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Introduction

Following the 2008 crisis, there has been a soaring interest in using ideas from
different disciplines to make sense of economic and financial markets. The near-
collapse of the financial system could not be explained, even more so predicted,
by the traditional economic models. Ignoring properties like the complex network
of interactions and non-linear relations in the system, these economic models are
based on very restrictive assumptions. Confronting this gap, in recent years an
alternative view has been developed using network theory and tools from statis-
tical physics. A notable example of this shift of perspective is the move from
traditional measures of “risk” of individual financial entities to new measures of
“systemic risk,” defined as the risk of collapse of an entire system. Neverthe-
less, the pursuit of physicists to characterize financial and economic systems with
empirical laws and “simple” global models started already two decades before,
giving rise to the controversial field of ‘Econophysics.’ The interaction between
economists and physicists, although immersed in frictions and resistance, led to
some fruitful results and attracted major interest by central banks, regulators,
and policy makers. Nonetheless, despite the various “real world” applications and
implications, this field has to problems of a great social relevance, it requires the
toolkit of theoretical physics and, in particular, statistical physics. This stim-
ulating scientific context is partially reflected in the environment wherein the
research described in this Ph.D. has been conducted. This study combined the-
oretical work and data analysis at the Lorentz Institute for Theoretical Physics,
alongside important interactions with practitioners in finance (Duyfken Trading
Knowledge) and bank supervisors (The Dutch National Bank).

Employing concepts from physics or mathematics in the field of economics
is by no means a new phenomenon. In fact, Leiden University provides some
remarkable examples of scientists with a background in physics, who left a signif-
icant impact on the field of economics. The most famous one is Jan Tinbergen,
the first recipient of the Nobel Memorial Prize in Economics in 1969, who ob-
tained his Ph.D. in physics at Leiden University under the supervision of Paul
Ehrenfest in 1929. The title of his thesis was "Minimum Problems in Physics and
Economics". In the early sixties, Tinbergen proposed the so-called Gravity Model
of International Trade, presumably inspired by his physics training. The model
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predicts the bilateral trade flows between two countries by a formula similar to
Newton’s law of gravitation, and is still being used by economists. As we explain
later, part of this thesis focuses on extensions of the Gravity Model. Another great
example is Tjalling Koopmans, which was a student of Jan Tinbergen in 1933. In
1936, Koopmans graduated with a Ph.D. from the faculty of mathematical and
physical sciences at Leiden University, with a thesis entitled "Linear regression
analysis of economic time series". Time series analysis is another core topic that
we address in this thesis. Later in 1975, Koopmans was awarded the Nobel Memo-
rial Prize in Economics (jointly with Leonid Kantorovich) for his contributions
to the field of resource allocation, specifically the theory of the optimal use of
resources. Looking back at these great scientists from a modern standpoint, they
highlight the advantages of interdisciplinary research in tackling major challenges.

Coming back to the present, the research of complexity in economics has
been steadily growing, gradually encompassing different scales: from ‘microscopic’
networks of financial assets, through ‘mesoscopic’ networks of firms, banks, and
institutions, to ‘macroscopic’ networks of countries and economic sectors. In gen-
eral, the dynamics of these complex financial systems is highly random and noisy.
Nevertheless, they carry critical information. The ’universal’ challenge, across the
different scales, is the extraction of meaningful information regarding the state of
the system from the observable (empirical) data. This problem is immensely com-
plicated by the temporal heterogeneity, i.e. different dynamics in different time
periods, and the structural heterogeneity, i.e. complex topology, in the systems.
Most current models are much more homogeneous and cannot account for, or
explain these complex properties. This takes us to the main research question of
the thesis, where we want to introduce a new class of statistical models which en-
force partial empirical information that accurately controls for the heterogeneity
in the system. A very promising approach to this problem is the use of maximum-
entropy ensembles. Maximum-entropy models can be used in different settings,
and typically serve as a reference to identify non-random patterns or properties.
The power of the maximum-entropy approach is that it applies to very different
fields and systems, from neuroscience to social network analysis. In this work,
we review various maximum-entropy models and their powerful applications to
financial systems. As a by-product, we also apply our framework to brain data.
This was possible due to a collaboration with Leiden University Medical Center
(LUMC).

The thesis is divided into three independent chapters, where each chapter cov-
ers results from multiple scientific publications addressing a particular system or
problem. For a better comprehensibility, in each chapter we start by introducing
the theoretical models and framework, and later proceed to the different applica-
tions of our models to real-world systems. In Chapter 1 we aim at characterizing
and quantifying the information encoded within the so-called binary projections
(i.e. the signs of the increments) of financial time series. We introduce maximum-
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entropy ensembles of binary matrices that represent projections of single and mul-
tiple binary time series, subject to a set of desired constraints defined as simple
empirical observables. Our approach leads to a family of analytically solved null
models that allow us to quantify the amount of information encoded in the cho-
sen constraints, i.e. the selected observables of the binary projections of real-time
series. Lastly, we show that our approach is able to reproduce and mathemati-
cally characterize certain empirical non-linear relationships between binary and
non-binary properties of real time series.

In Chapter 2 we focus on economic networks, in particular, the International
Trade Network (ITN). The network describes the exchange of capital, goods,
and services between countries, and plays a significant role in the propagation of
shocks. Modelling this complex system has been tackled by different disciplines,
starting in the early sixties with the aforementioned Gravity Model. However, the
empirical topology of the ITN is much more heterogeneous than the one predicted
by the Gravity Model. The complete characterization of the ITN via a simple, yet
accurate, model is still an open problem. We propose two different GDP-driven
models which reconcile the different approaches of macroeconomics and network
theory. Specifically, one model is a maximum-entropy generalization of the pop-
ular Gravity Model that embeds the latter in a realistic network topology. Thus,
it represents significant improvement with respect to current models.

In Chapter 3 we discuss the identification of functional structure from cor-
relation matrices measured from empirical time series driven by a common non-
stationary trend. We discuss a recent community detection method and generalize
it using a complete maximum-entropy framework that builds on the results from
the previous chapter 1. In this setting, we introduce a null model serving as a ran-
dom benchmark for the identification of non-random patterns in the correlation
matrix. We apply the method to various real-world financial markets, examining
the emergent functional structure generated by financial time series and their bi-
nary projections. We show that the simple binary representation can replicate to
a large degree the complex structure which is induced by the full weighted time
series. Next, we show that our method also has a great potential in a biological
setting, specifically in an empirical detection of functional brain organization. In
collaboration with LUMC, we apply the method to the biological clock of mice
(suprachiasmatic nucleus). This is a very small brain region that can be repre-
sented as a complex network of oscillating neurons. While other methods failed,
our method consistently revealed a core-periphery structure associated with two
populations of neurons, a result that has been cross-checked with independent
analysis.

Finally, we end this thesis with some concluding remarks, reviewing the key
findings presented in this work.
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Chapter 1

Financial Time Series

The dynamics of complex systems, from financial markets to the brain, can be
monitored in terms of time series of activity of their fundamental elements (such
as stocks or neurons respectively). While the main focus of time series analysis
is on the magnitude of temporal increments, a significant piece of information is
encoded into the binary projection (i.e. the sign) of such increments. In this chap-
ter we provide further evidence of this by showing strong nonlinear relationships
between binary and non-binary properties of financial time series. We then intro-
duce an information-theoretic approach to the analysis of the binary signature of
single and multiple time series. Through the definition of maximum-entropy en-
sembles of binary matrices, we quantify the information encoded into the simplest
binary properties of real time series and identify the most informative property
given a set of measurements. Our formalism is able to replicate the observed
binary/non-binary relations very well, and to mathematically characterize them.
Moreover, we identify distinct regimes in the collective behaviour of groups of
stocks, corresponding to different levels of coordination that only depend on the
average return of the binary time series. This approach also allows us to con-
nect simple stochastic processes to specific ensembles of time series inferred from
partial information.

The results presented in this chapter have been published in the following reference:
A. Almog and D. Garlaschelli New Journal of Physics 16: 093015 (2014).
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1.1 Introduction

1.1 Introduction
In large systems, the observed dynamics or activity of each unit can be repre-
sented by a discrete time series providing a sequence of measurements of the state
of that unit. One of the main challenges researchers are faced with is that of
extracting meaningful information from the high-dimensional (multiple) time se-
ries characterizing all the elements of a complex system [1, 2, 3, 4, 5, 6, 7, 8, 9].
Traditionally, the main object of time series analysis is the characterization of
patterns in the amplitude of the increments of the quantities of interest. Given a
signal si(t) where i denotes one of the N units of the system and t denotes one
of the T observed temporal snapshots, the generic increment or ‘return’ ri(t) can
be defined as

ri(t) ≡ si(t+ 1)− si(t) i = 1, N t = 1, T (1.1)

and generates a new time series.
While a time series of increments encapsulates all the relevant information

about the amplitude of the fluctuations of the original signal, a significant part of
this information is encoded in the purely ‘binary’ projection of ri(t), i.e. its sign

xi(t) ≡ sign[ri(t)] =

 +1 ri(t) > 0
0 ri(t) = 0
−1 ri(t) < 0

(1.2)

Previous analyses, mainly in the field of finance, have indeed documented various
forms of statistical dependency between the sign and the absolute value of fluctua-
tions, e.g. sign-volume correlations [10, 11] and the leverage effect [12, 13, 14, 15].
Other studies have also documented that the binary projections of various finan-
cial [16] and neural [17] time series exhibit nontrivial dynamical features that
resemble those of the original data. All these results suggest that binary pro-
jections indeed retain a non-trivial piece of information about the original time
series, and call for a deeper analysis of the problem.

Being binary, the sign of the increments is much more robust to noise than
the increments themselves. Moreover, it is scale-invariant (i.e. independent of the
chosen unit of increments) and does not depend on whether the original data have
been preliminarily rescaled or log-transformed (as usually done e.g. for financial
time series). Binary time series can also be analyzed with the aid of much simpler
mathematical models than required by non-binary data (several examples of such
models will be provided in this chapter). Finally, as we show later on, in multiple
financial time series the total binary increment of a given cross section measures
the instantaneous level of synchronization (i.e. the number of stocks moving in
the same direction) of the market, while the total non-binary increment does
not carry this piece of information. For all the above reasons, it is important
to further investigate whether the full ‘weighted’ or ‘valued’ information can, in
some circumstances, be somehow mapped to the binary one, thus providing a
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Financial Time Series

robust, highly simplified, more easily modeled, and informative representation of
the system.

Motivated by the above considerations, in this chapter we further study, both
empirically and theoretically, the relationship between weighted time series and
their binary projections. We first provide robust empirical evidence of novel rela-
tionships between binary and non-binary properties of real financial time series.
To this end, we use the daily closing prices of all stocks of three markets (S&P500,
FTSE100 and NIKKEI225) over the period 2001-2011. We show that the average
daily increment and average daily coupling of an empirical set of multiple time
series are strongly and non-linearly related to the corresponding average incre-
ment of the binary projections of the same time series. These empirical relations
quantify in a novel way the strong correlations existing between the increments
of individual stocks and the overall level of synchronization among all stocks in
the market.

Building on this evidence, we then introduce a formalism to analytically char-
acterize random ensembles of single and multiple time series with desired con-
straints. Specifically, we follow Jaynes’ interpretation and re-derivation of sta-
tistical physics as an inference problem from partial macroscopic information to
the unobservable microscopic configuration [18, 19]. We define statistical ensem-
bles of matrices that maximize Shannon’s entropy [20], subject to a set of desired
constraints. This maximum-entropy approach is widely used in many areas, from
neuroscience [49] to social network analysis [25] (and more recently network sci-
ence in general [21]), where it is known under the name of ERG (Exponential
Random Graph) formalism. In the case of interest here, we introduce ensembles
of maximum-entropy binary matrices that represent projections of single and mul-
tiple binary time series, subject to a set of desired constraints defined as simple
empirical measurements. We discuss the main differences between our matrix
ensembles and other techniques in time series analysis, including other ensembles
of random matrices encountered in random matrix theory [26, 27, 28, 29, 30].

Our approach leads to a family of analytically solved null models that allow
us to quantify the amount of information encoded in the chosen constraints, i.e.
the selected observed properties of the binary projections of real time series. Dif-
ferent choices of the constraints lead to different stochastic processes, a result
that allows us to relate known stochastic processes to the corresponding ‘target’
empirical properties defining the ensemble of time series spanned by the process
itself. After applying the approach to the financial time series in our analysis, we
compare the informativeness of various measured properties and show that differ-
ent properties are more relevant for different time series and temporal windows.
We also identify distinct regimes in the behaviour of multiple stocks and give the
most likely explanation (endogenous, exogenous, or mixed) for the observed level
of coordination or ‘market mode’, given the measured binary return at a given
point in time. Finally, and most importantly, we show that our approach is able to
reproduce and mathematically characterize the observed nonlinear relationships
between binary and non-binary properties of real time series.

15



1.2 Empirical results

The rest of the chapter is organized as follows. In sec. 1.2 we describe the
data and provide empirical evidence of the relationships that motivate our work.
In sec. 1.3 we introduce our theoretical formalism in its general form. In sec. 1.4
we apply the formalism to single time series, while in sec. 1.5 we apply it to single
cross-sections (temporal snapshots) of multiple time series. Finally, in sec. 1.6
we consider our method in its full extent and apply it to entire spans of multiple
time series, for different financial markets around the globe. We end with our
conclusions in sec. 1.7.

1.2 Empirical results

1.2.1 Data

We use daily closing prices, for the 10-years period ranging from 24/10/2001 to
18/10/2011, of all stocks from the indices S&P500, FTSE100 and NIKKEI225.
For each index, we restrict our sample to the maximal group of stocks that are
traded continuously throughout the selected period. This results in 445 stocks for
the S&P500, 78 stocks for the FTSE100 and 193 stocks for the NIKKEI225.

We take logarithms of daily closing prices to obtain time series of log-prices
that represent our original ‘signal’ si(t), where i labels stocks and t labels days in
the sample. Correspondingly, we construct time series of log-returns where each
entry represents the increment ri(t) as defined in eq.(1.1). Finally, we take the sign
xi(t) of each log-return ri(t) to obtain an additional, binarized set of time series
as in eq.(1.2). We will refer to the binarized time series as the binary projection of
the original time series. In fig. 1.1 we show a simple example of a weighted time
series, along with the corresponding binary projection. The (multiple) time series
of ri(t) and xi(t) are the main objects of our analysis throughout the chapter.
Note that, while the use of log-returns rather than simple returns (i.e. price
differences) in finance is an important step that allows to remove overall trend
effects over long time spans [5], the binary signature is actually independent of
whether the original prices have been logarithmically transformed.

The main reason for choosing the daily frequency is to achieve an optimal level
of structural compatibility between the data and the models we introduce later.
As we discuss in detail in sec. 1.3, our models are binary, i.e. they only allow the
two values ±1 depending on whether the increment of the original time series is
positive or negative. An increment of 0 is not admitted in the models: consistently,
we choose a frequency for which zero increments are extremely rare in the data.
In financial markets, this is the case for daily (or lower) frequency. Indeed, a
zero return value occurs in less than 0.2 % of the cases in our daily data (when
this happens, we randomly switch the corresponding binary increment to either
+1 or −1 with equal probability). Higher-frequency data feature an increasing
percentage of zero returns, a property that calls for an extension of the models
considered here.
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Figure 1.1: Binary signature of financial time seires. ‘Weighted’ (left) versus
‘binary’ (right) time series of log-returns of the Apple stock over a period of 50
days starting from 7/5/2011.
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Figure 1.2: Empirical relations between binary and non-binary proper-
ties in financial time series. Nonlinear relationship between the average daily
increment (weighted return) and the average daily sign (binary return) over all
stocks in the FTSE100 (left), S&P500 (center) and NIKKEI225 (right) in various
years (2003, 2007, and 2004 respectively). Here each point corresponds to one day
in the time interval of 250 trading days (approximately one year). The red line
represents the best fit with the function y = a ·artanhx, whose use is theoretically
justified later in sec. 1.6.

It should be noted that other types of binary time series, different from the ±1
type considered here, can also be defined. Most notably, 0/1 binary time series
can indicate the occurrence of an event in a time period, i.e. whether the event
happened (1) or not (0). Financial examples include time series of recession indi-
cators [52, 53] or of ‘switching points’ in stock returns. For such 0/1 binary time
series, correlations may not be very informative when measuring a dependence
between the dichotomous variables. To confront this gap, in recent years new
methods were introduced, like the auto-persistence function and auto-persistence
graph. In these methods, the dependence structure among the observations is de-
scribed in terms of conditional probabilities, rather than correlations. Although
throughout this chapter we will be entirely focusing on ±1 binary time series that
naturally descend from the original signed time series of fluctuations, it is inter-
esting to notice that our approach can be extended, with slight modifications, to
0/1 time series as well. To this end, one needs to re-express all quantities in terms
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1.2 Empirical results

of a 0/1 binary variable y ≡ (x + 1)/2, where x is our ±1 binary variable, and
adapt our approach accordingly.

1.2.2 Nonlinear binary/non-binary relationships
We now come to the main empirical findings that motivate our research. For each
index and for each day t in the sample, we first calculate the average (over all
stocks) weighted return, that we denote as {ri(t)} and define as

{ri(t)} ≡
1
N

N∑
i=1

ri(t). (1.3)

Note that the above expression does not depend on the particular stock i, but it
does depend on time t. Our unconventional choice of the symbol {·} to denote
an average over stocks is to avoid confusion with temporal averages, that will be
denoted by the more usual bar (·) later in the chapter. Similarly, we calculate the
corresponding average binary return {xi(t)}, defined as

{xi(t)} ≡
1
N

N∑
i=1

xi(t) (1.4)

In fig.1.2 we plot {ri(t)} as a function of {xi(t)} for all days of various 1-
year intervals and for the three indices separately. We find a strong nonlinear
dependency between the two quantities. Note that the average binary return is
bound between −1 and +1 by construction, but the average weighted return is
unbounded from both sides. While there are in principle infinite values of {ri(t)}
that are consistent with the same value of {xi(t)}, we observe a tight relationship
between the two quantities. This relationship can be fitted by a one-parameter
curve of the form

{ri(t)} = a · artanh
[
{xi(t)}

]
=
a

2
ln

1 + xi(t)
1− xi(t)

(1.5)

(the theoretical justification for this functional form will be given in sec. 1.6),
where a is in general different for different years and different indices. Still, as we
show later, for a given year and market the average weighted return of any day t
is to a large extent predictable (out of sample) from the average binary return of
the same day, once a is known (for instance by fitting the above curve to the data
for a past time window). In sec. 1.6 we will also show that the nonlinear character
of the observed relations is a genuine signature of correlation in the data, as an
uncorrelated null model shows a completely linear behaviour.

There is another empirical relationship, involving a higher-order quantity. For
each index and for each day t in the sample, we calculated what we will call the
average ‘coupling’ over the N(N − 1)/2 distinct pairs of stocks:

{ri(t)rj(t)} ≡
2
∑
i<j ri(t)rj(t)
N(N − 1)

(1.6)
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Figure 1.3: Empirical relations between binary and second-order non-
binary properties in financial time series. Nonlinear relationship between
the average daily coupling (weighted coupling) and the average daily sign (binary
return) over all stocks in the FTSE100 (left), S&P500 (center) and NIKKEI225
(right) in various years (2003, 2007, and 2004 respectively). Here each point
corresponds to one day in the time interval of 250 trading days (approximately
one year). The red line represents the best fit with the function y = b ·(artanhx)2,
whose use is theoretically justified later in sec. 1.6.

(so now the symbol {·} indicates an average over pairs of stocks). In fig. 1.3
we plot {ri(t)rj(t)} as a function of the average binary return {xi(t)}, for the
same data as in fig. 1.2. Again, we find a strong nonlinear dependency, where
for a given value of the average binary return of day t there is a typical value
of the average coupling among all stocks in the same day. The relationship can
be fitted by a one-parameter curve that diverges at {xi} = ±1. As we show in
sec. 1.6, an uncorrelated null model would yield a different, parabolic curve with
no divergences. Again, this means that the empirical trend is due to genuine
correlations, whose nature will be clarified later on in the chapter.

There are even more examples of dependencies that we can find between binary
and non-binary properties in the data. However, in one way or another all these
relationships, including that shown in fig. 1.3, ultimately derive from eq.(1.5). For
this reason, we refrain from showing redundant results and focus on the empirical
findings discussed so far.

The above analysis indicates that the binary signature of financial time series
contains relevant information about the original data. While the binary signature
is a priori a many-to-one projection involving a significant information loss, we
empirically find that there are properties (namely the average return and aver-
age coupling) for which the projection is virtually a one-to-one ‘quasi-stationary’
transformation (on appropriate time scales, as we show in sec. 1.6), allowing
to reconstruct the corresponding original, weighted properties to a great extent.
Rather than exploring the practical aspects of this possibility of reconstruction
of the original signal from its binary projection, in this chapter we are interested
in understanding the origin of this behaviour and providing a simple data-driven
model of it. This will be ultimately achieved in sec. 1.6, where we also show that
the binary/non-binary relations we have documented are a novel quantification
of the fact that extreme price increments occur more often when most stocks
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move in the same direction. This is an important type of correlation between the
magnitude of log-returns of individual time series and the level of synchronization
(common sign) of the increments of all stocks in the market.

1.3 Maximum-entropy matrix ensembles

Having established that the binary projections of real time series contain non-
trivial information, in the rest of the chapter we introduce a theory of binary
time series aimed, among other things, at reproducing the observed nonlinear re-
lationships showed in figs. 1.2 and 1.3. In our approach, we regard a synchronous
set of binary time series as a ±1 matrix and we introduce an ensemble of such
matrices via the maximization of Shannon’s entropy, subject to the constraint
that some specified properties of the ensemble match their observed values. An
analogous approach is widely used e.g. in network analysis and known under
the name of Exponential Random Graphs [21]. Moreover, we provide an ana-
lytical maximum-likelihood method to find the optimal values of the paramaters
governing the ensembles, which is again similar in spirit to a method that has
been recently introduced for networks [45, 46, 47]. Finally, we describe Akaike’s
information criterion (AIC) [23], which we will use to rank and compare the per-
formance of different null models when fitted to the same data.

Being entropy-based, our approach automatically allows us to measure the
amount of information encoded into the observed properties chosen as constraints,
i.e. how much information is gained about the original (set of) time series once
those properties are measured. It also allows us to identify, given a set of measured
properties, which ones are more informative and which ones can be discarded, as
we show on specific financial examples. Our framework turns out to reproduce
the observed nonlinear relationships very well, thus providing a simple mathemat-
ical explanation and functional form for the plots shown in the previous section.
Moreover, we are able to identify, as a function of the binary return only, dis-
tinct regimes in the collective behaviour of stocks, namely a ‘coordinated’ regime
dominated by market-wide interactions, an ‘uncoordinated’ regime dominated by
stock-specific noise and an ‘intermediate’ regime where both market-wide and
stock-specific information is relevant.

We incidentally note that, despite the available variety of refined and advanced
techniques in time series analysis [54], how one can quantify (in the sense of sta-
tistical ensembles) how much information is actually encoded into any given,
measurable property of a time series is still not fully understood. While most
studies, starting from the celebrated work by Kolmogorov about the algorithmic
complexity of sequences of symbols [48], have addressed the quantification of the
information content of a single time series, much less is known about the infor-
mation encoded in the measured value of a given time series property (which,
necessarily, involves the idea of an entire ensemble of time series consistent with
the measured value itself). Our approach can provide an answer to such a ques-
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tion, by associating an absolute level of uncertainty (entropy) to each observable of
an empirical (set of) time series. In relative terms, this also allows us to compare
the information content of different properties of a time series, thereby indicating
which measured property is the most informative about the original time series.

As a final consideration, it is worth mentioning that the maximum-entropy
matrix ensembles that we introduce are clearly related to (and, depending on the
specification, potentially overlapping with) some ensembles that are well studied
by random matrix theory [37, 38, 39, 40, 41, 42]. However, our approach is differ-
ent since we generate ensembles of matrices whose probability distributions are
determined by the kind of partial information (empirically measured constraint)
about the real system. In this approach the maximization of Shannon’s entropy,
given some real-world available information, yields the least biased probability
distribution (over the space of possible matrices) consistent with the data. This
formalism allows us to relate the probabilistic structure of each matrix ensemble
with the choice of the original observed property, or constraint. Similarly, since
our matrices represent (multiple) time series, we are able to connect the various
ensembles to simple stochastic processes induced by the associated matrix prob-
abilities and, again, to the chosen empirical property specifying the ensembles
themselves.

1.3.1 Exponential random matrices

We first analytically characterize the properties of families of randomized matri-
ces. More generally, we introduce a matrix ensemble that maximizes Shannon’s
entropy, while enforcing a set of observed constraints (selected time series prop-
erties). This procedure is analogous to e.g. that leading to the definition of
Exponential Random Graphs in network theory [21]. However, we will modify it
to accommodate ±1 matrices, as opposed to 0/1 or non-negative matrices that
describe binary and weighted networks respectively. The resulting ensemble can
thus be denoted as the ‘Maximum-Entropy Matrix’ (MEM) ensemble or equiva-
lently ‘Exponential Random Matrices’ (ERMs) model.

Let us consider the ensemble of all ±1 matrices with dimensions N ×T . Each
such matrix can represent N synchronous time series, all of duration T (for in-
stance, if applied to a set of multiple financial time series, N refers to the number
of stocks and T to the number of time steps). Let X denote a generic matrix
in the ensemble, and xi(t) its entry (1 ≤ i ≤ N , 1 ≤ t ≤ T ). Let X∗ be the
particular real matrix that we observe. In other words, our ensemble is composed
of all possible matrices X of the same type as X∗, and includes X∗ itself. For
any data-dependent property R, we will consider the value R(X) obtained when
R is measured on the particular matrix X. For each matrix X in the ensemble,
we will assign an occurrence probability P (X). The expectation value (ensemble
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average) of a property R can be expressed as

〈R〉 =
∑
X

R(X)P (X) (1.7)

where the sum runs over all matrices in the ensemble.
At this point, we introduce a set of constraints denoted by the vector ~C. The

constraints are meant to ensure that a given set of observed properties ~C(X∗) in
the real matrix X∗ is reproduced by the ensemble itself. In our method we will
enforce ‘soft’ constraints by requiring that their expectation value 〈~C〉 equals the
observed one. The resulting ensemble is a canonical one where each matrix X is
assigned a probability P (X) that maximizes Shannon’s entropy

S ≡ −
∑
X

P (X) lnP (X) (1.8)

subject to the normalization constraint∑
X

P (X) = 1 (1.9)

and to the chosen vector of constraints

〈~C〉 =
∑
X

C(X)P (X) = ~C (1.10)

that we are enforced in order to reproduce the desired set of observed quantities.
The solution to the above constrained maximization problem is standard (see

for instance [21] for a recent derivation in the context of networks). We first
introduce the Lagrange multipliers α and ~θ, enforcing eqs.(1.9) and (1.10) respec-
tively, and then require that the functional derivative of Shannon’s entropy (plus
the constraining terms) vanishes:

∂

∂P (X)

{
S + α

[
1−

∑
X

P (X)
]
+
∑
i

θi

[
Ci −

∑
X

C(X)P (X)
]}

= 0

This yields

lnP (X) + 1 + α+
∑
i

θiCi(X) = 0 (1.11)

for any matrix X. Using a notation that makes the dependence of all quantities
on ~θ explicit, we then obtain

P (X|~θ) =
e−H(X,~θ)

Z(~θ)
(1.12)
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where H(X, ~θ) is the Hamiltonian

H(X, ~θ) ≡ ~θ · ~C(X) =
∑
i

θiCi(X), (1.13)

which is a linear combination of the constraints, and Z(~θ) is the partition function

Z(~θ) ≡ eα+1 =
∑
X

e−H(X,~θ), (1.14)

which is the normalizing constant for the probability. Consistently, we can rewrite
eq. (1.7) more explicitly as a function of ~θ:

〈R〉~θ ≡
∑
X

R(X)P (X|~θ) (1.15)

where 〈·〉~θ indicates that the ensemble average is evaluated at the particular pa-
rameter value ~θ.

Equations (1.12) to (1.14) define the MEM or ERM model. Specifically, the
model yields the probability distribution over a specified ensemble of matrices,
which maximizes the entropy under a set of generic constraints. The guiding
principle is that the probability distribution (over microscopic states) which have
maximum entropy, subject to observed (macroscopic) properties, provides the
most unbiased representation of our knowledge of the state of a system [19].
To put it in a more physical frame, this is analogous to the Gibbs-Boltzmann
distribution over the microstates of a large system at a well defined temperature,
given the thermodynamic (macroscopic) observables such as the total energy.

1.3.2 Maximum-likelihood parameter estimation
The above derivation shows that the expectation value of any property of the
ensemble depends functionally on the specific enforced constraints ~C through
the resulting structure of P (X|~θ). Of course, it also depends numerically on
the measured values ~C(X∗) of the constraints themselves, through the particular
parameter value (that we denote by ~θ∗) required in order to enforce that the
expected and observed values of ~C match:

〈~C〉~θ∗ = ~C(X∗). (1.16)

We now show that the value ~θ∗ that satisfies eq.(1.16) coincides with the
value that maximizes the likelihood to generate the empirical data, as in the
corresponding Maximum Likelihood (ML) approach to network ensembles [22, 45].

We start by writing the log-likelihood function of an observed matrix X∗

generated by the parameters ~θ:

λ(~θ) ≡ lnP (X∗|~θ) = −H(X∗, ~θ)− lnZ(~θ) (1.17)
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We then look for the particular value ~θ∗ that maximizes λ(~θ), i.e.

~∇λ(~θ∗) =

[
∂λ(~θ)

∂~θ

]
~θ=~θ∗

= ~0 (1.18)

(it is easy to check that the higher-order derivative confirm that ~θ∗ is a point of
maximum). This leads to

~∇λ(~θ∗) =

[
−~C(X∗)− 1

Z(~θ)

∂Z(~θ)

∂~θ

]
~θ=~θ∗

= ~0 (1.19)

the solution for that yields the ML condition

~C(X∗) =
∑
X

~C(X)e−H(X,~θ∗)

Z(~θ∗)
= 〈~C〉~θ∗ . (1.20)

which coincides with eq.(1.16). Thus the likelihood of the real matrix X∗ is
maximized by the specific parameter choice such that the ensemble average of
each constraint equals its empirical value measured on X∗ , automatically ensuring
that the desired constraints are met.

