non-stationarity of financial markets: extending
the analysis over longer time horizons does not necessarily improve the statistics,
because for large T the underlying price (and return) distributions change in an
uncontrolled way.

We stress again that the AIC weight indicates which property, among the con-
straints defining all models, can better characterize the stock, given the observed
data. In other words, it highlights the measured property that is most informa-
tive about the original data. Despite the fact that the models considered so far
are extremely simplified (and are by no means intended to be accurate models
of financial time series), this approach can always identify, in relative terms, the
most useful empirical quantity characterizing an observed time series.
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Figure 1.7: Single cross-section of multiple time series as a chain of spins.
An example of cross section (highlighted in red) of a set of N = 3 multiple time
series. Each cross section is a N×1 matrix (column vector) where each element is
the instantaneous binary return of a different stock. For example, the highlighted
cross section is the vector for day t = 4.

1.5 Single cross-sections of multiple time series
In the previous section we considered models for single time series, where N =
1 and T is large. Here we consider, as a second specification of our general
formalism, the somewhat ‘opposite’ case of single cross-sections of N multiple
time series, which represent a daily snapshot of the market dynamics. For clarity,
fig. 1.7 portrays a single cross-section of a set of multiple time series. In this case,
T = 1 and we assume N � 1. So the matrix X has dimensions N ×1, i.e. it is an
N -dimensional column vector. The entries of a cross-section X will be denoted
by xi, where 1 ≤ i ≤ N , each representing the daily increment of a different asset.

Using again the symbol {·} to denote an average over stocks (as in sec. 1.2.2),
we now define the average increment (first moment) of X as

M1(X) ≡ {xi} =
1
N

N∑
i=1

xi (1.51)

and the second moment as

M2(X) ≡ {x2
i } =

1
N

N∑
i=1

x2
i = 1. (1.52)

Therefore the sample variance is

M2(X)−M2
1 (X) = 1− {xi}2. (1.53)
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We also define the total ‘coupling’ between stocks (for a specific cross section X)
as

D(X) ≡
∑
i<j

xixj = {xixj}
N(N − 1)

2
, (1.54)

where now, as in eq. (1.6), {·} denotes an average over all pairs of stocks.
In what follows, we will consider various models for single cross-sections. The

main difference with respect to the models of single time series considered in sec.
1.4 is that the interaction between time steps for a given stock is now replaced by
the interaction between different stocks for a given time step. As well known, in
real financial markets the interactions among stocks (as measured e.g. via cross-
correlations) are much stronger than inter-temporal autocorrelations. This makes
the cross-sectional properties significantly different from those of the dynamics of
single time series, once inter-stock interactions are enforced in the model. Yet, in
simple models without interaction, we recover similar expected properties.

1.5.1 Uniform random walk

As in sec. 1.4.1, we first consider a trivial model without constraints (see Ap-
pendix), defined by the Hamiltonian

H(X) = 0. (1.55)

The probability of occurrence of a cross section X is completely uniform over
the ensemble of all binary cross sections of N stocks. Again, this ‘gas of non-
interacting spins in vacuum’ model results in a uniform random walk, where all
the N elements of X are mutually independent and identically distributed.

In the financial setting, this model assumes that all stocks fluctuate indepen-
dently of each other (where the ‘fluctuations’ are intended as ensemble ones, since
we are now considering a single cross section), and under the effect of no common
factor. Each stock has zero expected value

〈xi〉 = 0 (1.56)

and maximum variance

Var[xi] ≡ 〈x2
i 〉 − 〈xi〉

2 = 1. (1.57)

In sec. 1.5.4, we will compare the performance of this trivial benchmark to
that of the other models we are about to introduce. To this end, the AIC value can
be calculated from eq. (1.22) choosing nk = 0 and using the (constant) likelihood
given by eq. (A.46) in the Appendix.
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1.5.2 Biased random walk

In this model, which is analogous to that defined in sec. 1.4.2, the constraint is
chosen as the total daily increment of the cross section X:

C(X) = N ·M1(X) = N · {xi}, (1.58)

where M1(X) is defined by eq. (1.51). The Hamiltonian is then

H (X, θ) = θ

N∑
i=1

xi. (1.59)

Similarly to its counterpart for single time series, this is a model of non-interacting
spins under the effect of a common external field, and leads to a biased random
walk (see Appendix). The financial interpretation is however different: in this
model, all stocks are assumed to fluctuate (again, in an ‘ensemble’ sense) under
the effect of a common market-wide factor, but are conditionally independent of
each other, given the market-wide factor itself. In the econophysics literature,
the overall tendency of all stocks to move together is generally referred to as
the ‘market mode’ [2]. When applied to the data, this extremely simple model
interprets the observed market mode as the consequence of an external factor (e.g.
news), and not of direct interactions among stocks.

