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Abstract

Primordial non-Gaussianity (PNG) in Large Scale Structures is obfuscated by the many addi-
tional sources of non-linearity. Within the Effective Field Theory approach to Standard Pertur-
bation Theory, we show that matter non-linearities in the bispectrum can be modeled sufficiently
well to strengthen current bounds with near future surveys, such as Euclid. We find that the
EFT corrections are crucial to this improvement in sensitivity. Yet, our understanding of non-
linearities is still insufficient to reach important theoretical benchmarks for equilateral PNG,
while, for local PNG, our forecast is more optimistic. We consistently account for the theoreti-
cal error intrinsic to the perturbative approach and discuss the details of its implementation in

Fisher forecasts.
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1 Introduction and summary

Primordial deviations from Gaussianity are key to understand inflation and will soon be tested
via a number of ambitious Large Scale Structure (LSS) surveys. It is therefore imperative to
understand how late-time LSS observations can be related to the parameters that characterize
primordial non-Gaussianity (PNG). This relation is complicated and non-linear. The degree to



which we will be able to collect further primordial information from LSS survey will eventually
be determined by our ability to model this non-linear relation. In this work, we focus on spe-
cific source of non-linearities, namely perturbative matter non-linearities. These are generated
by the sub-horizon gravitational evolution of small initial matter inhomogeneities into larger
ones, until the perturbations compete locally with the homogeneous background expansion. For
concreteness, we study local, equilateral and quasi-single field non-Gaussianity, since these are
well-motivated theoretically and represent signals that are complementary from the point of
view of observations. Additional sources of non-linearity are also important, such as for example
bias and redshift space distortion. In case of equilateral and quasi single field PNG, these are
expected to further worsen our ability to constraint primordial parameters. In this sense, our
results can be interpreted as lower bounds on the precision of future constraints. For local PNG,
it is possible that non-linearities encapsulated in the biasing of tracers, if very well understood,
might eventually help us improve on the bounds we find here (see [1] and e.g. [2, 3] for a recent
estimate). We will discuss this possibility in subsection 4.1.2.

In our analysis, we will use the Effective Field Theory of Large Scale Structures (EFT of
LSS) [4], which builds on Standard Perturbation Theory (SPT) [5], and provides a consistent per-
turbative approach to describe the evolution of matter distribution. We focus exclusively on the
matter bispectrum, since it is a primary probe of PNG that is affected by matter non-linearities.
Recent work on PNG and the bispectrum includes [2,6-11]. Within the EFT approach, the
bispectrum generated by the late-time gravitational evolution from otherwise Gaussian initial
conditions has been studied in [12,13]). This contribution plays the role of background noise
in PNG searches. The signal, namely the primordial bispectrum, is also affected by gravita-
tional non-linearities. This has been recently studied in [14]. Here, we use these two results and
present a Fisher forecast for constraints on PNG. A key element of our forecast is the inclusion
of theoretical error, employing and further developing the recent proposal of [15].

For the convenience of the reader, we collect here our major findings with references to where
they are discussed in the rest paper.

e When using the EFT of LSS, the perturbative approach to model matter non-linearities
will not prevent upcoming LSS surveys to improve upon the current bounds from CMB
anisotropies [16] (see Table 1).

e Our limited perturbative understanding of matter non-linearities limits the achievable
bounds on equilateral non-Gaussianity from planned galaxy surveys to o(fx) 2 10 (see
Table 1), far from the theoretically interesting benchmark o(fy;) ~ 1 (see e.g. [17,18] and
references therein). We estimate that this remains true even if one included the full two-
loop corrections (see Table 2). Local non-Gaussianity is more promising, and we find e.g.
for Euclid o(f5) 2 1.

e The consistent treatment of short-scale effects within the EFT approach allows one to
improve PNG constraints by a factor of about 3 (see Table 3). This relies on two facts.
First, the EFT parameters provide a better description of the late-time gravitational non-
linearities (the “background” discussed in [12]). Second, for the specification of most up-
coming experiments, the EFT parameters are only weakly correlated with PNG, and so
marginalizing over them hardly degrades the constraints (see subsection 4.2).

e Both the SPT loops and the EFT corrections to primordial non-Gaussianity (the “signal”
discussed in [14]) are small and their inclusion does not improve the PNG constraints
appreciably (see first and second line of Table 3).

e We discuss several aspects of the method proposed in [15] to model the theoretical error
inherent to the perturbative approach. We show that a wrong shape for the theoretical
error can lead to a biased estimate for fy; . This happens when it partly underestimates
the error. Conversely, a conservatively large theoretical error leads to correct unbiased



results. We thoroughly analyze the dependence of the Fisher forecast on the correlation
length used in [15], and explain our results with a toy model.

This paper is organized as follows. In section 2, we review the results for the matter bispectrum
in the EFT of LSS accounting for PNG. In section 3, we discuss the details of the Fisher forecast
with particular emphasis on a consistent treatment of theoretical uncertainties. Section 4 is
devoted to a discussion of the results of the Fisher forecast on PNG constraints from LSS surveys.
We conclude in section 5. Several appendices contain more technical results. In Appendix A, we
summarize all relevant formulae to compute the bispectrum in the EFT of LSS. In Appendix B,
we present a detailed discussion of how to consistently account for theoretical errors. Appendix
C discusses the issue of binning the data for the Fisher forecast and finally, for the convenience
of the reader, we collected all symbols used in this paper and their meaning in Appendix D.

Conventions Redshift z and conformal spatial coordinates x are used as measures of time and
position. We use the following convention for the Fourier transform

~ : d3k
F(x) = / F(k)e®®* where we use the shorthand / = /3. (1)
k k (2m)

In particular, this implies that we have the following relation between any N-point equal-time
correlation function and its spectrum

(5(ky) ... 0(kn)) = (2m)30p (ki + ... + kn)S(ki, ..., ky), 2)

where we suppressed the time dependence.

For the numerical analysis, we compute the linear power spectrum with CAMB [19], where we
assume a standard cosmological model with 99\ =0.728, Q0 = 0.272, h = 0.704, ny = 0.967 and
A =246 x 1077,

2 Analytical predictions for the bispectrum

In this section, we review the analytical predictions for the late-time matter bispectrum within
the Effective Field Theory of Large Scale Structures (EFT of LSS), accounting for non-Gaussian
initial conditions. In subsection 2.1 we collect the contributions to the bispectrum up to first order
in primordial non-Gaussianity and up to ‘one-loop’ order in perturbation theory. In subsection
2.2, we specify the types of primordial non-Gaussianity (PNG) we study in this paper. In
subsection 2.3, we discuss the theoretical errors, which are intrinsic to the perturbative approach.