1.3.3 Model selection
We finally show how we can use Akaike’s information criterion (AIC) to rank
the performance of different models, i.e. different choices of the constraints, in
reproducing the same data. The AIC is an information-theoretic measure of the
relative goodness of fit of a model, as compared to a set of alternative models all
used to explain the same data [23]. It offers a relative measure of the information
lost when the given model is used to describe reality. The power of AIC (and
other similar criteria [24]) lies in the possibility to rank a set of models in terms
of their achieved trade-off between accuracy (good fit to the data) and parsimony
(low number of free parameters) [24]. In general, for the k-th model in a set of
selected models, AIC is defined as

AICk = 2nk − 2λ∗k (1.21)

where nk is the number of free parameters in the k-th model and λ∗k is the max-
imized log-likelihood of the data under the same model. The above expression
effectively discounts the number nk of parameters (complexity) from the maxi-
mized likelihood λ∗k (accuracy). The model with the lowest value of AICk (let us
denote this value by AICmin) is the ‘best’ model in the considered set, achieving
the optimal trade-off [24].

In the ERM/MEM family of models we have introduced, a model is uniquely
specified by the choice of the constraints ~C. Given a N × T data matrix X∗ and
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a set {~C1, . . . , ~Cm} of m possible choices of constraints, each of the resulting m
models has an AIC value

AICk = 2nk − 2 lnPk(X∗|~θ∗k) k = 1,m (1.22)

where nk is the dimensionality of the vector ~Ck, lnPk(X∗|~θ∗k) is the maximized
log-likelihood of model k, and ~θ∗k is the parameter value maximizing such log-
likelihood. Within our framework, AIC identifies which measured property ~Ck(X∗)
is most informative about the entire time series X∗.

In order to understand whether models with values of AIC larger than but
close to AICmin are still competitive, it is customary to define the so-called ‘AIC
weights’ which provide a normalized strength of evidence for a model [24]. For
each model k in the set of m models, one first calculates the difference ∆k =
AICk −AICmin and then defines the AIC weight

wk ≡
e−∆k/2∑m
r=1 e

−∆r/2
. (1.23)

The AIC weight wk represents the probability that the k-th model is the best
one among the m selected models. For instance, an AIC weight of wk = 0.75
indicates that, given the data, model k has a 75% chance of being the best model
among them candidate ones. If two or more models have comparable AIC weights
(e.g. w1 = 0.6, w2 = 0.4 or w1 = 0.35, w2 = 0.25, w3 = 0.4), then there is no
evidence that the model with the highest AIC weight (lowest AIC value) is clearly
outperforming the other ones. All the models with comparable weights should be
considered as competing alternatives, in principle leading to the problem of multi-
model inference [24].

1.4 Single time series
In this section we consider the first family of specifications of our general approach
outlined in sec. 1.3. We focus on the simple case of single time series (N = 1),
where the ensemble of N×T matrices reduces to an ensemble of 1×T matrices, or
equivalently of T -dimensional row vectors. Each such vector will still be denoted
by X. We assume long time series, i.e. T � 1.

This first specification of our abstract formalism is not meant to provide real-
istic models for the evolution of the binary increments of real financial time series.
Rather, it allows us to make different sorts of considerations. On one hand, it
allows us to introduce our formalism using simpler examples first, establishing the
basis for the more general cases (leading to the main results of this chapter) that
will be introduced later. On the other hand, it emphasizes that different and well
known (one-dimensional) stochastic processes are found as particular examples
of maximum-entropy ensembles defined by specific constraints that are otherwise
obscure. Identifying these ‘driving constraints’ underlying common stochastic
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processes will help us interpret such processes in the light of the empirical prop-
erties being reproduced. Finally, our approach allows us to identify, given the
data and given a set of simple properties, which of these properties is encoding
the largest amount of information about the original binary signature.

Let X denote a single time series with entries x(t), where 1 ≤ t ≤ T , each
representing a temporal increment. We will denote the average increment (first
moment) as

M1(X) ≡ x(t) =
1
T

T∑
t=1

x(t). (1.24)

Note that the second moment is always

M2(X) ≡ x2(t) =
1
T

T∑
t=1

x2(t) = 1, (1.25)

so the sample variance is

M2(X)−M2
1 (X) = 1− x(t)

2
. (1.26)

We also define the τ -delayed product (with 0 ≤ τ ≤ T )

Bτ (X) ≡ x(t) · x(t+ τ) =
1
T

T∑
t=1

x(t) · x(t+ τ) (1.27)

where we have introduced periodic boundary conditions:

x(T + τ) ≡ x(τ) with 0 ≤ τ ≤ T (1.28)

The above periodicity condition in inessential, since we could have used a defi-
nition avoiding its introduction, but it makes some expressions simpler in what
follows. Periodicity implies that the normalized (between −1 and +1) autocorre-
lation function (with delay τ) can be defined as

Aτ (X) ≡ x(t) · x(t+ τ)− x(t) · x(t+ τ)

x2(t)− x(t)
2

=
Bτ (X)−M2

1 (X)
1−M2

1 (X)
(1.29)

Since a (±1) binary time series can also be regarded as a chain of classical spins
pointing either up or down, it is straightforward to consider simple, analytically
solved spin models as the starting point, since these models are defined in terms of
a ‘physical’ Hamiltonian that has precisely the same structure of our ‘information-
theoretic’ Hamiltonian defined in eq. (1.13). In what follows, we introduce various
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Figure 1.4: Single financial time series as a chain of spins. Illustration of
our mapping from single binary time series to spin models. Each time series is
regarded as a chain of ±1 spins, where the value of the spin indicates if the daily
return of the stock is positive (+1) or negative (−1) . In each model we enforce
different constraints, that imply different spin models and different stochastic
processes. Given the same time series, we consider three possible models. A)
we enforce no constraint, which translates into a chain of non-interacting spins
without external field (uniform random walk). B) we enforce the total temporal
increment, which translates into a chain of non-interacting spins with external
field (biased random walk). C) we enforce both the total increment and the one-
lagged autocorrelation, which translates into a chain of spins with first-neighbour
interactions and external field (markov process).

model specifications. For each model, we introduce the constraints that we enforce
and the resulting Hamiltonian as described in sec. 1.3.1. Different constraints
correspond to different spin models and lead to different stochastic processes.
This is pictorially illustrated in fig. 1.4. The free parameters conjugated to the
constraints will be fitted according to the Maximum Likelihood principle described
in sec. 1.3.2. Different models will be ranked according to the AIC weights
introduced in sec. 1.3.3.

1.4.1 Uniform random walk

The most trivial model is one where we enforce no constraint, i.e. there is no free
parameter and the Hamiltonian is

H(X) = 0. (1.30)
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Physically, the above Hamiltonian describes a gas of T non-interacting ‘spins’ in
vacuum, i.e. in absence of an external magnetic field. This model is discussed
in the Appendix. The probability of occurrence of a time series X is completely
uniform over the ensemble of all binary time series of length T . All the T elements
of X are mutually independent and identically distributed. This results in a
completely uniform random walk with zero expected value for each increment:

〈x(t)〉 = 0 (1.31)

While the (ensemble) variance of each increment equals

Var[x(t)] ≡ 〈x2(t)〉 − 〈x(t)〉2 = 1. (1.32)

This trivial model generates a symmetric random walk. Since the expected
return is zero, and the uncertainty is maximal, the variance is also maximal (for
a ±1 binary random variable). Financially, the model assumes that the stock
fluctuates randomly, with no memory, and with no overall ‘price drift’. This is
the most basic model of price dynamics that has been considered in the financial
literature since the pioneering work of Bachelier [1], here adapted to the case of
binary time series.

The model can be used as a basic benchmark for checking the performance of
our other models. This comparison will be studied in sec. 1.4.4. Since here the
likelihood is independent of any parameter, the AIC of the model can be calculated
using eq. (1.22) where the probability is given by eq. (A.3) (see Appendix) and
the number of parameters is nk = 0.

1.4.2 Biased random walk

We now consider the total increment as the simplest non-trivial (one-dimensional)
constraint:

C(X) = T ·M1(X) = T · x(t) (1.33)

This leads to the Hamiltonian

H (X, θ) = θ

T∑
t=1

x(t), (1.34)

which coincides with the physical Hamiltonian for a gas of T non-interacting
‘spins’ in a common external ‘magnetic field’ −θ.

As we show in the Appendix, this model generates a biased random walk where
the probability Pt(x|θ) of a given increment x = ±1 at time t is

Pt(x|θ) =
e−θx

e−θ + e+θ
. (1.35)
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The expected return is the hyperbolic tangent

〈x(t)〉θ = − tanh θ, (1.36)

while the variance is

Var[x(t)] = 1− tanh2 θ. (1.37)

Financially, this model still assumes no memory in the fluctuations of a given
stock, but it introduces a ‘price drift’ in terms of a non-zero expected return.

The maximum likelihood condition (1.16), fixing the value θ∗ of the parameter
θ given a real time series X∗, leads to

θ∗ = −1
2

ln

[
1 + x∗(t)
1− x∗(t)

]
. (1.38)

The maximized likelihood for the model is

P (X∗|θ∗) =
T∏
t=1

Pt
(
x∗(t)|θ∗

)
(1.39)

which, using eq. (1.22) with nk = 1, can be used to measure the AIC (see
sec. 1.3.3) of the model, based on the observed data. This will be done in sec.
1.4.4.

1.4.3 One-lagged model

Let us now explore a more complex model of collective behaviour. The models
considered so far were non-interacting, i.e. each return in the time series was
independent of the previous outcomes. Now we consider a model where, besides
the constraint on the total increment specified in eq. (1.33), we enforce an addi-
tional constraint on the time-delayed (lagged) quantity T ·B1(X), where B1(X) is
defined in eq. (1.27) with τ = 1. Financially, this amounts to enforce the average
return and the average one-step temporal autocorrelation of the time series. In
order words, besides a price drift, we also introduce a short-term memory.

The resulting 2-dimensional constraint can be written as

~C(X) =
(
C1(X)
C2(X)

)
= T ·

(
M1(X)
B1(X)

)
. (1.40)

If we write the corresponding Lagrange multiplier as

~θ =
(
θ1

θ2

)
= −

(
I
K

)
, (1.41)
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then the Hamiltonian reads

H(X, I,K) = −I
T∑
t=1

x(t)−K
T∑
t=1

x(t)x(t+1), (1.42)

where we consider a periodicity condition as in eq. (1.28) with τ = 1, i.e. x(T +
1) ≡ x(1). Note that, when X is a real binary time series of length T , this
condition can be always enforced by adding one last (fictious) timestep T + 1 and
a corresponding increment x(T + 1) chosen equal to x(1). For long time series
(large T ), the effects induced by this addition are negligible.

The above Hamiltonian coincides with that for the one-dimensional Ising
model with periodic boundary conditions [55], which is a model of interacting
spins under the influence of an external ‘magnetic’ field I. The model is ana-
lytically solvable (see Appendix for the complete derivation), which allows us to
apply it to real time series in our formalism. In our setting, each time step t is
seen as a site in an ordered chain of length T , and each value x(t) = ±1 is seen
as the value of a spin sitting at that site. ‘First-neighbour interactions’ along the
chain of spins are here interpreted as one-lagged memory effects. As a result of
these interactions, the model generates time series according to a Markov process
where the probability of an increment x(t+ 1) depends on the realized increment
x(t) at the previous time step t. This is evident from the solution of the model,
see e.g. eq. (A.32) in the Appendix.

The solution of the model yields the following expectation values〈
M1

〉
I,K

=
e2K sinh I√

1 + e4K sinh2 I
(1.43)

〈
Bτ
〉
I,K

=
e4K sinh2 I + (λ1/λ2)τ

1 + e4K sinh2 I
(1.44)

(see Appendix) where

λ1 = eK cosh I +
√
e2K sinh2 I + e−2K , (1.45)

λ2 = eK cosh I −
√
e2K sinh2 I + e−2K . (1.46)

The resulting expected value of the normalized autocorrelation defined in eq.
(1.47) is simply〈

Aτ
〉
I,K

=
(
λ1

λ2

)τ
. (1.47)

The above expressions allow us to calculate all the relevant expected properties
of the time series generated by the model, once the parameters I and K are set
to the values I∗ and K∗ maximizing the likelihood P (X∗|I,K) of the observed
time series X∗. These values are the solutions of the coupled equations

M1(X∗) =
〈
M1

〉
I∗,K∗

(1.48)

B1(X∗) =
〈
B1

〉
I∗,K∗

. (1.49)
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Figure 1.5: Measured versus expected autocorrelation of single time se-
ries. Measured autocorrelation (blue) of three different S&P500 stocks (Qcom,
USB, and MJN respectively) over a period of 800 trading days (approximately
3.5 years), and comparison with the predicted autocorrelation 〈Aτ 〉I,K generated
by the one-lagged (one-dimensional Ising) model (red). The green lines represent
the noise level, calculated as ±2 standard deviations of the Fisher-transformed
autocorrelation.

where M1(X∗) and B1(X∗) are the empirical values measured on the real data
X∗. The maximized likelihood of the model can be calculated as P (X∗|I∗,K∗),
where P (X|I,K) is given by eq. (A.32) in the Appendix. From the maximized
likelihood, the AIC can be easily obtained using eq. (1.22) with nk = 2.

Note that the values I∗ and K∗ are such that the first point of the expected
autocorrelation function, 〈A1〉I∗,K∗ , is necessarily equal to the observed value
A1(X∗). Based on this first value alone, the model will provide the full expected
autocorrelation 〈Aτ 〉I∗,K∗ as follows:

〈
Aτ
〉
I∗,K∗

=
(
λ1

λ2

)τ
I∗,K∗

=
[
A1(X∗)

]τ
. (1.50)

Comparing the above expression, for τ > 1, with the observed autocorrelation
function Aτ (X∗) is an important test of the model. Note that, since −1 ≤
A1(X∗) ≤ +1, the absolute value of the autocorrelation function 〈Aτ

〉
I∗,K∗

is
necessarily decreasing. If A1(X∗) > 0 then 〈Aτ

〉
I∗,K∗

will be positive (and expo-
nentially decreasing) for all values of τ . By contrast, if A1(X∗) < 0 then 〈Aτ

〉
I∗,K∗

will be an oscillating function (modulated by a decreasing exponential), and will
take negative values when τ is odd and positive values when τ is even.

In fig. 1.5 we compare the measured autocorrelation, eq. (1.29), with the pre-
dicted one, eq. (1.50), for three different S&P500 stocks (USB, Qcom, and MJN)
over a period of 800 trading days (approximately 3.5 years). As expected, we see
that the first point (one-lagged autocorrelation) is always reproduced exactly. We
also confirm that, depending on the sign of the first point, the predicted trend is
either exponentially decreasing (e.g. for the USB stock on the left) or oscillating
(e.g. the Qcom and MJN stocks). The dashed lines indicate the noise level, that
we arbitrarily fixed at two standard deviations of the Fisher-transformed 1 auto-

1For a set of T independent and identically distributed pairs of random variables {xi, yi}Ti=1, the
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Figure 1.6: Model performance for single time series. Measured AIC
weights for the three models (black: uniform random walk, orange: biased ran-
dom walk, green: one-lagged model) calculated for three different S&P500 stocks,
as a function of the time horizon T . The latter represents the number of months
elapsed backwards from October 2011: for all stocks, all time series used to calcu-
late the AIC weights have the same endpoint T0 =31 October 2011, and a variable
startpoint T0 − T .

correlation. The behaviour of the USB and Qcom stocks is representative of the
vast majority of stocks, with the autocorrelation within the noise level already at
the minimum delay (τ = 1). This is in good agreement with what we know about
financial time series (no dependencies for daily frequency, the typical time scale
for autocorrelation being of the order of minutes). We also found that the first
point, the autocorrelation between two successive days, is small but negative for
most stocks in our data set. In the rightmost panel (MJN stock) we observe a
rare dynamic, where the one-lagged autocorrelation is breaching the noise level
and then rapidly oscillates to zero.

As clear from the figure, our model reproduces well the observed autocorrela-
tion in all these different cases, and gives a single mathematical explanation for
both the exponentially decaying (from positive one-lagged autocorrelation) and
the oscillating (from negative one-lagged autocorrelation) behaviour. Moreover,
the generic feature of the one-dimensional Ising model, i.e. the absence of a phase
transition characterized by a diverging length (here, time) scale [55], explains why
in real-world time series the memory is always found to be short-ranged.

1.4.4 Comparing the three models on empirical financial
time series

As we illustrated in sec. 1.3.3 in the general case, once we have more than one
model for the same data X∗, we can use the AIC weights to rank all models
in terms of the achieved trade-off between accuray (good fit to the data) and
parsimony (small number of parameters). The AIC weight wk of a specific model

Pearson correlation coefficient ρx,y is distributed around zero, but in a non-Gaussian way. However,
the quantity φx,y ≡ artanh(ρx,y), known as the Fisher tranformation, is normally distributed around
zero, with standard deviation σ = (T − 3)−1/2. The interval −2σ < φx,y < +2σ, representing a 95%
confidence interval for φx,y, can then be mapped back to the interval − tanh(2σ) < ρx,y < + tanh(2σ)
to obtain a 95% confidence interval for ρx,y around zero.
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k represents the probability that the model is the ‘best’ one, among the candidate
models.

We applied this procedure to the three models discussed so far (uniform ran-
dom walk, biased random walk, one-lagged model). As an example, in fig. 1.6 we
show the values of the AIC weights for three different S&P500 stocks. We can
see that the performance of the models is wildly fluctuating and different across
stocks. This suggests that the informativeness of the measured properties is de-
pendent on different factors, which are not entirely revealed to us. However, it is
clear that in all cases the time horizon T plays a key role in the performance of
the models. This means that the outcome depends on how many time steps are
included in the analysis. For instance, we see that in some cases (Citigroup Inc.
stock) the small T regime is oscillatory, while the large T regime appears to set a
preference for a definite model. In other cases (United Health Group), the three
models alternate over quite long periods of time. Most likely, this very irregular
behaviour is due to the strong non-stationarity of financial markets: extending
the analysis over longer time horizons does not necessarily improve the statistics,
because for large T the underlying price (and return) distributions change in an
uncontrolled way.

We stress again that the AIC weight indicates which property, among the con-
straints defining all models, can better characterize the stock, given the observed
data. In other words, it highlights the measured property that is most informa-
tive about the original data. Despite the fact that the models considered so far
are extremely simplified (and are by no means intended to be accurate models
of financial time series), this approach can always identify, in relative terms, the
most useful empirical quantity characterizing an observed time series.
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Figure 1.7: Single cross-section of multiple time series as a chain of spins.
An example of cross section (highlighted in red) of a set of N = 3 multiple time
series. Each cross section is a N×1 matrix (column vector) where each element is
the instantaneous binary return of a different stock. For example, the highlighted
cross section is the vector for day t = 4.

1.5 Single cross-sections of multiple time series
In the previous section we considered models for single time series, where N =
1 and T is large. Here we consider, as a second specification of our general
formalism, the somewhat ‘opposite’ case of single cross-sections of N multiple
time series, which represent a daily snapshot of the market dynamics. For clarity,
fig. 1.7 portrays a single cross-section of a set of multiple time series. In this case,
T = 1 and we assume N � 1. So the matrix X has dimensions N ×1, i.e. it is an
N -dimensional column vector. The entries of a cross-section X will be denoted
by xi, where 1 ≤ i ≤ N , each representing the daily increment of a different asset.

Using again the symbol {·} to denote an average over stocks (as in sec. 1.2.2),
we now define the average increment (first moment) of X as

M1(X) ≡ {xi} =
1
N

N∑
i=1

xi (1.51)

and the second moment as

M2(X) ≡ {x2
i } =

1
N

N∑
i=1

x2
i = 1. (1.52)

Therefore the sample variance is

M2(X)−M2
1 (X) = 1− {xi}2. (1.53)
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We also define the total ‘coupling’ between stocks (for a specific cross section X)
as

D(X) ≡
∑
i<j

xixj = {xixj}
N(N − 1)

2
, (1.54)

where now, as in eq. (1.6), {·} denotes an average over all pairs of stocks.
In what follows, we will consider various models for single cross-sections. The

main difference with respect to the models of single time series considered in sec.
1.4 is that the interaction between time steps for a given stock is now replaced by
the interaction between different stocks for a given time step. As well known, in
real financial markets the interactions among stocks (as measured e.g. via cross-
correlations) are much stronger than inter-temporal autocorrelations. This makes
the cross-sectional properties significantly different from those of the dynamics of
single time series, once inter-stock interactions are enforced in the model. Yet, in
simple models without interaction, we recover similar expected properties.

1.5.1 Uniform random walk

As in sec. 1.4.1, we first consider a trivial model without constraints (see Ap-
pendix), defined by the Hamiltonian

H(X) = 0. (1.55)

The probability of occurrence of a cross section X is completely uniform over
the ensemble of all binary cross sections of N stocks. Again, this ‘gas of non-
interacting spins in vacuum’ model results in a uniform random walk, where all
the N elements of X are mutually independent and identically distributed.

In the financial setting, this model assumes that all stocks fluctuate indepen-
dently of each other (where the ‘fluctuations’ are intended as ensemble ones, since
we are now considering a single cross section), and under the effect of no common
factor. Each stock has zero expected value

〈xi〉 = 0 (1.56)

and maximum variance

Var[xi] ≡ 〈x2
i 〉 − 〈xi〉

2 = 1. (1.57)

In sec. 1.5.4, we will compare the performance of this trivial benchmark to
that of the other models we are about to introduce. To this end, the AIC value can
be calculated from eq. (1.22) choosing nk = 0 and using the (constant) likelihood
given by eq. (A.46) in the Appendix.
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1.5.2 Biased random walk

In this model, which is analogous to that defined in sec. 1.4.2, the constraint is
chosen as the total daily increment of the cross section X:

C(X) = N ·M1(X) = N · {xi}, (1.58)

where M1(X) is defined by eq. (1.51). The Hamiltonian is then

H (X, θ) = θ

N∑
i=1

xi. (1.59)

Similarly to its counterpart for single time series, this is a model of non-interacting
spins under the effect of a common external field, and leads to a biased random
walk (see Appendix). The financial interpretation is however different: in this
model, all stocks are assumed to fluctuate (again, in an ‘ensemble’ sense) under
the effect of a common market-wide factor, but are conditionally independent of
each other, given the market-wide factor itself. In the econophysics literature,
the overall tendency of all stocks to move together is generally referred to as
the ‘market mode’ [2]. When applied to the data, this extremely simple model
interprets the observed market mode as the consequence of an external factor (e.g.
news), and not of direct interactions among stocks.

The probability Pi(x|θ) of a given increment x = ±1 for stock i is

Pi(x|θ) =
e−θx

e−θ + e+θ
, (1.60)

the expected value of the i-th increment xi is

〈xi〉θ = − tanh θ, (1.61)

and the variance is

Var[xi] = 1− tanh2 θ. (1.62)

The maximum likelihood condition (1.16), fixing the value θ∗ of the parameter
θ given a real cross section X∗, leads to

θ∗ = −1
2

ln
[

1 + {x∗i }
1− {x∗i }

]
, (1.63)

where {x∗i } is the measured average increment of the observed cross section X∗.
We will apply this model to real financial data in secs. 1.5.4 and 1.6. The AIC of
the model is given by eq. (1.22) where nk = 1 and where the maximized likelihood
is given by P (X∗|θ∗), with P (X|θ) given by eq. (A.53) (see Appendix).
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1.5.3 Mean field model

We now consider a more complex model, with interactions among all stocks,
which is suitable for financial cross-sections. Besides the constraint on the total
increment, we enforce an additional constraint on the average coupling between
stocks. The resulting 2-dimensional constraint can be written as

~C(X) =
(
C1(X)
C2(X)

)
=
(
N ·M1(X)
D(X)

)
(1.64)

where M1(X) is given by eq. (1.51) and D(X) by eq. (1.54). If we write the
corresponding Lagrange multiplier as

~θ =
(
θ1

θ2

)
= −

(
h
J

)
(1.65)

then the Hamiltonian reads

H(X, h, J) = −h
N∑
i=1

xi − J
∑
i<j

xixj . (1.66)

Like the one-lagged model for single time series (see sec. 1.4.3), this model
is formally analogous to an Ising model of interacting spins under the influence
of an external ‘magnetic’ field (here denoted by h). However, the big difference
is that, whereas in the one-lagged model each increment x(t) interacts only with
the next temporal increment x(t + 1) of the same stock, here each increment xi
interacts with all the other increments xj of the same cross section X, i.e. with
all other stocks in the market. As a model of spin systems, the above model is
generally known as the mean-field Ising model [55]. In the Appendix we provide
the analytical solution of the model, adapted to our setting.

In the financial setting, this model allows us to separately consider the effects
of the external field, i.e. a common factor affecting all stocks in the market, from
those of the average interaction among all stocks. This market-wide interaction
can also cause all stocks to correlate, but has the different interpretation of a
collective effect, i.e. the tendency of stocks increments to ‘align’ with each other
as a result of direct interactions, rather than of a common influence. This is a
sort of ‘herd effect’ at the coarse-grained level of attractive (J > 0) inter-stock
interactions. So, the model can generate the ‘market mode’ either as the result
of a common external influence such as news (in which case all stocks are still
conditionally independent given the common factor), or as a collective effect due
to mutual interactions (in which case all stocks are conditionally dependent given
the common factor).

While the model can in principle simulate synthetic time series under a com-
bination of the above two effects by varying the two parameters h and J indepen-
dently, a problem arises when it is fitted to the data. The mathematical root of
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the problem is the well known fact that H(X, h, J) can be rewritten as a linear
combination of M1(X) and M2

1 (X). As we show in the Appendix, this implies
that, when the maximum likelihood principle is used to fit the model to the data
X∗, the variance of M1(X) becomes zero. In other words, the model degenerates
to one where M1(X) is no longer a random variable. This also implies that the
two equations fixing the values of the parameters J∗ and h∗ become identical
(see Appendix). Therefore it is no longer possible to uniquely fix the values of
both parameters, and the problem is over-constrained. For this reason, we need
to eliminate one parameter and consider the model only in the two extreme cases
h = 0 and J = 0. These two cases can be treated separately.

The case J = 0 coincides with the biased random walk model already con-
sidered in sec. 1.5.2, where θ = −h. Using eq. (1.63), we therefore specify this
model using the two parameter values

h∗ =
1
2

ln
[

1 + {x∗i }
1− {x∗i }

]
, J∗ = 0 (1.67)

where {x∗i } is the observed average increment of the empirical cross section X∗.
This model interprets the market mode as arising only from a common external
factor.

The case h = 0 leads us instead to a novel model where the market mode is
interpreted only as a collective effect arising from inter-stock interactions. Using
the analytical results reported in the Appendix, and in particular eq. (A.78), we
find that the parameter values are in this case

h∗ = 0, J∗ =
1

2{x∗i }(N − 1)
ln
[

1 + {x∗i }
1− {x∗i }

]
. (1.68)

In what follows, when using the ‘mean-field’ model, we will always refer to the
parameter specification defined by eq. (1.68). The other specification, eq. (1.67),
will instead still be denoted as the ‘biased random walk’ model.

In fig. 1.8 we plot the value of J∗ as a function of {x∗i }, as defined by eq. (1.68).
We note however that eq. (1.68) is undefined for {x∗i } = ±1 and {x∗i } = 0. The
breakdown for {x∗i } = ±1 simply means that, in order to align all returns (in
either direction), J∗ should diverge to +∞. The breakdown for {x∗i } = 0 is
instead more profound. For infinitesimal (both positive and negative) values of
{x∗i }, J∗ admits the finite limit

lim
{x∗i }→0+

J∗ = lim
{x∗i }→0−

J∗ =
1

N − 1
(1.69)

However, at the very point {x∗i } = 0, J∗ is actually indeterminate.
The above effect is due to the well-known phase transition of the mean-field

Ising model. In the traditional physical setting, the phase transition occurs at a
critical temperature (here reabsorbed in the value of the parameters h and J).
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Figure 1.8: “Phase diagram” of the fitted parameter J∗. The value of the
fitted parameter J∗ as a function of the measured average binary return {x∗i } (blue
curve) for a group of N = 428 stocks (as in our S&P sample). The curve shows a
one-to-one relationship for {xi} 6= 0. While lim{x∗i }→0 J

∗ = Jc ≡ (N − 1)−1, for
{x∗i } = 0 the value of J∗ is actually indeterminate, as there is an infinity of values
of J∗ (namely all values −∞ < J∗ ≤ Jc, see vertical green line) that are possible
solutions of the model. The value of Jc is indicated by the horizontal red line.

When h = 0, the critical value is obtained by setting (N − 1)J = 1, because
for (N − 1)J < 1 eq. (A.76) (see Appendix) has the single solution 〈M1〉 = 0,
corresponding to a phase with no macroscopic magnetization, while for (N−1)J >
1 there are three solutions, one of which is still 〈M1〉 = 0 (which is now unstable)
and the other two ones being the stable solutions 〈M1〉 = ±m (corresponding to
the onset of a macroscopic magnetization |m| > 0 where most spins point in the
same direction). In our financial setting, since the magnetization is fixed by the
data through the relation 〈M1〉 = {x∗i }, the condition (N − 1)J∗ = 1 implies that
the phase transition occurs at the critical value

Jc =
1

N − 1
(1.70)

of the control parameter J∗. We can therefore rewrite eq. (1.69) as

lim
{x∗i }→0

J∗ = Jc (1.71)

For J∗ > Jc we get a ‘magnetized’ phase where most stock prices move in the
same direction (aligned returns), while for J∗ < Jc we get a non-magnetized
phase where there is no collective alignment of stock increments, and {x∗i } = 0.
We therefore conclude that the reason why the value of J∗ is indeterminate for
{x∗i } = 0 is because there is an infinity of values of J∗ (namely all values −∞ <
J∗ ≤ Jc) that are possible solutions of the model.

