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Recent magnetotransport and neutron scattering measurements implicate interfacial magneto-

electronic phase separation as the origin of the degradation in transport and magnetism in ultra-thin

film La1�xSrxCoO3 on SrTiO3(001). Here, using low temperature scanning tunneling microscopy

and spectroscopy the first direct, real space observation of this nanoscopic electronic inhomogene-

ity is provided. Films of thickness 12.4 nm (32 unit cells) are found to exhibit spatially uniform

conductance, in stark contrast to 4.7 nm (12 unit cell) films that display rich variations in conduct-

ance, and thus local density of states. The electronic heterogeneity occurs across a hierarchy of

length scales (5–50 nm), with complex correlations with both topography and applied magnetic

fields. These results thus provide a direct observation of magneto-electronic inhomogeneity in

SrTiO3(001)/La0.5Sr0.5CoO3 at thicknesses below 6–7 nm, in good agreement with less direct tech-

niques. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896283]

Degradation in physical properties of “dead layers” at

surfaces and interfaces in complex oxide films and hetero-

structures is well-documented. This phenomenon manifests

itself both in heterostructures,1,2 where the difficulty of main-

taining desired properties at interfaces has implications for ox-

ide devices,3,4 and in single films in the ultra-thin limit,5–8

where it defines the lowest thickness to which functional phe-

nomena such as ferromagnetism can be maintained. Given the

numerous possible mechanisms at work (e.g., electronic and

orbital reconstructions,2,5,9 charge transfer,2,9 and effects

related to strain/defects/chemistry6–8), it is important that the

origin of this behavior be carefully elucidated in specific sys-

tems. Here, we focus on ultra-thin films of the perovskite

cobaltite La1�xSrxCoO3 (LSCO) on SrTiO3(001) with low

temperature Scanning Tunneling Microscopy (STM).

Perovskite cobaltites are currently investigated for appli-

cations as diverse as oxide spintronics,10 solid oxide fuel

cells,11 and catalysis,12 and are of much fundamental inter-

est. In the archetypal LSCO, the x¼ 0 bulk parent compound

exhibits a low-spin semiconducting ground state and under-

goes a thermally-driven spin-state crossover.13 Bulk Sr dop-

ing similarly stabilizes finite spin-states, leading to magnetic

clusters, and eventually a uniform long-range ferromagnetic

(FM) metal for x� 0.22.14–16 Ultra-thin films of LSCO, how-

ever, exhibit degraded properties.10,17 In epitaxial x¼ 0.5

LSCO on SrTiO3(001), for example (1.8% tensile lattice

mismatch), the saturation magnetization and Curie tempera-

ture are strongly suppressed below some thickness, t*
(�6–7 nm), accompanied by a metal-insulator transition.10,17

A clue to the origin of the suppressed magnetization and

enhanced resistivity was provided by large, hysteretic, iso-

tropic negative magnetoresistance (MR),10 reminiscent of

the inter-cluster giant MR seen in low doped (i.e., x< 0.22)

bulk LSCO.18 In such low x crystals, this MR arises from

spin-dependent transport between nanoscopic FM metallic

clusters in a non-FM insulating matrix, i.e., magneto-

electronic phase separation.14–16,18 Observation of identical

MR in ultra-thin films is thus strong evidence that the sup-

pressed magnetization and conductivity result from

interface-induced magneto-electronic phase separation, with

nanoscopic FM clusters forming in a non-FM insulating ma-

trix near the interface.10 Limited small-angle neutron scatter-

ing data support this, although signal-to-noise issues

preclude determination of exact length scales.10

The origin of this magneto-electronic inhomogeneity in

SrTiO3(001)/LSCO was subsequently elucidated by scanning

transmission electron microscopy/electron energy loss spec-

troscopy (STEM/EELS).10,19 EELS imaging revealed strong

depletion in hole concentration �10 nm from the SrTiO3(001)

interface, driven by a simultaneous suppression in O content.

This O vacancy accumulation was shown to be linked to

strain-driven ordering of O vacancies. In essence, a novel

mechanism for lattice mismatch accommodation occurs, O

vacancies forming at low energy cost, and ordering with a

modulation vector parallel to the interface in order to expand

the in-plane lattice parameter and match the substrate.10,19

Most recently, the similarity of this O vacancy superstructure

to brownmillerite SrCoO2.5 was highlighted, and it was shown

that the vacancy ordering and depth profile can be manipu-

lated by strain and orientation, raising fascinating prospects

for control of transport and magnetism.19

While progress with understanding ultra-thin film struc-

ture and property degradation in cobaltites has thus been sig-

nificant, one missing element is direct, real space proof of the

purported magneto-electronic inhomogeneity in SrTiO3(001)/

LSCO. Indeed, despite the considerable work on magneto-

electronic phase separation in bulk [e.g., Refs. 14–16, 18, and

20] and thin film [e.g., Refs. 10 and 17] cobaltites, all studies

to date were restricted to reciprocal space, due to the dearth of

real space methods to probe electronic and/or magnetic inho-

mogeneity at such short14 length scales. Here, we rectify this
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by providing the first direct, real space observation of elec-