2.1 The bispectrum in the EFT of LSS

Despite being almost collisionless, cold dark matter on large scales behaves approximately as a
fluid. This relies on the fact that the primordial universe is locally in (thermodynamical) equi-
librium and that, during the age of the universe, dark matter particles move only over a distance
that is small compared with the scales of interest. This displacement plays the same role as the
mean free path in the more familiar interacting fluids. As long as we consider scales much larger
than this displacement, an effective fluid description can be applied [4]. Here we follow the Effec-
tive Field Theory approach to Large Scale Structures (EFT of LSS). The dark matter bispectrum
induced by gravity was discussed in [12, 13]. Non-Gaussian initial condition were subsequently
accounted for in [14]. The EFT of LSS allows to perturbatively compute non-linear correlators
of the matter density contrast d(x, z) [20] and velocity v(x, z) [21], taking into account the effect
of short-scale non-perturbative physics on the large-scale dynamics. In practice, one can use the
results of Standard Perturbation Theory (SPT) [5], and correct them with additional effective
terms, which will be denoted with the subscript ‘EFT’. We differentiate between contributions



to the bispectrum coming from primordial non-Gaussianities (superscript “NG”) and those com-
ing from the late-time gravitational evolution (superscript “G”). Schematically, the perturbative
theoretical prediction for the bispectrum is

B™ = B§pr + Bgpr + /L (BSNPGT + BEFGT) : (3)

As we will see in section 3, for a Fisher forecast we do not need to specify! BSPT. The leading
order counterterms for Gaussian initial conditions have been computed in [12,13] and read

3
G G G
Bgpr = &B¢ + Z € B, (4)
i=1
For non-Gaussian initial conditions, short modes and long modes are already correlated at the

initial time. This leads to additional contributions to the matter bispectrum. To leading order,
these are given by [14]

2
Bigr = 6B ¢ + 9B + ) 7BIC. (5)
i=1

For convenience, we have adopted the notation of [14] and collected in appendix A all the explicit
expressions for the terms appearing in this subsection.

2.2 Primordial non-Gaussianity

To evaluate the non-Gaussian contributions to (3), we need to specify the primordial bispectrum.
In this paper, we study the constraints on three types of primordial non-Gaussianity: local [22],
equilateral [23] and quasi-single field [24]. In terms of the primordial potential ¢, the primordial
bispectra are given by the following shapes

B* (ki ka, k3) = 2/ (Py (k1) Py(k2) + perm) , (6a)
1
Bk, ko, kg) = 1623 A2 — — 6b
¢( 1, K2, 3) fNL ¢k1k2k3K37 ( )
1 N, (8
BP (ky, ky, ks) = 18V/3 [ A2 (8r) (6¢)

O k1koks K3 \/EN,(8/27)

Here we define K = ky + ko + k3, and k = kikoks/K 3. Moreover, N, is the Neumann function
of order v and we choose v = % The normalization of the primordial power spectrum? is given
by Ay = 1.72- 10~8. To linearly evolve these to the late time matter bispectrum® By, we use
the transfer function M (k, z), defined by

k3P (k, 2) .
SON

Here k, = 0.0028 hMpc~! and ng = 0.967. This means we have

61(k,2) = M(k,2)¢(k), with M?(k,z2) = (7)

Bii1(k1, ko, k3, z) = M(k1, 2) M (ko, 2) M (k3, z) Bg(k1, k2, k3). (8)

We collect all relevant higher order non-Gaussian contributions to the bispectrum in appendix
A.

1On the other hand, we do need to specify the SPT contributions to the power spectrum to compute the cosmic
variance. Assuming it is dominated by the linearly evolved matter power spectrum, we do not have to specify
additional ‘EFT’ parameters.

*Note that we define Ay = 27> L Ac.

3See appendix A for relevant notation.



2.3 Theoretical error

By definition, any results from perturbation theory are approximate - there is always an intrinsic
theoretical error, typically estimated within perturbation theory itself. The true bispectrum is
therefore given by

Btrue — Bth + Ber’ (9)

where B is the perturbative theoretical prediction given in (3), and B®" represents the theo-
retical error. The strength of a well defined perturbation theory is of course that the error can
be estimated within the perturbation theory itself.

In our case, there are in principle two perturbative schemes employed. First, we assume per-
turbative primordial non-Gaussianity. This means we assume the primordial potential can be
schematically expanded as

op =05 + fNLPs x5+ (10)

Here gog is a Gaussian field and * denotes a convolution in Fourier space. This means we are

effectively expanding in fnrop ~ fL \/fT , which is indeed very small according to current
bounds. Hence we will not worry about corrections to this approximation for the rest of the
paper.

Second, the EFT of LSS relies on the smallness of density perturbations on large scales, consis-
tently taking into account our ignorance of short scale physics. Effectively, this comes down to
an expansion in k/kny, [4]. As argued in [12], the most relevant correction to B is the two-loop
bispectrum. Since we have not computed the full two-loop bispectrum, we are forced to make
an educated guess about its size and shape. One way to do this was proposed in [15], and relies
on the scaling universe results of [25]. Here we use instead a different estimate. Unless indicated
otherwise, we estimate the two-loop bispectrum by adding up the absolute values of the two
two-loop diagrams we can compute, namely the so-called reducible diagrams, which we indicate
by Bssgs. An explicit expression for Bsse is again given in appendix A. We compare our estimate
to the scaling estimate of [15] in appendix B.5.

The importance of keeping track of the theoretical error for forecasts has recently been stressed
in [15], and we build on their approach. Qualitatively, one expects not to be able to learn much
about fni, from bispectrum configurations for which B¢ is larger than the non-Gaussian signal.
To get an idea of the configurations for which this is the case, we plot the one-loop expressions
for the three types of non-Gaussianities we consider (with fxy, = 1) and Bss2 as a function of
scale for both squeezed and equilateral configurations in Figure 1. For reference we also plotted
the one-loop Gaussian contribution to the bispectrum. As expected, for local PNG we can push
to smaller scales in the squeezed configuration than for equilateral PNG. Note also that the naive
Kmaz, beyond which we do not expect to gain any more signal, is configuration dependent. A
detailed discussion on how to incorporate this theoretical error in a Fisher analysis is given in
section 2.3, which proceeds along the lines of [15]. In appendix B, we present further investigation
of the validity of this method of treating the theoretical error.
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Figure 1: The SPT contributions to the bispectrum in the squeezed (left) and equilateral (right) configu-
rations. The blue solid line denotes the Gaussian tree-level and one-loop contributions. The yellow, orange
and green lines denote the one loop non-Gaussian contribution for fyr, = 1 for local, equilateral and quasi-
single-field PNG, respectively. The dashed purple line corresponds to our order-of-magnitude estimate for
the Gaussian two-loop correction Bsss. In the squeezed configurations (left), we chose k7, = 0.012 hMpc ™.