It should be noted that the case {x∗i } = 0 is never practically encountered
in reality, since the empirical {x∗i } can be abritrarily small, but is generally not
really zero. While this ‘protects’ the model from the indeterminacy discussed
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above, it raises another problem of arbitrariness, which can however be solved
very effectively using the information-theoretic criteria that we have introduced
in sec. 1.3.3. The problem is that the mean-field model will always interpret even
the tiniest empirical deviations from {x∗i } = 0 as the result of direct interactions
among stocks, and attach a value J∗ > 0 to this interpretation. This will also
apply to e.g. most realizations of a purely uniform random walk: even if for such a
model one knows that the theoretical expected return is zero, most realizations will
be such that {x∗i } is small but non-zero. So the only phase of the mean-field model
that can be explored is the ‘magnetized’ phase dominated by collective effects.
This implies that even a pure effect of noise will be interpreted as the presence
of interactions. However, this problem will be solved in the next section, where
we show that an information-theoretic comparison between the mean-field model,
the uniform random walk, and the biased random walk is able to discriminate the
most parsimonious model, thus allowing us to trust the mean-field model only
when {x∗i } is distant enough from zero.

1.5.4 Comparing the three models on empirical financial
cross sections

We can now combine the three models together and use the AIC weights (see
sec. 1.3.3) to determine which model achieves the optimal trade-off between
accuracy and parsimony. This will immediately provide us with an indication
of whether the observed market mode, as reflected in the empirical aggregate
increment {x∗i }, should be interpreted e.g. as a common exogenous factor, as a
collective endogeneous effect, or even only as the sheer outcome of chance.

The fact that the likelihoods of the biased random walk and the mean-field
model depend only on {x∗i } and N , plus the fact that the likelihood of the uniform
random walk is constant, allows us to obtain the AIC values for the three models
as functions of {x∗i } and N only. In fig. 1.9 we show the calculated AIC weights of
the three models as a function of the observed value {x∗i }, for N = 428 S&P500
stocks. Each point represents a different cross section, i.e. a different day of
trade, for a total of 100 randomly sampled days. It is important to note that the
empirical value of the average increment only determines which point(s) of the
curves are actually visited, but the curves themselves are universal.

The figure reveals us a remarkable fact, namely the presence of three distinct
regimes in the behaviour of the group of stocks. For 0 ≤ |{x∗i }| . 0.2, we find
that the best performing model is the uniform random walk, which displays an
AIC weight practically equal to one (indicating that the model is almost surely
the best one among the three models considered, see sec. 1.3.3). This means that,
in this ‘noisy’ regime, the most parsimonious explanation of the market mode, as
reflected in the measured value of {x∗i }, is that of a pure outcome of chance.

For 0.2 . |{x∗i }| . 0.5, we find that the uniform random walk is almost
surely not the best model, while the biased random walk and mean field models
are competing. We observe an almost equal performance of the two models for
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|{x∗i }| ≈ 0.2, and an increasing preference for the mean field model as |{x∗i }|
increases towards 0.5. Despite this preference, we cannot reject the mean field
model, meaning that in this ‘mixed’ regime the most likely explanation for the
market mode is a combination of exogenous and endogenous effects.

Finally, for 0.5 . |{x∗i }| . 1, the mean field model achieves practically unit
probability to be the best model. In this ‘endogenous’ regime, the most likely
explanation for the market model is uniquely in terms of a collective effect of
direct influence among stocks.

We can summarize the above findings as follows: Uncoordinated (noisy) regime: 0 ≤ |{x∗i }| . 0.2
Mixed (endogenous + exogenous) regime: 0.2 . |{x∗i }| . 0.5
Coordinated (endogenous) regime: 0.5 . |{x∗i }| ≤ 1

where we recall that the values of |{x∗i }| delimiting the various regimes have been
calculated for N = 428.

While the qualitative finding that larger values of |{x∗i }| are better explained in
terms of collective effects might appear intuitive, the possibility to quantitatively
identify the value |{x∗i }| ≈ 0.5 above which this intuition is fully supported by
statistical evidence is a non-obvious output of the above approach. The same
consideration applies to the identification of the other two regimes, and of a
mixed phase where there is not enough statistical evidence in favour of a single
interpretation of the market mode. Moreover, the fact that the mean field model
starts being statistically significant only for |{x∗i }| & 0.2 solves the aforementioned
problem of an otherwise problematic interpretation of even tiny values of |{x∗i }|
as the result of inter-stock interactions. The AIC analysis shows that, for values
below 0.2, one should not trust the mean field model, and consequently the value
J∗ > 0 that the model itself indicates. When |{x∗i }| . 0.2, the best model is
actually the uniform random walk, which effectively corresponds to J∗ = 0. This
is a highly non-trivial result.
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Figure 1.9: Model performance for single cross-sections. The calculated
AIC weights of the three cross-sectional models (uniform random walk, biased
random walk, mean field model) as a function of the measured average daily
binary return {x∗i }, for N = 428 S&P500 stocks, each studied for 100 days of
trade.

1.6 Ensembles of matrices of multiple time series

In this section, as our third and final specification of the abstract formalism
introduced in sec. 1.3, we extend the previous results to the general case where
the observed data is a full N ×T matrix X∗ representing a set of multiple binary
time series for N stocks, each extending over T timesteps. We recall that the
entries of a generic such matrix X are denoted by xi(t), where i labels the stock
and t labels the time step. We assume thatN and T are both large, i.e. N � 1 and
T � 1. Before introducing an explicit model, we need to make some important
considerations.

We had already anticipated that the purpose of the models introduced in the
previous sections was not that of introducing realistic models of financial time se-
ries. For instance, it is well known that the simple stochastic processes considered
in sec. 1.4 are far too simple to reproduce some key stylized facts observed in real
financial time series, such as volatility clustering [43, 44] or a bursty behaviour
[50]. Moreover, being entirely binary, the above examples cannot address other
well established properties characterizing the amplitude of fluctuations, e.g. the
‘fat’ (power-law) tails of the empirical distributions of price returns.

Nonetheless, there is a simple argument that legitimates us to use a proper
extension of the above modelling approach, especially that introduced in sec.
1.5, provided that we adequately calibrate such extension on the observed set
of multiple time series. The argument is basically the realization that we can
properly model the binary signature of a time series, using temporal iterations
of even the simplistic models we have introduced in sec. 1.5, if we assume that
some aggregated information measured on the original ‘weighted’ time series ri(t)
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Figure 1.10: Autocorrelation between daily cross-sections. The measured
autocorrelation of the average binary daily return {x∗i (t)} for the three indices in
year 2006. The green lines represent the noise level, calculated as ±2 standard
deviations of the Fisher-transformed autocorrelation.

(1 ≤ i ≤ N) can be used as a proxy of the driving factor defining the model
itself. We will show that this simple assumption is actually verified in the data.
In particular, we will show that a sequence of temporal iterations of the biased
random walk model, which assumes that the binary time series is driven by an
‘external’ field, can be ‘bootstrapped’ on the real data by assuming that the field
can be replaced by a function of the (endogenous) observed aggregate increment
of the original weighted time series, i.e. the empirical value {r∗i } of the quantity
{ri} defined in eq. (1.3). In such a way, we do not need a model generating a
realistic dynamics of {ri} (or of the individual stock-specific increments) in order
to model the behaviour of {xi}, because the time series of {ri} is taken from the
data.

As a result, we will obtain an accurate model for the dynamics of the aggregate
binary increment {xi(t)}, given the observed dynamics of {ri(t)}. This model will
reproduce with great accuracy, and mathematically characterize, the empirical
nonlinear relation between these two quantities that we have illustrated in sec.
1.2.2. We will finally test the temporal robustness and predictive power of the
model, and conclude with discussion of the relatedness of our approach and more
traditional ‘factor models’ in finance.

1.6.1 Temporal dependencies among cross sections

In order to execute the above plan, we first analyze the correlations between
single cross sections of the market. We need this preliminary analysis in order
to determine whether the temporal extension of the models defined in sec. 1.5
should incorporate dependencies among different snapshots.

Based on extensive financial literature, we expect no correlation (on a daily
frequency) among the returns of different cross sections. However, most analyses
focus on the autocorrelation of individual stocks, based on their weighted returns.
So, to check our hypothesis we perform an explicit analysis of the temporal au-
tocorrelation of the observed time series of the aggregate, binary return {x∗i (t)}.
This analysis is shown in fig.1.10 for the three indices, using daily data for year
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2006. We confirm that the observed autocorrelation is not statistically significant,
since (apart for a few points) it lies within the range of random noise (calculated
by imposing a threshold of two standard deviations on the Fisher-transformed
autocorrelation). This type of uncorrelated dynamics is observed throughout our
dataset. This means that, in line with other analyses of autocorrelation, the mem-
ory of the aggregate binary return of real markets, if any, is much shorter than a
day.

Going back to the result illustrated in fig. 1.9, we can then conclude that there
is no significant correlation in the trajectories of the daily points populating the
curves. In other words, given the knowledge of the position of the market in the
AIC curves in a given day, we cannot predict where the market will move the next
day, even if of course we know that it will move to another point in the curves
themselves.

1.6.2 Reproducing the observed binary/non-binary relation-
ships

The previous result sets the stage for our next step, where we consider an explicit
extension of the models considered in sec. 1.5 to an ensemble of multiple time
series, as introduced in sec. 1.3 in the general case. The absence of autocorrelation
implies that we can define the Hamiltonian of the full N × T matrix X as a sum
of T non-interacting Hamiltonians, each describing a single cross section of N
stocks.

Next, we need to choose the model to extend. We want the final model to
establish (among other things) an expected relationship between the binary and
the weighted aggregate returns, so that we can test this prediction against the
empirical relationships illustrated in sec. 1.2.2. This implies that we need to input
the measured weighted return {r∗i } as a driving parameter of the binary model.
Among the three models, only the biased random walk and the mean field model
have parameters that can be related to {r∗i }. In sec. 1.5 we treated those models
as giving competing interpretations of the market model in terms of exogenous
and endogenous effects respectively. However, it should be noted that this is no
longer possible as soon as the parameters of these models are made dependent
on the observed return. For instance, if we assume that the parameter θ of the
biased random walk depends on {r∗i } (which is a property of the data), we can no
longer interpret θ as an external field, since it has been somehow ‘endogenized’.
Determining whether θ can be interpreted as endogenous or exogeneous is now
entirely dependent on whether {r∗i } itself can be interpreted as endogenous or
exogeneous. This tautology does not prevent us from determining a relationship
between {r∗i } and {x∗i } in their full range of variation, because such relationship
is independent on the optimal (endogenous or exogenous) interpretation of both
quantities.

We also note that the choice of the model to calibrate on {ri} is now com-
pletely independent of the relative performance of the various models that we have
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determined in the case of free parameters, including their AIC weights shown in
fig.1.9. Indeed, apart from an initial calibration, the parameters will no longer be
fitted using the maximum likelihood principle, making the AIC analysis no longer
appropriate. In other words, ranking the ‘free’ models and endogenizing their
parameters are two completely different problems. In particular, the low AIC
weight of the biased random walk throughout most of fig.1.9 does not impede us
from using this model in our next analysis. We will indeed ‘bootstrap’ the biased
random walk on the real data, by looking for a relationship between {ri} and the
parameter θ. We prefer this model over the mean field one because, while it is
natural to think of (a function of) {ri} as a proxy of the ‘field’ θ affecting the
market in the biased random walk model (notably, {ri} has a definition similar
to that of a market index), it is less natural to think of the same quantity as a
proxy of the inter-stock interaction J in the mean field model (although, as we
said before, this would be technically possible).

Combining all the above considerations, we finally generalize the biased ran-
dom walk model defined by eq. (1.59) to the matrix case as follows:

H(X, ~θ) =
T∑
t=1

θ(t)
N∑
i=1

xi(t) (1.72)

where ~θ it a T -dimensional vector with entries θ(t). Note that, while the models
we introduced in sec. 1.4 have time-independent parameters and therefore corre-
spond to time series at statistical equilibrium (for example a model with constant
volatility), we are now considering more general models with time-dependent pa-
rameters. Relating θ(t) to {ri(t)} will allow us to incorporate any observed degree
of non-stationarity of the data into the model itself.

As a preliminary calibration, we now look for an empirical relation between
{ri(t)} and θ(t). To this end, we first treat the latter as a free parameter and look
for the optimal value θ∗(t) maximizing the likelihood of the observed binary time
series X∗. Since the Hamiltonians for different timesteps are non-interacting, it
is easy to show that θ∗(t) is given again by eq. (1.63) where {x∗i } is replaced by
{x∗i (t)}:

θ∗(t) = −1
2

ln
[

1 + {x∗i (t)}
1− {x∗i (t)}

]
. (1.73)

In fig. 1.11 we compare the resulting value of θ∗(t) with the corresponding
observed weighted return {r∗i (t)}, for the three indices separately. Each point
in the plot corresponds to a different day, and we considered 250 days (approxi-
mately one year) for each index. We find a strong linear relation between the two
quantities. This relation can be fitted by the one-parameter curve

{r∗i (t)} = −c · θ∗(t) (1.74)

where c > 0. This finding is very important. It confirms that the parameter θ∗(t),
defined through eq. (3.14) as a time-varying ‘field’ driving the observed binary
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Figure 1.11: Observed linear relation between fitted free parameter θ∗(t)
and weighted property {r∗i (t)}. The most likely value of the driving field
θ∗(t) calculated applying the biased random walk model to the projected binary
signature of day t, compared with the measured average weighted return {r∗i (t)}
of the same day, for 250 trading days (approximately one year) in the FTSE100
(left), S&P500 (center) and NIKKEI225 (right) in various years (2003, 2007, and
2004 respectively). We also show the linear fit {ri(t)} = −c θ∗(t) with c > 0.

increment {x∗i (t)} with maximum likelihood, is an excellent proxy for the observed
non-binary ‘market index’ {r∗i (t)}. This result holds up to a negative factor c
which, on the time scale considered, is constant for each market (in sec. 1.6.3 we
will provide a more detailed analysis of the stability of c over different time scales).
Since {r∗i (t)} is a property measured on the stock increments themselves, it reflects
both external influences and internal dependencies. Therefore θ∗(t) cannot be
(entirely) interpreted as an external field. This confirms our interpretation of the
biased random walk as a model agnostic to the (endogenous or exogenous) nature
of the driving field in the present setting.

Combining eqs.(1.73) and (1.74) together, we finally obtain a mathematical
expression for the expected relationship between {r∗i } and {x∗i } in our model:

{r∗i (t)} =
c

2
ln
[

1 + {x∗i (t)}
1− {x∗i (t)}

]
= c · artanh{x∗i (t)}. (1.75)

Inverting, we have

{x∗i (t)} = tanh
{r∗i (t)}

c
. (1.76)

We can now test the above expressions against the data shown previously in
fig.1.2. In that figure, we already showed that the observed relationship between
{r∗i } and {x∗i } can be fitted very well by a curve of the form given by eq. (1.75).
We have just provided a theoretical justification for the otherwise arbitrary use of
such expression. Moreover, now we can fit the value of c using eq. (1.74), which
is independent of eq. (1.75). Once we obtain c in this way, we can use eq. (1.75)
to predict {r∗i (t)} given {x∗i (t)}, or vice versa, without fitting any parameter. In
fig.1.12 we show the result of this operation. We confirm that the prediction of
our model matches the empirical relationship very well.
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We also consider a null model where we randomly shuffle the increments of
each of the N time series independently. This results in a set of randomized time
series, with elements r′i(t), where the total increment

∑T
t=1 r

′
i(t) for each stock

is preserved, but the returns of all stocks in a given day are uncorrelated. From
r′i(t), we obtain the binary signature x′i(t) as for the real data. As shown in
fig.1.12, this randomized benchmark overlaps with the empirical trend only in a
very narrow, linear regime. We will now try to understand this result.

The reason why the shuffled data result in a linear trend is the following. For
each value of {x′i}, there is a definite number Nup of ‘up’ stocks and a definite
number Ndown = N −Nup of ‘down’ stocks, according to the relation

{x′i} =
Nup −Ndown

N
=

2Nup −N
N

= 2
Nup
N
− 1. (1.77)

Conditional on the above value of {x′i}, the expected value of {r′i} (over multiple
shufflings) is

〈{r′i}〉 =
r∗+Nup + r∗−Ndown

N
≈
r∗+Nup − r∗+Ndown

N
= r∗+

[
2
Nup
N
− 1
]

= r∗+{x′i}.

(1.78)

where r∗+ > 0 is the average positive increment (over all T time steps and all N
time series) and r∗− < 0 is the average negative increment. Note that both values
coincide with the corresponding quantities in the original data, and have been
denoted by a star accordingly. Assuming approximately symmetric log-return
distributions for each of the N time series as typically observed, we have set
r∗− ≈ −r∗+. Given the overlap between real and shuffled data around zero returns
in fig.1.12, we can linearize eq. (1.76) around zero and compare it with eq. (1.78)
to get

c ≈ r∗+. (1.79)

The above expression suggests that the value of c strongly depends on the original
log-return distribution. Therefore, we expect that the stability of c is determined
by that of r∗+. In sec. 1.6.3 we will study the stability of c in more detail.

The above simple argument shows that, for shuffled data, we indeed expect a
linear relationship between {r′i(t)} and {x′i(t)}. This is a striking difference with
respect to real data, where {r∗i (t)} virtually diverges as |{x∗i (t)}| approaches one.
This ‘divergence’ indicates that, when most stocks are aligned in real markets
(|{x∗i (t)}| ≈ 1), the observed log-returns are much larger than the typical positive
increment (|{r∗i (t)}| � r∗+). In other words, extreme log-returns are more often
observed when stocks are synchronized. This means that there is a strong cor-
relation between the magnitude of log-returns of individual time series and the
degree of coordination of all stocks in the market.

While for infinite realizations of the shuffling procedure we would observe eq.
(1.78) extending to the full range −1 ≤ {x′i} ≤ +1, for finite realizations we
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Figure 1.12: Characterization of empirical relations between binary and
non-binary properties in financial time series. Nonlinear relationship be-
tween the average daily increment (weighted return) and the average daily sign
(binary return) over all stocks in the FTSE100 (left), S&P500 (center) and
NIKKEI225 (right) in various years (2003, 2007, and 2004 respectively). Here
each point corresponds to one day in the time interval of 250 trading days (ap-
proximately one year). The red curve is our non-parametric prediction based on
the fit shown in fig.1.11, and the green points are the same properties measured
on the shuffled data.

observe a much narrower span of values (see fig.1.12). This is due to the absence
of correlations among stocks, resulting in significantly lower values of both {r′i}
and {x′i} with respect to the observed quantities {r∗i } and {x∗i }. Interestingly
enough, for the S&P500 index the randomized data span the range |{x′i}| . 0.2,
which coincides precisely with the regime we identified in fig.1.9 for a completely
noisy-driven system with the same number of stocks. This confirms that the
AIC analysis correctly pinpoints the boundaries outside which one should expect
the observed value {x∗i } to be inconsistent with a typical realization of N purely
random variables.

The above results also provide an explanation for the second empirical non-
linear relation that we had documented in sec. 1.2.2, i.e. the one between
{r∗i (t)r∗j (t)} and {x∗i (t)} (see fig. 1.3). In general, we can write {rirj} as

{rirj} =
1

N(N − 1)

∑
i 6=j

rirj =
1

N(N − 1)

( N∑
i=1

ri

)2

−
N∑
i=1

r2
i

 . (1.80)

The term
∑N
i=1 r

2
i is of order N , and vanishes for large markets when divided by

N(N − 1). We are therefore left with

{rirj} ≈
1

N(N − 1)

(
N∑
i=1

ri

)2

≈ {ri}2. (1.81)

Using eq.(1.75), we get

{r∗i (t)r∗j (t)} ≈ {r∗i (t)}2 = c2artanh2{x∗i (t)} (1.82)
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Figure 1.13: Characterization of empirical relations between binary and
second-order non-binary properties in financial time series. Nonlinear
relationship between the average daily coupling (weighted coupling) and the av-
erage daily sign (binary return) over all stocks in the FTSE100 (left), S&P500
(center) and NIKKEI225 (right) in various years (2003, 2007, and 2004 respec-
tively). Here each point corresponds to one day in the time interval of 250 trading
days (approximately one year). The red curve is our non-parametric prediction
based on the fit shown in fig.1.11, and the green points are the same properties
measured on the shuffled data.

which theoretically justifies the fitting function we had used in fig.1.3. Again,
rather than fitting that curve on the data, we can use the value of c determined
from the (independent) fit shown in fig.1.11. This results in the non-parametric
plot shown in fig. 1.13. We confirm that, for each of the three indices, we can
reproduce the observed relationship very well.

As before, we also show the relationship between {r′i(t)r′j(t)} and {x′i(t)} for
randomly shuffled data. The linearity of eq. (1.78) now translates into an expected
parabolic relationship:

〈{r′ir′j}〉 ≈ {r′i}2 = (r∗+)2{x′i}2. (1.83)

Again, real data strongly deviate from the above ‘uncorrelated’ parabolic ex-
pectation, because extreme events make the empirical coupling {r∗i r∗j } virtually
‘diverge’ when stocks are highly synchronized (|{x∗i }| ≈ 1).

1.6.3 Stability of the parameter c

Once we have mathematically characterized the observed nonlinear relations, an
unavoidable question arises: in a given market, how stable are those relations?
Since c is the only parameter in the above analysis, the question simply translates
into the stability of c. We have already noted that c is related to the average
positive return r∗+, which we expect to be relatively stable. In order to study the
stability of c in more detail, we now consider several yearly and monthly time
windows, and explore the time evolution of the fitted parameter for the three
indices.

In fig. 1.14 (upper panels) we plot the values of the parameter c (with error
bars) for 11 yearly snapshots (2001-2010). It is clear that there are periods during
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which the yearly values are relatively stable, and periods when they fluctuate
wildly. Thus, in most cases the fitted value of c in a given year does not allow to
make predictions about the value of c int the next year.

However, we can also consider a monthly frequency. In the bottom panels of
fig. 1.14 we show the result of our analysis, when carried out on the 12 monthly
snapshots of year 2006. We choose this particular year because, in the yearly
trends shown above, it represents very different points for different markets: the
end of a stable period for the FTSE100, an exceptional jump for the S&P500, and
the middle of an increasing trend for the NIKKEI225. Despite these differences,
we find that in all three markets the monthly dynamics is much more stable
than the yearly one. In particular, the trends for FTSE100 and NIKKEI225 are
almost constant, and for the S&P500 there are only two deviating points from an
otherwise stable trend (despite the large fluctuation that 2006 represents in the
yearly trend for this index). This implies that, in most cases, one might even use
the monthly value of c out of sample, in order to predict the future relationship
between {xi} and {ri} based on a past observation. We should however stress
that the aim of our method is to characterize such relationship, and not to predict
it. Indeed, we cannot imagine any situation in which only the binary (or only the
non-binary) information is available.

The above results show that there is a trade-off between short and long periods
of time. For short (e.g. monthly) periods there are less points to calculate c
through a fit of the type shown in fig.1.11. This explains why the monthly trends
in fig.1.14 have bigger error bars than the yearly trends in the same figure. By
contrast, for longer (e.g. yearly) periods each individual fit is better, but there
are more fluctuations in the temporal evolution of the parameter c, because the
data are less stationary. In general, we expect that in each market, and for a
specific period of time, there is a different ‘optimal’ frequency to consider.

1.6.4 Relation to factor models

We would like to conclude this chapter with a discussion of the relationship be-
tween some of our findings and the popular factor models in the financial literature
[3]. As a basic consideration, we stress that factor models can only be applied to
the original (non-binary) increments (it is impossible to decompose a binary signal
into a nontrivial combination of binary signals), while our models only apply to
the binary projections. We should bear this irreducible difference in mind in what
follows. However, due to the mapping between binary and non-binary increments
that we have documented, we can try to indeed relate the two approaches.

First, let us consider the shuffled (uncorrelated) data, where the original log-
returns are randomly permuted within each of the N time series. It is well known
that the total temporal increment (over T time steps) of any empirical time series
of price increments is generally close to zero (due to market efficiency), and that
the distribution of log-returns is mostly symmetric around this value. This is es-
pecially true if each of the N original time series has been separately standardized,
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Figure 1.14: Stability analysis of the parameter c. Parameter c fitted as in
fig.1.11 on various yearly (top panels) and monthly (bottom panels) snapshots of
the market, for the FTSE100 (left), S&P500 (center) and NIKKEI225 (right).

i.e. the i-th temporal average has been subtracted from each increment of the i-th
time series, and the result has been divided by the i-th standard deviation. In
such a case, the N log-return distributions become also very similar to each other,
because their support is the same and their values are comparable. This means
that, after the shuffling, the time series are sequences of independent and almost
identically distributed variables with zero mean. We denote the corresponding
increments as

ri(t) = εi(t) ∀i, (1.84)

where the εi’s are random variables. In a traditional factor analysis, the above
scenario takes the form of a ‘zero-factor’ model. Under this model, the aggregate
increment over N stocks is expected to be narrowly distributed around

{ri(t)} =
1
N

N∑
i=1

εi(t) ≈ 0. (1.85)

When {ri(t)} takes small values around zero, we know from fig. 1.12 that {xi(t)}
also takes small values around zero. Indeed, shuffled time series are in the linear
regime that spans the range where the binary increment {xi(t)} is consistent
with a uniform random walk (see fig.1.9). Therefore we find that the zero-factor
model (for the non-binary returns) and the uniform random walk (for the binary
returns) are consistent with each other in the linear regime. In other words, when
in our analysis we measure a value of {xi(t)} that is consistent with a uniform
random walk, we know that the original log-returns are consistent with a zero-
factor model.

Next, we consider a one-factor model, where there is one dominant underlying
factor assumed to control the dynamics of all the time series. In such a case, each
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return can be decomposed as

ri(t) = αiΦ0(t) + εi(t) ∀i, (1.86)

where αi is the ‘factor loading’ of the i-th time series with the dominant factor
Φ0(t). When referring to stocks, the factor Φ0(t) is attributed to the market mode.
It is known that, during crisis times when the markets are highly correlated, a
one-factor model can describe the dynamics quite well. Under this model, the
aggregate increment is

{ri(t)} =
1
N

N∑
i=1

αiΦ0(t) +
1
N

N∑
i=1

εi(t) ≈ {αi}Φ0(t) (1.87)

where {αi} ≡ 1
N

∑N
i=1 αi is the average loading, which is independent of both

i and t. This result implies that, when the market is well described by a one-
factor model, the average increment {ri(t)} that we measure in our analysis is
proportional to the factor Φ0(t) itself. We note that the one-factor model is
somehow similar to our biased random walk model, as it assumes a common drive
for all the stocks. However, since Φ0(t) is fitted on the data, the one-factor model
cannot distinguish between an endogenous or exogenous nature of the common
drive. This situation is similar to when we use the observed value of {ri(t)} as
the driving field of the biased random walk (see sec. 1.6.2).

In financial analysis, the factor model can be used to filter the original time
series and remove the one-factor component from them. When the model is a good
approximation to the real market, the filtered returns are ri(t) ≈ εi(t), leading
us back to eq. (1.84) and the related considerations. In such a scenario, there
is no correlation among the stocks, and each stock is acting as an i.i.d. variable.
We therefore expect that, if we remove the market mode from the original time
series, then (in periods where the market is indeed dominated by a single factor)
we would obtain results similar to the shuffled case, and we would find the system
in the uncoordinated phase of fig.1.9.

However, despite the fact that in certain conditions the one-factor model can
generate the market behaviour, the model is too simplistic [3]. In reality the
dynamics is more complex and can be attributed to many factors, that sometimes
overlap with industrial (sub)sectors. Generally the different factors are identified
by the largest, non-random eigenvalues of the empirical cross-correlation matrix,
where the market mode relates to the highest eigenvalue [3]. The presence of
many deviating eigenvalues is an indication of the fact that the one-factor model
should be rejected. A more realistic, M -factor model is

ri(t) =
M∑
j=0

αijΦj(t) + εi(t) ∀i, (1.88)

where j = 0 denotes a common market-wide factor as above, while j > 0 denotes
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sector-specific factors. In such a case, our measured value of {ri(t)} is

{ri(t)} =
1
N

N∑
i=1

M∑
j=1

αijΦj(t) +
1
N

N∑
i=1

εi(t) ≈
M∑
j=1

{αij}Φj(t) (1.89)

which is a linear combination of the multiple factors controlling the market dy-
namics.

It should be noted that factor models cannot distinguish between an endoge-
nous and exogenous origin for the factors Φj(t) themselves, even if we invoke some
information-theoretic criterion to rank different specifications of these models. By
contrast, our binary models allow us to discriminate among these multiple sce-
narios, as we have shown in fig.1.9 and related discussions. Moreover, while our
approach allows us to relate binary and non-binary increments of real time series
and replicate the observed relationships among them (see figs.1.12 and 1.13), fac-
tor models cannot lead to a similar result, because they do not allow for a binary
description.

1.7 Conclusions
In this chapter we presented a novel method for the analysis of single and multiple
binary time series. Our information-theoretic approach allowed us to extract
and quantify the amount of information encoded in simple, empirically measured
properties. This resulted in the possibility to associate an entropy value to a
time series given its measured properties, and to compare the informativeness of
different measured properties.

By employing our formalism, we have identified distinct regimes in the collec-
tive behaviour of groups of stocks, corresponding to different levels of coordination
that only depend on the average return of the binary time series. In each regime
the market exhibits a dominant character: the market mode can be interpreted as
an exogenous factor, as pure noise, or as a combination of endogenous and exoge-
nous components. Moreover, each regime is characterized by the most informative
property.