The probability Pi(x|θ) of a given increment x = ±1 for stock i is

Pi(x|θ) =
e−θx

e−θ + e+θ
, (1.60)

the expected value of the i-th increment xi is

〈xi〉θ = − tanh θ, (1.61)

and the variance is

Var[xi] = 1− tanh2 θ. (1.62)

The maximum likelihood condition (1.16), fixing the value θ∗ of the parameter
θ given a real cross section X∗, leads to

θ∗ = −1
2

ln
[

1 + {x∗i }
1− {x∗i }

]
, (1.63)

where {x∗i } is the measured average increment of the observed cross section X∗.
We will apply this model to real financial data in secs. 1.5.4 and 1.6. The AIC of
the model is given by eq. (1.22) where nk = 1 and where the maximized likelihood
is given by P (X∗|θ∗), with P (X|θ) given by eq. (A.53) (see Appendix).
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1.5.3 Mean field model

We now consider a more complex model, with interactions among all stocks,
which is suitable for financial cross-sections. Besides the constraint on the total
increment, we enforce an additional constraint on the average coupling between
stocks. The resulting 2-dimensional constraint can be written as

~C(X) =
(
C1(X)
C2(X)

)
=
(
N ·M1(X)
D(X)

)
(1.64)

where M1(X) is given by eq. (1.51) and D(X) by eq. (1.54). If we write the
corresponding Lagrange multiplier as

~θ =
(
θ1

θ2

)
= −

(
h
J

)
(1.65)

then the Hamiltonian reads

H(X, h, J) = −h
N∑
i=1

xi − J
∑
i<j

xixj . (1.66)

Like the one-lagged model for single time series (see sec. 1.4.3), this model
is formally analogous to an Ising model of interacting spins under the influence
of an external ‘magnetic’ field (here denoted by h). However, the big difference
is that, whereas in the one-lagged model each increment x(t) interacts only with
the next temporal increment x(t + 1) of the same stock, here each increment xi
interacts with all the other increments xj of the same cross section X, i.e. with
all other stocks in the market. As a model of spin systems, the above model is
generally known as the mean-field Ising model [55]. In the Appendix we provide
the analytical solution of the model, adapted to our setting.

In the financial setting, this model allows us to separately consider the effects
of the external field, i.e. a common factor affecting all stocks in the market, from
those of the average interaction among all stocks. This market-wide interaction
can also cause all stocks to correlate, but has the different interpretation of a
collective effect, i.e. the tendency of stocks increments to ‘align’ with each other
as a result of direct interactions, rather than of a common influence. This is a
sort of ‘herd effect’ at the coarse-grained level of attractive (J > 0) inter-stock
interactions. So, the model can generate the ‘market mode’ either as the result
of a common external influence such as news (in which case all stocks are still
conditionally independent given the common factor), or as a collective effect due
to mutual interactions (in which case all stocks are conditionally dependent given
the common factor).

While the model can in principle simulate synthetic time series under a com-
bination of the above two effects by varying the two parameters h and J indepen-
dently, a problem arises when it is fitted to the data. The mathematical root of
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the problem is the well known fact that H(X, h, J) can be rewritten as a linear
combination of M1(X) and M2

1 (X). As we show in the Appendix, this implies
that, when the maximum likelihood principle is used to fit the model to the data
X∗, the variance of M1(X) becomes zero. In other words, the model degenerates
to one where M1(X) is no longer a random variable. This also implies that the
two equations fixing the values of the parameters J∗ and h∗ become identical
(see Appendix). Therefore it is no longer possible to uniquely fix the values of
both parameters, and the problem is over-constrained. For this reason, we need
to eliminate one parameter and consider the model only in the two extreme cases
h = 0 and J = 0. These two cases can be treated separately.

The case J = 0 coincides with the biased random walk model already con-
sidered in sec. 1.5.2, where θ = −h. Using eq. (1.63), we therefore specify this
model using the two parameter values

h∗ =
1
2

ln
[

1 + {x∗i }
1− {x∗i }

]
, J∗ = 0 (1.67)

where {x∗i } is the observed average increment of the empirical cross section X∗.
This model interprets the market mode as arising only from a common external
factor.

The case h = 0 leads us instead to a novel model where the market mode is
interpreted only as a collective effect arising from inter-stock interactions. Using
the analytical results reported in the Appendix, and in particular eq. (A.78), we
find that the parameter values are in this case

h∗ = 0, J∗ =
1

2{x∗i }(N − 1)
ln
[

1 + {x∗i }
1− {x∗i }

]
. (1.68)

In what follows, when using the ‘mean-field’ model, we will always refer to the
parameter specification defined by eq. (1.68). The other specification, eq. (1.67),
will instead still be denoted as the ‘biased random walk’ model.

In fig. 1.8 we plot the value of J∗ as a function of {x∗i }, as defined by eq. (1.68).
We note however that eq. (1.68) is undefined for {x∗i } = ±1 and {x∗i } = 0. The
breakdown for {x∗i } = ±1 simply means that, in order to align all returns (in
either direction), J∗ should diverge to +∞. The breakdown for {x∗i } = 0 is
instead more profound. For infinitesimal (both positive and negative) values of
{x∗i }, J∗ admits the finite limit

lim
{x∗i }→0+

J∗ = lim
{x∗i }→0−

J∗ =
1

N − 1
(1.69)

However, at the very point {x∗i } = 0, J∗ is actually indeterminate.
The above effect is due to the well-known phase transition of the mean-field

Ising model. In the traditional physical setting, the phase transition occurs at a
critical temperature (here reabsorbed in the value of the parameters h and J).
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Figure 1.8: “Phase diagram” of the fitted parameter J∗. The value of the
fitted parameter J∗ as a function of the measured average binary return {x∗i } (blue
curve) for a group of N = 428 stocks (as in our S&P sample). The curve shows a
one-to-one relationship for {xi} 6= 0. While lim{x∗i }→0 J

∗ = Jc ≡ (N − 1)−1, for
{x∗i } = 0 the value of J∗ is actually indeterminate, as there is an infinity of values
of J∗ (namely all values −∞ < J∗ ≤ Jc, see vertical green line) that are possible
solutions of the model. The value of Jc is indicated by the horizontal red line.