3 Fisher analysis

In this section, we outline our method to forecast constraints on primordial non-Gaussianity. We
have in mind a Gedankenexperiment that provides us with the matter distribution in space and
time up to some maximal redshift. In this highly idealized scenario, we determine to what extent
our inability to analytically describe the non-linear gravitational collapse of matter limits the
information we can extract on primordial perturbations. We proceed along the lines of [6,7,26].
The outcome of the analysis for various surveys is presented in the next section.

3.1 Assumptions and approximations

For the convenience of the reader, we summarize the assumptions and approximations we make
in the Fisher analysis.

e We assume we are given an idealized survey of the late time dark matter density field,
instead of that of some biased tracer. This allows us to answer the question of whether
further progress is needed in the modeling of the dark matter distribution to strengthen
current bounds on PNG using upcoming LSS surveys.

e The idealized dark matter survey is characterized by a redshift range and the fraction of
the sky covered. We divide the survey in redshift bins, to which we assign a fixed time that
is equal to the mean redshift of the bin. Hence, we only need to know zp;, to predict the
power spectrum and bispectrum. Observational redshift errors are neglected.

e We assume that each redshift bin can be approximated by a cube. Then we just need the
volume of the bin V(zp,) to account for cosmic variance.

e We compute correlation functions only within each bin. This does not seem to be a big
drawback in the case of equilateral PNG. Instead, for local PNG, this might cause an
unnecessary loss of information. We will discuss this issue elsewhere.

e We include shotnoise in the analysis to correctly remove weight from the higher redshift
bins. For this, we use the specifications of specific upcoming surveys. We discuss this in
section 4.1.2.

e We assume that the bispectra for different configurations are uncorrelated with each other.
This means that we approximate the bispectrum covariance matriz as diagonal. In [206]
it has been checked that this approximation works fine for the scales k < 0.3hMpc™' at
redshift zero. We assume it holds up to k < 0.4hMpc™!, since for local PNG we still gain



signal up to this scale, as we see in Figure 9. Moreover, we assume that only the linear
power spectrum determines the covariance matrix (see subsection 3.3 for more details).
Finally, we neglect covariance due to observational effects, such as survey geometry and
mask.

Importantly, we parameterize the theoretical error by treating the higher loop corrections to
the bispectrum as a source of noise, which we integrate out. This contributes to the effective
covariance matrix. Our estimate of the typical size of the two-loop corrections is given by Bsss,
defined in Appendix A.

The time-dependence of the counterterms has been chosen to match the one loop diagrams they
are supposed to renormalize [27] (see also [28] for a related discussion). All the time dependence
is absorbed in the contributions to the bispectrum, so that all the theoretical parameters become
time-independent (see appendix A). This means that we are measuring the same theoretical
parameters in each redshift bin.

We need to discretize the bispectrum in order to compute the Fisher matrix. We will use
logarithmic bins instead of linear bins, since we do not fully trust linear binning. We refer the
reader to the appendix C for more details. Finally, we do not marginalize over the standard
cosmological parameters, but fix their values.

3.2 Fisher matrix

In a Fisher forecast, one computes the expected curvature around the maximum of the likelihood.
The likelihood is given by
1

L(data|®, priors) = o) det(C )Pprior(@) (11)
B

1
X €xp _5ZAB(/é)@)C;l(év‘%@)AB(pa@) )
kp

where © denote the set of theoretical parameters and N is the number of datapoints. We
suppressed the time dependence. Here we use the Dutch calligraphic lower case symbols £ as
a shortcut for a triplet of wavenumbers on which the bispectrum depends, i.e. £ = (ky, ko, k3).
Furthermore, AB corresponds to the difference between estimator and theoretical prediction
AB(#,0) = B(k) — B(£,0) and Cp is the covariance matrix of the bispectrum Cp = (ABAB).

Neglecting the theoretical error for the moment, the theoretical prediction for the bispectrum
is given in equation (3). The 8 parameters we include in the Fisher analysis are therefore
{fzL, &, €1, €, €3, 7, 1, 5/2}4. The parameter £ also appears in the power spectrum and has
been measured to be® 0.98 h~2Mpc? [27]. Therefore, we can put a sharp prior on this parameter.
The other parameters are unknown, but we expect them to be of the same order of magnitude
(see [12,14] for naive numerical estimates). Therefore, we can use a fiducial value of zero and a
Gaussian prior with variance of 10.

For simplicity, we assume that all priors are Gaussian with covariance matrix Cg. Then the
Fisher matrix is given by (see e.g. [30])

2
Fy=- <8 log(L)

1 - - — —
3@16@3> =-Tr [CBchJCBlCB,j] 4 Bz'TCBlBj + (C'el)... (12)

2 v

4Here we denote 4 = fnr - v and similarly for 7;, so that the bispectrum is linear in all parameters. This is
convenient for the Fisher analysis, as this makes the result independent of the fiducial values of the parameters. On
the other hand, we effectively assume that the one-loop non-Gaussian counterterms have amplitudes independent
of fnr. Later in this paper we will find that these counterterms are negligibly small, therefore, this will not affect
our results.

SPrevious measurement gave (1.62+0.03) h~>Mpc? [29] and (1.540.03) h~2Mpc? [12], but neglected two-loop
corrections.