Finally and more importantly, we were able to replicate the observed nonlinear
relations between binary and non-binary aggregate increments of real multiple
time series. We have mathematically characterized these relations accurately,
and interpreted them as the result of the fact that very large log-returns occur
more often when most stocks are synchronized, i.e. when their increments have
a common sign. Our findings suggest that the binary signatures carry significant
information, and even allow to measure the level of coordination in a way that is
unaccessible to standard non-binary analyses.
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Chapter 2

Economic Networks

The International Trade Network (ITN) is a complex network formed by the bi-
lateral trade relations between world countries. The network complex structure
reflects important economic processes such as globalization, and the propagation
of shocks and instabilities. Both from the perspective of network theory and
macroeconomics, understanding the structure of the ITN is of paramount im-
portance: in particular, understanding which economic quantities play a role in
shaping the ITN structure is crucial. Traditional macroeconomics has mainly
used the Gravity Model to characterize the magnitude of trade volumes, using
macroeconomic properties such as GDP and geographic distance. On the other
hand, recent maximum-entropy network models successfully reproduce the com-
plex topology of the ITN, but provide no information about trade volumes. In
this chapter, we first discuss the role played by the countries GDP in determining
both the presence and the amount of trade exchanges between world countries.
Next, we make an effort to integrate these two currently incompatible approaches
via the introduction of two GDP driven models. We introduce a novel ingredi-
ent that we denote as ‘topological invariance’, i.e. the invariance of the expected
topology under an arbitrary change of units of trade volumes. Via this unified and
principled mechanism, which is transparent enough to be generalized to any eco-
nomic network, the models provide a new econometric framework wherein trade
probabilities and trade volumes can be separately controlled by macroeconomic
variables. The models successfully reproduce both the topology and the weights
of the ITN, finally reconciling the conflicting approaches.

The results presented in this chapter have been published in the following references:
A. Almog, T. Squartini, D. Garlaschelli New Journal of Physics, 17: 013009 (2015).
A. Almog, T. Squartini, D. Garlaschelli Int. J. Computational Economics and Econometrics, in
press, arXiv:1512.02454 (2016).
A. Almog, R. Bird, D. Garlaschelli arXiv:1506.00348 (2016).
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2.1 Introduction

2.1 Introduction

The bilateral trade relationships existing between world countries form a complex
network known as the International Trade Network (ITN). The observed complex
structure of the system is at the same time the outcome and the determinant of
a variety of underlying economic processes, including economic growth, integra-
tion, and globalization. Moreover, recent events such as the financial crisis clearly
pointed out that the interdependencies between financial markets can lead to cas-
cading effects which, in turn, can severely affect the real economy. International
trade plays a significant role among the possible channels of interaction among
countries [1, 2, 3, 4], thereby possibly further propagating these cascading effects
worldwide and adding one more layer of contagion. Characterizing the global
networked economy is, therefore, an important open problem and modelling the
ITN represents a crucial step of this challenge [5, 11, 13, 16, 17, 24, 25].

Historically, macroeconomic models have mainly focused on modelling the
trade volumes between countries. The Gravity Model, which was introduced in
the early 60’s by Jan Tinbergen [30], serves as a robust empirical model that aims
at predicting the bilateral trade flow between any two (trading) countries based
on the knowledge of their Gross Domestic Product (GDP) and mutual geographic
distance. Although the model has been upgraded, over the years, to include other
possible factors of macroeconomic relevance, like common language and trade
agreements, GDP and distance remain the two factors with the largest explana-
tory power. The gravity model can reproduce the observed trade volumes between
countries satisfactorily. However, at least in its simplest and most widespread im-
plementation, the model cannot account for zero volumes, therefore predicting
a fully-connected trade network. This outcome is entirely inconsistent with the
observed, heterogeneous, topology of the ITN, which represents the backbone on
which trade is made. Subsequent refinements of the gravity model allowing for
zero trade flows succeeded only in reproducing the total number of missing links,
not their position in the trade network, thereby producing sparser but still non-
realistic topologies [14, 15].

The sharp contrast between the observed topological complexity of the ITN
and the homogeneity of the network structure generated by the GM (including its
recent extensions) calls for significant improvements in the modelling approach.
Important steps have been made using network models [7, 38, 39, 23, 26], among
which maximum-entropy techniques [18, 19, 20] have been proven to be partic-
ularly advantageous. Maximum-entropy models aim at reproducing higher-order
structural properties of real-world networks using lower-order information (more
precisely, node-specific), which is constrained to be reproduced [27, 28, 29]. Im-
portant examples of local properties that can be chosen as constraints are the
degree, i.e. the number of links of a node (in the ITN case, this is the number of
trade partners of a country) and the strength, i.e. the total weight of the links of
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a node (in the ITN case, this is the total trade volume of a country). Examples
of higher-order properties that the method aims at reproducing are the clustering
coefficient, which refers to the fraction of realised triangles around nodes, and the
degree correlations. The studies have focused on both binary and weighted rep-
resentations of the ITN, i.e. the two representations defined by the existence and
by the magnitude of trade exchanges among countries, respectively. In principle,
depending on which local properties are chosen as constraints, maximum-entropy
models can either fail or succeed in replicating the higher-order properties of the
ITN.

Importantly, the use of maximum-entropy models has lead to a counter-intuitive
result about the structure of the trade network: contrary to what naive economic
reasoning would predict, controlling for purely binary local properties (node de-
grees) is more informative than controlling for the corresponding weighted prop-
erties (node strengths). In other words, while the binary network reconstructed
only from the knowledge of the degrees of all countries is topologically very simi-
lar to the real ITN, the weighted network reconstructed only from the strengths
of all countries is very different (typically much denser) from the real network
[21, 22, 19]. This is somewhat surprising, given that economic theory assumes
that weighted properties (the total trade volume of a country) are per se more
informative than the corresponding binary ones (the number of trade partners of
a country). This empirical puzzle calls for a theoretical explanation and has gen-
erated further interest in the challenge of finding a unique mechanism predicting
link probabilities and link weights simultaneously. In this chapter, we will pro-
pose different models that successfully implement such mechanism. The models
can reproduce the observed properties of the ITN and finally highlight a clear
mathematical explanation for the observed binary/weighted asymmetry.

Our approach builds on previous theoretical results. Recently, an improved
reconstruction approach [32], based on an analytical maximum-likelihood esti-
mation method [18], has been proposed in order to define more sophisticated
maximum-entropy ensembles of weighted networks. This approach exploits pre-
vious mathematical results [34] characterizing a network ensemble where both
the degree and the strength sequences are constrained. The graph probability is
the so-called generalized Bose-Fermi distribution [34], and the resulting network
model goes under the name of Enhanced Configuration Model (ECM) [32]. When
used to reconstruct the properties of several empirical networks, the ECM shows
a significant improvement with respect to the case where either only the degree
sequence (Binary Configuration Model, BCM for short) or only the strength se-
quence (Weighted Configuration Model, WCM for short) is constrained. One,
therefore, expects that combining the knowledge of strengths and degrees is pre-
cisely the ingredient required to reproduce the ITN from purely local information
successfully. Indeed, a more recent study has shown that, when applied to in-
ternational trade data (both aggregated and commodity-specific), the method
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successfully reproduces the key properties of the ITN, across different years and
for different levels of aggregation (i.e. for various commodity-specific layers) [33].

However, in itself, the ECM is a general network reconstruction method, rather
than a true structural model. To transform it into a proper network model for
the ITN structure, it would be necessary to find a macroeconomic interpretation
for the underlying variables involved in the method. This operation would corre-
spond to what has already been separately performed in different studies. For the
binary level, a strong relationship between the GDP and the variable controlling
the degree of a country in the BCM [7, 36] was identified. At the purely weighted
level, a similar relationship was found between the GDP and the variable control-
ling the strength of a country in the WCM [23], in the same spirit of the gravity
model. Here, we aim at generalizing the results, to one model that is able to
generate both strengths and degrees.

We start with a summarized review of previous maximum-entropy approaches
to the characterization of the ITN, thus explaining the mathematical building
blocks on which we build our unifying approach. The rest of the chapter is or-
ganized as follows. In section 2.4 we discuss the macroeconomic approach to
model the ITN, in particular, the Gravity Model of Trade. We also present vari-
ous empirical relations existing between the GDP and a range of country-specific
properties. These results suggest a justification for the use of GDP as an empir-
ical fitness to be used in maximum-entropy models. In section 2.5 we introduce
a novel, GDP-driven, two-step model that successfully reproduces the binary and
the weighted higher-order properties of the ITN simultaneously. In section 2.6
we introduce what we call the Enhanced Gravity Model (EGM) of trade, which
represents a new, generalized model combining maximum-entropy network mod-
els with economically established gravity-like models. The model overcomes the
limitations of the existing approaches and retains the power of the popular GM
in reproducing trade volumes via geographic distances and GDPs. While at the
same time dramatically improving its network properties by reproducing both
first-order properties, such as node degree and node strength, and higher-order
properties, such as assortativity and clustering (in both binary and weighted rep-
resentations of the network). Finally, in section 2.7 we summarize our results and
provide some conclusions.

2.2 Data

We have used data from the Gleditsch database which spans over the years 1950-
2000 [9], and from the United Nations Commodity Trade Database (UN COM-
TRADE) [10] from the year 1992 to 2004. We use yearly bilateral data on exports
and imports Here we analyze the aggregated level, which results in yearly tempo-
ral snapshots of undirected total trade flows. The data sets are available in the
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form of weighted matrices of bilateral trade flows wij , the associated adjacency
matrices aij and vectors of GDPs. There are approximately 200 countries in the
data set covering the considered 51 years; the GDP is measured in U.S. dollars.

This data set was the subject of many studies exploring both purely the binary
representation, and its full weighted representation [18, 32, 33]. Another data set
which is widely used to represent the ITN network is the trade data collected by
Gleditsch [9]. The data contain the detailed list of bilateral import and export
volumes, for each country in the period 1950-2000.

2.3 Maximum-entropy approaches to the interna-
tional trade network

Since our results are a generalization of previous maximum-entropy approaches
to the characterization of the ITN, in this section we first briefly review the main
results of those approaches, while our new findings are presented in the next sec-
tion. In doing so, we gradually introduce the mathematical building blocks of our
analysis and illustrate our main motivations. Moreover, since previous studies
have used different data sets, we also recalculate the quantities of interest on the
same data set that we will use later for our own investigation. This allows us to
align the results of previous approaches and properly compare them with our new
findings.

2.3.1 Binary structure
If one focuses solely on the binary undirected projection of the ITN, then the Bi-
nary Configuration Model (BCM) represents a very successful maximum-entropy
model. In the BCM, the local knowledge of the number of trade partners of each
country, i.e. the degree sequence, is specified. It has been shown that higher-
order properties of the ITN can be simply traced back to the knowledge of the
degree sequence [21]. This result adds considerable information to the standard
results of traditional macroeconomic analyses of international trade. In particu-
lar, it suggests that the degree sequence, which is a purely topological property,
needs to be considered as an important target quantity that international trade
models, in contrast with the mainstream approaches in economics, should aim at
reproducing [19].

Let us first represent the observed structure of the ITN as a weighted undi-
rected network specified by the square matrix W∗, where the specific entry w∗ij
represents the weight of the link between country i and country j. Then, let us
represent the binary projection of the network in terms of the binary adjacency
matrix A∗, with entries defined as a∗ij = Θ[w∗ij ], ∀ i, j, where Θ is a Heaviside
step function. A maximum-entropy ensemble of networks is a collection of graphs
where each graph is assigned a probability of occurrence determined by the choice
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of some constraints. The BCM is a maximum-entropy ensemble of binary graphs,
each denoted by a generic matrix A, where the chosen constraint is the degree
sequence. In the canonical formalism [18], the latter can be constrained by writing
the following Hamiltonian:

H(A) =
N∑
i=1

θiki(A) (2.1)

where the degree sequence is defined as ki(A) =
∑N
j 6=i aij =

∑N
j 6=i Θ[wij ], ∀ i,

and θi are the free parameters (Lagrange multipliers) [18]. As a result of the con-
strained maximization of the entropy [18], the probability of a given configuration
A can be written as

P (A) =
e−H(A)∑
A′ e

−H(A′)
=
∏
i<j

[
zizj

1 + zizj

]aij [ 1
1 + zizj

]1−aij
(2.2)

where zi ≡ e−θi and pij ≡ zizj
1+zizj

. The latter represents the probability of forming
a link between nodes i and j, which is also the expected value

〈aij〉 =
zizj

1 + zizj
= pij . (2.3)

According to the maximum-likelihood method proposed in [18], the vector of un-
knowns ~z can be numerically found by solving the system of N coupled equations

〈ki〉 =
N∑
j 6=i

pij = ki(A∗) ∀i (2.4)

where the expected value of each degree ki is matched to the observed value
ki(A∗) in the real network A∗. The (unique) solution will be indicated as ~z∗.
When inserted back into eq.(2.3), this solution allows us to analytically describe
the binary ensemble matching the observed constraints. Being the result of the
maximization of the entropy, this ensemble represents the least biased estimate
of the network structure, based only on the knowledge of the empirical degree
sequence.

In fig. 2.3 we plot some higher-order topological properties of the ITN as
a function of the degree of nodes, for the 2002 snapshot. These properties are
the so-called average nearest neighbour degree and the clustering coefficient. For
both quantities, we plot the observed values (red points) and the corresponding
expected values predicted by the BCM (blue points). The exact expressions for
both empirical and expected quantities are provided in the Appendix. We see
that the expected values are in very close agreement with the observed properties.
These results replicate recent findings [19] based on the same UN COMTRADE
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Figure 2.1: Binary Configuration Model, reconstruction of higher-order
properties. between the observed undirected binary properties (red points) and
the corresponding ensemble averages of the BCM (blue points) for the aggregated
ITN in the 2002 snapshot. Left panel: Average Nearest Neighbor Degree knn
versus degree ki. Right panel: Binary Clustering Coefficient Ci versus degree ki.
The figure shows that the expected values are in very close agreement with the
observed properties.

data. They show that at a binary level, the degree correlations (disassortativity)
and clustering structure of the ITN are excellently reproduced by the BCM. As
we also confirmed in the present analysis, these results were found to be very
robust, as they hold true over time and for various resolutions (i.e., for different
levels of aggregation of traded commodities) [19].

Relation with the fitness Model

It should be noted that eq.(2.3) can be thought of as a particular case of the
so-called Fitness Model [35], which is a popular model of binary networks where
the connection probability pij is assumed to be a function of the values of some
‘fitness’ characterizing each vertex. Indeed, the variables ~z∗ can be treated as
fitness parameters [7, 36] which control the probability of forming a link. A very
interesting correlation between a fitness parameter of a country (assigned by the
model) and the GDP of the same country has been found [36]. This relation is
replicated here in fig. 2.4, where the rescaledGDP of each country (gi ≡ GDPi∑

iGDPi
)

is compared to the value of the fitness parameter z∗i obtained by solving eq.(2.4).
The red line is a linear fit of the type

zi =
√
a · gi. (2.5)

This leads to a more economic interpretation where the fitness parameters can
be replaced (up to a proportionality constant) with the GDP of countries, and
used to reproduce the properties of the network. This procedure, first adopted in
[7], can give predictions for the network based only on macroeconomic properties
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Figure 2.2: Correlation between Lagrange multipliers and countries
GDP. The calculated zi, compared with the gi (re-scaled GDP) for each country
for the undirected binary aggregated ITN in the 2002 snapshot, with the linear
fit zi =

√
a · gi (red line).

of countries, and reveals the importance of the GDP to the binary structure of
the ITN. Importantly, this observation was the first empirical evidence in favour
of the fitness model as a powerful network model [7]. Likewise, other studies
have shown that the observed topological properties turn out to be important in
explaining macroeconomics dynamics [1, 2].

2.3.2 Weighted structure

Despite the importance of the topology, the latter is only the backbone over which
goods are traded, and the knowledge of the volume of such trade is critical. To
be able to give predictions about the weight of connections, one needs to switch
from an ensemble of binary graphs to one of weighted graphs.

The simplest weighted counterpart of the BCM is the WCM, which is a
maximum-entropy ensemble of weighted networks where the constraint is the
strength sequence, i.e. the total trade of each country in the case of the ITN.
In the canonical formalism [18], the latter can be constrained by writing the fol-
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lowing Hamiltonian:

H(W) =
N∑
i=1

θisi(W) (2.6)

where the strength sequence is defined as si(W) =
∑N
j 6=i wij , ∀ i, and θi are

the free parameters (Lagrange multipliers) [18]. As a result of the constrained
maximization of the entropy [18], the probability of a given configuration W can
be written as

P (W) =
e−H(W)∑

W′ e−H(W′)
=
∏
i<j

(yiyj)
wij (1− yiyj) (2.7)

where yi ≡ e−θi .

Recent studies have shown that the higher-order binary quantities predicted
by the WCM, as well as the corresponding weighted quantities, are very different
from the observed counterparts [18, 19]. More specifically, the main limitation of
the model is that of predicting a mostly homogeneous and very dense (sometimes
fully connected) topology. Roughly speaking, the model excessively ‘dilutes’ the
total trade of each country by distributing it to almost all other countries. This
failure in correctly replicating the purely topological projection of the real network
is the root of the bad agreement between expected and observed higher-order
properties.

Relation with the Gravity Model

Just like the BCM has been related to the Fitness Model [7], a variant of the WCM
has been related to the Gravity Model [23]. The variant is actually a continuous
version of the WCM, where the strength sequence is constrained, and the weights
are real numbers instead of integers. When applied to the ITN, the model gives
the following expectation for the weight of the links:

〈wij〉 = T · gigj ∀i, j (2.8)

where T is the total strength in the network, and gi is the re-scaled GDP as
before [23]. In essence, the above expression identifies again a relationship between
the GDP and the hidden variable (analogous to the fitness in the binary case)
specifying the strength of a node.

Equation (2.8) coincides with eq.(2.9) where β = 1 and γ = 0. The model,
therefore, corresponds to a particularly simple version of the Gravity Model. In-
deed, the model reproduces reasonably well the observed non-zero weights of the
ITN [23]. However, just like the Gravity Model, the model predicts a complete
graph where aij = 1 ∀i, j, and dramatically fails in reproducing the binary ar-
chitecture of the network. This effect can be easily shown by realizing that the
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continuous nature of edge weights, which can take non-negative real values in
the model, implies that there is a zero probability of generating zero weights (i.e.
missing links). We will show the prediction of this model in comparison with our
results later on in the chapter (when compared to the two-step model).

2.4 Macroeconomic approaches to the international
trade network

In this section, after covering the maximum-entropy approaches, we briefly review
the macroeconomic approaches to the characterization of the ITN, mainly focusing
on the popular Gravity model of trade. Next, we discuss the role played by
the countries GDP in determining both the presence and the amount of trade
exchanges between world countries. Identifying the specific relations between the
GDP and network properties, will enable us later to introduce models, which
converge the two approaches.

2.4.1 The gravity model of trade
Traditionally, macroeconomic models have mainly focused on the weighted repre-
sentation, because economic theory perceives the latter as being a priori more
informative than the purely binary representation. The focus is on the ex-
pected volume of trade between two countries, given certain dyadic and country-
specific macroeconomic properties. Jan Tinbergen, the physics-educated1 Dutch
economist who was awarded the first Nobel memorial prize in economics intro-
duced the so-called Gravity Model (GM) of trade [41]. The GM aims at inferring
the volume of trade between any two (trading) countries from the knowledge of
their Gross Domestic Product, geographic distance, and other possible dyadic
quantities of macroeconomic relevance (such as common currency, trade agree-
ments, bordering conditions, common language, etc.) [58]. In one of its simplest
forms, the gravity model predicts that the expected volume of trade between
countries i and j is

〈wij〉 = α GDP βi GDP βj Rγij , (2.9)

where GDPk is the Gross Domestic Product of country k, Rij is the geographic
distance between countries i and j, and α, β, γ are free parameters to be estimated
by fitting the model to the data [30, 15, 42, 43].2 More complicated variants of

1Jan Tinbergen studied physics in Leiden, where he carried out a Ph.D. under the supervision
of the famous theoretical physicist Paul Ehrenfest. Tinbergen defended his thesis in 1929, and then
started a career as an economist. He was awarded the first Nobel memorial prize in economics in 1969.

2Note that eq.(2.9), by assuming for simplicity the same exponent β for the GDPs of both i and j,
predicts 〈wij〉 = 〈wji〉 and should therefore be interpreted as a model for the undirected version of the
network. In this representation, the trade from country i to country j and the trade from country j
to country i are combined into a single value of bilateral trade. Given the highly symmetric structure
of the ITN at the aggregate level (i.e. when all traded products are combined), this simplification
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eq.(2.9) use additional explanatory factors (with associated free parameters) either
favoring or resisting trade. These additional factors can be country-specific like
the GDP (e.g. population) or dyadic like the geographic distances (e.g. common
currency, trade agreements, etc.). In general, if we collectively denote with ni
the set of node-specific factors and with Dij the set of dyad-specific factors used,
eq.(2.9) can be generalized to

〈wij〉 = F (ni,nj ,Dij), (2.10)

where, in general, the functional form of F (ni,nj ,Dij) need not be of the same
type as in eq.(2.9), and each component of ni and Dij may have a corresponding
free parameter to be fitted. In fact, despite the fact we are focusing on the grav-
ity model applied to the international trade network as our main application, our
discussion applies to many other models of (socio-economic) networks as well. For
instance, the recent Radiation Model (RM) [45], which improves the predictions of
the GM when applied to mobility (rather than trade) networks, is also described
by eq.(2.32), where ni and Dij are certain geographical and demographical vari-
ables. Our following discussion applies to both the GM and the RM, as well as
any more general model described by eq.(2.10).

Equation (2.10) refers to the expected value of wij . The full probability dis-
tribution from which this expected value is calculated depends on the particular
implementation of the model. In the GM case, this distribution can be Gaus-
sian (implying that the expected weights can be fitted to the observed ones via
a simple linear regression [46, 47]), log-normal (requiring a linear regression of
log-transformed weights [49]), Poisson [49], or more sophisticated [48] (see [42]
for a review). The non-uniqueness of the weight distribution already highlights a
fundamental arbitrariness in the model. This is only one of the limitations of the
GM and similar models.

The GM can successfully reproduce the observed trade volume between trading
countries. However, at least in its simplest and most widespread implementation,
the model cannot generate zero volumes and therefore predicts a fully connected
network. From a model fitting perspective, this means that the GM can be fitted
only to the non-zero weights, i.e. the strictly positive volumes existing between
pairs of connected countries. Therefore the model effectively disregards the empir-
ical topology of the network, thus making predictions on the basis of incomplete
data. Operatively, the GM can predict a realistic trade volume only after the
presence of the trade relation itself has been established independently [42]. This
problem is particularly critical, since, depending on the datasets, up to approxi-
mately half of the possible links in the real ITN are not realized [21, 22, 7, 19]. If
the total trade is disaggregated into commodity-specific trade flows, the resulting
commodity-specific networks are even sparser [50, 51]. Clearly, the same problem

retains all the basic network properties of the system [38, 21, 22, 44, 59, 60]. Throughout the chapter,
we will stick to this undirected (bilateral trade) representation, but the extension to the directed case
is straightforward.
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holds in general for the RM and other models of the form (2.10).

While there are variants and extensions of the GM that do generate zero
weights (e.g. the so-called Poisson pseudo-maximum likelihood models [49] and
‘zero-inflated’ gravity models [48]), these variants can mainly reproduce the empir-
ical link density (the realized fraction of connections), but not the observed topol-
ogy [42, 43]. Indeed, even in these generalized forms, the GM predicts a largely
homogeneous topology, while the empirical topological backbone of the ITN is
much more heterogeneous and complex [15, 42]. For instance, the distribution of
node degree (number of connections of a country) is very broad, as for the distribu-
tion of node strength (total trade volume of a country) [5, 38, 11, 39, 13, 14, 15]. A
small number of rich countries dominate the trade patterns and account for most
of the trade. Clustering and mixing patterns exhibit the rich-club phenomenon
[55, 56], where well-connected nodes also connected to each other. The higher-
order correlations are disassortative in the binary representation (nodes of low
degree are more likely to be connected to nodes of a higher degree than expected
by chance [21]), but assortative in the weighted representation (nodes are more
likely to be connected to nodes of similar strength than expected by chance[22]).
These structural properties are remarkably stable over time: despite the fourfold
increase in trade volume over the last 65 years, the overall topology of interna-
tional trade has remained largely constant [57].

In the next section, we will move forward, by trying to detect similarities
between the two approaches. We explore the various empirical relations between
the GDP of a country and specific country (network) properties like degree and
strength. This simple empirical analysis reveals the GDP as a “macroeconomic
fitness”, i.e. a powerful predictor of the number and strength of country’s trade
relations.

2.4.2 The GDP as macroeconomic fitness
Let us start with an empirical analysis of the GDP. We first define new rescaled
quantities of the GDP: gi and g̃i

gi ≡
GDPi∑
j GDPj

, ∀ i g̃i ≡
GDPi

GDPmean
, ∀ i, (2.11)

where GDPmean ≡
∑N
i GDPi
N is the average GDP for an observed year. The two

quantities adjust the values of the countries GDPs for both the size of the network
and the growth, and are a connected by a simple relation g̃i = N · gi. We use
the two quantities of the rescaled GDP throughout our analysis, mainly using gi
for the reason that the quantity is bounded 0 ≤ gi ≤ 1 which coincides with our
model.
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Figure 2.3: Cumulative Distribution of countries GDP for different
decades. Empirical cumulative distributions P>(g̃) of the GDP rescaled to the
mean, for different years. The curve is a log-normal distribution fitted to the
data.

In fig. 2.3 we plot the cumulative distribution of the rescaled GDP g̃i with i
indexing the countries for the different decades collected into our data set. What
emerges is that the distributions of the rescaled GDPs can be described by log-
normal distribution characterized by similar values of the parameters. The log-
normal curve is fitted to all the values (from the different decades). This suggests
that the rescaled GDPs are quantities which do not vary much with the evolution
of the system, thus potentially representing the (constant) hidden macroeconomic
fitness ruling the entire evolution of the system itself. This, in turn, implies un-
derstanding the functional dependence of the key topological quantities on the
countries rescaled GDP.

As already pointed out by a number of results [19], the topological quantities
which play a major role in determining the ITN structure are the countries degrees
(i.e. the number of their trading partners) and the countries strengths (i.e. the
total volume of their trading activity). Thus, the first step to understanding
the role of the rescaled GDP in shaping the ITN structure is quantifying the
dependence of degrees and strengths on it. Since we want to analyse each snapshot
at a time (correction for size is not needed), here we will use the bounded rescaled
GDP gi. Moreover, this form of the rescaled GDP coincides with a bounded
macroeconomic fitness value, which is consistent with the models presented in the
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next sections.
To this aim, let us explicitly plot ki versus gi and si versus gi for a particular

decade, as shown in fig. 2.4. The red points represent the relations between the
two pairs of observed quantities for the 2000 snapshot. Interestingly, the rescaled
GDP is directly proportional to the strength (on a log-log scale), thus indicating
that the wealth of countries is strongly correlated to the total volume of trade they
participate in. Such evidence provides the empirical basis for the definition of
the gravity model, stating that the trade between any two countries is directly
proportional to the (product of the) countries GDP.

On the other hand, the functional dependence of the degrees on the gi values
is less simple to decipher. Generally speaking, the relation is monotonically in-
creasing, and this means that countries with high GDP also have a high degree,
i.e. are strongly connected with the others; coherently, countries characterized
by a low value of the GDP have also a low degree, i.e. are less connected to
the rest of the world. Moreover, while for low values of the GDP there seems to
exist a linear relation (on a log-log scale) between ki and gi, as the latter rises
a saturation effect is observed (in correspondence of the value kmax = N − 1),
due to the finite size of the network under analysis. Roughly speaking, richest
countries lie on the vertical trait of the plot, while poorest countries lie on the
linear trait of the same plot: in other words, the degree of countries represents a
purely topological indicator of the countries wealth.

To sum up, fig. 2.4 shows that countries GDP plays a double role in shaping the
ITN structure: first, it controls for the number of trading channels each country
establishes; second, it controls for the volume of trade each country participates in,
via the established connections. The blue points in fig. 2.4, instead, represent the
relation between 〈ki〉 versus gi and 〈si〉 versus gi, where the quantities in brackets
are the predicted values for degrees and strengths generated by our model, which
we will discuss later.

The obvious question that arises from these findings is can we extend the result
shown in section 2.3 to create a GDP-driven model for both the binary and the
weighted representation of the ITN. In the next section, we tackle exactly this
problem using a recent maximum-entropy model [33] which is able to reproduce
both representations.
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Figure 2.4: The relation of the GDP with local network properties. Com-
parison between observed (red points) and expected (blue points) degrees and
strengths for the aggregated ITN in the 2000 snapshot. Right panel: degree ki
versus normalized GDP gi and expected degree 〈ki〉 versus normalized GDP gi.
Left panel: strength si versus normalized GDP gi and expected strength 〈si〉
versus normalized GDP gi.

2.5 A GDP-driven model of the ITN

Motivated by the challenge to satisfactorily model both the topology and the
weights of the ITN, the ECM has been recently proposed as an improved model
of this network [33]. The ECM focuses on weighted networks, and can enforce
the degree and strength sequence simultaneously [32]. It builds on the so-called
generalized Bose-Fermi distribution that was first introduced as a null model of
networks with coupled binary and weighted constraints [34].

In the ECM, the degree and strength sequence can be constrained by writing
the following Hamiltonian:

H(W) =
N∑
i=1

[αiki(W) + βisi(W)] (2.12)

where the strength sequence is defined as si(W) =
∑N
j 6=i wij , ∀ i and the degree

sequence as ki(W) =
∑N
j 6=i aij =

∑N
j 6=i Θ[wij ], ∀ i. As a result, the probability of

a given configuration W can be written as

P (W) =
e−H(W)∑

W′ e−H(W′)
=
∏
i<j

(xixj)aij (yiyj)wij (1− yiyj)
1− yiyj + xixjyiyj

(2.13)
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Figure 2.5: Enhanced Configuration Model, reconstruction of higher-
order properties. Comparison between the observed undirected binary and
weighted properties (red points) and the corresponding ensemble averages of the
the ECM (blue points) for the aggregated ITN in the 2002 snapshot. Top left
panel: Average Nearest Neighbour Degree knn versus degree ki; Top right panel:
Binary Clustering Coefficient Ci versus degree ki ; Bottom left panel: Average
Nearest Neighbour Strength snn versus strength si ; Bottom right panel: Weighted
Clustering Coefficient CW versus strength si .

with xi ≡ e−αi and yi ≡ e−βi . The ECM gives the following predictions about
the probability of a link (〈aij〉) and the expected weight of the link (〈wij〉):

〈aij〉 =
xixjyiyj

1− yiyj + xixjyiyj
= pij (2.14)

〈wij〉 =
xixjyiyj

(1− yiyj + xixjyiyj)(1− yiyj)
=

pij
1− yiyj

. (2.15)

According to the maximum-likelihood method proposed in [32], the vectors of
unknowns ~x and ~y can be numerically found by solving the system of 2N coupled
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equations

〈ki(W)〉 =
N∑
j 6=i

pij = ki(W∗) ∀ i (2.16)

〈si(W)〉 =
N∑
j 6=i

〈wij〉 = si(W∗) ∀ i (2.17)

and will be indicated as ~x∗ and ~y∗. These unknown parameters can be treated as
fitness parameters which control the probability of forming a link and the expected
weight of that link simultaneously.