tronic heterogeneity in SrTiO3(001)/LSCO. Low temperature

STM and scanning tunneling spectroscopy (STS) have been

used to acquire nm spatial resolution conductance maps and

current-voltage curves, to probe the local density-of-states

(LDOS) at the surface of SrTiO3(001)/LSCO. Films with

thickness 12.4 nm (above t*) are electronically uniform, while

films with thickness 4.7 nm (below t*) reveal strikingly heter-

ogeneous conductance on nanoscopic scales, with complex

correlations with topography and applied magnetic field.

These results directly verify nanoscale electronic inhomoge-

neity in ultra-thin film SrTiO3(001)/LSCO.

LSCO x¼ 0.50 films with thickness (from x-ray reflectiv-

ity) of t¼ 4.7 nm (12 unit cells) and t¼ 12.4 nm (32 unit cells)

were deposited on SrTiO3(001) from ceramic targets by high-

pressure reactive DC magnetron sputtering. Depositions were

performed at a substrate temperature �700 �C, total pressure of

140 mTorr, and O2/Ar pressure ratio of 0.4, followed by cooling

in 500 Torr of O2 and post-annealing in flowing O2 at 500 �C.

This results in single-phase cation-stoichiometric epitaxial

LSCO(001) with optimal oxygenation and properties.10,17,19,21

Films studied here are below the critical thickness for strain

relaxation (20 nm). Following high-resolution x-ray characteri-

zation, magnetization (M) and resistivity (q) were measured at

temperature (T) from 5 to 300 K in magnetic fields (loH) to 7 T.

As shown in Fig. 1(a), magnetization hysteresis loops at 5 K

reveal clear FM with substantial coercivity,22 and saturation

magnetization that falls from a bulk-like 2lB/Co at t¼ 12.4 nm

to 0.8lB/Co at t¼ 4.7 nm. Consistent with prior work,10,17 we

ascribe this not to a uniform reduction in magnetization but to a

reduction in FM volume fraction. As shown in Figs. 1(b) and

1(c) this suppression in M is accompanied by a Curie tempera-

ture reduction (from �185 to 150 K), along with a crossover

from metallic-like q vs. T with an inflexion point around the

Curie temperature (at t¼ 12.4 nm), to an insulating-like q vs. T
with much larger low T resistivity (at t¼ 4.7 nm). This is con-

sistent with prior work,10 confirming that these samples straddle

the t* value of 6–7 nm marking the crossover to the proposed

electronically and magnetically inhomogeneous state.

STM/STS measurements (T¼ 2–180 K, loH� 8 T) were

performed using an STM head built in-house and maintained

in ultra-high vacuum (UHV, base pressure 3� 10�10Torr).

After overnight pumping in a load-lock, samples were

introduced into the UHV chamber and scanned using

mechanically-cut Pt90Ir10 STM tips. STS measurements were

made at specific locations by sweeping the bias voltage at a

fixed sample-tip separation, producing current-voltage (I-V)

curves. Differential conductance maps (scanned simultaneously

with topography) were measured with a lock-in amplifier using

a 10 mV AC modulation at �1000 Hz. This modulation was

superimposed on specified set-point V and I values which serve

to fix the sample-tip bias and separation, as illustrated below.

Beginning with the t¼ 12.4 nm film, Fig. 2 summarizes

the typical behavior seen by STM/STS at T¼ 1.7 K. To ac-

quire the differential conductance map shown in Fig. 2(a),

the tip-sample separation was first fixed by the chosen set-

FIG. 1. (a) 5 K hysteresis loops of SrTiO3(001)/La0.5Sr0.5CoO3�d films with

thickness 4.7 and 12.4 nm. Temperature dependence of (b) the magnetization

in a 0.1 T magnetic field, and (c) zero field resistivity of SrTiO3(001)/

La0.5Sr0.5CoO3�d films with thickness 4.7 and 12.4 nm.