As we will see in a moment, our approximation for the covariance matrix does not depend on the
theoretical parameters. Writing out the time dependence explicitly, the Fisher matrix simplifies
to
Fij(2) => Bl (k,2)C5"(k,#,2)B;(K, z) + (e IE) (13)
BB

for each redshift bin. Since the bispectrum is linear in all parameters - taking into account that
¢ has been measured - the Fisher matrix is independent of the fiducial value of the theoretical
parameters®, which is very convenient for the analysis. To combine the results from the different
redshift bins, we use that the parameters are the same in each bin, since we have fixed their time
dependence. This time dependence is chosen to match the time dependence of the divergences
they are supposed to cancel, motivated by [27]. The explicit expression can be found in Appendix
A. Therefore, we can compute the constraints on fyr, by summing the Fisher matrices and then
marginalizing over the EFT parameters i.e.,

-1

o(fnL) = <ZFz’j(z)> ) (14)

11

where we assumed that the entry of the Fisher matrix belonging to fni, is the first. Note that
we have not included cross correlations between bins, which means we might be throwing away
valuable information. This effect will be studied elsewhere [31].

3.3 Covariance matrix

To evaluate the Fisher matrix, we need to know the covariance matrix. Let us shortly review the
derivation of the bispectrum covariance matrix. The estimator of the bispectrum is given by [32]

. 1
B(k1,k2,/€3,z)—/ / / 5(a1, 2)8(qz, 2)0(qs, 2)0% (a1 + a2 + q3),  (15)
V(2)Vi2s Ja, Jaz Jas

with V(z) the volume of the bin. The integration is over logarithmic bins centered around
the given wavenumbers, i.e. In(|q;|) € [In(k;) — A In(k),In(k;) + $AIn(k)]. Moreover, Vias
corresponds to the following k-space volume squared

87 ,
Vigs = / / dp(k1 + ko + k3) ~ #k%k%kzg sinh®(Aln k). (16)
q1 Jq2 Jq3

This approximation becomes exact when we consider ‘internal’ bins, but it fails on the ‘edge’
bins. In the numerical analysis we compute the exact value of Vjs3 for each bin, see appendix C
for more details. This allows us to compute the bispectrum covariance matrix, namely

Coh,h,2) = ((Blh,2)— Bk,2)) (B, 2) — B, 2))) an

There is a factor sj23 which counts the number of non-vanishing contractions when computing
(B(#)B(k)), which depends on the type of triangle that the triplet 4 forms. As each contraction
comes with a delta function, this counting factor equals 6, 2 or 1 for equilateral, isosceles and
scalene triangles respectively. If we include shotnoise in the covariance matrix, we replace P(k;, z)

5To be more precise, the Fisher matrix is independent of the fiducial values of the parameters to good approz-
imation. We choose a fiducial value for £ of zero and in Section 4 we either specify a prior with ¢ = 1 for £ or
no prior at all. Therefore, the Fisher matrix has some dependence on the choice of £, but it will come exclusively
from the non-Gaussian counterterm proportional to £. Again, since the non-Gaussian counterterms turn out to be
extremely small, we expect this not to affect the results. Moreover, we have checked this explicitly by changing
its fiducial value to 1.



with P(k;, z)+1 in equation (18), where 71 is the effective number density for the density contrast.
This will be explained more when we include shotnoise in Section 4.1.

In this expression for the covariance matrix, we completely neglected higher order corrections
beyond the power spectrum, making it approximately diagonal. In [26] it has been checked that
this approximation works fine for the scales we are considering. The off-diagonal terms become
important exactly when the higher order corrections to the power spectrum become important,
since they are of the same order. Therefore, in order to be consistent, we only take into account
the linear contribution Pj; to the power spectrum P(k;, z). In particular, this means that the

covariance matrix is independent of the theoretical parameters.

3.4 Theoretical error as nuisance parameters

To account for the theoretical error inherent to the perturbative expansion, we parameterize the
bispectrum as

B(k) = B™(&)+n(k)B"(k), (19)
B™M#) = BS§pr(k) + Bepr(f) + i [BESr(R) + BRpr(£)] (20)

where B™ represents the theoretical prediction up to some order in perturbation theory as before,
and B is the estimate of the theoretical error. Following [15], we introduce a series of nuisance
parameters n(£), one per bin in k-space. The reason we implement the theoretical error this
way, instead of proposing some k.. is that, as discussed in subsection 2.3, k.. depends on
where the theoretical error and the signal become comparable. This complicates the analysis in
two ways. First, kne. is configuration dependent, and second, it depends on the fiducial value
of fn1,, which makes finding the error on fxr, a recursive problem. In the approach we take, the
set of theoretical parameters thus becomes © = {n(£)}; U{fNL, &, €1, €2, €3, 7, Y1, J2}. Since
the bispectrum remains linear in all parameters, expression (13) for the respective block of the
Fisher matrix still applies.

We assume that the true corrections to the bispectrum are of similar size as B (k). Therefore,
we put a Gaussian prior on the parameters n(£), with mean zero and variance one. Moreover, we
expect the correction to have a smooth shape, which varies not too rapidly within the contours
defined by B (£). Therefore, the coefficients should have non-negligible cross correlations. Since
we would like to have an increasing correlation for nearby points, we include cross-correlations
with a typical correlation length as follows

> 1n<rka/k;;r>> | o

Nopg = exp (— ]

We replaced the label £, of the nuisance parameter of a given bin with the index «, so that we can
reserve latin indices for the other theoretical parameters. Moreover, in order not to confuse this
covariance matrix with the covariance matrix of the bispectrum Cp, we denote it as N,3. Note
that we choose o, = 1 for all a’s. Here, [ denotes the logarithmic correlation length. We could
have also chosen a quadratic correlation length, similar to modeling it as a random field [33]. The
reason we opted for this form is that here the inverse matrix is very sparse, which is convenient
for numerical purposes. Since our final results are quite insensitive to the correlation length (see
B.3.3), we do not believe this choice affects the results very much.

Since we introduced a set of new nuisance parameters, we should write down the full Fisher
matrix F},, and invert it

-1
F, F,; ° °

Fl—("aB o = _ 1), 22

" (E Fz‘j) <° (Fyj — FiyF 5 Fyj) 1) (22)

where we use latin indices for the parameters { fxr,, £, €1, €2, €3, 7, 31, 72} and greek indices from
the early alphabeth for the theoretical error parameters {n(£q)}.. We did not write out explicitly



the other entries, since we are only interested in the effective Fisher matrix, after marginalizing
over the nuisance parameters coming from the theoretical uncertainty. To compute the effective
Fisher matrix, we need to know F, 3 and Fy;. Since the derivative of the bispectrum with respect
to the nuisance parameters ©,, is only non-zero for the corresponding bin, these contributions to
the Fisher matrix are particularly simple. We have

Fop = B (Ra)C5" (has his) B (Ag) + NoJ = Dap + N1 | (23)
and similarly
Fip = ZB Yk, kg)B™(kg) and F,j = ZBer SH(hayB)Bj(R).  (24)

This allows us to compute FZ-H by using (22). After some algebraic manipulations, we can rewrite
it in the simple form

' = ZB ) (NT(k. p) + C (k. p)) B +(C5Y),,. (25)

with NS eff = B (ko) NopB (kg). Again, the time dependence has been suppressed. In Appendix
B we present two alternative derivations of(25) and provide further detail.