The application of the ECM to various real-world networks shows that the
model can accurately reproduce the higher-order empirical properties of these
networks [32]. When applied to the ITN in particular, the ECM replicates both
binary and weighted empirical properties, for different levels of disaggregation,
and for several years (temporal snapshots) [33]. Indeed, in fig. 2.5 we show the
higher-order binary quantities (average nearest neighbour degree and clustering
coefficient) as well as their weighted ones (average nearest neighbour strength and
weighted clustering coefficient) for the 2002 snapshot of the ITN. We compare the
observed values (red points) and the corresponding quantities predicted by the
ECM (blue points). The mathematical expressions for all these quantities are
provided in the Appendix. We find a very good agreement between data and
model, confirming the recent results in [33] for the data set we are using here. We
also confirmed that these results are robust for several temporal snapshots [33].

2.5.1 From Lagrange multipliers to macroeconomic prop-
erties

Considering the promising results of the ECM and the results from section 2.4.2,
we now make a step forward and check whether the hidden variables xi and
yi, which effectively reproduce the observed ITN, can be thought of as ‘fitness’
parameters having a clear economic interpretation. This amounts to checking
whether the relation shown previously in fig. 2.4 for the purely binary case can
be generalized in order to find a macroeconomic interpretation to the abstract
fitness parameters in the general weighted case as well.

In fig. 2.6 we show the relationship between the two parameters xi and yi and
the rescaled GDP (gi) for each country of the ITN in the 2002 snapshot. We find
strong correlations between these quantities. The fitness parameter xi turns out
to be in a roughly linear relation with the rescaled GDP gi, fitted by the curve

xi =
√
a · gi (2.18)

where
√
a is the fitted constant, and gi = GDPi∑

iGDPi
(all the GDP s are relative

to that specific year). It should be noted that this relation is similar to that
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Figure 2.6: Relation between Lagrange multipliers of the ECM and coun-
tries GDP. calculated xi (left panel) and yi

1−yi (right panel) compared with the gi
(rescaled GDP) for each country for the undirected binary aggregated ITN in the
2002 snapshot, with the linear fits (in log-log scale) xi =

√
a · gi, and yi

1−yi = b · gci
(red lines), where a, b, and c are the fitted constant parameters per year.

found between zi and gi in the BCM and shown previously in fig.2.4, but less
accurate. This observation will be useful later. By contrast, since the GDP is
an unbounded quantity, while the fitness parameter yi is bounded between 0 and
1 (this is a mathematical property of the model [34, 32]), the relation between
yi and gi is necessarily highly nonlinear. A simple functional form for such a
relationship is given by

yi =
b · gci

1 + b · gci
. (2.19)

Indeed, fig. 2.6 confirms that the above expression provides a very good fit to the
data.

We checked that the above results hold systematically over time, for each
snapshot of the ITN in our data set. This implies that, in a given year, we can
insert eqs.(2.18) and (2.19) into eqs.(2.38) and (2.37) to obtain a GDP-driven
model of the ITN structure for that year. Such a model highlights that the GDP
has a crucial role in shaping both the binary and the weighted properties of the
ITN. While this was already expected on the basis of the aforementioned results
obtained using the BCM and the WCM (or the corresponding simplified gravity
model) separately, finding the appropriate way to explicitly combine these results
into a unified description of the ITN has remained impossible so far. Rather than
exploring in more detail the predictions of the GDP-driven model in the form
described above, we first make some considerations leading to a simplification of
the model itself.
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2.5.2 Reduced two-step model

At this point, it should be noted that we arrived at two seemingly conflicting
results. We showed that both the BCM and ECM give a very good prediction for
the binary topology of the network. However, eqs.(2.3) and (2.38), which specify
the connection probability pij in the two models, are significantly different. The
comparable performance of the BCM and the ECM at a binary level (see figs.2.3
and 2.5) makes us expect that, when the specific values ~z∗ and ~x∗ are inserted into
eqs.(2.3) and (2.38) respectively, the values of the connection probability become
comparable in the two models, despite the different mathematical expressions.

In fig. 2.7 we compare the the two probabilities for the ITN in the 2002
snapshot. Note that each point refers to the probability of creating a link between
a pair of countries, which results in N(N−1)

2 points. Indeed, we can see that the
values are scattered along the identity line, confirming the expectation that the
connection probability has similar value in the two models.

The above result allows us to make a remarkable simplification. In eqs.(2.38)
and (2.37), we can replace the expression for pij provided by the ECM with
that provided by the BCM in eq.(2.3). To avoid confusion, we denote the new
probability with ptsij , where ts stands for ‘two-step’, for a reason that will be clear
immediately. This results in the following equations for the expected network
properties:

〈aij〉ts =
zizj

1 + zizj
≡ ptsij , (2.20)

〈wij〉ts =
ptsij

1− yiyj
. (2.21)

where the zi’s, and therefore the ptsij ’s, depend only on the degrees through
eq.(2.4), while the yi’s and the 〈wij〉ts’s depend on both strengths and degrees
through eqs.(2.16) and (2.17).

In this simplified model the connection probability, which fully specifies the
topology of the ensemble of networks, no longer depends on the strengths as in
the ECM, while the weights still do. This implies that we can specify the model
via a two-step procedure where we first solve the N equations determining ptsij via
the degrees, and then find the remaining variables determining 〈wij〉ts through
the ECM. For this reason, we denote the model as the Two-Step (TS) model.

The probability of a configuration W reads

P ts(W) =
∏
i<j

qtsij (wij) (2.22)

where

qtsij (wij) =
(zizj)aij (yiyj)wij−aij (1− yiyj)aij

1 + zizj
(2.23)
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Figure 2.7: Link formation probability for the different models. The
probability of forming a link in the ECM pij ECM compared to the probability
in the BCM pij BCM for the undirected binary aggregated ITN in the 2002
snapshot. The red line describes the identity line.

is the probability that a link of weight wij connects the nodes (countries) i and
j. The above probability has the same general expression as in the original ECM
[32], but here zi comes from the estimation of the simpler BCM. It is instructive
to rewrite (2.23) as

qtsij (0) =
1

1 + zizj
= (1− ptsij); (2.24)

qtsij (w) = ptsij(yiyj)
w−1(1− yiyj), ∀ w > 0 (2.25)

to highlight the random processes creating each link. As a first step, one deter-
mines whether a link is created or not with a probability ptsij . If a link (of unit
weight) is indeed established, a second attempt determines whether the weight of
the same link is increased by another unit (with probability yiyj) or whether the
process stops (with probability 1−yiyj). Iterating this procedure, the probability
that an edge with weight w is established between nodes i and j is given precisely
by qtsij (w) in eq.(2.25). The expected weight 〈wij〉ts is then correctly retrieved as∑+∞
w=0 w · qtsij (w).
Using the relations found in eqs.(2.5) and (2.19), we can input the gi as the

fitness parameters into eqs.(2.20) and (2.21) to get the following expressions that
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mathematically characterize our GDP-driven specification of the TS model:

〈aij〉ts =
agigj

1 + agigj
≡ ptsij (2.26)

〈wij〉ts = ptsij
(1 + bgci )(1 + bgcj)

(1 + bgci + bgcj)
. (2.27)

The above equations can be used to reverse the approach used so far: rather than
using the 2N free parameters of the ECM (~x and ~y) or of the TS model (~z and
~y) to fit the models on the observed values of the degrees and strengths, we can
now use the knowledge of the GDP of all countries to obtain a model that only
depends on the three parameters a, b, c. Assigning values to these parameters
can be done using two techniques: maximization of the likelihood function and
non-linear curve fitting. Since the model is a two-step one, we can first assign a
value to the parameter a, and only in the second step (once a is set) we fit the
parameters b and c.

We chose to fix a by maximizing the likelihood function [36], which results
in constraining the expected number of links to the observed number (〈L〉 = L),
as in [7]. Fixing the values of b and c is slightly more complicated. Since the
model uses the approximated expressions of the TS model, rather than those of
the original ECM model, maximizing the likelihood function in the second step
no longer yields the desired condition 〈T 〉 = T , where T is the total strength in
the network. Similarly, extracting the parameters from the fit as shown in fig. 2.6
does not maintain the total strength in the network. In absence of any a-priori
preference, we chose the latter procedure, due to its relative numerical simplicity
with respect to the former one.

In fig. 2.8 we show a comparison between the higher-order observed properties
of the ITN in 2002 and their expected counterparts predicted by the GDP-driven
TS model. Again, the mathematical expressions of these properties are provided
in the Appendix. As a baseline comparison, we also show the predictions of
the GDP -driven WCM model with continuous weights described by eq.(2.8) [23],
which coincides with a simplified version of the gravity model as we mentioned.

We see that the GDP-driven TS model reproduces the observed trends very
well. Of course, as expected, the predictions in fig.2.8 (which use only three
free parameters) are noisier than those in fig.2.5 (which use 2N free parameters).
This is due to the fact that eqs.(2.5) and (2.19) describe fitting curves rather than
exact relationships. Importantly, our model performs significantly better than the
WCM/gravity model in replicating both binary and weighted properties. Again,
the drawback of these models lies in the fact that they predict a fully connected
topology and a relatively homogeneous network.

It should also be noted that the plot of average nearest neighbour strength
(snn) predicted by our model is slightly shifted with respect to the observed points.
This effect is due to the fact that, as we mentioned, the total strength T (hence
the average trend of the snn) is only approximately reproduced by our model, as
a result of the simplification from the ECM to the TS model.
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Figure 2.8: Two-Step Model, reconstruction of higher-order properties.
Comparison between the observed properties (red points), the corresponding en-
semble averages of the GDP -driven two-steps model (blue points) and the GDP -
driven WCM model (green points), of the aggregated ITN in 2002. Top left:
Average Nearest Neighbour Degree knni versus degree ki. Top right: Binary Clus-
tering Coefficient ci versus degree ki. Bottom left: Average Nearest Neighbour
Strength snni versus strength si. Bottom right: Weighted Clustering Coefficient
cwi versus strength si. The GDP-driven TS model reproduces the empirical trends
very well with respect to the WCM.

As for all the other results in this chapter, we checked that our findings are
robust over the entire time span of our data set. We, therefore, conclude that the
ECM model, as well as its simplified TS variant, can be successfully turned into
a fully GDP-driven model that simultaneously reproduces both the topology and
the weights of the ITN.

The success of the TS model has a meaningful interpretation. Looking back at
eqs.(2.20) and (2.26), we recall that the effect of the TS approximation is the fact
that the connection probability ptsij can be estimated separately from the weights
〈wij〉ts, using only the knowledge of the degree sequence if eq.(2.20) is used, or the
GDP and total number of links if eq.(2.26) is used, while discarding that of the
strengths. By contrast, the estimation of the expected weights 〈wij〉ts cannot be
carried out separately, as it requires that the connection probability ptsij appearing
in eqs.(2.21) and (2.27) is estimated first. This asymmetry of the model means
that the topology of the ITN can be successfully inferred without any information
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about the weighted properties, while the weighted structure cannot be inferred
without topological information. The expressions defining the TS model provide
a mathematical explanation for this otherwise puzzling effect that has already
been documented in previous analyses of the ITN [19, 33].

2.6 The enhanced gravity model

In the previous section, we have shown that the two-step model can reproduce
the higher-order properties of both representations of the ITN. However, despite
the vast improvements the model represent, it still has some definite limitations.
Firstly, the model does not allow to introduce additional macroeconomic param-
eters like geographic distance or other pair-countries information like trade re-
lations or common borders. This type of information is frequently being used
in macroeconomic models. Furthermore, the model cannot reproduce the spe-
cific weights wij of the network. In this section, using a different methodology
than before, we start with the gravity model and reformulate it according to
maximum-entropy principles. This maximum-entropy generalization is aimed at
creating a model that combines the advantages of the gravity model (accurate
link expectation) with the benefits of the maximum-entropy models (topology
and higher-order reconstruction).

As we discussed before, the gravity model in eq.(2.10) (which includes eq.(2.9)
as a particular case) is successful in reproducing link weights only after the exis-
tence of the links themselves has been preliminarily established. This means that
eq.(2.10) in actually incorrect and should by rather reformulated as a model for
the conditional expectation of the weight wij , given that wij > 0.

To do so, we need to introduce qij(w) as the probability that the volume of
trade between countries i and j takes a value w, with w being, without loss of gen-
erality, a non-negative integer number (the event w = 0 indicates the absence of a
trade link). The probability qij(w) is the fundamental quantity that fully specifies
the model. In particular, it controls both the topology and the link weights of the
network. Our aim is to find the form of qij(w) that produces the desired gravity-
like conditional expectation for link weights, as well as a realistically expected
topology. The search for the form of qij(w) will be guided by the important re-
quirement that the expected topology should not depend on the (arbitrary) units
of measure chosen to measure the link weights. The latter requirement will be
referred to as topological invariance.

Our first requirement is that qij(w) produces eq.(2.10), once the latter has
been rewritten as an expression for the conditional weights. We perform this
rewriting first. Note that the probability pij that countries i and j are connected
(irrespective of the volume of trade) is given by

pij = 1− qij(0) = 〈aij〉, (2.28)
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where aij = Θ(wij) is the entry of the binary adjacency matrix of the network
(equal to 1 if a link between countries i and j exists and 0 otherwise). Note that
pij does not depend on qij(w) for w > 0. By contrast, the expected trade volume
(irrespective of whether a connection is established) is given by

〈wij〉 ≡
∑
w>0

w qij(w), (2.29)

which does not depend on qij(0). Apparently, the fact that 〈aij〉 and 〈wij〉 depend
on different quantities implies that they can be defined separately, thus allowing
one to reproduce the topology and the weights simultaneously. However, we
will show that this is not the case: to enforce topological invariance, an explicit
dependence between 〈aij〉 and 〈wij〉 should be introduced.

To rewrite eq.(2.10) as a conditional expectation, we define the conditional
expected weight of the link between nodes i and j as

〈wij |aij = 1〉 ≡
∑
w>0

w qij(w|aij = 1) =
〈wij〉
pij

(2.30)

where

qij(w|aij = 1) =
qij(w)∑
u>0 qij(u)

=
qij(w)
pij

(2.31)

is the (correctly renormalized) conditional probability that wij equals w given
that aij = 1 (i.e., given that the link is realized). We can now replace Eq. (2.10)
with the intended expression

〈wij |aij = 1〉 = F (ni,nj ,Dij). (2.32)

Our next requirement is that qij(w) enforces topological invariance. To ensure
that this is done without making ad hoc assumptions and using only empirical
information, we are going to formulate the problem within a maximum-entropy
framework. In doing so, we will generalize previous maximum-entropy formula-
tions of the GM by making them manifestly topologically invariant. For clarity,
in the next section we first briefly review these previous formulations, before pro-
viding our extension.

2.6.1 Maximum-entropy reformulation of the gravity model
Per se, the standard GM is not a micro-founded model. However, various micro-
founded models admit a gravity-like relation as their equilibrium outcome [64, 65,
66, 67]. Notably, the GM can be obtained from the maximum-entropy principle
[68], and this result has been reformulated recently in the context of maximum-
entropy ensembles of networks [23]. The maximum-entropy framework is in some
sense the most general (i.e. requiring the minimal set of assumptions) context
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Figure 2.9: The EGM enhanced reconstruction of the network topology.
The heterogeneous binary topology of the observed ITN (red points) and the
expected values from the EGM (blue points). Left: the ANND as a function of
the observed degree k. Right: the clustering coefficient C as a function of the
observed degree k.

wherein the GM emerges naturally as an outcome. It also leads to the least
biased predictions, as it makes no other hypothesis than consistence with a certain
aggregation of the data. We first shortly review this approach, then slightly
modify it in a form that assumes discrete rather than continuous trade volumes,
and finally, generalize it to a novel model that fixes the main issue of the GM.

The maximum-entropy approach starts by considering the space of all networks
with N nodes, where in our case N is the number of countries.

Generalizing the results in [18, 22], we preliminarily require that all the em-
pirical edge weights {wij} are reproduced on average by a maximum-entropy
model. This leads to the graph probability P (W) that maximizes Shannon’s en-
tropy S ≡ −

∑
W P (W) lnP (W) (where the sum runs over all possible weighted

networks with the same number of nodes as the real network).
If the weight of a link between two nodes is denoted (in some units) as the

entry wij of a non-negative integer matrix W, then the corresponding entry in
the (purely binary) adjacency matrix A of the graph is

aij ≡ Θ(wij), (2.33)
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where Θ is a Heaviside step function.
The result is P (W) =

∏
i<j y

wij
ij /Z, where yij is now a ‘dyadic’ (as opposed to

node-specific) hidden variable and where Z is the normalizing constant, or parti-
tion function [18]. This model leads to expected weights of the form 〈wij〉 = yij

1−yij
and 〈wij |aij = 1〉 = 1

1−yij . Compared with previous maximum-entropy ap-
proaches to the ITN [18, 22, 19, 33], this model has the big advantage that yij
can be chosen such that 〈wij |aij = 1〉 = F (ni,nj ,Dij) where F is any func-
tion of dyadic (Dij) and node-specific (ni) variables, like in eq.(2.32). Note that
F (ni,nj ,Dij) has the same units of measure as wij . At the same time, the model
fixes the entire probability qij(w) that nodes i and j are connected by a link of
weight w, which here has the geometric [18, 22] form qij(w) = ywij(1 − yij), thus
removing the aforementioned undesired arbitrariness of the weight distribution
in the GM. Therefore this model can be regarded as the ‘canonical’ specification
of the GM within a maximum-entropy framework. Note in particular that fixing
〈wij |aij = 1〉 = F (ni,nj ,Dij) automatically fixes all the other moments of the
geometric weight distribution, eliminating the extra parameters introduced by the
addition of additive or multiplicative noise to eq. (2.9).

Enforcing topological invariance means that, if we express the trade volumes
{wij} in terms of millions of dollars rather than dollars, we want to obtain the
same expectations for the topology {aij}, even if the expected volumes {〈wij〉}
should instead scale accordingly. Unfortunately, in the above model the connec-
tion probability pij ≡ 〈aij〉 = yij = 〈wij〉/(1 + 〈wij〉) is not invariant under a
change of units of measure for wij . While 〈wij〉 scales with wij as desired, 〈aij〉
should not scale with 〈wij〉, because the observed aij is independent of the scale
of wij : we do not want the expected number of ‘zeroes’ to be affected by the
arbitrary units of measure of the non-zero weights. Incidentally, we note that
choosing a realistically small unit (e.g. one dollar like in many trade databases)
implies that wij (and therefore 〈wij〉) is a large number, which implies pij → 1:
as the unit becomes smaller, this model predicts a denser network, asymptotically
complete like in the traditional GM. The dependence of the link density on ar-
bitrary units of weight, as well as its asymptotic saturation to a unit value, is a
general explanation for the failure of an entire class of weighted network models
(like the GM itself) that do not target purely topological properties in their con-
struction. Indeed, we argue that a simple and general theoretical reason for the
empirical failure of previous models is their lack of topological invariance.

2.6.2 The complete model

Since the maximum-entropy framework requires minimal assumptions (as it does
not postulate mechanistic or behavioral rules), it represents the most general
and transparent setting to reformulate the GM in such a way that topological
invariance is enforced as an additional ingredient, while keeping the other more
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Figure 2.10: The Gravity model, trade flow expectation. Comparison be-
tween the observed weights of the ITN on the y-axis and the GM expected weights
(green points) on the x-axis. The black line is the identity line.

traditional specifications unchanged.

We generalize a recent model [32], based on an analytical maximum-likelihood
estimation method [18], that has been recently proposed in order to construct
advanced maximum-entropy ensembles of weighted networks that significantly
improve the fit to real data. The approach is particularly successful when applied
to the ITN [33]. In its standard formulation, the model enforces the degree and
strength sequence simultaneously [32]. It builds on the so-called generalized Bose-
Fermi distribution that was first introduced as a null model of networks with
coupled binary and weighted constraints [34].

Here, we reformulate the model more generally as a model that can flexibly
reproduce the edge weights of a network using both dyadic and node-specific
factors, while at the same time enforcing topological invariance, i.e. the desired
invariance of the (expected) binary structure under a change in the (arbitrary)
units of weight.

We therefore introduce a model that, besides the empirical weights {wij},
enforces the empirical topology {aij}, thus manifesting topological invariance from
the very beginning. As shown in sec. Materials and Methods, this model yields a
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Figure 2.11: The Enhanced Gravity model, trade flow expectation. Com-
parison between the observed weights of the ITN on the y-axis and the EGM
expected weights (blue points) on the x-axis, in green are the expectations of the
original GM. The black line is the identity line.

weight probability

qij(w) ≡ (xij)
aij (yij)

wij (1− yij)
1− yij + xijyij

, (2.34)

where {xij} and {yij} are two arrays of dyadic hidden variables. The conditional
expected weight is

〈wij |aij = 1〉 =
1

1− yij
(2.35)

and the connection probability is

pij = 1− qij(0) =
xijyij

1− yij + xijyij
. (2.36)

As we illustrate below, now the presence of the extra variable xij allows to keep
pij fixed (thus enforcing topological invariance) while varying yij as a result of a
possible change of scale in the original weights {wij}.

The dyadic nature of the model allows us to combine the successful ingredients
of the traditional GM, which satisfactorily reproduces the conditional weights of
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the ITN, with those of more recent network models, which accurately reproduce
the topology. One one hand, we require that (2.35) has the generic structure of
the GM as in eq.(2.32):

〈wij |aij = 1〉 =
1

1− yij
≡ F (ni,nj ,Dij). (2.37)

On the other hand, we require that eq.(2.36) has the structure of a binary maximum-
entropy model reproducing the topology of the ITN [7, 36, 21, 31, 20]:

pij =
xijyij

1− yij + xijyij
≡ zij

1 + zij
. (2.38)

The above two expressions define our topology-enhanced model in general
form. Importantly, the conditional weights are independent of the topology, while
the opposite is not true. Also note that F (ni,nj ,Dij) depends on the chosen
currency or money unit, while we require zij to be invariant (and dependent
uniquely on the binary structure of the network). This implies that the general
solution of the model is

yij = 1− 1
F (ni,nj ,Dij)

(2.39)

xij = zij
1− yij
yij

=
zij

F (ni,nj ,Dij)− 1
(2.40)

In general, both F (ni,nj ,Dij) and zij allow for any combination of dyadic
and country-specific properties. In what follows, we make (the simplest) particular
choices for these quantities. When fitting the standard GM to empirical data, the
typical result is that the main factor determining trade volume is GDP. Adding
geographical distances improves the fit significantly, while adding other dyadic
properties is generally a small refinement. For these reason, we choose the node
specific variable ni to be the GDP of country, rescaled to the total world GDP
ni = gi ≡ GDPi∑

j GDPj
(as shown in Figure 2.4). Next, we choose the dyadic variable

Dij to be solely the distance between the two countries Dij ≡ Rij . Thus,

F (ni,nj ,Dij) ≡ α (gi gj)β R
γ
ij . (2.41)

In this formation, gi is adimensional and does not depend on the chosen currency
or unit of money. On the other hand, it has been shown [7, 31] that the binary
structure of the ITN can be excellently reproduced by setting

zij ≡ δgigj . (2.42)

Although in principle one can add the geographic distances into zij as well, em-
pirical evidence shows that, contrary to the weighted case, the effect of distances
on the binary structure of the ITN is not very strong [53]. This result motivates
our choice above. In any case, adding extra factors is straightforward.
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Putting the pieces together, our model is fully specified by the weight proba-
bility (2.34) with parameters given by eqs.(2.39) and (2.40), which in turn depend
only on GDP and distance through eqs.(2.41) and (2.42). As a result we get the
following expected values:

pij = 〈aij〉 =
δgigj

1 + δgigj
, (2.43)

〈wij |aij = 1〉 = α (gi gj)β R
γ
ij , (2.44)

〈wij〉 = pij〈wij |aij = 1〉 =
αδ(gigj)β+1

1 + δgigj
Rγij . (2.45)

Note that the presence of pij in the expression for 〈wij〉 implies that the latter
takes the standard gravity form (2.9) only for those pairs of countries with large
GDP, which are surely connected in the model. For lower values of the GDP, the
expression is instead different, and for pair of countries with very low GDP one
gets 〈wij〉 ≈ αδ(gigj)β+1 Rγij , i.e. the exponent of gigj is increased by one.

The model can also be interpreted as constructed from two random processes.
As a first step, one determines whether a link is present or not with a probability
pij . If a link (of unit weight) is indeed established, a second attempt determines
whether the weight of the same link is increased by another unit (with probability
yij) or whether the process stops (with probability 1− yij). Iterating this proce-
dure, the probability that an edge with weight w is established between nodes i
and j is given precisely by qij(w) in eq.(2.34). The presence of these two degrees
of freedom allows us to make a parallel, like in [33], with the economic literature
about the so-called extensive and intensive margins of trade [61, 62, 63], defined
as the preference for the network to evolve by either establishing new connections
or strengthening the intensity of existing ones respectively.

2.6.3 Results
In this section we will compare the performance of the two models, in reproduc-
ing the observed properties (low-order and high-order) of the real complex trade
network. We start with the trading volumes between countries, i.e. the weights
of the existing links in the network. This property has been the main focus of the
empirical economic literature on international trade, and it is the only property
the classical gravity model is designed to reproduce.

In Fig 2.10 we can see a typical log-log plot of the expected values versus the
real observed weights of the GM (as defined in eq. (2.9)). The three parameters
of the model, α, β, and γ, are first fitted to the data, then plotted with the iden-
tity line (black line). The picture shows the typical good agreement between the
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Figure 2.12: The Enhanced Gravity Model, reconstruction of higher-
order binary properties. The heterogeneous binary topology of the observed
ITN (red points) and the expected topology from the EGM (blue points) and the
GM (green points). Left: the average nearest neighbour degree knn as a function
of the observed degree k. Right: the clustering coefficient C as a function of the
observed degree k.

predictions of the GM and the empirical non-zero trade volumes [15, 42, 43].

In Fig. 2.11 we compare the observed weights to both the gravity model
(GM) and enhanced gravity model (EGM) conditional weights. Overall there is
a very good agreement for both models; note that the EGM expectations are
shifted to the right compared to the gravity model values, compensating for the
higher expected number of zeroes. Despite the fact that in this study we use the
classical gravity model in its simplest form, the EGM model can support more
sophisticated models which incorporate additional dyadic information. Thus, the
model has maximum flexibility when picking an expression for the conditional
weights, and can be improved by using more refined models.

Binary Structure

In the binary representation, the main first-order property is the number of trade
partners (connections) of each country, i.e. the degree sequence of the network.
This simple yet important representation provides an added layer of considerable
information to the standard results of traditional macroeconomic analyses of in-
ternational trade. Recent studies have shown that higher-order binary properties,
like the degree correlations (disassortativity) and clustering structure, of the ITN
can be traced back to the knowledge of the degree sequence [21, 19]. This result
indicates that the degree sequence, which is a purely topological property, needs
to be considered as an important target quantity that international trade models,
in contrast with the mainstream approaches in economics, should aim at repro-
ducing.
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In Fig. 2.12 we plot some higher-order topological properties of the ITN as
a function of the degree of nodes, for the 2000 snapshot. These properties are
the so-called average nearest neighbour degree and the clustering coefficient. For
both quantities, we plot the observed values (red points) and the corresponding
expected values predicted by the EGM (blue points) and the GM (green points).
The exact expressions for both empirical and expected quantities are provided in
sec. Materials and Methods. We see that the expected values of the EGM are in
very close agreement with the observed properties, as opposed to the classical GM
which consistently predicts a complete network. They show that at a binary level,
the degree correlations (disassortativity) and clustering structure of the ITN are
excellently reproduced by the EGM.

Weighted Structure

Despite the importance of the topology, the latter is only the backbone over which
goods are traded, and the knowledge of the volume of such trade is imperative.
The simplest weighted counterpart of the degree sequence is the strength sequence,
i.e. the total trade of each country in the case of the ITN. Recent studies have
shown that the higher-order binary quantities inferred from the strength sequence,
as well as the corresponding weighted quantities, are very different from the ob-
served counterparts [21, 22]. More specifically, the main limitation of models
targeting only weighted properties, just like the gravity model, is that of predict-
ing a mostly homogeneous and very dense (sometimes fully connected) topology.
Roughly speaking, the models excessively ‘dilute’ the total trade of each country
by distributing it to almost all other countries. This failure in correctly replicat-
ing the purely topological projection of the real network is the root of the bad
agreement between expected and observed higher-order properties.

In fig. 2.13 we plot some higher-order weighted properties of the ITN as
a function of the strength of nodes, for the 2000 snapshot. These properties
are the so-called average nearest neighbour strength and the weighted clustering
coefficient. For both quantities, we plot the observed values (red points) and the
corresponding expected values predicted by the EGM (blue points) and the GM
(green points). The exact expressions for both empirical and expected quantities
are provided in sec. Materials and Methods. Again, we see that the expected
values of the EGM are in very close agreement with the observed properties,
as opposed to the classical GM. The bad performance of the traditional GM
results directly from the unrealistically expected topology (complete network).
This result highlights the importance of added structural information (degree
sequence) to the models.
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Figure 2.13: The Enhanced Gravity Model, reconstruction of higher-
order weighted properties. Comparison between the observed weighted prop-
erties of the observed ITN (red points), the corresponding expected values of the
EGM (blue points) and the gravity model (green points). Left: the average near-
est neighbour strength snn as a function of the observed strength s. Right: the
weighted clustering coefficient Cw as a function of the strength s.