When h = 0, the critical value is obtained by setting (N − 1)J = 1, because
for (N − 1)J < 1 eq. (A.76) (see Appendix) has the single solution 〈M1〉 = 0,
corresponding to a phase with no macroscopic magnetization, while for (N−1)J >
1 there are three solutions, one of which is still 〈M1〉 = 0 (which is now unstable)
and the other two ones being the stable solutions 〈M1〉 = ±m (corresponding to
the onset of a macroscopic magnetization |m| > 0 where most spins point in the
same direction). In our financial setting, since the magnetization is fixed by the
data through the relation 〈M1〉 = {x∗i }, the condition (N − 1)J∗ = 1 implies that
the phase transition occurs at the critical value

Jc =
1

N − 1
(1.70)

of the control parameter J∗. We can therefore rewrite eq. (1.69) as

lim
{x∗i }→0

J∗ = Jc (1.71)

For J∗ > Jc we get a ‘magnetized’ phase where most stock prices move in the
same direction (aligned returns), while for J∗ < Jc we get a non-magnetized
phase where there is no collective alignment of stock increments, and {x∗i } = 0.
We therefore conclude that the reason why the value of J∗ is indeterminate for
{x∗i } = 0 is because there is an infinity of values of J∗ (namely all values −∞ <
J∗ ≤ Jc) that are possible solutions of the model.

It should be noted that the case {x∗i } = 0 is never practically encountered
in reality, since the empirical {x∗i } can be abritrarily small, but is generally not
really zero. While this ‘protects’ the model from the indeterminacy discussed
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above, it raises another problem of arbitrariness, which can however be solved
very effectively using the information-theoretic criteria that we have introduced
in sec. 1.3.3. The problem is that the mean-field model will always interpret even
the tiniest empirical deviations from {x∗i } = 0 as the result of direct interactions
among stocks, and attach a value J∗ > 0 to this interpretation. This will also
apply to e.g. most realizations of a purely uniform random walk: even if for such a
model one knows that the theoretical expected return is zero, most realizations will
be such that {x∗i } is small but non-zero. So the only phase of the mean-field model
that can be explored is the ‘magnetized’ phase dominated by collective effects.
This implies that even a pure effect of noise will be interpreted as the presence
of interactions. However, this problem will be solved in the next section, where
we show that an information-theoretic comparison between the mean-field model,
the uniform random walk, and the biased random walk is able to discriminate the
most parsimonious model, thus allowing us to trust the mean-field model only
when {x∗i } is distant enough from zero.

1.5.4 Comparing the three models on empirical financial
cross sections

We can now combine the three models together and use the AIC weights (see
sec. 1.3.3) to determine which model achieves the optimal trade-off between
accuracy and parsimony. This will immediately provide us with an indication
of whether the observed market mode, as reflected in the empirical aggregate
increment {x∗i }, should be interpreted e.g. as a common exogenous factor, as a
collective endogeneous effect, or even only as the sheer outcome of chance.

The fact that the likelihoods of the biased random walk and the mean-field
model depend only on {x∗i } and N , plus the fact that the likelihood of the uniform
random walk is constant, allows us to obtain the AIC values for the three models
as functions of {x∗i } and N only. In fig. 1.9 we show the calculated AIC weights of
the three models as a function of the observed value {x∗i }, for N = 428 S&P500
stocks. Each point represents a different cross section, i.e. a different day of
trade, for a total of 100 randomly sampled days. It is important to note that the
empirical value of the average increment only determines which point(s) of the
curves are actually visited, but the curves themselves are universal.

The figure reveals us a remarkable fact, namely the presence of three distinct
regimes in the behaviour of the group of stocks. For 0 ≤ |{x∗i }| . 0.2, we find
that the best performing model is the uniform random walk, which displays an
AIC weight practically equal to one (indicating that the model is almost surely
the best one among the three models considered, see sec. 1.3.3). This means that,
in this ‘noisy’ regime, the most parsimonious explanation of the market mode, as
reflected in the measured value of {x∗i }, is that of a pure outcome of chance.

For 0.2 . |{x∗i }| . 0.5, we find that the uniform random walk is almost
surely not the best model, while the biased random walk and mean field models
are competing. We observe an almost equal performance of the two models for
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|{x∗i }| ≈ 0.2, and an increasing preference for the mean field model as |{x∗i }|
increases towards 0.5. Despite this preference, we cannot reject the mean field
model, meaning that in this ‘mixed’ regime the most likely explanation for the
market mode is a combination of exogenous and endogenous effects.

Finally, for 0.5 . |{x∗i }| . 1, the mean field model achieves practically unit
probability to be the best model. In this ‘endogenous’ regime, the most likely
explanation for the market model is uniquely in terms of a collective effect of
direct influence among stocks.

We can summarize the above findings as follows: Uncoordinated (noisy) regime: 0 ≤ |{x∗i }| . 0.2
Mixed (endogenous + exogenous) regime: 0.2 . |{x∗i }| . 0.5
Coordinated (endogenous) regime: 0.5 . |{x∗i }| ≤ 1

where we recall that the values of |{x∗i }| delimiting the various regimes have been
calculated for N = 428.