In the next subsection we show the effectiveness of the current treatment of the theoretical
error. However, we believe the interpretation of this method, and its relation to the actual
situation, is a subtle matter. In particular, in Appendix B.3 we argue by means of a simple
toy model that this way of dealing with the theoretical error is certainly not the right way in
the extremes of zero and maximal correlation among the parameters. Namely, on the one hand
the theoretical error acts as shot noise per bin for zero correlation length, whereas for maximal
correlation it acts as a a single coefficient multiplying a fixed shape, effectively reducing the
uncertainty about its shape to one number. Neither of these cases correspond to the way we
believe the theoretical error should act. At the same time, Appendix B.3.3 shows that the effect
of the correlation length on the results is very mild. This suggests that the main reason our
method works so well is that our ansatz for the error is a much steeper function of k£ than
the signal, so that the size of the error is much more important than its shape. Thus, even
though our treatment of the theoretical error seems to work for the current case, we recommend
a conservative use of the method. In this spirit, we use the correlation lenght that gives the most
pessimistic results for the analysis, which we found to be [ ~ 0.5.

3.5 Testing the effect of the theoretical error

To test the method of integrating out the theoretical error, we study its effect on the constraints
on fyr, in a y?-analysis. To that end, we compare two types of analyses, one which includes the
theoretical error as outlined above, and one which does not. We generate a fake dataset with no
primordial non-Gaussianity to test the theory. Our datapoints are given by

D(k) = Bi12(k) + Ep(£) + cosmic noise, (26)

where we add some random noise, with variance equal to the cosmic variance, to each point. We
consider a survey at redshift z = 0 with volume V' = 10 (h~*Gpc)?, and restrict (k1, ko, k3) to
be the central values of the binned range [0.001, 1] hMpc~!, where we take 27 logarithmic sized
bins. The additional contribution to the bispectrum is given by

ki + ko + k3>(3+n)l (27)

Eb(]{}l, kQ, k/’g) = 3B112(k17 k27 k3) ( 3kNL

with n = —1.4, knr = 0.45 and [ = 2. This is exactly the ansatz for the two-loop contribution
to the bispectrum used in [15] and it is based on scaling universes [25]. In appendix B.5, we

10



compare the ansatz for the higher loop corrections Ep with our ansatz Bsss. As theoretical model
for the bispectrum, we use

Bth(é) = fNL . Bln(ﬁ) + Bllg(ﬁ). (28)

We now consider two analyses. In the first analysis, we neglect theoretical errors and take
only cosmic variance into account. In the second analysis, we use our ansatz for the higher order
corrections, namely Bsso, and we account for both theoretical error and cosmic variance. In
order to find the best fit value for fy, we minimize x%, which is given by

Xk = (D)~ B(8)) (Cnlh.p) + N(.p)) " (D(p) — BU(p)) +const,  (20)

see (92) in Appendix B. In the first case, we set N°I to zero. Minimizing y% yields

_ Buu(h) (Ca(h,p) + N4, p)) " (D(p) — Biia(p))

B (£) (Cp(k, p) + N°F(#,p)) ™" Bin(p)

and taking another derivative with respect to fyr allows us to compute the standard deviation

ESt(fNL) s (30)

1 —-1/2
o(fnr) = <3111(/€) (CB(ﬁ,,p) + Neg(’%P)) Bm(P)) : (31)
With the best-fit value of fyr, we can evaluate (XQB)re 4 and the p-value, which are given by
2
(XQB)red = WB and p-value = 1 — CDF,2(N, x3), (32)

with CDF, the cumulative distribution function of the x2-distribution, and N = Npins — Ngogs — 1
the number of datapoints minus one minus the number of fitting parameters. The p-value takes
values between 0 and 1. It gives the probability of finding a higher value for X2B if it was drawn
from a y2-distribution. Therefore, it should take values around to 0.5. If the p-value is very close
to zero, then the proposed theory vector is not a good description of the data. If the p-value is
close to one, then either one is overfitting the data, or the estimate for the noise is too pessimistic.

In Figure 2, we plot the estimate for fy; with errorbars, (XZB)re 4 and the p-value, as given in
equations (30), (31) and (32) respectively, for the two analyses. In the left panel, we show both
the results for the analysis in which the higher order corrections are neglected, and the analysis
in which we use B332 as an ansatz. In the right panel, we use 10 x B339 as error estimate to make
sure that our ansatz is always bigger than the true value of the higher order corrections. One
can check that Fp has a different shape than Bsso. For instance, in the equilateral configuration,
Ey is smaller than B33y on small scales (more optimistic). On the other hand, on large scales in
the equilateral configuration, and in the squeezed limit, it tends to be larger than Bsss (more
pessimistic). Upon multiplying the latter by a factor 10, we find a robust, conservative estimate
(see B.5).

In the left panel of Figure 2, we see that if we neglect the theoretical error (blue lines and
contours), we get the wrong value for the best fit value for fyr, because higher order corrections
are mistakingly interpreted as signal. Fortunately, the p-value singles out where the theoretical
description fails. Taking this into account, we get a reliable estimate for fyr, albeit with larger
errorbars, since we have to stop already at a relatively small k,,,,. From the analysis that
accounts for the theoretical error (red lines and contours), it seems we can continue the analysis
to a higher k,,q,.. However, the result we get for fy is biased, i.e. it is more than 50 away from
the actual value. The problem is that, in certain configurations of the bispectrum, our ansatz
takes smaller values than the actual value in the data. This tends to decrease the p-value. At the
same time, the p-value increases in the configurations where the theoretical error is overestimated.
The interplay of these two effects can lead to a p-value, which is neither too small or too large,
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Figure 2: The figure shows the results from the y-squared analysis for the data and theory given in
equations (26) and (28). In the left panel, we show the results for both the analysis in which the higher
order corrections are neglected (blue) and the one in which we use B33z as ansatz (red). In the right panel,
we use 10Bs32 as ansatz (green) instead. In the upper panels, we show the best fit value for fnr, (solid
line) as function of k4, and the lighter coloured regions correspond to the 20 errorbars. The dashed
vertical line corresponds to the largest value for k,,,, where the p-value is still between 0.01 and 0.99.