2.7 Conclusions

In this chapter, we introduced a novel GDP -driven model which successfully
reproduces both the binary and weighted properties of the ITN. The model uses
the GDP of countries as a sort of macroeconomic fitness, and reveals the existence
of strong relations between the GDP and the model parameters controlling the
formation and the volume of trade relations. In the light of the limitations of the
existing models (most notably the binary-only nature of the fitness model and the
weighted-only nature of the gravity model), these results represent a promising
step forward in the development of a unified model of the ITN structure. Later, we
have introduced the EGM, which further improves these results and expand them
by introducing additional macroeconomic parameters like geographic distance,
aiming at bridging the gap between network-based and gravity-based approaches
to the structure of international trade.

Theoretically, the EGM model originates within a maximum-entropy frame-
work from a simple requirement of topological invariance under a change of money
units. The maximum-entropy nature fixes the form of the weight distribution,
thus removing an arbitrary ingredient of the original GM. Phenomenologically,
the EGM allows us to reconcile two very different approaches that have remained
incompatible so far: on one hand, the established GM which successfully repro-
duces non-zero trade volumes in terms of GDP and distance, while failing in
predicting the correct topology [42]; on the other hand, network models which
have been successful in reproducing the topology [7] but are more limited in their
weighted structure [31]. Empirically, the EGM is the first model that can suc-
cessfully reproduce the binary and the weighted empirical properties of the ITN
simultaneously.
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The EGM can be thought of as endowing the standard GM with a novel topo-
logically invariant structure calibrated to replicate the binary properties of the
ITN. Just like the standard GM, the EGM can accommodate additional economic
factors in terms of extra-dyadic and country-specific properties.

Our results have strong implications for the theoretical foundations of trade
models and the resulting policy implications. It is known that the traditional
GM is consistent with a number of (possibly conflicting) micro-founded model
specifications [64, 65, 66, 67]. For instance, a gravity-like relation can emerge as
the equilibrium outcome of models of trade specialization and monopolistic com-
petition with intra-industry trade [69, 70]. The empirical failure of the standard
GM, which we ultimately traced back to its lack of topological invariance, implies
a previously unrecognized limitation of these micro-founded models (and their
policy implications) as well. At the same time, our results suggest a natural way
to overcome this limitation via a topologically invariant reformulation of micro-
founded models of trade, in such a way that a change in the units of trade volume
has no impact on the resulting probability of trade among countries. How the
policy implications of a model change as the mere result of this reformulation is an
important point in the future research agenda. In general, we envisage the need
for a new generation of micro-founded models that are consistent with the EGM.
We, therefore, believe that the EGM can represent a novel benchmark supporting
improved theories of trade and refined policy scenarios.
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Chapter 3

Community Detection for
Time Series

The mesoscopic organisation of complex systems, from financial markets to the
brain, is the key intermediate level of organisation between the microscopic dy-
namics of individual units (stocks or neurons, in the mentioned cases), and the
macroscopic dynamics of the system as a whole. The organisation is determined
by “communities” of units whose dynamics, represented by time series of activ-
ity, is more strongly correlated internally than with the rest of the system. In
the current literature, such emergent organisation is mainly detected through the
measurement of cross-correlations among time series of nodes activity, the projec-
tion (usually via an arbitrary threshold) of these correlations to a network, and
the subsequent search for denser modules (or so-called communities) in the net-
work. It is well known that this approach suffers from an unavoidable information
loss induced by the thresholding procedure. Another, less realized, limitation is
the bias introduced by the use of network-based (as opposed to correlation-based)
community detection methods. In this chapter we discuss an improved method for
the identification of functional modules based on maximum-entropy. The method
is threshold-free, correlation-based, and very powerful in filtering out both local
unit-specific noise and global system-wide dependencies. The approach is guaran-
teed to identify mesoscopic functional modules that, relative to the global signal,
have an overall positive internal correlation and negative mutual correlation.

The results presented in this chapter have been published in the following references:
A. Almog, F. Besamusca, M. MacMahon and D. Garlaschelli PLoS ONE 10 7. e0133679 (2015).
A. Almog, O. Roethler, R. Buijink, J.H. Meijer, J.H.T. Rohling and D. Garlaschelli ,in preparation
(2016).
R. Buijink, A. Almog, C.B. Wit, O. Roethler, D. Garlaschelli, J.H. Meijer, J.H.T. Rohling and S.
Michel PLoS ONE, under second revision (2016).
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3.1 Introduction

One of the most important properties of complex systems is community struc-
ture. Real-world systems are organized in a modular way, with clusters of units
sharing similar dynamics or functionality. However, while the clusters themselves
are internally cohesive, externally they can maintain contrasting dynamics. This
emergent structure is typically resolved from the recorded activity time series
of the system’s fundamental units (such as stocks, neurons, etc.). The problem
of resolving and identifying these mesoscopic structures, without any prior in-
formation, is extremely challenging. In financial markets, the mesoscopic scale
corresponds to sets of stocks that share similar price dynamics. The knowledge
of the market structure is highly valuable, and can assist in hedging risks and for
better understanding of the market. Consequently, over the past years, scientists
have deployed and developed many time series techniques to retrieve qualitative
information regarding the hierarchy and structure of financial markets [1, 2, 3, 4].

A promising approach is that of employing community detection techniques,
developed in network theory [5, 6], on empirical correlation matrices (constructed
from multiple time series). However, The attempts made so far have basically re-
placed network data with cross-correlation matrices, and are not adapted to deal
with correlation matrices. More specifically, the methods enforce a network rep-
resentation on the empirical correlation matrix, and later apply a network-based
(as opposed to correlation-based) community detection method. Such a process
also involves some type of thresholding procedure, which results in significant in-
formation loss. These methodological problems rise significant limitations, when
one comes to analyse empirical correlation matrices.

Recently, a novel method was proposed, which has been specifically designed
to detect communities from correlation matrices of multiple time series [7]. The
method is able to filter out both local unit-specific noise and global system-wide
dependencies, using random matrix theory as the null model. When applied to
financial time series, the method was able to capture the dynamical modularity of
real financial markets. It is able to identify clusters of stocks which are correlated
internally, but are anti-correlated with each other.

In this chapter we discuss this improved method and generalize it using a more
complete framework of maximum-entropy. The generalized maximum-entropy ap-
proach is able to capture both the global dynamics of the system and the random
noise induced by the different units. More importantly, this improved null model
is more “data-driven” in contrast to the original null model, enabling us to use
more empirical information to construct the community structure. In this set-
ting, the null models help us identify the non-random properties in the system to
a higher level of resolution.
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The rest of the chapter is organized as follows. In section 3.3 we analyse
financial markets, exploring the mesoscopic structures induced by both the orig-
inal weighted time series and their corresponding binary signatures. We show
that both the binary and weighted information yield very similar community
structures, suggesting that the binary signatures carry significant structural in-
formation. In section 3.4 we apply the method to the suprachiasmatic nucleus of
mice, which is a complex network of oscillating neurons, revealing a remarkable
core periphery structure. This application to functional brain networks comes as
a by-product, as time series of brain activity have in common with financial time
series the potential of being driven by a strong signal and also being subject to
noise. In fact our method could have a great impact on the field of functional
brain networks. Finally, in sec 3.5 we summarize our results and provide some
conclusions.

3.2 Maximum-entropy approach to community de-
tection

In general, the problem of community detection in network science consists of
finding clusters of nodes that have dense connections internally and sparser con-
nections externally. Such clusters, or communities, represent sub-units of the
network like families in social networks or brain regions in structural brain net-
works. Identifying these modules and their boundaries is of great importance,
and over the last years, many methods have been developed to resolve this type
of organisation [5]. However, here we are interested in identifying functional mod-
ules from a correlation matrix, generated by multiple time series, rather than a
conventional network.

We now describe the so-called modularity-based community detection methods
but adapted to correlation matrices. This restricts us to undirected networks,
given the symmetry property of correlation matrices. Let us consider a network
with N nodes. One can introduce a number of partitions of the N nodes into non-
overlapping sets. The different partitions will be represented by an N -dimensional
vector ~σ where the i-th component σi denotes the set in which node i is placed
by that particular partition. Now, we introduce the modularity measure Q(~σ)
which indicates the quality of a particular choice of partition ~σ measured by a
high degree of inter-community connectivity and a low degree of intra-community
connectivity. So-called modularity optimization algorithms look for the specific
partition that maximizes the value of Q(~σ), the objective function. The latter is
defined as

Q(~σ) =
1
Atot

∑
i,j

[Aij − 〈Aij〉] δ(σi, σj) (3.1)

where δ(σi, σj) is a delta function ensuring that only pairs of nodes within the
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same community contribute to the sum, and Aij is the adjacency matrix that in-
dicates whether a link exists between the nodes, (Aij = 1) or not, (Aij = 0). The
pre-factor Atot serves to normalize the value of Q(~σ) between −1 and 1, where
Atot ≡

∑
i,j Aij = 2L is twice the number of total links in the network. The term

〈Aij〉 is vital to the outcome of the community detection process. It represents the
expectation of whether a link exists or not, according to the specific null model
chosen. So far the majority of the methods use null models (hypotheses) which
are suited only for networks. For example, the configuration model is a null model
that preserves the degree sequence of the network. It has been shown that such
null models can introduce biases when applied to correlation matrices [7]. The
reason is that, while a null model for a network assumes independent links, cor-
relation matrices have different metric properties that imply dependencies among
their entries, even under the null hypothesis. A recent method proposed a redef-
inition of the modularity, which does take into account the existence of known
properties of correlation matrices (see sec. 3.3.1). Here, we take the maximum-
entropy approach, providing a specification of an appropriate null model.

Instead of the previous adjacency matrix Aij , we input the empirical correla-
tion matrix Cij . The method defines the modularity as

Q(~σ) =
1

Cnorm

∑
i,j

[Cij − 〈Cij〉me] δ(σi, σj) (3.2)

where 〈Cij〉me is a maximum-entropy null model that needs to identify the ran-
dom properties of empirical correlation matrices.

In this approach, the empirical correlation matrix is first decomposed and then
reconstructed using only the eigenvalues (and eigenvectors) that are not repro-
duced by the random null model. Thus in this chapter, contrary to chapter 1, we
are interested in the correlation matrix spectrum which the random model (mul-
tiple time series) generates. Once compared with the observed spectrum of the
empirical correlation matrix, the model will identify the non-random eigenvalues
(by elimination). The non-random eigenvalues will be later used to generate the
new filtered matrix. In the next sections, we introduce two null models, which
will serve us as the “random benchmark” in this new definition of modularity.

3.2.1 Random time series

Let us go back to the same multiple time series formalism as in chapter 1, where
the system describes N time series with length T (N ×T matrix). We recall that
the entries of such a general matrix M are denoted by ri(t), where i labels the
stock and t labels the time step. Before introducing the specific models, we need
to make some necessary changes. Here, we extend our null models to weighted
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Figure 3.1: Eigenvalues density distribution comparison: maximum-
entropy versus Wishart matrix. The eigenvalue density distribution of the
correlation matrix of the time series generated by the solved maximum-entropy
model for the S&P500. In red is the sampled density distribution from 1000
runs, in blue is the theoretical Marchenko Pastur distribution. The figure present
a good agreement between the maximum-entropy model and the known analytical
curve of Wishart matrix.

returns, where −∞ < ri(t) <∞, and the constraints are enforced over the whole
matrix. Moreover, since the system is weighted we want to apply a normalization
condition on the distribution of the returns.

We start with the simplest case of N time series with no constraints. However,
contrarily to the binary (±1) case considered in chapter 1, here we are required
to enforce one extra constraint over the second moment

〈 1
NT

N∑
i

T∑
t

r2
i (t)〉 ≡ [r∗i (t)]2average (3.3)

to ensure that the probability distribution for ri(t) is normalised. The Hamilto-
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3.2 Maximum-entropy approach to community detection

nian reads

H(X, α) = α

N∑
i=1

T∑
t=1

r2
i (t) (3.4)

with α as a single free parameter, which leads us to a normal distribution.

Using maximum likelihood estimation as before, one finds

α∗ = TN

(
2
N∑
i=1

T∑
t=1

[r∗i (t)]2
)−1

(3.5)

as the value of α.

Once solved, this model is a maximum-entropy equivalent to the generic case,
where one measures the correlation betweenN independent random time series for
T time steps (the observed period). In this specific case, the resulting correlation
matrix would be an N ×N Wishart matrix, whose statistical properties are well-
known [19, 21]. In the limits where N,T → ∞ and T/N ≥ 1 the eigenvalues of
the Wishart matrix are distributed according to a Marchenko-Pastur distribution

P (λ) =
T

N

√
(λ+ − λ)(λ− λ−)

2πλ
if λ− ≤ λ ≤ λ+ (3.6)

and P (λ) = 0 otherwise. The boundaries λ+ and λ− are dependent on the data
size and given by

λ± =

[
1±

√
N

T

]2

. (3.7)

This analytic curve represents the boundaries of the bulk eigenvalues, which pre-
dominantly represent noise, and so have little meaning assigned to them.

In Fig 3.1 we plot the eigenvalue density distribution of the correlation matrix
of the time series generated by the maximum-entropy model for the S&P500. In
red is the empirical density sampled from 1000 runs, in blue is the theoretical
Marchenko Pastur distribution eq.(3.6). It is clear that both distributions are al-
most identical, validating our claim of correspondence between the models when
measuring the eigenvalues spectrum. We should note that although we use the
parameter σ which is extracted by eq. (3.5), it does not play any role in the eigen-
value distribution. The distribution is invariant to different σ, which explains the
agreement with the theoretical curve.
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Figure 3.2: Eigenvalues density distribution comparison: empirical cor-
relation versus Wishart matrix. The eigenvalue density distribution of the
correlation matrix of the S&P500. In red is the empirical eigenvalue distribution,
in blue is the Marchenko-Pastur distribution. The figure shows the bad agreement
of the Wishart matrix with respect to the empirical spectrum.

The empirical eigenvalues outside this range, however, have structural impli-
cations and relate to groups of correlated stocks [21]. As a result, any empirical
correlation matrix C can be identified as a sum of of two matrices:

C = C(r) + C(s), (3.8)

where C(r) is the random part aggregated from the eigenvalues in the random
spectrum (λ− ≤ λ ≤ λ+), i.e.

C(r) ≡
∑

i:λ−≤λi≤λ+

λi|vi〉〈vi|, (3.9)

and C(s) is the “structured” component, which is composed from those eigenvalues
above the boundary of the bulk eigenvalues. λ > λ+.

Moving forward, in financial markets, it is well established that stocks typi-
cally move up or down together, an effect known as the “market mode”. This effect
is indicated by the presence of a very large eigenvalue λm, orders of magnitude
greater than the rest. This can be observed in Fig 3.2 where we compare the eigen-
value density distribution (of the cross-correlation matrix) of the S&P500 index
to the Marchenko-Pastur distribution. Since this eigenvalue represents a common
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factor influencing all the stocks in a given market, from a structural perspective,
the market mode eigenvalue signifies the presence of one single super-community,
containing all the stocks in the market.

Thus, the other eigenvalues (not including the market mode), which deviate
from the bulk, λ+ < λi < λm are the ones corresponding to mesoscopic clusters,
i.e. groups of stocks with similar dynamics. This observation results in a further
decomposition of the empirical correlation matrix

C = C(r) + C(g) + C(m), (3.10)

where

C(m) ≡ λm|vm〉〈vm| (3.11)

represents the market mode, and

C(g) ≡
∑

i:λ+<λi<λm

λi|vi〉〈vi| (3.12)

represents the remaining correlated groups. These sub-groups of correlated stocks
comprise the mesoscopic structure of the market. They are also referred as “group
modes” in the literature [1, 21].

To conclude, this approach actively filters both the null model spectrum and
the market mode (largest eigenvalue) and has been introduced in [7]. However,
there are a few drawbacks to this approach. Firstly, the global mode is not
generated by the null model itself, and we are required to filter it “manually”. The
reason is that the null model only considers N random variables, and the presence
of the market model is purely an empirical fact which is not being account for
in the null hypothesis. Next, the random bulk distribution is only dependent on
the size of the data (T and N), and not on the data itself. One can imagine that
different systems would have different dynamics which requires different types
of spectral filtering. Lastly, the null model cannot reproduce the so-called sub-
random eigenvalues, where λi < λ−, as we can see in Fig 3.2. This is quite
alarming since the sub-random spectrum contains the majority of the empirical
eigenvalues. In the next section, we will introduce a new null model that can
overcome these limitations.

3.2.2 Random time series with global mode

Here we introduce a more sophisticated maximum-entropy null model, which en-
force added “structural information”, trying to overcome the random model lim-
itations. The model is designed to enforce also the average daily return, hence
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capturing the non-stationary nature of the system. Thus, the constraints are

〈 1
NT

N∑
i

T∑
t

r2
i (t)〉 ≡ [r∗i (t)]2average 〈 1

N

N∑
i=1

ri(t)〉 ≡ {r∗i (t)} ∀t (3.13)

recalling that we denote {ri(t)} ≡ 1
N

∑
i ri(t) as the average over stocks.

This step is motivated by section 1.6, where we impose the information sepa-
rately for each day.

Combining all the above considerations, we finally generalize the model defined
by eq.(1.59) to the matrix case as follows:

H(X, α, ~θ) = α

N∑
i=1

T∑
t=1

r2
i (t) +

T∑
t=1

θt

N∑
i=1

ri(t) =
∑
it

[
αr2

i (t) + θtri(t)
]
(3.14)

where ~θ it a T -dimensional vector with entries θ(t).
Using maximum likelihood estimation, in this case one needs to solve T + 1

coupled equations

α∗ = TN

(
2
N∑
i=1

T∑
t=1

(r∗i (t)− {r∗i (t)})2

)−1

(3.15)

θ∗t = −2α∗{r∗i (t)} (3.16)

in order to find the value of α and ~θ.

Once solved, this maximum-entropy model corresponds directly to a one-factor
model defined in sec. 1.6.4. If we now define σ and µ as follows

σ∗ ≡
√

1
2α∗

, µ∗t ≡ {r∗i (t)} (3.17)

the probability of a matrix (multiple time series) is the product of Gaussian
distributed random variables pit

P (X) =
∏
it

1√
2πσ

e
−1
2σ2

∑
it

(ri(t)−µt)
2

︸ ︷︷ ︸
pit

(3.18)

resulting from the integration (from −∞ to∞) of the exponential (partition func-
tion). The components of the multiple financial time series can thus be sampled
as follows

ri(t) ∼ N (µ∗t , σ
∗) , (3.19)
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Figure 3.3: Eigenvalues density distribution comparison: maximum-
entropy model with global mode versus Wishart matrix. The eigenvalue
density distribution of the correlation matrix of the time series generated by the
solved maximum-entropy model for the S&P500. In red is the empirical eigen-
value distribution, in green is the sampled density distribution from 1000 runs
(new null model), in blue is the Marchenko-Pastur distribution. The figure shows
the spectrum of the improved null model with respect to the previous one, and
how it can better replicate the random bulk and global mode that are observed
in the empirical spectrum.

where N represents a random variable with normal distribution with mean µ∗t
specific to each time step and variance σ∗.
In Fig 3.3 we plot the eigenvalue density distribution (of the cross-correlation
matrix) for the S&P500 index. The green curve is the sampled eigenvalue distri-
bution of the maximum-entropy model, and the red curve is the empirical eigen-
value distribution and the blue curve the Marchenko-Pastur distribution. We can
see that the new null model can replicate the global mode (largest eigenvalue).
Furthermore, there is a shift in the random bulk, which is in agreement with the
empirical distribution. This results present an improved null model which is able
to generate both the global mode and the random bulk of the empirical data,

〈C〉me = C(m) + C(r) (3.20)

using partial information from the original data.

Returning to the modularity, we define the filtered empirical correlation matrix
C

(g)
ij filtering both the global mode C(m) and the random bulk C(r).
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Once we input this result into the modularity eq.(3.2.2)

Q(~σ) =
1

Cnorm

∑
i,j

[Cij − 〈Cij〉me] δ(σi, σj) =
1

Cnorm

∑
i,j

(Cij − C(r)
ij − C

(m)
ij )δ(σi, σj)

we see that this leads to

Q(~σ) =
1

Cnorm

∑
i,j

C
(g)
ij δ(σi, σj). (3.21)

In other words, to clearly differentiate between the mesoscopic groups, one
must subtract out the main drift of the system and the random correlation, using
the maximum-entropy null model. The filtered matrix C(g)

ij constituted from the
“non-random” eigenvalues λ+ < λi < λm and their corresponding eigenvectors
vi. The new method modified three modern community detection algorithms,
customizing where necessary to be effective with correlation matrices [7]. The
three algorithms we use in this paper are known as the Potts (or spin glass)
method [12, 13], the Louvain method [14] and the spectral method [15]

3.3 Financial markets
Traditionally, the main object of time series analysis is the characterization of
patterns in the amplitude of the increments of the quantities of interest (stock
price in our case). The analysis requires a weighted description of the system,
i.e. both the amplitude and the sign of the activity. Indeed, a time series of
increments enclose complete information about the amplitude of the fluctuations
of the original signal. However, a significant part of this information is encoded
in the purely ‘binary’ projection of the time series, i.e. its sign. Recent stud-
ies have shown various forms of statistical dependency between the sign and the
absolute value of fluctuations [8, 9, 10]. In chapter 1, we have shown a robust
empirical relationship between binary and non-binary properties of real financial
time series [11]. The results show that binary signatures, which retain only the
sign of fluctuations, encode significant information regarding the full behaviour
of the stock (both amplitude and direction). Motivated by these results, here we
further explore the higher-order relations between financial time series and their
corresponding binary signatures, in a more complex setting. In this section we
study whether the binary signatures of assets can reproduce the same complex
community organisation of financial markets, as the weighted information.

To this end, we use the daily closing prices of the stocks of three indexes
(S&P500, FTSE100 and NIKKEI225) over the period 2001-2011. For each index,
we restrict our sample to the maximal group of stocks that are traded continuously
throughout the selected period. This results in 445 stocks for the S&P500, 78
stocks for the FTSE100 and 193 stocks for the NIKKEI225. Given a stock price

109



3.3 Financial markets

Pi(t) where i denotes one of the N stocks in the index, and t denotes one of the
T observed temporal snapshots (days), the log-return is defined as

ri(t) ≡ log
[

Pi(t)
Pi(t− 1)

]
, (3.22)

where 2 < t < T .
For each stock in the system we use the time series of it’s log-returns for our anal-
ysis. This is the construct we refer to as the “weighted time series” throughout the
rest of the chapter. In contrast, the “binary signatures” only reveal the direction
of the fluctuation (sign) in the price and are defined as

xi(t) ≡ sign[ri(t)] =

 +1 ri(t) > 0
0 ri(t) = 0
−1 ri(t) < 0

. (3.23)

In Fig. 1.1 from chapter 1 we show a simple example of a weighted time series,
along with the corresponding binary projection.

The two types of information are in fact different descriptions of the same
system, and are used to construct cross-correlation matrices. In turn, we de-
ploy three popular community-detection algorithms [12, 13, 14, 15] specifically
adapted, where necessary, for the correct use of cross-correlation matrices [7].
We examine and quantify similarities and variations in the organisation of the
markets for these two representations. This approach reveals some interesting
results. First, we can quantify the level of information encoded within the binary
signatures, with respect to the full weighted time series. Secondly, we observe
that both the binary and weighted representations yield very similar structures,
which indicates that most of the information regarding the structure of financial
communities is already encoded within the sign of a stock.

3.3.1 Spectral analysis
In this section we analyse the eigenvalue density distribution of the cross-correlation
matrices for the two representations of the data (binary and weighted). When
plotting the density distribution one can identify specific spectral properties that
have structural implications. In other words, it is possible to identify distinct
eigenvalues in the spectrum, which correspond to correlated clusters of stocks,
and typically indicate a non-trivial structure (as defined in sec. 3.2.2) .

Our focus here is to detect these non-random eigenvalues in the spectrum of
both the binary and weighted data. Moreover, we want to explore the similarities
and differences between the two spectra to inform us about the corresponding
structures yielded by each type of data.
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Figure 3.4: Signatures of complex structure in the eigenvalue spec-
trum.The eigenvalue density distribution (of the cross-correlation matrix) for
the different indexes, where the upper panels are for the weighted series and the
lower panels are for the binary series. The red curve is the empirical eigenvalue
distribution and the blue curve the Marchenko-Pastur distribution. The largest
empirical eigenvalue λm is not shown in the plots, but its value is reported in
each panel. The figure shows that the complex structure, composed from global,
group, and random modes, is also maintained in the binary representation.

In Fig. 3.4 we plot the eigenvalue density distribution for the three different
indices. The top row corresponds to the weighted representation (log-returns),
and the bottom row corresponds to the binary representation (binary signatures).
We can observe the known structure of the financial markets in the weighted data,
however this complex structure also exists in the binary data. This result is non
trivial. We can observe a market mode, and several deviating eigenvalues also in
the “simpler” binary data (with the same order of magnitude).

We also want to inspect whether both descriptions of the system function the
same under randomization. The returns of each stock were separately permuted
randomly, therefore preserving the total return of the stocks and destroying the
daily correlation between the returns. Once the time series entries are shuffled,
both binary and weighted correlation matrices end up as elementary random
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Figure 3.5: Eigenvalues density distribution of randomized empirical
data. The eigenvalue density distribution of the Pearson correlation matrices
where the upper panels are for the weighted series and the lower panels are for
the binary series. The red curve is the empirical eigenvalue distribution and the
blue curve the Marchenko-Pastur distribution. The figure shows the collapse to
the random distribution once the original data is shuffled.

matrices. As discussed before, the eigenvalues of such matrices will be distributed
with a Marchenko-Pastur distribution.

In Fig. 3.5 we plot the density distribution of the shuffled data for the three
different indices. The top row corresponds to the weighted representation (log-
returns), and the bottom row corresponds to the binary representation (binary
signatures). As expected, in both cases we observed the known characteristics of
a random matrix. The spectra of both representations collapsed to the known
analytic curve.

To sum up this section, we identified a sub-group structure both in the weighted
and the binary representation of the three indices. Each of the binary spectra we
studied retain all the known properties of a “regular” (weighted) spectrum (ran-
dom bulk, market mode and group modes). This result propels us to do a more
refined analysis, and to further explore (and compare) the sub-group structure
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Consumer Discretionary: � Consumer Staples: �
Energy: � Financials: �
Health Care: � Industrials: �
Information Technology: � Materials: �
Telecom. Services: � Utilities: �

Table 3.1: The 10 industry sectors in the Global Industry Classification Stan-
dard (GICS), with the colour representation used to highlight the sectors in the
following Figures.

Weighted

83

143

62

75

91

Binary

90

116

61

71

107

Figure 3.6: S&P community structure. Communities of the S&P 500 (daily
closing prices from 2001 to 2011) generated using the modified Louvain algorithm
[7]. Each community is labelled with the number of stocks and the pie chart
represents the relative composition of each community based on the industry
sectors of the constituent stocks (colour legend in Table 1). The inter-community
link weights are negative, indicating that the communities are all residually anti-
correlated. We can see that the binary partition is almost identical to the weighted
one.

of the different indices. In the next section we will apply community detection
algorithms to extract a more detailed structure for both representations, so that
we can better quantify the similarities and the variations.

3.3.2 Community structure

In network theory, a community structure is the partition of the network into
relatively dense sets of nodes, with respect to the rest of the network. More
specifically, it is the organisation into clusters of nodes with dense connections
internally, while the connections between the clusters are sparser. Community
detection is the identification of such clusters of agents (nodes) in the system
(network). In the last decade there has been a burst of research concerning this
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topic, across a myriad of different fields [5].

Weighted

60

77

56

Binary

55

73

65

Figure 3.7: Nikkei community structure. Communities of the Nikkei 225
(daily closing prices from 2001 to 2011) generated using the modified Louvain
algorithm [7]. Each community is labelled with the number of stocks, and the pie
chart represents the relative composition of each community based on the industry
sectors of the constituent stocks (colour legend in Table 1).The link weights are
negative, indicating that the communities are all residually anti-correlated. We
can see that the binary partition is almost identical to the weighted one.

This promising approach has also been applied to analyse time series data
[22, 23, 24, 25] where the goal is to identify clusters of components with a sim-
ilar dynamics. The attempts made so far have basically replaced network data
with cross-correlation matrices as the input. However, this procedure suffers from
a significant limitation. The null hypotheses used in the network-based algo-
rithms are inconsistent with the properties of correlation matrices. As a result,
these approaches can introduce an undesired bias when applied to the detection
of communities in time series based networks.[7]. Here we adopt a new method
[7], which is specifically shaped to deal with correlation matrices, based on the
spectral properties we presented in the previous section. The method presents an
improved and consistent way to cluster multiple time series, by leveraging a set
of null models, specifically designed for use with correlation matrices.

Applying the new approach, we use three popular community detection al-
gorithms, customizing where necessary to be effective with correlation matrices.
The three algorithms we use in this chapter are known as the Potts (or spin glass)
method [12, 13], the Louvain method [14] and the spectral method [15], and are
modified in [7] to correctly deal with correlation matrices. The algorithms use a
modularity optimization process, where modularity is a measure for how “optimal”
your partition is. The algorithms attempt to choose a specific partitioning of the
network into groups such that the corresponding value of the modularity is max-
imized (see Methods). The modularity implements a new null hypothesis, which
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is fitted to time series (correlation matrices). More specifically, the hypothesis
considers the empirical correlation matrix as a superposition of modes eq.(3.10),
and decomposes it accordingly. Both the random mode and market mode are
filtered out, and we are left with only the informative group mode, which is then
used to extract the market structure.