While the qualitative finding that larger values of |{x∗i }| are better explained in
terms of collective effects might appear intuitive, the possibility to quantitatively
identify the value |{x∗i }| ≈ 0.5 above which this intuition is fully supported by
statistical evidence is a non-obvious output of the above approach. The same
consideration applies to the identification of the other two regimes, and of a
mixed phase where there is not enough statistical evidence in favour of a single
interpretation of the market mode. Moreover, the fact that the mean field model
starts being statistically significant only for |{x∗i }| & 0.2 solves the aforementioned
problem of an otherwise problematic interpretation of even tiny values of |{x∗i }|
as the result of inter-stock interactions. The AIC analysis shows that, for values
below 0.2, one should not trust the mean field model, and consequently the value
J∗ > 0 that the model itself indicates. When |{x∗i }| . 0.2, the best model is
actually the uniform random walk, which effectively corresponds to J∗ = 0. This
is a highly non-trivial result.
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Figure 1.9: Model performance for single cross-sections. The calculated
AIC weights of the three cross-sectional models (uniform random walk, biased
random walk, mean field model) as a function of the measured average daily
binary return {x∗i }, for N = 428 S&P500 stocks, each studied for 100 days of
trade.

1.6 Ensembles of matrices of multiple time series

In this section, as our third and final specification of the abstract formalism
introduced in sec. 1.3, we extend the previous results to the general case where
the observed data is a full N ×T matrix X∗ representing a set of multiple binary
time series for N stocks, each extending over T timesteps. We recall that the
entries of a generic such matrix X are denoted by xi(t), where i labels the stock
and t labels the time step. We assume thatN and T are both large, i.e. N � 1 and
T � 1. Before introducing an explicit model, we need to make some important
considerations.

We had already anticipated that the purpose of the models introduced in the
previous sections was not that of introducing realistic models of financial time se-
ries. For instance, it is well known that the simple stochastic processes considered
in sec. 1.4 are far too simple to reproduce some key stylized facts observed in real
financial time series, such as volatility clustering [43, 44] or a bursty behaviour
[50]. Moreover, being entirely binary, the above examples cannot address other
well established properties characterizing the amplitude of fluctuations, e.g. the
‘fat’ (power-law) tails of the empirical distributions of price returns.

Nonetheless, there is a simple argument that legitimates us to use a proper
extension of the above modelling approach, especially that introduced in sec.
1.5, provided that we adequately calibrate such extension on the observed set
of multiple time series. The argument is basically the realization that we can
properly model the binary signature of a time series, using temporal iterations
of even the simplistic models we have introduced in sec. 1.5, if we assume that
some aggregated information measured on the original ‘weighted’ time series ri(t)
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Figure 1.10: Autocorrelation between daily cross-sections. The measured
autocorrelation of the average binary daily return {x∗i (t)} for the three indices in
year 2006. The green lines represent the noise level, calculated as ±2 standard
deviations of the Fisher-transformed autocorrelation.

(1 ≤ i ≤ N) can be used as a proxy of the driving factor defining the model
itself. We will show that this simple assumption is actually verified in the data.
In particular, we will show that a sequence of temporal iterations of the biased
random walk model, which assumes that the binary time series is driven by an
‘external’ field, can be ‘bootstrapped’ on the real data by assuming that the field
can be replaced by a function of the (endogenous) observed aggregate increment
of the original weighted time series, i.e. the empirical value {r∗i } of the quantity
{ri} defined in eq. (1.3). In such a way, we do not need a model generating a
realistic dynamics of {ri} (or of the individual stock-specific increments) in order
to model the behaviour of {xi}, because the time series of {ri} is taken from the
data.

As a result, we will obtain an accurate model for the dynamics of the aggregate
binary increment {xi(t)}, given the observed dynamics of {ri(t)}. This model will
reproduce with great accuracy, and mathematically characterize, the empirical
nonlinear relation between these two quantities that we have illustrated in sec.
1.2.2. We will finally test the temporal robustness and predictive power of the
model, and conclude with discussion of the relatedness of our approach and more
traditional ‘factor models’ in finance.

1.6.1 Temporal dependencies among cross sections

In order to execute the above plan, we first analyze the correlations between
single cross sections of the market. We need this preliminary analysis in order
to determine whether the temporal extension of the models defined in sec. 1.5
should incorporate dependencies among different snapshots.

Based on extensive financial literature, we expect no correlation (on a daily
frequency) among the returns of different cross sections. However, most analyses
focus on the autocorrelation of individual stocks, based on their weighted returns.
So, to check our hypothesis we perform an explicit analysis of the temporal au-
tocorrelation of the observed time series of the aggregate, binary return {x∗i (t)}.
This analysis is shown in fig.1.10 for the three indices, using daily data for year
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2006. We confirm that the observed autocorrelation is not statistically significant,
since (apart for a few points) it lies within the range of random noise (calculated
by imposing a threshold of two standard deviations on the Fisher-transformed
autocorrelation). This type of uncorrelated dynamics is observed throughout our
dataset. This means that, in line with other analyses of autocorrelation, the mem-
ory of the aggregate binary return of real markets, if any, is much shorter than a
day.

Going back to the result illustrated in fig. 1.9, we can then conclude that there
is no significant correlation in the trajectories of the daily points populating the
curves. In other words, given the knowledge of the position of the market in the
AIC curves in a given day, we cannot predict where the market will move the next
day, even if of course we know that it will move to another point in the curves
themselves.