FIG. 2. (a) Differential conductance and (b) corresponding topography (where lighter (yellow) regions are high and darker (blue) regions are low) over a

100� 300 nm region of a 12.4 nm thick SrTiO3(001)/La0.5Sr0.5CoO3�d film. Data were acquired at 1.7 K with a set-point of 0.6 V and 0.219 nA. Horizontal lines

denote the positions of the relative differential conductance and topographic line scans shown in (c) and (d). (e) Two example current-voltage scans taken from a set

of 16 measured along a diagonal of a 300� 300 nm region encompassing the one shown in (a) and (b). Data were acquired with a set-point of 0.35 V and 1 nA.
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point (0.60 V bias, 0.22 nA), and the differential conductance

about this 0.60 V DC bias probed as a function of position

over the 100� 300 nm area shown. It is essential to note, as

clearly illustrated by the representative I-V curves shown in

Fig. 2(e), that at these relatively high biases the highest dif-

ferential conductances are actually associated with the most

insulating local regions, with the highest apparent tunneling

gaps, and lowest zero bias conductance (ZBC, i.e., the con-

ductance in the zero applied voltage limit). The topographic

map acquired simultaneously to this conductance map is

shown in Fig. 2(b), while Figs. 2(c) and 2(d) show line scans

(along the horizontal lines in Figs. 2(a) and 2(b)) of the rela-

tive differential conductance and topography.

The most noteworthy feature is clearly the remarkable uni-

formity in differential conductance and thus LSCO surface

LDOS. There are no obvious contiguous nanoscale areas of

similar conductance in Fig. 2(a), and we find no evidence of

correlation between conductance (Fig. 2(a)) and topography

(Fig. 2(b)), despite the significant root mean square roughness

(�2 nm). This is borne out by the line scans (Figs. 2(c) and

2(d)), which appear uncorrelated, with no systematic changes

in conductance where topographical changes occur.

Quantifying the conductance fluctuations (Fig. 2(c)) with auto-

correlation analysis reveals that correlations are already

beneath 95% confidence at lateral scales as short as 0.6 nm. In

contrast, the topographic line scan in Fig. 2(d) results in a lat-

eral correlation length of �50 nm. While the fluctuations in

conductance thus must occur on very short length scales, they

are indeed present, as confirmed by measurement of I-V curves

at multiple locations. The curves in Fig. 2(e) are in fact two

examples from 16 such curves taken along a diagonal of a

300� 300 nm area enclosing the region in Fig. 2(a). 15 of these

curves were similar to the fine line in Fig. 2(e), with an

average ZBC of 1.4� 10�2nA/V and standard deviation

0.8� 10�2nA/V. The remaining curve was significantly differ-

ent (heavy line in Fig. 2(e)), having a ZBC of 3.9� 10�1nA/V,

i.e., 30� larger than the average of the other 15. This behavior

was found in multiple cases, in several regions, suggesting very

small conductance “hotspots.” Somewhat similar effects have

been seen in otherwise homogeneous manganite films, and

attributed to defects.23

As shown in Fig. 3, the situation is markedly different in

films with thickness 4.7 nm, i.e., below t*, where we could

anticipate the surface to present nanoscale inhomogeneity, re-

flective of the film interior. In this figure, panels (a)–(c) are

representative 55� 55 nm differential conductance maps

measured at 3.7 K in loH¼ 0, 4, 8 T, while panel (d) depicts

topography. Panels (e) and (f) show scans along the horizontal

lines marked on panels (a)–(d), while panel (g) shows repre-

sentative I-V curves at 7.5 K. Again, it is essential to note that

in these conductance maps, which were measured at a set-

point of 0.70 V and 0.21 nA (comparable to Fig. 2), the high-

est differential conductances are actually associated with the

most insulating local regions, with the highest apparent tun-

neling gaps, and lowest ZBC, as clearly shown in Fig. 3(g).

The dark (blue) regions in Figs. 3(a)–3(c) are thus the most

metallic, the light (yellow) areas being more insulating.

The heterogeneity visible in Figs. 3(a)–3(c) is striking.

As in prior STM/STS work on electronically inhomogeneous

manganites,24–28 contiguous nanoscale regions of similar dif-

ferential conductance are evident, conductive clusters form-

ing in an insulating matrix. The extent of this inhomogeneity

is reinforced by Fig. 3(g), which shows STS I-V curves rep-

resentative of the dark (blue) and light (yellow) regions. The

heavy line (representative of the conductive clusters) has a

ZBC of 1.6 nA/V, while the fine line (representative of the

insulating matrix) yields a ZBC of 1.4� 10�2 nA/V, the fac-

tor of 120 between the two greatly exceeding the factor of 30

between extremal ZBCs on the thicker film. The 4.7 nm

LSCO film thus exhibits much larger fluctuations in conduct-

ance and LDOS than the 12.5 nm film, direct confirmation of

the deductions discussed in the introduction.