Thus, we end up with three community detection algorithms that are consis-
tent with time series data and represent the counterparts of the most popular
techniques used in network analysis. The method allows us to explore the meso-
scopic structure of different financial indices, and more specifically compare the
different community structures resulting from the different representations (bi-
nary and weighted).

First, we perform community detection on both the binary and the weighted
time series, using all three community detection methods, for the full time period
of the data (2001-2011). We pick the division that maximizes the modularity
(for a specific representation and algorithm), and compare the results for the two
types of information. In the case where several divisions maximize the modularity
(different runs result in different divisions), we take the division with the most
occurrences over 1000 runs (the highest probability). Here, we want to identify
groups with similar dynamics over the ten year period, with the rationale that
such a long period will reduce the noise.

To help further explore the communities resulting from the different passes, we
label each of the stocks according to its industry sector from the Global Industry
Classification Standard (GICS). This classification represents a more “traditional”
frame of mind where the different sectors are comprised of stocks conforming to
a particular, qualitative description of the industry they represent. Recent re-
sults show that real markets have a more complex structure [2, 26, 27, 16], where
different sectors are mixed in different sub-groups, i.e. the communities are as-
sembled out of stocks from different sectors. Furthermore, the classification helps
us to compare the results of the two representations in a very clear and visual way.

In Figs. 3.6 and 3.7 we plot the community structure of the S&P 500 and
Nikkei 225 (daily closing prices from 2001 to 2011) generated using the modified
Louvain algorithm. Each community is labelled with the number of stocks and
the pie chart represents the relative composition of each community based on the
industry sectors of the constituent stocks (colour legend in Table 1). The links
between the communities represent “residual” (i.e filtered) anti-correlation rela-
tions [7]. We can see that the binary partition is very similar to the weighted
one. For both indexes about 7 − 8 percent of the stocks switch community. In
the next section we will give a more quantitative measure for the dissimilarities
of the different partitions.
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Figure 3.8: FTSE community structure. Communities of the FTSE 100 (daily
closing prices from 2001 to 2011) generated using the modified Louvain algorithm
[7]. Each community is labelled with the number of stocks, and the pie chart
represents the relative composition of each community based on the industry
sectors of the constituent stocks (colour legend in Table 1). The inter-community
link weights are negative, indicating that the communities are all residually anti-
correlated.

In Fig. 3.8 we observe a more complex result. Again, we plot the community
structure of the FTSE100 (daily closing prices from 2001 to 2011) generated us-
ing the modified Louvain algorithm. Now, the binary representation consistently
identifies one more community than the weighted representation (for all the algo-
rithms). Later, we further explore these differences in community structure. Most
notably, the binary information results in a cluster configuration where the Finan-
cials sector (green) was partitioned into two communities, whereas the weighted
representation created only one sole Financials community, spreading the rest of
the stocks among other clusters.

We should note that, purely from a community detection perspective, there
is no “correct” partition. Each partition is generated from different data and so
maximizing modularity should not be expected to yield the same partitions. We
are comparing the end results of these processes, and in this setting (this chapter)
we treat the weighted partition as the “truth” since it is using a priori more infor-
mation to establish the partition. Thus, our aim is merely to examine the degree
to which the “binary” community structure matches the “weighted” community
structure, despite having less information for the algorithms to work with. That
said, it would be interesting to determine if the binary information can yield dif-
ferent points of view, or added structural information with respect to its weighted
counterpart. This would be useful in particular because binary time series are
more robust to noise and errors in the data. Such a line of exploration is however
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beyond the scope of this chapter.

In this section we showed that the binary description leads us to a very sim-
ilar market structure to the weighted description. This results suggest that the
information regarding the community partition is mainly encoded in the binary
signature of the fluctuations, i.e. just from the knowledge of the direction of move-
ment, one can practically reproduce the “correct” structure. In the next section
we will quantify the similarities and deviations of the different partitions for the
different algorithms. Furthermore, we will explore the evolution in time of the
variations between the two representations.

3.3.3 Variation of information analysis

Index Method Q weighted Q binary Frequent VI Switching Minimal VI Switching
stocks (%) stocks (%)

Potts 0.4035 0.4134 0.3543 8.81% 0.3198 6.74%
S&P Louvain 0.4070 0.4134 0.3477 8.09% 0.3192 7.64%

Spectral 0.4006 0.3932 0.6955 61.57% 0.6955 61.57%
Potts 0.4551 0.4525 0.3689 6.78% 0.2598 4.66%

NIKKEI Louvain 0.4551 0.4525 0.3711 7.25% 0.2604 4.15%
Spectral 0.4481 0.4424 0.4521 8.29% 0.4521 8.29%
Potts 0.4641 0.4988 0.5031 28.42% 0.4026 26.14%

FTSE Louvain 0.4635 0.4988 0.4995 21.79% 0.3981 17.95%
Spectral 0.4597 0.4903 0.6919 69.23% 0.6919 69.23%

Table 3.2: The Variation of Information measured between the binary and
weighted partitions, with the maximal modularity Q, for the period 2001-2011.
“Frequent VI” is the variation of information between the most common partitions
(that maximize the modularity), and “Minimal VI” is the variation of information
between the most similar (that maximize the modularity). The “Switching stocks”
is the percentage of stocks that moved to different communities.

Once we obtain the community structure using the different algorithms, our
goal is to quantify the dissimilarities (or similarities) between the different par-
titions (binary and weighted). For this task we apply the Variation of Informa-
tion (VI) measurement [28, 29]. The variation of information is an information-
theoretic measure of the distance between two partitions. The different partitions
~σ1 and ~σ2 represent N -dimensional vectors where the i-th component σi denotes
the set in which node i is placed by that particular partition.

The variation of information involves the mutual information I( ~σ1 : ~σ2) which
is defined as

I( ~σ1 : ~σ2) =
N∑
i=1

N∑
j=1

p(σ1
i , σ

2
j )log

(
p(σ1

i , σ
2
j )

p(σ1
i )p(σ2

j )

)
, (3.24)
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where p(σ1
i , σ

2
i ) is the joint probability distribution, and p(σ1

i ) the marginal dis-
tribution of σ1

i . The mutual information measures the overlap between the two
partitions, however it is not a metric (does not obeys the triangle inequality)
nor is it normalized. Thus, for this study we use the (normalized) variation of
information which is defined as

V I( ~σ1 : ~σ2) = 1− I( ~σ1 : ~σ2)

H( ~σ1 : ~σ2)
(3.25)

where H( ~σ1 : ~σ2) is the joint entropy and is defined as

H( ~σ1 : ~σ2) =
N∑
i=1

N∑
j=1

p(σ1
i , σ

2
j )log

(
p(σ1

i , σ
2
j )
)
. (3.26)

The variation of information ranges from 0 to 1, where 0 indicates two identical
partitions, and 1 a complete dissimilarity between the partitions.

First, we measure the variation of information between two partition vectors,
generated by the weighted and binary time series. Respectively, this approach en-
ables us to quantify the difference in group structure (for 2001-2011), and compare
the performances of the different algorithms.

In Table 3.2 we plot the measured VI between the different partitions, which
resulted from the binary and weighted data. These measurements are for the
community structures resulting from 10 years (2500 time steps) of data, for each
of the three different indices. We run the algorithms 1000 times (for Louvain and
Potts, while the spectral is deterministic) and extract the partitions that maxi-
mize the modularity. We measure the VI between two different partitions: the
most frequent one, and the one that minimizes the VI (the most similar ones).
One can consider this to be the best result (subject to the best partition). Again
we should note that all the partitions maximize the modularity, and therefore
are optimal. Since the VI is not linear (and not intuitive), we also included a
simpler measurement of the percentage of stocks that are not occupying the same
community in the different partitions.

We can observe that both the Potts and Louvain algorithms consistently per-
form better then the spectral method, i.e. they yield partitions with higher mod-
ularity. We should note that, one can only compare the value of the modularity
for the same representation (binary or weighted), while there is no meaning in
comparing modularity between the different representations. Generally, we can
observe that the binary information and the weighted information result in very
similar structures, as we showed in the previous section. The exception to this is
the FTSE index, where the binary information consistently yields a greater num-
ber of communities. It is interesting to note that the binary information always
results in either the same or a greater number of communities over the weighted
time series.
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Figure 3.9: Variation of information analysis for the different clustering
algorithms. variation of information between the binary and weighted partitions
for a sliding window of 600 trading days (approximately 28 moths) starting at
Q3 2001. The VI is measured between the frequent partitions for the different
algorithms: Potts (blue), Louvain(red) and Spectral (green).

Next, we will explore the evolution in time of the VI between the different
types of information. We considered a sub-period of 600 time steps (about two
and a half years), and apply the same procedure as before. However, here we use
a sliding window technique, where in each step we input a new day and ignore the
previous information. This results in 1900 time steps (from the original 2500),
where each point is the frequent VI calculated from the correlation matrix using
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the given 600 time step. In Fig. 3.9 we plot the different measurements for the
different algorithms. The Potts and the Louvain methods present a more stable
dynamics, while the Spectral method yield higher VI. Furthermore, there is no
systematic effects of the financial crisis on the similarity between the binary and
the weighted representations.

The analysis reveals that in financial markets both the binary and weighted in-
formation yield very similar structures, which also manifest themselves in similar
spectral properties. The algorithms find complex mesoscopic structure of inter-
nally correlated clusters, which are residually anti-correlated with each other [7].
Moreover, the clusters are populated by stocks from various sectors. Remarkably,
we show that the simple knowledge of the direction of increments of each stock
can reproduce this complex structure very successfully.

3.4 Functional brain networks

In this section, we move from financial markets to brain systems. Remarkably,
from a pure “network science perspective”, these different systems share very sim-
ilar features. Their dynamics is monitored in terms of multiple time series of
activity of the constituent units, such as stocks or neurons respectively. In both
systems, we have no complete information or exhaustive understanding about the
underlying mechanisms at play, and we resort to information extraction from ob-
servations and empirical measurements. This illustrates why the use of correlation
matrices is so popular both in financial systems and in neuroscience. Resolving
the structure of brain networks from time series data (via the calculation an em-
pirical correlation matrix), exactly as we did for financial markets in the previous
section, is the object of the research field that goes under the name of ‘functional
brain networks.’ In neuroscience, functional networks are defined by the corre-
lated dynamical activity of neurons, as opposed to structural networks which are
instead defined as the real physical connections between neurons [32, 33, 34].

In functional brain networks, the mesoscopic structure is the key intermedi-
ate level of organisation bridging the microscopic dynamics of individual neurons
with the macroscopic dynamics of the brain as a whole. At this mesoscopic level,
brain activity tends to be organized in a modular way [41], with functionally re-
lated units being positively correlated with each other, while at the same time
being relatively less (or even negatively) correlated with dissimilar ones. Such
emergent organisation is mainly detected through the aforementioned functional
networks. In this setting, the network displays the correlated dynamical activity
between pairs of units in the brain. Dependent on the type and resolution of the
data, the units can vary from single neurons to brain regions. Over the last years,
the statistical characterization of these functional networks developed into a very
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Figure 3.10: Functional modules without functional network, a new
method to identify emergent organisation. A compression between the gen-
eral steps of functional network construction and our new method. On the left
scheme, we can see the introduction of a threshold procedure, once the majority
of the data is neglected one can create a network representation. On the right
scheme, we apply our spectrum filtering by comparing the empirical data to the
random null model. By directly producing a partition of the original time series
into communities, our new method bypasses the functional network projection,
avoiding the use of a threshold procedure.
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popular and powerful tool to study brain organisation [33, 35, 36].

Recent studies have used functional networks analysis to quantify global and
local properties of brain networks [43, 44]. The use of functional networks yields
very promising results. They are expected to encode the physiological mechanism
for information processing and mental representations [37, 38, 39, 40]. More-
over, various case studies have shown that neurological and psychiatric disorders,
such as Alzheimer’s disease and schizophrenia, lead to variations in the network
topology [45, 46]. Despite these encouraging results, it is well known that the
current approaches suffer from specific methodological problems [42]. Firstly, the
methods suffer from an inevitable information loss induced by the thresholding
procedure. Another, less realized, limitation is the bias introduced by the use of
network-based (as opposed to correlation-based) community detection methods
[7]. Finally, the presence of (anti)correlated modules is obfuscated by the presence
of a global mode of brain activity which imparts an overall positive correlation,
a problem that becomes particularly evident when searching for communities in
small brain regions, where the global signal is strong.

As we demonstrated in the previous section, our maximum-entropy approach
can overcome precisely these methodological limitations. Furthermore, our method
is not limited to a set of random walks with a common global factor. In financial
markets, which we analysed in the previous section, the global factor translates
to the similar reaction of stocks to news or events (the known market mode).
However, once generalized, our new null model as described in section 3.2.2 can
account for various systems with a global mode. In biological systems, the global
mode can be a result of the units sharing a similar environment, or being affected
by the same periodic signal (e.g. blood pressure or heartbeat rates). Remarkably,
the removal of the global mode in our method entails by definition the removal
of all common factors which affect the units of the system. This filtering capa-
bility demonstrates why our method has a great potential in the biological setting.

3.4.1 The suprachiasmatic nucleus

As we mentioned, we analyse the suprachiasmatic nucleus (SCN), located in the
hypothalamus in the brain. The SCN is a complex structure comprising of a het-
erogeneous collection of genetically and electrically rhythmic neurons that syn-
chronize their activity to the external world to form a central pacemaker. This
complex network needs to produce stable output signals and at the same time re-
main flexible to changes in the environment. Thus, it is essential for the regulation
of our daily and seasonal rhythms. The network is organized in a complex way
for it to coordinate these daily rhythms at the tissue level [47], where the central
pacemaker is a 24 hour rhythm that is synchronized to the external light-dark
cycle. In response to a shift in the external cycle, neurons of the SCN resyn-
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Figure 3.11: The community structure of the SCN as resolved by a stan-
dard threshold approach. On the left, we plot the community structure,
resolved by the standard method, for different thresholds. In blue are the nodes
that belong to the large cluster, while in gray are isolated nodes (communities
composed out of one node). In the right panel, we plot the fraction of nodes in
the largest connected component LCC

N in blue, and the fraction of communities
detected Communities

N in red.

chronize with a different frequency. Recent studies have shown that the neuronal
network organisation of the SCN changes in different seasons [48], however, the
mechanisms behind these changes are still elusive. Currently, not much is under-
stood about emergent organisation of the SCN, and if it is shaped by the external
light-dark cycle. Here, we apply our community detection method to identify the
functional community structure in different light-dark conditions.

This set-up investigates gene transcription activity, on a cellular scale, in SCN
slices of male mice. This process is part of the molecular clock and is rhythmically
expressed with a period of 24 hours. The target protein, which we monitor, is
fused with the light emitting firefly luciferase. For each cell in the sample, the
luminosity levels are recorded, generating the gene transcription “activity” time
series of the units in the system. We should note that this “single cell resolu-
tion” of the data is unique for functional analysis. Currently, brain networks are
most often derived from data acquisition techniques that do not have the possi-
bility to perform recordings at the single cell level. Techniques such as Functional
Magnetic Resonance Imaging (fMRI), Magnetoencephalography (MEG) or Elec-
troencephalography (EEG) use brain regions as nodes in the network and fiber
bundles between these regions as edges. Our setup enables us to investigate a brain
network at the micro-scale where nodes are single cells and edges are functional
connections between the cells. The bioluminescence time series were obtained
from individual cells (for exact method REF: [50]). In the next section, we apply
the popular standard methods for constructing functional networks, highlighting
their known limitations.
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3.4.2 Standard approach to functional networks

Before we present the output of our method, we preliminary preform a standard
analysis based in the mainstream method for detecting communities via functional
networks. This is a useful reference as a comparison with our own method. In Fig-
ure 3.10 we present the standard (“old”) approach versus our new approach. Once
we measure the empirical correlation matrix, the conventional method requires a
threshold value to exclude negative values and to neglect “weak” links simultane-
ously. Despite the significant loss of information, this thresholding procedure is
an integral part of all current methods. Next, we adapt the thresholded matrix
as an adjacency matrix, which corresponds to a network structure. The resulting
network can either be a binary one, where all links are 1 or 0, or a weighted one,
where the values from the correlation matrix remain as the weights of the links.
Finally, we can apply various community detection methods [12, 13, 15, 14], to
detect the community structure. In this analysis, we use the Louvain method [14].

In Figure 3.11 we present the community structure, resolved by the standard
method, for different thresholds. In blue are the nodes that belong to the large
cluster, while in gray are isolated nodes (communities composed out of one node).
In the right panel, we plot the fraction of nodes in the largest connected compo-
nent LCC

N in blue, and the fraction of communities detected Communities
N in red.

It is evident that applying different thresholds essentially detaches isolated nodes
from the large cluster, and there is no optimal value for the threshold. There-
fore, the standard method can only observe a “radial gradient” of connectivity,
and there is no large scale left-right symmetry, which is one of the signatures of
functional as opposed to structural connectivity. This poor performance of the
method is a known limitation when applied to very dense networks.

In the next section, we employ our new method described in section 3.2, which
results in the new scheme portrayed in Figure 3.10. By directly producing a
partition of the original time series into communities, our method bypasses the
functional network projection, avoiding the use of a threshold procedure. Also,
the method removes noise and filters out the common trend in the system.

3.4.3 SCN analysis

In Figure 3.12 we present the community structure detected by different recur-
sive runs of the method. In the bottom panels are the partitions detected, where
each community is marked with a different colour. In the top panels are the
corresponding resolved filtered correlation matrices (for each run) displaying the
resolved structure as a block matrix. In the left panel, we can observe that all
the nodes in the system belong to one community when the global mode is not
filtered out yet. Next, once we filtered out the global mode we found a consis-
tent core-periphery structure. This result is robust to all the samples we have
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Figure 3.12: The hierarchical community structure of the SCN as re-
solved by our method. The community structure detected by different recur-
sive runs of the method. In the bottom panels are the partitions detected, where
each community is marked with a different colour. In the top panels are the
corresponding resolved filtered correlation matrices (for each run) displaying the
resolved structure as a block matrix.

analysed. Further iterations of our method within each of the identified modules,
can detect hierarchy in the community structure. Note that for the second run
the functional modules still retain the left-right symmetry, which implies a real
functional structure. However, the hierarchical decomposition of the two clusters
is difficult to interpret, because the resulting sub-clusters are small in size, which
troubles reliable detection of significant differences between these sub-clusters. As
a result, in this chapter, we will focus on the first partition that our method yields
since it is providing the most impressive and consistent results.

The core-periphery structure confirms the ventral-dorsal distinction within
the SCN. The ventral part of the SCN receives light input and adjusts quickly to
changing light schemes, while the dorsal part of the SCN lags behind [51]. Our
approach is able to identify the two communities in all the different experimental
conditions, i.e. different the light-dark conditions simulating summer conditions
(long days, short nights: L16D8) and winter day conditions (short days, long
nights: L8D16). This results present a very robust functional structure, which
is not dependent on external conditions. However, a more detailed analysis of
the signals within the communities presented some variations in the distribution
of the signals (within the communities) which depend on the light-dark cycles
[50]. These findings motivate further research into this functional structure, and
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Figure 3.13: (A) The bioluminescence image of one SCN sample. (B) The plotted
average partition over all the samples. (C) The plotted average signal of the whole
system (in black) versus the mean signals of the two detected communities (in
red and blue). (D) The plotted average residual signals of the two communities,
once the global signal is subtracted.

possibly the next hierarchical partition.

We should note that regional analyses of the SCN has been performed by other
groups. Evans and co-workers used a similar approach to identify single-cell-like
regions of interest, but do not use clustering algorithms and choose the regions by
hand [52]. Silver and co-workers also used regions of interest, called superpixels,
but these were not necessarily identified as single cells. Based on these superpixels
they use threshold methods to determine regional differences in the SCN [53, 54].
Abel and co-workers used a threshold method based on mutual information on
single-cell-like regions of interest [55]. However, all studies encounter the known
limitations as described in the previous section using the threshold method. They
only find one large cluster and many isolated cell-like communities (in the shell
or dorsal part).

In Figure 3.13 we present the overall findings our method provides. In panel
A we can observe the experimental setup and the original sample with the illu-
minating neurons. In panel B we plot the average partition over all the samples
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(approximately 40); these results highlight the robustness of our findings and the
clear core-periphery partition. In C we plot the average signal of the two commu-
nities (blue and red) with the mean signal of the whole system (black). In panel
D we plot the deviations of each community signal from the common signal. We
found a perfect anti-correlation with respect to the global mode. Our method is
indeed guaranteed to resolve mutually anti-correlated modules, as the result of
the maximization of the modularity. Note however, that the anti-correlation is
defined in terms of the “residual” signals with respect to the average system-wide
signal (see [7]).

3.5 Conclusions

Over the last few years community detection methods have revealed themselves
as useful tools to study the structure of complex systems. In this chapter, we
first have introduced a new approach aiming at analysing structural dependen-
cies, which result from different descriptions (weighted and binary activity) of
a complex system. Our approach enables us to quantify the level of “structural
information” encoded within the binary projection of weighted time series, and
measure variations and similarities between the different partitions.

Our findings suggest that the binary signatures of financial time series carry
significant structural information. These results are far from trivial, as one might
expect that the full knowledge of the amplitudes of price fluctuations is a key
component in clustering the markets into correlated groups. However, here we
explicitly showed that purely binary information can replicate the main features
obtained from complete information. Thus, we conclude that the key features of
the market structure are induced by the binary dynamics of the stocks. Even
when the two representations differ by some extent, the binary description pro-
vides very sensible information (as exemplified by the Financials sector in the
FTSE).

Typically, the binary signature of a time series is obtained as a projection
from the full weighted information, and is therefore known only if the latter is
also known. This means that there are not many practical situations in which the
full weighted information is unknown, while the binary projection is known. How-
ever, what can occur quite often (and indeed typically occurs) is that the weighted
amplitudes of time series increments, much more than their signs, are affected by
noise or errors. For instance, in many financial institutions (e.g. hedge funds or
investment banks) there are specific departments in charge of cleaning the data
and verifying their reliability. Generally, errors in the data are detected in the
form of increments with anomalously large or small absolute value. By contrast,
the sign of the increment itself is very robust to errors. Therefore our results indi-
cate that analyses based on binary projections are likely to be much more robust
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to noise than analyses based on the full original data. Since the extraction of the
binary signatures is an extremely simple procedure, while the verification of the
quality of weighted data can be very demanding and time consuming, our findings
suggest that, at least for the purpose of identifying non-trivially correlated groups
of stocks, the simpler procedure can be safely adopted.

Alongside the financial markets analysis, we have also applied our method to
brain data. This step was possible due to the maximum-entropy generalization of
the null model 3.2.2. By enforcing the total increments of each time step in the
data, under the maximum-entropy formalism, we were able to expand our method
to any system of signals with a common global factor, i.e. not be limited to a
system with N random walks with an ad hoc market mode. Moreover, the new
null model uses the optimal amount of information (eigenvalues) based on the
particular data structure and not the data size (i.e. N and T ) as before. In this
general setting, the method resolves the partition of communities with maximum
mutual anti-correlation, with respect to the global signal.

From a neuroscience perspective, our threshold-free method has a high poten-
tial to refine the search for functional modules in the brain. The fact that the
approach does not require a “traditional” functional network representation is en-
abling the use of complete data sets and not just parts of it. Another aspect of our
method that has significant implications for the research of brain networks is the
multi-resolution quality. Since our method can recursively filter any global factors
that are present in the system, we were able to detect single-cell-like regions of
interest. This result pushes the resolution limit beyond the state-of-the-art meth-
ods, when identifying functional modules.

We applied our method to the SCN, revealing a core-periphery functional
structure of two communities. Once the global signal is filtered from the sys-
tem, the two clusters present a distinct anti-correlated dynamics. The global
signal in this system corresponds to the common 24 hours cycle in all the cells,
where the two communities describe a phase leading and a phase lagging commu-
nity. This core-periphery structure confirms the ventral-dorsal distinction within
the SCN. The ventral part of the SCN receives light input and adjusts quickly
to changing light schemes, while the dorsal part of the SCN lags behind. Our
community detection approach enhances the identification and the subsequent
functional characterization of neuronal clusters in the SCN, possibly paving the
way for more elaborate network analysis on the level of single cells in other brain
regions.
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In this thesis, we have reviewed various maximum-entropy models and their ap-
plications to different complex systems. We have demonstrated how flexible, and
yet powerful, this approach is when applied to different systems. The foundations
on which our maximum-entropy method is built come from deep within statistical
physics. The models essentially describe canonical ensembles of different matri-
ces representing time series, multiple time series, and various types of networks,
which maximize Shannon’s entropy given some constraints. As a result, for a
given choice of constrains, the method characterizes each system with a unique
probability distribution. Remarkably, dependent on the amount of partial infor-
mation a model preserves, it can then be used in various ways, from statistical
inference to empirical modelling and data filtration.

This takes us back to the main research question of the thesis, where we
wanted to introduce a new class of statistical models which are as heterogeneous
as real-world systems. We applied our models to complex financial systems cover-
ing different scales from the “microscopic” resolution of single stocks (time series)
to the mesoscopic resolution of correlated communities of stocks, and finally to
the macroscopic scale of entire economic networks. For each system, we identified
the specific problems and challenges, which led us to a specific maximum-entropy
approach in each setting.

In Chapter 1, we analysed financial time series and their corresponding binary
projections. In this setting, the models enabled us to characterize and quantify
the amount of information encoded in the binary signatures. We measured and
compared the performance of the different models, indicating which property en-
codes more information, i.e. has the highest probability to replicate the original
time series. When applied to cross-sections of financial time series, our method
identified distinct regimes in the collective behaviour of groups of stocks, cor-
responding to different levels of coordination that only depend on the average
return of the binary time series. Moreover, each regime is characterized by the
most informative property. Finally, using the models we were able to mathemat-
ically characterize a universal relation between binary and non-binary properties
for financial time series. These findings suggest that binary signatures of financial
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time series carry significant information, and present a new coordination measure
in financial markets. The results in this chapter provided both the theoretical
formalism and the motivation for the studies in chapter 3.

In chapter 2, we focused on the International Trade Network. We exploited
the power of the maximum-entropy model in reproducing the complex large-scale
topology of the empirical system and combined it with a more popular approach of
macroeconomics models which focuses on individual link weights instead. Indeed,
macroeconomic models have mainly concentrated on the expected volume of trade
between two countries, given certain macroeconomic properties, and have disre-
garded the topology in which the system is embedded. As a result, the model’s
outcome is inconsistent with the observed, complex, topology of the ITN. Here,
we assigned an accurate macroeconomic interpretation to the Lagrange multi-
pliers which control for the number and weight of the links of each node in the
maximum-entropy ensemble. In turn, this led to a new set of topologically invari-
ant network models, which reformulate otherwise ill-defined economic models in
such a way that the expected network topology does not depend on the arbitrary
choice of the units of link weights. Lastly, this formula is general and can be
applied to any economic network for which an empirically well-established econo-
metric model for the link weights exists.

In chapter 3, maximum-entropy models were used as a random benchmark
for filtering empirical correlation matrices. We have generalized a community de-
tection method using the maximum-entropy formalism, resulting in an improved
null model for the detection of non-random properties in the correlation matrix.
Next, we applied the method to financial markets trying to uncover the com-
munity structure encoded within the binary signatures of financial time series.
The analysis shows that in financial markets both the binary and weighted repre-
sentations shared similar spectral properties, and formed very similar structures.
Thus, indicate that the binary description of financial time series encodes signif-
icant structural information. The results motivate the use of binary projections,
which are much more robust to noise than the original full data, for identifying
non-trivially correlated groups of stocks. Finally, we tested the method in a bi-
ological setting applying it to the biological clock of mice, a complex network of
oscillating neurons, uncovering a functional core-periphery structure which has
been validated independently. We have shown that alternative state-of-the-art
methods fail in detecting such core-periphery structure, as they only identify a
radial gradient of connectivity decreasing from the centre towards the periphery,
with no sharp boundary in between. Our approach enhances the identification
of models and structure in functional brain networks, facilitating a more refine
network analysis on the level of single neurons.

To conclude, the findings in this thesis emphasize the strength of the maximum-
entropy approach when applied to complex systems. This research motivates
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further exploration of more sophisticated maximum-entropy models and the in-
troduction of new tools to characterize heterogeneous and non-stationary systems.
Such models have a great potential to make an impact in the fields of finance,
economics, and neuroscience.
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Appendix

A.1 Time series models

Models for single time series

We consider the case N = 1, i.e. when X is a 1 × T matrix or equivalently a
T -dimensional row vector. Let us denote the entries of X as x(t).

Uniform random walk model

The trivial model is obtained when no constraints are enforced. In this case, there
is no free parameter and the Hamiltonian has the form

H(X) = 0 (A.1)

As a result, the partition function is

Z =
∑
X

1 = 2T (A.2)

which is nothing but the number of possible binary time series of length T . The
probability of occurrence of a time series X is then

P (X) =
1
Z

= 2−T (A.3)

and is completely uniform over the ensemble of all binary time series of length
T . All the T elements of X are mutually independent and identically distributed
with probability

Pt(x) ≡ Prob
(
x(t) = x

)
=
{

1/2 x = −1
1/2 x = +1 (A.4)
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This results in a completely uniform random walk with zero expected value for
each increment:

〈x(t)〉 = 0 (A.5)

While the (ensemble) variance of each increment equals

Var[x(t)] ≡ 〈x2(t)〉 − 〈x(t)〉2 = 1. (A.6)

Biased random walk model

We now consider the total increment as the simplest non-trivial (one-dimensional)
constraint:

C(X) = T ·M1(X) = T · x(t) (A.7)

If we denote the corresponding (scalar) Lagrange multiplier by θ, the Hamiltonian
has the form

H (X, θ) = θ · T · x(t) = θ

T∑
t=1

x(t). (A.8)

The partition function is

Z(θ) =
∑
X

e−θ
∑T
t=1 x(t) =

∑
X

T∏
t=1

e−θx(t)

=
T∏
t=1

∑
x=±1

e−θx =
T∏
t=1

[
e−θ + e+θ

]
=

[
e−θ + e+θ

]T
(A.9)

where, when interchanging the order of the sum and product, we have replaced
the sum over all time series X with the sum over the two possible values x = ±1
of each individual entry.