1.6.2 Reproducing the observed binary/non-binary relation-
ships

The previous result sets the stage for our next step, where we consider an explicit
extension of the models considered in sec. 1.5 to an ensemble of multiple time
series, as introduced in sec. 1.3 in the general case. The absence of autocorrelation
implies that we can define the Hamiltonian of the full N × T matrix X as a sum
of T non-interacting Hamiltonians, each describing a single cross section of N
stocks.

Next, we need to choose the model to extend. We want the final model to
establish (among other things) an expected relationship between the binary and
the weighted aggregate returns, so that we can test this prediction against the
empirical relationships illustrated in sec. 1.2.2. This implies that we need to input
the measured weighted return {r∗i } as a driving parameter of the binary model.
Among the three models, only the biased random walk and the mean field model
have parameters that can be related to {r∗i }. In sec. 1.5 we treated those models
as giving competing interpretations of the market model in terms of exogenous
and endogenous effects respectively. However, it should be noted that this is no
longer possible as soon as the parameters of these models are made dependent
on the observed return. For instance, if we assume that the parameter θ of the
biased random walk depends on {r∗i } (which is a property of the data), we can no
longer interpret θ as an external field, since it has been somehow ‘endogenized’.
Determining whether θ can be interpreted as endogenous or exogeneous is now
entirely dependent on whether {r∗i } itself can be interpreted as endogenous or
exogeneous. This tautology does not prevent us from determining a relationship
between {r∗i } and {x∗i } in their full range of variation, because such relationship
is independent on the optimal (endogenous or exogenous) interpretation of both
quantities.

We also note that the choice of the model to calibrate on {ri} is now com-
pletely independent of the relative performance of the various models that we have

44



Financial Time Series

determined in the case of free parameters, including their AIC weights shown in
fig.1.9. Indeed, apart from an initial calibration, the parameters will no longer be
fitted using the maximum likelihood principle, making the AIC analysis no longer
appropriate. In other words, ranking the ‘free’ models and endogenizing their
parameters are two completely different problems. In particular, the low AIC
weight of the biased random walk throughout most of fig.1.9 does not impede us
from using this model in our next analysis. We will indeed ‘bootstrap’ the biased
random walk on the real data, by looking for a relationship between {ri} and the
parameter θ. We prefer this model over the mean field one because, while it is
natural to think of (a function of) {ri} as a proxy of the ‘field’ θ affecting the
market in the biased random walk model (notably, {ri} has a definition similar
to that of a market index), it is less natural to think of the same quantity as a
proxy of the inter-stock interaction J in the mean field model (although, as we
said before, this would be technically possible).

Combining all the above considerations, we finally generalize the biased ran-
dom walk model defined by eq. (1.59) to the matrix case as follows:

H(X, ~θ) =
T∑
t=1

θ(t)
N∑
i=1

xi(t) (1.72)

where ~θ it a T -dimensional vector with entries θ(t). Note that, while the models
we introduced in sec. 1.4 have time-independent parameters and therefore corre-
spond to time series at statistical equilibrium (for example a model with constant
volatility), we are now considering more general models with time-dependent pa-
rameters. Relating θ(t) to {ri(t)} will allow us to incorporate any observed degree
of non-stationarity of the data into the model itself.

As a preliminary calibration, we now look for an empirical relation between
{ri(t)} and θ(t). To this end, we first treat the latter as a free parameter and look
for the optimal value θ∗(t) maximizing the likelihood of the observed binary time
series X∗. Since the Hamiltonians for different timesteps are non-interacting, it
is easy to show that θ∗(t) is given again by eq. (1.63) where {x∗i } is replaced by
{x∗i (t)}:

θ∗(t) = −1
2

ln
[

1 + {x∗i (t)}
1− {x∗i (t)}

]
. (1.73)

In fig. 1.11 we compare the resulting value of θ∗(t) with the corresponding
observed weighted return {r∗i (t)}, for the three indices separately. Each point
in the plot corresponds to a different day, and we considered 250 days (approxi-
mately one year) for each index. We find a strong linear relation between the two
quantities. This relation can be fitted by the one-parameter curve

{r∗i (t)} = −c · θ∗(t) (1.74)

where c > 0. This finding is very important. It confirms that the parameter θ∗(t),
defined through eq. (3.14) as a time-varying ‘field’ driving the observed binary
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Figure 1.11: Observed linear relation between fitted free parameter θ∗(t)
and weighted property {r∗i (t)}. The most likely value of the driving field
θ∗(t) calculated applying the biased random walk model to the projected binary
signature of day t, compared with the measured average weighted return {r∗i (t)}
of the same day, for 250 trading days (approximately one year) in the FTSE100
(left), S&P500 (center) and NIKKEI225 (right) in various years (2003, 2007, and
2004 respectively). We also show the linear fit {ri(t)} = −c θ∗(t) with c > 0.

increment {x∗i (t)} with maximum likelihood, is an excellent proxy for the observed
non-binary ‘market index’ {r∗i (t)}. This result holds up to a negative factor c
which, on the time scale considered, is constant for each market (in sec. 1.6.3 we
will provide a more detailed analysis of the stability of c over different time scales).
Since {r∗i (t)} is a property measured on the stock increments themselves, it reflects
both external influences and internal dependencies. Therefore θ∗(t) cannot be
(entirely) interpreted as an external field. This confirms our interpretation of the
biased random walk as a model agnostic to the (endogenous or exogenous) nature
of the driving field in the present setting.