The second and third row show (XZB)re 4 and the p-value as function of k4.

and this gives rise to a biased estimate. Hence, if one wants to use the p-value as diagnostic
for kmaee and avoid biased results, it is important to have a fairly good understanding of the
form of the theoretical noise. Alternatively, one can work with an ansatz which is consistently
underestimating the theoretical error. In this case, the p-value should go to zero rapidly, as soon
as the theoretical error kicks in. As a double check, we did the analysis using 0.1E}; as ansatz
instead, which indeed gives unbiased results similarly to the case where we neglect the theoretical
error altogether. In general, when performing a datafit, if one has insufficient information about
the higher order corrections, it is therefore safer not to integrate out the theoretical error at all.
Summarizing, assuming the wrong shape for the theoretical error might lead to a false detection
of primordial non-Gaussianity.

In the right panel (green lines and contours), we show the same results, where now the ansatz
is always more pessimistic than the actual theoretical error (10 x Bsszy > Ejp). In this case, the
estimate for fyr is equal to the real value within 20. The p-value now is very large and it would
naively tells us to stop at some smaller k,,,... However, since we are obviously not overfitting the
data, this reflects the fact that our ansatz for the theoretical error is too pessimistic. Therefore,
we can safely evaluate the estimate for fy and the corresponding errorbar at the highest value
of kpqz, where the errorbar is frozen to a finite value. As expected, we find better errorbars than
in the case we neglect the theoretical error. This shows that integrating out the theoretical error
helps constraining fyr, as long as one is careful to take a conservative enough ansatz. In the
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next section, we take Bsso as ansatz for the theoretical error’.

4 Results

In this section, we present the main results of our analysis. First, we give o(fnr,) for various
surveys, comparing our results to [15] and [3]. Next, we study the correlations among the EFT
parameters for relevant surveys. Furthermore, we address the question of how much better the
constraints would be, if we were able to compute the two-loop bispectrum. Finally, we show that
the EFT of LSS clearly outperforms SPT in the constraints on fni,, where we assume the EFT
contributions to the bispectrum are part of the theoretical error in SPT.

4.1 Constraints as function of zy.x

In this subsection, we compute the constraints on fn; as function of maximum redshift for
surveys similar to the ones studied in [15] and [3]. This allows us to study the effects of shotnoise
and to compare our results with theirs. Furthermore, we show the effect of marginalizing over
the EFT parameters for these surveys.

4.1.1 A large redshift survey (comparison with Baldauf et al. 2016)

First, to compare with [15], we focus on local and equilateral PNG. In the following, we list
the specifications of the survey and the particular assumptions we make (in addition to general
assumptions for the Fisher analysis discussed in subsection 3.1).

e We assume a survey with maximum redshift of z = 5. We divide the survey in redshift bins
of equal volume, where the first bin runs from z = 0 to z = 1. We assume the survey covers
20000 deg?, which means that, with our choice of cosmological parameters, the volume of
each bin is given by V = 26.5(h~'Gpc)3. We approximate each bin to be a cube, so that
kmin ~ 0.002 hMpc_l. The maximum redshifts of all the redshift bins are given by®

{1.00,1.39,1.71,2.02, 2.31, 2.60, 2.89, 3.19, 3.49, 3.80, 4.11, 4.44, 4.78, 5.13}.

e We restrict (ki, ko, k3) to the values in the binned range [0.002, 1] hMpc ™!, where we use
15 logarithmic bins per decade”.

e At high redshift, the late-time non-Gaussian background is particularly small and so the
PNG signal becomes comparatively more pronounced. One the other hand, at high redshift,
there are also much fewer tracers and this degrades our ability to measure the distribution
of matter. To be able to capture this fact, we introduce a shotnoise that mimics what
happens for example in galaxy surveys. For the purpose of comparison, we adopt the same
convention for shotnoise as in [15], namely

i = bing(1 + 2)%, (33)

where we correct for the galaxy bias by = 2, since the shotnoise in [15] applies to galax-
ies, while here it has been translated to the dark matter density field. We choose ng =
1073h3Mpc 3 and o = —1.

"We checked that our results for o(fnr) change with less than a factor of 2, when we use 10Bs32 instead.

8Here, and in the next section, we make a particular choice of redshift bins. Larger redshift bins imply that
we can include more configurations of the bispectrum in the analysis, in particular more configurations in the
squeezed limit. At the same time, we fix the redshift of the bin to be the mean redshift, therefore, larger redshift
bins imply a smaller maximum redshift. Therefore, the choice of binning might affect the final result. We will
study a bin-independent approach in [31].

9This is a little less than 45 bins over the full range, corresponding to O(3000) triangles.
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Figure 3: In these plots we show o(fnr) as function of maximum redshift zy,.x for local PNG (left)
and equilateral PNG (right). We include shotnoise with the same specifications as [15] (orange and green
lines). For the green lines we used Ej as ansatz for BS, whereas for the other lines we used Bsss. The
blue solid line shows the result without shotnoise. The solid lines show the marginalized results assuming
Gaussian priors for the EFT parameters. The dashed lines correspond to the unmarginalized result with
the same color. Finally, the dotted blue line in the left panel corresponds to the curve o(21)/v'N with N
the number of redshift bins.

e When we marginalize, we assume for each EFT coefficient a Gaussian prior with ¢ = 10,
except for the EFT parameter £ for which we take o = 1.

e For B we consider both B33y and the ansatz Ej given in [15] (see (27)).

The results for o(fyr) are shown in Figure 3. We show the effects of the ansatz for B,
shotnoise, and marginalization over the EFT parameters.

We can compare our results with those found in [15] by looking at the unmarginalized results,
using their ansatz FEp for B®'. Thus, we should compare our dashed green lines with their
dotted red lines in the last columns of their Figure 6 and 7. We indeed find a reasonably good
agreement, given the fact that our analyses are not identical (different sky coverage, redshift
bins and cosmological parameters, and moreover the translation of their shotnoise to ours is not
perfect as we only took into account b1). This check confirms that our code runs as expected.

Let us now study the effect of the EF'T parameters. The solid lines in Figure 3 correspond to
marginalization over the EFT parameters, where we assume a Gaussian prior with ¢ = 10 for
each EFT coefficient, except for the EFT parameter £, for which we take 0 = 1. We see that
the results for local PNG are almost unaffected by marginalizing over the EFT parameters. The
constraints on equilateral PNG weaken by a factor of about two, however.