The probability of the occurrence of a time series X is

P (X|θ) =
e−θ

∑T
t=1 x(t)

[e−θ + e+θ]T
=

T∏
t=1

e−θx(t)

e−θ + e+θ

=
T∏
t=1

Pt
(
x(t)|θ

)
(A.10)

where we have introduced the probability Pt(x|θ) of a given increment x = ±1 at
time t, which we identify as

Pt(x|θ) =
e−θx

e−θ + e+θ
. (A.11)
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The above expression shows that the stochastic process corresponding to this
model is a biased random walk, as the two outcomes x = ±1 have a different
probability, unless θ = 0 (which leads us back to the uniform random walk model
considered above).

The expected value of the t-th increment x(t) (representing the bias of the
random walk) is

〈x(t)〉θ =
∑
x=±1

xPt(x|θ) =
e−θ − e+θ

e−θ + e+θ
= − tanh θ (A.12)

and the variance is

Var[x(t)] = 〈x2(t)〉θ − 〈x(t)〉θ2 = 1− tanh2 θ. (A.13)

The maximum likelihood condition (1.16), fixing the value θ∗ of the parameter
θ given a real time series X∗, reads

T
〈
x(t)

〉
=

T∑
t=1

〈x(t)〉 = −T tanh θ = T · x∗(t) (A.14)

Where x∗(t) is the measured average increment in the observed time series X∗.
This yields

− tanh θ∗ = x∗(t) (A.15)

which gives a parameter value

θ∗ = −artanh
[
x∗(t)

]
= −1

2
ln

[
1 + x∗(t)
1− x∗(t)

]
(A.16)

One-dimensional Ising model

We now consider a model where, besides the constraint on the total increment
specified in eq.(1.33), we enforce an additional constraint on the time-delayed
(lagged) quantity T · B1(X), where B1(X) is defined in eq.(1.27) with τ = 1.
This amounts to enforce the average one-step temporal autocorrelation of the
time series. The resulting 2-dimensional constraint can be written as the column
vector

~C(X) =
(
C1(X)
C2(X)

)
= T ·

(
M1(X)
B1(X)

)
. (A.17)

If we write the corresponding Lagrange multiplier as

~θ =
(
θ1

θ2

)
= −

(
I
K

)
, (A.18)
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then the Hamiltonian reads

H(X, I,K) = ~θ · ~C(X) = Tθ1M1(X) + Tθ2B1(X)

= −I
T∑
t=1

x(t)−K
T∑
t=1

x(t)x(t+1), (A.19)

where we consider a periodicity condition as in eq.(1.28) with τ = 1, i.e. x(T+1) ≡
x(1). Note that, when X is a real binary time series of length T , this condition can
be always enforced by adding one last (fictious) timestep T+1 and a corresponding
increment x(T +1) chosen equal to x(1). For long time series, this has a negligible
effect.

The above Hamiltonian coincides with that for the one-dimensional Ising
model with periodic boundary conditions [55] (chapter 1). Each time step t is
seen as a site in an ordered chain of length T , and each value x(t) = ±1 is seen as
the value of a spin sitting at that site. The model is analytically solvable, which
allows us to apply it to real time series in our formalism. For the readers familiar
with time series analysis but not necessarily with the Ising model, we briefly recall
the standard solution of the model, adapting it from ref. [55] (chapter 1).

Applying the periodicity condition of eq.(1.28) ensures that all sites (time
steps) are statistically equivalent, i.e.:

〈x(1)〉 = 〈x(2)〉 = · · · = 〈x(T )〉 (A.20)

so that the system is translationally (here, temporally) invariant. The partition
function is

Z(I,K) =
∑
X

exp

[
I

T∑
t=1

x(t) +K

T∑
t=1

x(t)x(t+1)

]

and can be rewritten as a product of terms involving only two successive time
steps:

Z(I,K) =
∑
X

T∏
t=1

V
(
x(t), x(t+ 1)

)
, (A.21)

where we have introduced the function V (x, y) defined as

V (x, y) ≡ exp
(
I
x+ y

2
+Kxy

)
. (A.22)

We since both x and y can take only the values ±1, we can regard V (x, y) as
the element of a 2× 2 matrix V called the transfer matrix [55] (chapter 1):

V ≡
(
V (+1,+1) V (+1,−1)
V (−1,+1) V (−1,−1)

)
=
(
eK+I e−K

e−K eK−I

)
. (A.23)
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This allows us to rewrite eq.(A.21) as

Z(I,K) = Tr
(
VT
)
. (A.24)

Let ~v1, ~v2 denote the two eigenvectors of V, and λ1, λ2 the corresponding eigen-
values, so that

V~vj = λj~vj , j = 1, 2. (A.25)

The 2× 2 matrix Q ≡ (~v1, ~v2) (having column vectors ~v1 and ~v2) diagonalizes V,
i.e.

V = Q
(
λ1 0
0 λ2

)
Q−1, (A.26)

where a direct calculation of the eigenvalues and eigenvectors yields

λ1 = eK cosh I +
√
e2K sinh2 I + e−2K (A.27)

λ2 = eK cosh I −
√
e2K sinh2 I + e−2K (A.28)

and

Q =
(

cosφ − sinφ
sinφ cosφ

)
, (A.29)

with φ defined by

cot 2φ ≡ e2K sinh I. (A.30)

It then follows that eq.(A.24) simply reduces to

Z(I,K) = Tr
(
λ1 0
0 λ2

)T
= λT1 + λT2 , (A.31)

and the probability of occurrence of a time series X is

P (X|I,K) =
∏T
t=1 V

(
x(t), x(t+ 1)

)
λT1 + λT2

. (A.32)

The above results allow us to analytically obtain expected values. That of x(t)
is

〈x(t)〉 =
∑
X

x(t)P (X|I,K) =
Tr
(
SVT

)
λT1 + λT2

, (A.33)

where we have introduced the diagonal matrix

S ≡
(
S(+1,+1) S(+1,−1)
S(−1,+1) S(−1,−1)

)
=
(

+1 0
0 −1

)
(A.34)
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having elements

S(x, y) ≡ xδ(x, y). (A.35)

Similarly, for 0 < s− t < T the expected value of x(t)x(s) is

〈x(t)x(s)〉 =
∑
X

x(t)x(s)P (X|I,K)

=
Tr
(
SVs−tSVT+t−s)
λT1 + λT2

. (A.36)

In the limit T → ∞ (corresponding to long time series in our case) with s − t
fixed, these expressions become

〈x(t)〉 = cos 2φ (A.37)

〈x(t)x(s)〉 = cos2 2φ+ sin2 2φ
(
λ1

λ2

)s−t
(A.38)

Now, we note that eqs.(A.33) and (A.36) manifestly show the translational (tem-
poral) invariance of the model, as 〈x(t)〉 is independent of t and 〈x(t)x(s)〉 depends
on t and s only through their difference s− t. This implies that, writing τ ≡ s− t
and performing a temporal average,〈

M1

〉
= cos 2φ (A.39)〈

Bτ
〉

= cos2 2φ+ sin2 2φ
(
λ1

λ2

)τ
. (A.40)

Using eq.(A.30) we can rewrite these expressions in terms of the model parameters,
I and K, as

〈
M1

〉
=

e2K sinh I√
1 + e4K sinh2 I

(A.41)

〈
Bτ
〉

=
e4K sinh2 I + (λ1/λ2)τ

1 + e4K sinh2 I
. (A.42)

The expected value of the autocorrelation defined in eq. (1.47) can be approx-
imated as the ratio of two expected values as follows:

〈
Aτ
〉
≡
〈
Bτ −M2

1

1−M2
1

〉
≈ 〈Bτ 〉 − 〈M

2
1 〉

1− 〈M2
1 〉

=
(
λ1

λ2

)τ
. (A.43)

Models for single cross-sections of multiple time series

For a single cross-section of a set of N multiple time series, X is a N × 1 matrix
or equivalently a N -dimensional column vector. We denote the entries of X as xi.
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Uniform random walk model

The uniform random walk is a simple modification of the same model that we
considered for single time series, where x(t) is replaced by xi and T is replaced by
N . This model is obtained when no constraints are enforced. The Hamiltonian is

H(X) = 0 (A.44)

and the partition function is simply the number of possible configurations for a
single cross-section of N stocks:

Z =
∑
X

1 = 2N . (A.45)

The probability of occurrence of a cross section X is

P (X) =
1
Z

= 2−N (A.46)

and is completely uniform over the ensemble of all cross sections of N stocks. All
the N elements of X are mutually independent and identically distributed with
probability

Pi(x) ≡ Prob
(
xi = x

)
=
{

1/2 x = −1
1/2 x = +1 (A.47)

This results in a completely uniform random walk with zero expected value

〈xi〉 = 0 (A.48)

and maximum variance

Var[xi] ≡ 〈x2
i 〉 − 〈xi〉

2 = 1. (A.49)

Biased random walk model

Also this model is analogous to the corresponding model for single time series.
We select the total daily increment of the cross section X as the constraint:

C(X) = N ·M1(X) = N · {xi} (A.50)

Let the corresponding Lagrange multiplier be denoted by θ. The Hamiltonian is

H (X, θ) = θ ·N · {xi} = θ

N∑
i=1

xi (A.51)
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and the partition function is

Z(θ) =
∑
X

e−θ
∑N
i=1 xi =

∑
X

N∏
i=1

e−θxi

=
N∏
i=1

∑
x=±1

e−θx =
N∏
i=1

[
e−θ + e+θ

]
=

[
e−θ + e+θ

]N
. (A.52)

The probability of the occurrence of a cross section X is

P (X|θ) =
e−θ

∑N
i=1 xi

[e−θ + e+θ]N
=

N∏
i=1

e−θxi

e−θ + e+θ

=
N∏
i=1

Pi
(
xi|θ

)
(A.53)

where we have introduced the probability Pi(x|θ) of a given increment x = ±1
for stock i, which we identify as

Pi(x|θ) =
e−θx

e−θ + e+θ
. (A.54)

Just like the corresponding model for single time series, this model is a biased
random walk, because the two outcomes x = ±1 have a different probability
unless θ = 0.

The expected value of the i-th increment xi is

〈xi〉θ =
∑
x=±1

xPi(x|θ) =
e−θ − e+θ

e−θ + e+θ
= − tanh θ (A.55)

and the variance is

Var[xi] = 〈x2
i 〉θ − 〈xi〉θ

2 = 1− tanh2 θ. (A.56)

The maximum likelihood condition (1.16), fixing the value θ∗ of the parameter
θ given a real cross section X∗, reads

N
〈
{xi}

〉
=

N∑
i=1

〈xi〉 = −N tanh θ = N · {x∗i } (A.57)

where {x∗i } is the measured average increment of the observed cross section X∗.
This yields

− tanh θ∗ = {x∗i } (A.58)

which gives a parameter value

θ∗ = −artanh [{x∗i }] = −1
2

ln
[

1 + {x∗i }
1− {x∗i }

]
. (A.59)
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Mean-field Ising model

In this model, we enforce two constraints: the total increment and the total
coupling between stocks. The resulting 2-dimensional constraint can be written
as

~C(X) =
(
C1(X)
C2(X)

)
=
(
N ·M1(X)
D(X)

)
. (A.60)

We can write the corresponding Lagrange multiplier as

~θ =
(
θ1

θ2

)
= −

(
h
J

)
(A.61)

and the Hamiltonian as

H(X, h, J) = −h
N∑
i=1

xi − J
∑
i<j

xixj . (A.62)

Note that here we are not enforcing nearest-neighbor interactions as in the
one-lagged model for single time series, but market-wide interactions among all
stocks for the same time step (cross section). This is the result of the fact that,
when considering cross sections, there is no natural notion of ‘lattice sites’ induced
by e.g. a temporal ordering as in the one-lagged model. In other words, pairs of
stocks in a cross section are neither ‘close’ nor ‘distant’. We therefore assume a
common interaction strength J among all stocks.

The above model, known as the mean-field Ising model, is analytically solvable.
Here we adapt the derivation illustrated in ref. [55] (chapter 1). We first note
that, since xi2 = 1 for all i, H(X, h, J) can be expressed as a function of M1(X)
alone:

H(X, h, J) = −hNM1(X)− J

2
[
N2M2

1 (X)−N
]
. (A.63)

This implies that the sum over configurations in the partition function can be
replaced by a sum over the allowed values of M1(X), weighted by the number of
configurations for each value. If we denote by r the number of increments that
are negative (x = −1), and by (N −r) the number of increments that are positive
(x = +1), then we can write the Hamiltonian as a function of r alone through the
expression

NM1(X) = N − 2r. (A.64)

The partition function can therefore be calculated as

Z(h, J) ≡
∑
X

e−H(X,h,J) =
N∑
r=1

Cr (A.65)
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where

Cr ≡
N !

r!(N − r)!
eh(N−2r)+ J

2 [(N−2r)2−N ] (A.66)

incorporates the binomial coefficient enumerating the configurations with given
r. The expected increment is therefore

〈M1〉 =
〈

1− 2r
N

〉
=
∑N
r=1

(
1− 2r

N

)
Cr

Z(h, J)
∀i. (A.67)

When N is large, a traditional derivation [55] (chapter 1) shows that the sum
at the numerator of eq.(A.67) is dominated by the single addendum correspond-
ing to the maximum of Cr. The same applies to the partition function at the
denominator. If r0 denotes the value of r such that Cr is maximum, we then get

〈M1〉 ≈ 1− 2r0

N
. (A.68)

A further expansion [55] (chapter 1) finally shows that, given h and J , the ex-
pected value 〈M1〉 is the solution of the nonlinear equation

〈M1〉 = tanh
[
(N − 1)J〈M1〉+ h

]
. (A.69)

From the above equation, one can infer the existence of a phase transition in the
model, separating a regime where the expected ‘magnetization’ (here the average
increment 〈M1〉) is zero from one where it is non-zero [55] (chapter 1). This
transition is discussed in sec.1.5.3.

Before proceeding further, we note a peculiarity of the model, which has impli-
cations for the applicability of our maximum likelihood approach. An argument
similar to that leading to eq.(A.68) implies that the second moment of M1(X)
can be expressed as

〈M2
1 〉 =

〈(
1− 2r

N

)2
〉
≈
(

1− 2r0

N

)2

≈ 〈M1〉2. (A.70)

This implies that

Var[M1] ≡ 〈M2
1 〉 − 〈M1〉2 = 0, (A.71)

or in other words that M1(X) is no longer a random variable. As a consequence,
something unusual happens when we apply the maximum likelihood principle.
From eq.(A.63), and recalling the general result embodied by eq.(1.20) in sec.1.3.2,
it is clear that the parameter values h∗ and J∗ maximizing the likelihood can be
found as the solution to the two coupled equations

〈M1〉 = M1(X∗) (A.72)
〈M2

1 〉 = M2
1 (X∗) (A.73)
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However, eq. (A.70) implies that eq.(A.73) can be rewritten as

〈M1〉2 = M2
1 (X∗) (A.74)

which coincides with eq.(A.72). So eqs. (A.72) and (A.73) are equivalent, and they
cannot be used to uniquely determine the two unknown parameters h∗ and J∗.
This is the result of the fact that, when fitted to the data, the model is actually
over-constrained: there are two parameters to fit the only constraint (M1) on
which the Hamiltonian depends. This aspect of the model is not manifest when
M1 is regarded as a function of h and J , as usually done when simulating spin
systems.

The above consideration implies that we should drop one of the two param-
eters and consider the two cases J = 0 and h = 0 separately. The former case
coincides with the biased random walk model that we already discussed, and we
will not discuss it any further. The latter case will instead represent our genuine
specification of the ‘mean-field’ model. Setting h = 0 implies

H(X, 0, J) = −J
2
[
N2M2

1 (X)−N
]

(A.75)

and

〈M1〉 = tanh
[
(N − 1)J〈M1〉

]
. (A.76)

Applying the maximum likelihood principle to eq.(A.75) tells us to select J∗ as
the solution of eq.(A.73). However, we have seen that this condition leads to
eq.(A.74), which is actually equivalent to eq.(A.72). Therefore, the value of J∗
can be found by replacing 〈M1〉 with the observed value M1(X∗) = {x∗i } in eq.
(A.76), which leads to

{x∗i } = tanh
[
(N − 1)J∗{x∗i }

]
. (A.77)

Note that in the traditional situation one is interested in finding the (expected)
magnetization given a value of J , which implies that the transcendental eq. (A.76)
should be solved numerically. Here, we are instead facing the inverse situation
where we look for the value of J∗ given the (observed) value of the magnetization.
In this quite unusual case, it turns out that eq. (A.77) can be inverted to give
the following analytical solution:

J∗ =
artanh{x∗i }
{x∗i }(N − 1)

=
1

2{x∗i }(N − 1)
ln
[

1 + {x∗i }
1− {x∗i }

]
. (A.78)

Once this value is calculated, it can be inserted into the probability

P (X∗|0, J) =
e−H(X∗,0,J)

Z(0, J)
=

eJN(N{x∗i }
2−1)/2∑N

r=1
N !

r!(N−r)!e
J[(N−2r)2−N ]/2

(A.79)
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(where we have set h = 0) to obtain the maximized likelihood of generating the
observed cross section X∗ under the mean-field model.

In this appendix we give a summarized description of the binary and weighted
network quantities which are studied in this paper. Specifically, we first show
how the properties are measured over a real network, and then how the expected
values under the ECM and the TS model are constructed.

A.2 Network models

Observed Properties

Let us note a weighted undirected network as a square matrix W, where the spe-
cific entry wij represents the edge weight between country i and country j. The
binary representation of the network is noted by a binary matrix A, where the
entries are aij = Θ[wij ], ∀ i, j.

We compute the Average Nearest Neighbor Degree as:

knni (W) =
∑
j 6=i

aijkj
ki

=

∑
j 6=i
∑
k 6=j aijajk∑
j 6=i aij

. (A.80)

Its calculated as the arithmetic mean of the degrees of the neighbors of a spe-
cific node, which is a measure of correlation between the degrees of adjacent nodes.

The Binary Clustering Coefficient has the following expression:

ci(W) =

∑
j 6=i
∑
k 6=i,j aijajkaki∑

j 6=i
∑
k 6=i,j aijaki

. (A.81)

It is a measure of the tendency to which nodes in a graph form cluster together.
More specifically, it counts how many closed triangles are attached to each node
with respect to all the possible triangles.

The corresponding weighted properties are the Average Nearest Neighbor
Strength and the weighted Clustering Coefficient. The Average Nearest Neighbor
Strength, defined as:

snni (W) =
∑
j 6=i

aijsj
ki

=

∑
j 6=i
∑
k 6=j aijwjk∑
j 6=i aij

(A.82)

where si =
∑
j wij is the strength (total flow) of a country. The snni measure the

average strength of the neighbors for a specific node i. Like its binary counterpart,
it gives the magnitude of activity of a specific node neighbors (weighted activity).
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The weighted Clustering Coefficient [54] (chapter 2) is defined as:

cWi (W) =

∑
j 6=i
∑
k 6=i,j(wijwjkwki)

1
3∑

j 6=i
∑
k 6=i,j aijaki

. (A.83)

The cWi (W) is a measure of the weight density in the neighborhood of a node. It
classify the tendency of a specific node to cluster in a triangle taking into account
also the edge-values.

Now, the measured properties of the real network need to be compared with
the reproduced properties of the different models. These reproduced properties
are the expected values of the maximum entropy ensemble that each model id
generating, and can be calculated analytically. The expected values can be ob-
tained by simply replacing aij with the probability pij for the different models
(pij is different to each model). This next step is what we will discuss in the next
sections.

Expected values in the BCM and ECM

Since the BCM model is only dealing with the binary representation, we will have
expected values just for the two binary higher-order properties. While the ECM
gives expectations for the weighted counterparts of the binary properties.

For the binary higher-order properties, we replace aij with pij which is the
probability of creating a link, and also the expected value of the edge pij = 〈aij〉.
This simple procedure yields the analytic formula of the expected value for the
properties. We compute the expected Average Nearest Neighbor Degree as:

〈knni 〉 =

∑
j 6=i
∑
k 6=j pijpjk∑
j 6=i pij

(A.84)

and the expected Binary Clustering Coefficient as:

〈ci〉 =

∑
j 6=i
∑
k 6=i,j pijpjkpki∑

j 6=i
∑
k 6=i,j pijpki

(A.85)

where for the BCM model we input pij = zizj
1+zizj

, and for the ECM the more
complex term pij = xixjyiyj

1−yiyj+xixjyiyj
In the weighted case (weighted higher-order properties), we are left only with

the ECM. The expected Average Nearest Neighbor Strength is calculated as:

〈snni 〉 =

∑
j 6=i
∑
k 6=j pij〈wjk〉∑
j 6=i pij

(A.86)
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A.2 Network models

where 〈wjk〉 = xixjyiyj
(1−yiyj+xixjyiyj)(1−yiyj) and we input the pij of the ECM model

as before.

In the expected value of the cW we should be more careful, since it is necessary
to calculate the expected product of (powers of) distinct matrix entries

〈cWi 〉 =

∑
j 6=i
∑
k 6=i,j〈(wijwjkwki)

1
3 〉∑

j 6=i
∑
k 6=i,j pijpki

. (A.87)

We know that

〈
∑
i 6=j 6=k

wαij · w
β
jk · ...〉 =

∑
i6=j 6=k

〈wαij〉 · 〈w
β
jk〉 · 〈...〉 (A.88)

with the generic term for the ECM case

〈wγij〉 =
∞∑
0

wγqij(w|~x, ~y) =
xixj(1− yiyj)Liγ(yiyj)

1− yiyj + xixjyiyj
(A.89)

where Lin(R) =
∑∞
l=1

Rl

ln is the nth polylogarithm of R. For a more comprehen-
sive description please refer to [32] (chapter 2).

Expected values in the TS model

Here again we use the known expressions for the properties and replacing the terms
ptsij and wtsij with the expected values 〈aij〉 and 〈wij〉 correspondingly. However,
here the expected values are a function of the GDP of the countries, or more
specifically the re-scaled GDP gi. The expressions for the higher-order binary
properties are as before :

〈knni 〉 =

∑
j 6=i
∑
k 6=j p

ts
ijp

ts
jk∑

j 6=i p
ts
ij

(A.90)

and

〈ci〉 =

∑
j 6=i
∑
k 6=i,j p

ts
ijp

ts
jkp

ts
ki∑

j 6=i
∑
k 6=i,j p

ts
ijp

ts
ki

(A.91)

where ptsij = agigj
1+agigj

.
In the weighted case,the expected Average Nearest Neighbor Strength is cal-

culated as:

〈snni 〉 =

∑
j 6=i
∑
k 6=j p

ts
ij〈wtsjk〉∑

j 6=i p
ts
ij

(A.92)
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Appendix

where 〈wij〉ts = agigj
1+agigj

· (1+bgci )(1+bgcj )

(1+bgci+bgcj ) and we input the ptsij of the Two-Step model
as before.

For convenience reasons we will write the expression for the weighted Clus-
tering Coefficient cW first as a function of the fitness parameters zi and yi, and
later replaced them with the corresponding GDP terms. The expected value of
the cW in the Two-Step case is :

〈cWi 〉 =

∑
j 6=i
∑
k 6=i,j〈(wijwjkwki)

1
3 〉ts∑

j 6=i
∑
k 6=i,j p

ts
ijp

ts
ki

. (A.93)

As before we observe that

〈
∑
i 6=j 6=k

wαij · w
β
jk · ...〉 =

∑
i 6=j 6=k

〈wαij〉 · 〈w
β
jk〉 · 〈...〉 (A.94)

with the generic term for the Two-Step model

〈wγij〉 =
∞∑
0

wγqij(w|~z, ~y) =
zizj(1− yiyj)Liγ(yiyj)

(1 + zizj)yiyj
(A.95)

where Lin(R) =
∑∞
l=1

Rl

ln is the nth polylogarithm of R.
Once we input the expressions of zi and yi

zi =
√
a · gi,

yi =
b · gci

1 + b · gci
(A.96)

equation (A.95) yields

〈wγij〉 =
agigj

1 + agigj
·

1 + cgci + bgcj
b2gci g

c
j

Liγ

(
b2gci g

c
j

(1 + bgci )(1 + bgcj)

)
(A.97)
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Samenvatting

Complexe systemen, variërend van financiële markten tot de hersenen, hebben
heterogene structuren en vertonen niet-stationaire dynamica. Deze karakter-
istieken manifesteren zich in de diversiteit van de elementen in het systeem en in
gedrag dat verandert in de tijd. Indien men er in slaagt om het heterogene karak-
ter in adequate modellen te vangen en de verschijnselen daaruit te begrijpen, kan
dat niet alleen in de natuurwetenschappen belangrijk zijn, maar ook ten behoeve
van maatschappelijke uitdagingen zoals het voorkomen van de volgende financiële
crisis of het ontwikkelen van geavanceerde afbeeldingstechnieken voor de herse-
nen. In dit proefschrift gebruiken we het concept van maximale entropie om een
nieuwe klasse van statistische modellen in te voeren die de waargenomen hetero-
geniteit in structuur en/of tijd in zich bergen. Deze modellen worden toegepast op
een aantal complexe systemen in de werkelijke wereld en zo worden verschillende
problemen aangepakt.

In het eerste hoofdstuk onderzoeken we toepassingen van de maximale-entropie
aanpak op de analyse van financiële tijdreeksen. We introduceren een nieuwe
klasse van maximale-entropie ensembles voor tijdreeksen, die ons in staat stelt
om de informatie te karakteriseren en te kwantificeren die bevat is in de binaire
representatie (die slechts aangeeft of iets omhoog of omlaag gaat) van financiële
tijdreeksen. Vervolgens gebruiken we een van de modellen om de waargenomen
niet-lineaire empirische relatie tussen binaire en niet-binaire eigenschappen van
financiële tijdreeksen wiskundig te verklaren. Deze analyse suggereert dat binaire
representaties van financiële tijdreeksen significante informatie bevatten omtrent
de volledige gewogen tijdreeksen waarvan ze zijn afgeleid. De analyse maakt ook
de identificatie mogelijk van te meten eigenschappen die het meest informatief
zijn over de originele tijdreeks.

In hoofdstuk 2 richten we ons op de modellering van economische netwerken,
met name het International Trade Network (ITN). We gebruiken opnieuw een
maximale-entropie aanpak, die zeer succesvol is in het reproduceren van de em-
pirische complexe topologie van het daadwerkelijke netwerk. De methode wordt
vervolgens geïntegreerd in een bekende macro-economische aanpak. Macro-
economische modellen hebben als grootste beperking dat ze een niet-realistische
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uniforme topologie genereren. Wanneer de twee methoden worden gecombineerd
ontstaat een nieuwe verzameling topologisch-invariante netwerkmodellen voor het
ITN. Deze zijn een significante verbetering voor wat betreft de gehele structuur
van het systeem. Het is opmerkelijk dat het mechanisme waarmee het model
een complexe topologie oplegt, het principe van topologische invariantie, gegen-
eraliseerd kan worden naar elk economisch netwerkmodel.

In het laatste hoofdstuk wordt de maximale-entropie aanpak gebruikt om een
nieuwe methode te ontwikkelen voor het zeven van empirische correlatiematrices.
De maximale-entropie modellen geven in deze toepassing willekeurig verdeelde ijk-
modellen, zgn. null models, die een deel van de afhankelijkheden in het systeem
behouden. De eigenschappen die niet worden gereproduceerd door de null mod-
els worden als niet-willekeurig beschouwd en worden gebruikt om de empirische
correlatiematrices te zeven. Onze methode kan functionele modules in een sys-
teem detecteren, die intern gecorreleerd zijn, maar anti-gecorreleerd met elkaar.
We passen onze methode met succes toe op financiële markten en op gegevens
omtrent de functionaliteit van hersenen. Dit resulteert in informatie over de in-
terne hiërarchische organisatie van deze systemen met een veel grotere resolutie
dan tot nog toe mogelijk was.
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Summary

Complex systems, from financial markets to the brain, exhibit heterogeneous
structures and non-stationary dynamics. These characteristics manifest them-
selves in the diversity of the elements in a system, and in the changing behaviour
over time. Capturing and understanding this heterogeneity via appropriate mod-
els, can have important implications not only for science, but also for societal
challenges like predicting the next financial crisis or developing advanced brain
imaging techniques. In this thesis, we use the maximum-entropy approach to
introduce a new class of statistical models, which captures part of the observed
structural and/or temporal heterogeneity in the system. The models are applied
to various real-world complex systems, and are used to address different problems.

First, we explore some applications of our maximum-entropy approach to the
analysis of financial time series. We introduce a new class of maximum-entropy
time series ensembles, which enable us to characterize and quantify information
encoded within the binary signatures, i.e., the signs, of the increments of financial
time series. Next, using one of the models, we mathematically characterize the
observed non-linear empirical relations between binary and non-binary properties
in financial time series. The analysis suggests that binary signatures of financial
time series encode significant information with respect to their complete weighted
counterparts. It also allows to identify which measured properties are most infor-
mative about the original time series.

Second, we focus on modelling economic networks, in particular the Interna-
tional Trade Network. We adopt again a maximum-entropy approach, which in
this case turns out to be powerful in reproducing the empirical complex topol-
ogy of the real-world system, and integrate it with the known macroeconomic
approach. Indeed, the main limitation of macroeconomic models is the fact that
they generate an unrealistically uniform topology. Combining the two approaches
together leads to a new set of topologically invariant network models for the ITN,
which represent a significant improvement when modelling the entire structure
of the system. Remarkably, the mechanism through which the model enforces a
complex topology, i.e., the principal of topological invariance, can be generalized
to any economic network model.
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Finally, we use the maximum-entropy approach to develop a new technique
to filter empirical correlation matrices. The maximum-entropy models represent
random benchmarks in this case, which still preserve part of the dependencies
in the system. The properties which are not reproduced by the null model are
considered non-random and are used to filter the empirical correlation matrix.
Our method is able to detect functional modules in the system, which are inter-
nally correlated and mutually anti-correlated. We successfully apply our method
to financial markets and functional brain data to detect the internal hierarchical
organization of these systems with a level of resolution previously unavailable.
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