Combining eqs.(1.73) and (1.74) together, we finally obtain a mathematical
expression for the expected relationship between {r∗i } and {x∗i } in our model:

{r∗i (t)} =
c

2
ln
[

1 + {x∗i (t)}
1− {x∗i (t)}

]
= c · artanh{x∗i (t)}. (1.75)

Inverting, we have

{x∗i (t)} = tanh
{r∗i (t)}

c
. (1.76)

We can now test the above expressions against the data shown previously in
fig.1.2. In that figure, we already showed that the observed relationship between
{r∗i } and {x∗i } can be fitted very well by a curve of the form given by eq. (1.75).
We have just provided a theoretical justification for the otherwise arbitrary use of
such expression. Moreover, now we can fit the value of c using eq. (1.74), which
is independent of eq. (1.75). Once we obtain c in this way, we can use eq. (1.75)
to predict {r∗i (t)} given {x∗i (t)}, or vice versa, without fitting any parameter. In
fig.1.12 we show the result of this operation. We confirm that the prediction of
our model matches the empirical relationship very well.
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We also consider a null model where we randomly shuffle the increments of
each of the N time series independently. This results in a set of randomized time
series, with elements r′i(t), where the total increment

∑T
t=1 r

′
i(t) for each stock

is preserved, but the returns of all stocks in a given day are uncorrelated. From
r′i(t), we obtain the binary signature x′i(t) as for the real data. As shown in
fig.1.12, this randomized benchmark overlaps with the empirical trend only in a
very narrow, linear regime. We will now try to understand this result.

The reason why the shuffled data result in a linear trend is the following. For
each value of {x′i}, there is a definite number Nup of ‘up’ stocks and a definite
number Ndown = N −Nup of ‘down’ stocks, according to the relation

{x′i} =
Nup −Ndown

N
=

2Nup −N
N

= 2
Nup
N
− 1. (1.77)

Conditional on the above value of {x′i}, the expected value of {r′i} (over multiple
shufflings) is

〈{r′i}〉 =
r∗+Nup + r∗−Ndown

N
≈
r∗+Nup − r∗+Ndown

N
= r∗+

[
2
Nup
N
− 1
]

= r∗+{x′i}.

(1.78)

where r∗+ > 0 is the average positive increment (over all T time steps and all N
time series) and r∗− < 0 is the average negative increment. Note that both values
coincide with the corresponding quantities in the original data, and have been
denoted by a star accordingly. Assuming approximately symmetric log-return
distributions for each of the N time series as typically observed, we have set
r∗− ≈ −r∗+. Given the overlap between real and shuffled data around zero returns
in fig.1.12, we can linearize eq. (1.76) around zero and compare it with eq. (1.78)
to get

c ≈ r∗+. (1.79)

The above expression suggests that the value of c strongly depends on the original
log-return distribution. Therefore, we expect that the stability of c is determined
by that of r∗+. In sec. 1.6.3 we will study the stability of c in more detail.

The above simple argument shows that, for shuffled data, we indeed expect a
linear relationship between {r′i(t)} and {x′i(t)}. This is a striking difference with
respect to real data, where {r∗i (t)} virtually diverges as |{x∗i (t)}| approaches one.
This ‘divergence’ indicates that, when most stocks are aligned in real markets
(|{x∗i (t)}| ≈ 1), the observed log-returns are much larger than the typical positive
increment (|{r∗i (t)}| � r∗+). In other words, extreme log-returns are more often
observed when stocks are synchronized. This means that there is a strong cor-
relation between the magnitude of log-returns of individual time series and the
degree of coordination of all stocks in the market.

While for infinite realizations of the shuffling procedure we would observe eq.
(1.78) extending to the full range −1 ≤ {x′i} ≤ +1, for finite realizations we
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Figure 1.12: Characterization of empirical relations between binary and
non-binary properties in financial time series. Nonlinear relationship be-
tween the average daily increment (weighted return) and the average daily sign
(binary return) over all stocks in the FTSE100 (left), S&P500 (center) and
NIKKEI225 (right) in various years (2003, 2007, and 2004 respectively). Here
each point corresponds to one day in the time interval of 250 trading days (ap-
proximately one year). The red curve is our non-parametric prediction based on
the fit shown in fig.1.11, and the green points are the same properties measured
on the shuffled data.

observe a much narrower span of values (see fig.1.12). This is due to the absence
of correlations among stocks, resulting in significantly lower values of both {r′i}
and {x′i} with respect to the observed quantities {r∗i } and {x∗i }. Interestingly
enough, for the S&P500 index the randomized data span the range |{x′i}| . 0.2,
which coincides precisely with the regime we identified in fig.1.9 for a completely
noisy-driven system with the same number of stocks. This confirms that the
AIC analysis correctly pinpoints the boundaries outside which one should expect
the observed value {x∗i } to be inconsistent with a typical realization of N purely
random variables.