Using Bssg as an ansatz for B, we find slightly more optimistic results for local PNG, and
slightly worse results for equilateral PNG, as compared with [15]. This can be understood from
the comparison between Bsso and Ejp, shown in appendix B.5. Local PNG peaks in the squeezed
limit, and B33z is more optimistic than Fj in this configuration. On the other hand, equilateral
PNG peaks in the equilateral configuration, and in this configuration Ej is more optimistic.

If we neglect shotnoise, we find that the differences at low redshifts are even bigger for the
two ansatze. The difference is largest for local PNG, since B33z is an order of magnitude bigger
than Ej in the squeezed configuration, whereas the difference in the equilateral configuration is
only of the order of a few. However, at higher zy,x the differences disappear. This might seem
a bit strange at first. However, we should stress that what we find here is not the true result in
case of zero shotnoise. It turns out that with no shotnoise, we can always gain information in
the ultra squeezed limit, and at higher redshift we can actually go to higher k& than our choice
Kmax = 1hMpC_1. Since o(fnr) does not freeze before we reach kpax, this explains why the red
and blue curves can get close for high zp.x. In appendix B.5, we show these statements explicitly.
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For comparison, note that if we were to always gain signal up to the same k.« in each redshift
bin, we would find roughly the same o(fy1,) for each redshift bin'". Therefore, combining all the
redshift bins, we should find a 1/+/Nyns behavior if we neglect shotnoise. The dotdashed blue line
in the figure corresponds to o(z1)/v/Npins, which indeed resembles the blue solid line quite well.
This provides another indication that we can go up to higher k.. Interestingly, we find that
we can also go to much smaller scales for equilateral PNG than suggested by scaling estimates
for kmax (see for instance [15]). The squeezed limit allows us to extract more information, also
for equilateral PNG.

If we include shotnoise, it correctly cuts off the signal before we reach kpax, so these results are
reliable. However, one should keep in mind that, for more optimistic galaxy number densities,
we might still extract more information from the ultra-squeezed limit. For the number densities
we consider at the higher redshifts, shotnoise is the dominant source of noise. This is why we do
include shotnoise in our analysis.

4.1.2 Current and upcoming surveys (comparison with Tellarini et al. 2016)

Next, we compare with [3], using the specifications of the surveys Euclid [34], BOSS [35], eBOSS
[36] and DESI [37]. We have to consider the emission line galaxies (ELG), the luminous red
galaxies (LRG) and quasars (QSO) separately, as they are measured at different redshifts, and
have different number densities and bias coefficients. The specifications and assumptions are as
follows.

e For the precise number densities and bias coefficients as function of redshift we refer to
appendix D of [3]. Moreover, one can find here the fraction of sky covered by each survey.

e As before, we divide each survey in equal sized redshift bins. The boundaries of all the
redshift bins are given by

eBOSS (ELG) : {0.6,0.8,0.95,1.09,1.21} Viin = 2.8(h"1Gpc)?,
DESI (ELG) : {0.1,0.6,0.79,0.94, 1.07,
1.19,1.3,1.4,1.5,1.59,1.69,1.78} Viin = 5.4(h*Gpc)?,
Euclid (ELG) : {0.6,1.,1.28,1.53,1.75,1.97} Viin = 14.0(h™'Cpc)?,
eBOSS (LRG) : {0.6,0.75,0.87,0.98} Viin = 2.0(h"*Gpc)?,
DESI (LRG) : {0.1,0.6,0.79,0.94,1.07} Viin = 5.4(h*Gpc)?,
BOSS (LRG) : {0.,0.4,0.52,0.61,0.68,0.75,0.8} Viin = 1.3(h1Gpc)?,
eBOSS (QSO) : {0.6,1.,1.28,1.53,1.75,1.97,2.17} Viin = 6.6(h"1Gpc)?,
DESI (QSO) : {0.1,0.8,1.08,1.31,1.51,1.7,1.89} Viin = 11.0(h"1Gpe)?.

e We use ki, determined by the volume of each bin. Moreover, we choose the same binning
of the k-range as in Section 4.1.1.

e The ansatz for shotnoise is now 71(z) = b3(z)n(z), where we correct for galaxy bias, similar
as before.

e When we marginalize, we take the same prior as before. We assume for each EFT coefficient
a Gaussian prior with o = 10, except for the EFT parameter £ for which we take o = 1.

e As ansatz for the higher order corrections we use B = Bs3s.

10To good approximation: the entry of the Fisher matrix, corresponding to fnr,, will scale as F ~ D(a)®/D(a)® ~
1, if we neglect the loop corrections to Byg. Then, forgetting about the marginalization over the EFT parameters,
we find the same o(fnr) in each redshift bin, since we took the bins so that they have the same volume.
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Figure 4: We show o(fyr) as function fo zpax for local PNG. We use the specification from Euclid
(blue), BOSS (yellow), eBOSS (orange, purple and red) and DESI (green/yellow, pink and green). We
show both the marginalized (solid lines) and unmarginalized results (dashed lines).

The results for local PNG are shown in Figure 4. We plot o(fnz) as function fo zpax for the
four surveys. We show both the marginalized and unmarginalized results. After combining the
different galaxy catalogs of a survey, we get o(fnr) for each survey, as summarized in Table la
for local PNG and in Tables 1b and 1c for equilateral and quasi-single field PNG respectively.

We compare our results with [3] by looking at our unmarginalized results in Table la and their
results in the last column in Table 1 of their paper. We find much weaker constraints, varying
from 4 to 8 times smaller. This can be explained by the fact that we account for the theoretical
error, which freezes the errorbars. Therefore, including the theoretical error gives rise to more
conservative constraints. Moreover, scale-dependent bias could actually help us constrain local
PNG also in the bispectrum. In fact, redoing the analysis for Euclid up to kmax(2) = 0.1D(z), as
used in [3], with the same specifications, except that we ignore the theoretical error, gives o(fnr)
equal to 0.57, 0.71 and 1.3 (unmarginalized, including and neglecting priors, respectively). This
is roughly a factor three improvement from the results in Table 1a. The fact that this still does
not challenge the results from [3] seems to indicate that scale-dependent bias helps to improve
the constraints on primordial non-Gaussianity.