Interestingly, Fig. 3(a) also reveals that the electronic

heterogeneity in these ultra-thin films is not on a single

FIG. 3. (a)–(c) Differential conductance and (d) topography (where lighter (yellow) regions are high and darker (blue) regions are low) over a 55� 55 nm rep-

resentative region of a 4.7 nm thick SrTiO3(001)/La0.5Sr0.5CoO3�d film. Data were acquired at 3.7 K with a set-point of 0.7 V and 210 pA, comparable to the

maps in Fig. 2. Panels (a)–(c) are differential conductance maps measured in 0, 4, and 8 T magnetic fields, respectively. The horizontal lines denote the posi-

tions of the relative differential conductance and topographic line scans shown in (e) and (f). (g) Two example current-voltage scans. Data were taken from a

different region to that shown in panels (a)–(d), at 7.5 K, with a setpoint of 0.5 V and 1 nA, comparable to the current-voltage curves in Fig. 2. In the region

marked “A” in (a)–(d) topography and conductance correlate, as discussed in the text.
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length scale, but instead occurs over a hierarchy of scales

from �5 to 50 nm. Numerous additional images confirm this,

occasionally showing even larger metallic clusters, up to

100 nm. As can be seen by comparing Figs. 3(a) and 3(d),

the extent to which this electronic texture is correlated with

topography is also non-trivial. There are certainly regions

(such as the one labeled “A” in Fig. 3), where the conductance

and topography are correlated, the more metallic behavior

occurring in locally thicker regions. On the other hand, as

illustrated by the entire left side of Figs. 3(a) and 3(d), there

are also regions with no clear correlation between conduct-

ance and height. Further quantification can be achieved with

the line scans shown in Figs. 3(e) and 3(f). Abrupt topographi-

cal features are indeed accompanied by conductance changes

in some cases, e.g., at a lateral distance of 22 nm when region

A is entered; correlations between conductance and topogra-

phy are in fact clear across this whole region (from 22 to

50 nm). On the whole however, the fluctuations in conduct-

ance in Fig. 3(e) occur over significantly shorter lateral scales

than those in the topography, the lateral correlation length of

the H¼ 0 conductance fluctuations being a factor of �2

smaller than the equivalent value for topography.

As can also be seen from Figs. 3(a)–3(c), comparing 0, 4,

and 8 T data, the response to a magnetic field is quite complex

and appears to be opposite in different regions. On the entire left

side of Figs. 3(a)–3(c) for instance, where the conductance is

uncorrelated with topography, magnetic field favors an insulating

state. This can be seen by comparing Fig. 3(a) with Figs. 3(b)

and 3(c) (where the image gets progressively lighter with

increasing H), and by examining the line scans in Fig. 3(e)

between 0 and 15 nm. The latter reveals a 25% increase in differ-

ential conductance in 8 T, meaning a substantial decrease in

ZBC and thus a decrease in metallicity, i.e., local positive mag-

netoresistance. In contrast, in region A (inside the dashed line in

Figs. 3(a)–3(d), and from 22 to 50 nm in Fig. 3(e)), where corre-

lations with topography do occur, the situation is opposite.

Applied fields decrease the high bias differential conductance,

thus increasing the ZBC and metallicity. This corresponds to a

local negative magnetoresistance, which the line scans in Fig.

3(e) show to be a 5%–10% effect in 8 T. These H-dependent

STM/STS observations are broadly consistent with conclusions

from prior macroscopic magnetotransport. Specifically, the local

negative magnetoresistance in the most conductive nanoscopic

clusters, and the local positive magnetoresistance in sections of

the insulating matrix, are consistent with the interpretation of the

macroscopic negative magnetoresistance (�30% under these

conditions) in terms of inter-cluster transport. Figs. 3(a)–3(c)

also clearly demonstrate the absence of H-induced percolation

(highlighting the dissimilarity with colossal magnetoresistance in

the manganites), likely due to the essential role played by chemi-

cal disorder in electronic/magnetic heterogeneity in LSCO.14,16

In summary, STM/STS has been used to probe the surface

LDOS in STO(001)/LSCO films with thickness 4.7 and

12.4 nm, spanning the 6–7 nm range where electronic and mag-

netic heterogeneity have been postulated to set in. The data

reveal largely homogeneous conductance in the thicker films,

but indeed confirm significant nanoscale electronic inhomogene-

ity below 6–7 nm. This inhomogeneity occurs across a hierarchy

of length scales, mostly concentrated from 5 to 50 nm, and is

retained even in large applied fields. Direct, real space

verification of electronic heterogeneity as the origin of degraded

properties in ultrathin STO(001)/LSCO is thus obtained.
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