The above results also provide an explanation for the second empirical non-
linear relation that we had documented in sec. 1.2.2, i.e. the one between
{r∗i (t)r∗j (t)} and {x∗i (t)} (see fig. 1.3). In general, we can write {rirj} as

{rirj} =
1

N(N − 1)

∑
i 6=j

rirj =
1

N(N − 1)

( N∑
i=1

ri

)2

−
N∑
i=1

r2
i

 . (1.80)

The term
∑N
i=1 r

2
i is of order N , and vanishes for large markets when divided by

N(N − 1). We are therefore left with

{rirj} ≈
1

N(N − 1)

(
N∑
i=1

ri

)2

≈ {ri}2. (1.81)

Using eq.(1.75), we get

{r∗i (t)r∗j (t)} ≈ {r∗i (t)}2 = c2artanh2{x∗i (t)} (1.82)
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Figure 1.13: Characterization of empirical relations between binary and
second-order non-binary properties in financial time series. Nonlinear
relationship between the average daily coupling (weighted coupling) and the av-
erage daily sign (binary return) over all stocks in the FTSE100 (left), S&P500
(center) and NIKKEI225 (right) in various years (2003, 2007, and 2004 respec-
tively). Here each point corresponds to one day in the time interval of 250 trading
days (approximately one year). The red curve is our non-parametric prediction
based on the fit shown in fig.1.11, and the green points are the same properties
measured on the shuffled data.

which theoretically justifies the fitting function we had used in fig.1.3. Again,
rather than fitting that curve on the data, we can use the value of c determined
from the (independent) fit shown in fig.1.11. This results in the non-parametric
plot shown in fig. 1.13. We confirm that, for each of the three indices, we can
reproduce the observed relationship very well.

As before, we also show the relationship between {r′i(t)r′j(t)} and {x′i(t)} for
randomly shuffled data. The linearity of eq. (1.78) now translates into an expected
parabolic relationship:

〈{r′ir′j}〉 ≈ {r′i}2 = (r∗+)2{x′i}2. (1.83)

Again, real data strongly deviate from the above ‘uncorrelated’ parabolic ex-
pectation, because extreme events make the empirical coupling {r∗i r∗j } virtually
‘diverge’ when stocks are highly synchronized (|{x∗i }| ≈ 1).

1.6.3 Stability of the parameter c

Once we have mathematically characterized the observed nonlinear relations, an
unavoidable question arises: in a given market, how stable are those relations?
Since c is the only parameter in the above analysis, the question simply translates
into the stability of c. We have already noted that c is related to the average
positive return r∗+, which we expect to be relatively stable. In order to study the
stability of c in more detail, we now consider several yearly and monthly time
windows, and explore the time evolution of the fitted parameter for the three
indices.

In fig. 1.14 (upper panels) we plot the values of the parameter c (with error
bars) for 11 yearly snapshots (2001-2010). It is clear that there are periods during
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which the yearly values are relatively stable, and periods when they fluctuate
wildly. Thus, in most cases the fitted value of c in a given year does not allow to
make predictions about the value of c int the next year.

However, we can also consider a monthly frequency. In the bottom panels of
fig. 1.14 we show the result of our analysis, when carried out on the 12 monthly
snapshots of year 2006. We choose this particular year because, in the yearly
trends shown above, it represents very different points for different markets: the
end of a stable period for the FTSE100, an exceptional jump for the S&P500, and
the middle of an increasing trend for the NIKKEI225. Despite these differences,
we find that in all three markets the monthly dynamics is much more stable
than the yearly one. In particular, the trends for FTSE100 and NIKKEI225 are
almost constant, and for the S&P500 there are only two deviating points from an
otherwise stable trend (despite the large fluctuation that 2006 represents in the
yearly trend for this index). This implies that, in most cases, one might even use
the monthly value of c out of sample, in order to predict the future relationship
between {xi} and {ri} based on a past observation. We should however stress
that the aim of our method is to characterize such relationship, and not to predict
it. Indeed, we cannot imagine any situation in which only the binary (or only the
non-binary) information is available.

The above results show that there is a trade-off between short and long periods
of time. For short (e.g. monthly) periods there are less points to calculate c
through a fit of the type shown in fig.1.11. This explains why the monthly trends
in fig.1.14 have bigger error bars than the yearly trends in the same figure. By
contrast, for longer (e.g. yearly) periods each individual fit is better, but there
are more fluctuations in the temporal evolution of the parameter c, because the
data are less stationary. In general, we expect that in each market, and for a
specific period of time, there is a different ‘optimal’ frequency to consider.

1.6.4 Relation to factor models

We would like to conclude this chapter with a discussion of the relationship be-
tween some of our findings and the popular factor models in the financial literature
[3]. As a basic consideration, we stress that factor models can only be applied to
the original (non-binary) increments (it is impossible to decompose a binary signal
into a nontrivial combination of binary signals), while our models only apply to
the binary projections. We should bear this irreducible difference in mind in what
follows. However, due to the mapping between binary and non-binary increments
that we have documented, we can try to indeed relate the two approaches.

First, let us consider the shuffled (uncorrelated) data, where the original log-
returns are randomly permuted within each of the N time series. It is well known
that the total temporal increment (over T time steps) of any empirical time series
of price increments is generally close to zero (due to market efficiency), and that
the distribution of log-returns is mostly symmetric around this value. This is es-
pecially true if each of the N original time series has been separately standardized,
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Figure 1.14: Stability analysis of the parameter c. Parameter c fitted as in
fig.1.11 on various yearly (top panels) and monthly (bottom panels) snapshots of
the market, for the FTSE100 (left), S&P500 (center) and NIKKEI225 (right).

i.e. the i-th temporal average has been subtracted from each increment of the i-th
time series, and the result has been divided by the i-th standard deviation. In
such a case, the N log-return distributions become also very similar to each other,
because their support is the same and their values are comparable. This means
that, after the shuffling, the time series are sequences of independent and almost
identically distributed variables with zero mean. We denote the corresponding
increments as

ri(t) = εi(t) ∀i, (1.84)

where the εi’s are random variables. In a traditional factor analysis, the above
scenario takes the form of a ‘zero-factor’ model. Under this model, the aggregate
increment over N stocks is expected to be narrowly distributed around

{ri(t)} =
1
N

N∑
i=1

εi(t) ≈ 0. (1.85)

When {ri(t)} takes small values around zero, we know from fig. 1.12 that {xi(t)}
also takes small values around zero. Indeed, shuffled time series are in the linear
regime that spans the range where the binary increment {xi(t)} is consistent
with a uniform random walk (see fig.1.9). Therefore we find that the zero-factor
model (for the non-binary returns) and the uniform random walk (for the binary
returns) are consistent with each other in the linear regime. In other words, when
in our analysis we measure a value of {xi(t)} that is consistent with a uniform
random walk, we know that the original log-returns are consistent with a zero-
factor model.

Next, we consider a one-factor model, where there is one dominant underlying
factor assumed to control the dynamics of all the time series. In such a case, each
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return can be decomposed as

ri(t) = αiΦ0(t) + εi(t) ∀i, (1.86)

where αi is the ‘factor loading’ of the i-th time series with the dominant factor
Φ0(t). When referring to stocks, the factor Φ0(t) is attributed to the market mode.
It is known that, during crisis times when the markets are highly correlated, a
one-factor model can describe the dynamics quite well. Under this model, the
aggregate increment is

{ri(t)} =
1
N

N∑
i=1

αiΦ0(t) +
1
N

N∑
i=1

εi(t) ≈ {αi}Φ0(t) (1.87)

where {αi} ≡ 1
N

∑N
i=1 αi is the average loading, which is independent of both

i and t. This result implies that, when the market is well described by a one-
factor model, the average increment {ri(t)} that we measure in our analysis is
proportional to the factor Φ0(t) itself. We note that the one-factor model is
somehow similar to our biased random walk model, as it assumes a common drive
for all the stocks. However, since Φ0(t) is fitted on the data, the one-factor model
cannot distinguish between an endogenous or exogenous nature of the common
drive. This situation is similar to when we use the observed value of {ri(t)} as
the driving field of the biased random walk (see sec. 1.6.2).

In financial analysis, the factor model can be used to filter the original time
series and remove the one-factor component from them. When the model is a good
approximation to the real market, the filtered returns are ri(t) ≈ εi(t), leading
us back to eq. (1.84) and the related considerations. In such a scenario, there
is no correlation among the stocks, and each stock is acting as an i.i.d. variable.
We therefore expect that, if we remove the market mode from the original time
series, then (in periods where the market is indeed dominated by a single factor)
we would obtain results similar to the shuffled case, and we would find the system
in the uncoordinated phase of fig.1.9.

However, despite the fact that in certain conditions the one-factor model can
generate the market behaviour, the model is too simplistic [3]. In reality the
dynamics is more complex and can be attributed to many factors, that sometimes
overlap with industrial (sub)sectors. Generally the different factors are identified
by the largest, non-random eigenvalues of the empirical cross-correlation matrix,
where the market mode relates to the highest eigenvalue [3]. The presence of
many deviating eigenvalues is an indication of the fact that the one-factor model
should be rejected. A more realistic, M -factor model is

ri(t) =
M∑
j=0

αijΦj(t) + εi(t) ∀i, (1.88)

where j = 0 denotes a common market-wide factor as above, while j > 0 denotes
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sector-specific factors. In such a case, our measured value of {ri(t)} is

{ri(t)} =
1
N

N∑
i=1

M∑
j=1

αijΦj(t) +
1
N

N∑
i=1

εi(t) ≈
M∑
j=1

{αij}Φj(t) (1.89)

which is a linear combination of the multiple factors controlling the market dy-
namics.

It should be noted that factor models cannot distinguish between an endoge-
nous and exogenous origin for the factors Φj(t) themselves, even if we invoke some
information-theoretic criterion to rank different specifications of these models. By
contrast, our binary models allow us to discriminate among these multiple sce-
narios, as we have shown in fig.1.9 and related discussions. Moreover, while our
approach allows us to relate binary and non-binary increments of real time series
and replicate the observed relationships among them (see figs.1.12 and 1.13), fac-
tor models cannot lead to a similar result, because they do not allow for a binary
description.

1.7 Conclusions
In this chapter we presented a novel method for the analysis of single and multiple
binary time series. Our information-theoretic approach allowed us to extract
and quantify the amount of information encoded in simple, empirically measured
properties. This resulted in the possibility to associate an entropy value to a
time series given its measured properties, and to compare the informativeness of
different measured properties.

By employing our formalism, we have identified distinct regimes in the collec-
tive behaviour of groups of stocks, corresponding to different levels of coordination
that only depend on the average return of the binary time series. In each regime
the market exhibits a dominant character: the market mode can be interpreted as
an exogenous factor, as pure noise, or as a combination of endogenous and exoge-
nous components. Moreover, each regime is characterized by the most informative
property.

Finally and more importantly, we were able to replicate the observed nonlinear
relations between binary and non-binary aggregate increments of real multiple
time series. We have mathematically characterized these relations accurately,
and interpreted them as the result of the fact that very large log-returns occur
more often when most stocks are synchronized, i.e. when their increments have
a common sign. Our findings suggest that the binary signatures carry significant
information, and even allow to measure the level of coordination in a way that is
unaccessible to standard non-binary analyses.
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