From the combined catalogs, we ultimately find o(f¢) = 1.8, o(fs%) = 11.4 and o(f&F) =
8.9, with priors on the EFT parameters, assuming the surveys are not independent. These results
do not change dramatically if we do not put priors on the EFT parameters. If the surveys are
independent, the constraints improve approximately with a factor 1/4/2 upon combining Euclid
and DESI.

4.2 Correlation coefficients

To gain intuition on how much the EFT parameters affect the constraints on fn, for local, equi-
lateral and quasi-single field PNG, we compute the correlation coefficients between parameters
¢; and 0;. These are defined as

-1
F;

T,’j = 7_1 _1.
Vi

The correlation coefficient takes a value between 1 (perfectly correlated) and —1 (perfectly anti-
correlated). In particular, the parameters are perfectly correlated with themselves. In Figure 5,
we plot the absolute value of the correlation coefficients for each pair of parameters. We make
the following assumptions
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a(f3%9) ‘ unmarg. with prior no prior o(far) ‘ unmarg. with prior no prior

BOSS 4.67 6.81 17.3 BOSS 16.89 29.86 37.99

eBOSS 4.91 6.6 14.15 eBOSS 17.25 26.88 33.4

Euclid 1.41 1.77 3.66 Euclid 7.46 11.37 13.66

DESI 1.66 2.18 4.68 DESI 7.18 11.4 13.48
(a) Local PNG (b) Equilateral PNG

qsf . . .
o(fnr) ‘ unmarg. with prior no prior
BOSS 12.57 23.65 27.26

eBOSS 13.1 21.43 23.49
Euclid 5.52 8.92 9.74
DESI 5.37 8.98 9.66

(c) Quasi-single-field PNG

Table 1: The final o(fny) for local, equilateral and quasi-single field PNG for each survey, combining
all expected galaxy catalogues. For the marginalized o(fnr), we put a Gaussian prior on each EFT
coefficient with ¢ = 10, except for the EFT parameter £, for which we take ¢ = 1. In the last row, we
also show the marginalized results, without prior on the EFT coefficients.

e We use the same binning in k-space as in Section 4.1.1.
e We use the redshift binning and shotnoise from Euclid, as given in Section 4.1.2.
e As ansatz for the theoretical error we use B = Bgso.

o We do not marginalize over the EFT parameters. The marginalized results are quoted in
the text below.

We find that the groups of parameters {, €1, €2, €3} and {7, 71, 72} have strong correlation
among themselves. The correlation between fy; and the other parameters is, however, small.

For local PNG, we find fxr is mainly correlated with v, 1 and €3, with correlation coefficients
0.44, —0.43 and 0.29 respectively. The other correlation coefficients are in absolute value smaller
than 0.2. If we include a Gaussian prior on the EFT parameters, with the same variances as
before, the correlation coefficients become 0.12, 0.08 and 0.14.

In case of equilateral PNG, we find fyr has appreciable correlation with &, €, €3 and 79
,with correlationcoefficients 0.43, —0.39, —0.47 and —0.27 respectively. Including priors on the
EFT parameters, we find they become 0.14, —0.05, —0.30 and approximately zero. This could
motivate further study on the Gaussian EFT coefficients, see for instance [38]. It is surprising
that fy" is not extremely degenerate with &, since the latter comes with an additional k? scaling,
similar to equilateral non-Gaussianity. It turns out, however, that the full shapes are sufficiently
distinct. This will make it easier to constrain equilateral PNG from the bispectrum than naively
thought. Then, for quasi-single-field PNG, we find that f,; is mostly correlated with e3 and
v, with correlation coefficients —0.26 and 0.31. Including the priors, they reduce to —0.18 and
approximately zero.

Summarizing, although the ignorance about EFT parameters does affect the final result, for
reasonable priors this is only a small effect, especially for local PNG. This indeed agrees with
what is seen in Figures 3 and 4, and Table 1a.

4.3 Higher loop corrections

We can ask ourselves whether it is useful to compute the bispectrum up to two loops in gravita-
tional non-linearities. Note that our analysis does not depend on the actual value of the two-loop
bispectrum, as there is no theoretical parameter in front. This means we can simply assume that
we have computed all diagrams, neglect the counterterms, and assume the theoretical error is
given by the SPT three loop bispectrum B??L. Again, we do not know what it is, so we have to
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Figure 5: In these plots we show the correlation coefficients r;; for each pair of theoretical parameters.
We include shotnoise with the same specifications as Euclid and included all information up to redshift
Zmax = 2. A value of 1 (black) corresponds to perfectly correlated or anti-correlated. A value of 0 (white)
corresponds to no correlation.
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make an ansatz for it. Here we use the ansatz for the higher loop corrections from [15], given in
(27), since it is easy to compute''. For a rough estimate this should suffice. We estimate B:?L
using scaling universes [25]. We choose'? Ej with n = —1.5, kxr, = 0.5 hMpc™! and [ = 3 (see
(27)). Using the specifications from Euclid, we perform the Fisher analysis with both Bsgo and
Bs1, as order of magnitude estimates for the noise. We collect the result in Figure 6. This shows
that the constraints would improve if one computed the two-loop corrections to the bispectrum.
The precise values are given in Table 2, where we consider all surveys again. The tighest con-
straints on local, equilateral and quasi-single field PNG improve with a factor 1.2, 1.3 and 1.3
respectively with this particular choice for B:?L- If it turns out we can get constraints on PNG
close to the theoretical benchmarks, it would then be worth computing the two-loop corrections.
It might be time consuming, but otherwise much cheaper than doubling the survey volume.

1 An alternative - more in line with our two loop ansatz - would be to compute the reducible diagram of Bass
as order of magnitude estimate of BS;. However, we point out that using only one diagram is dangerous. For
instance, in [14] we considered only one of the two reducible two loop diagrams in our qualitative analysis, namely
Bl,,. In the squeezed limit, the two loop contribution turns out to be much larger if we include Bii,.

2We choose a larger kxny than for the two loop estimate, since this scale determines when the three loop
correction equals the lower order corrections. Since we are doing a perturbative expansion, we assume this happens
at a smaller scale than when the two loop correction becomes equal to its lower order corrections. Moreover, each
loop will scale as k/knr to the power 3 + n, where n will be of order of the scaling of the power spectrum at the
non-linear scale knr. The power spectrum is steeper on smaller scales, therefore we take a more negative value
for n. Each loop has this scaling, so we have to take [ = 3, in case of three loops.

18



a (%) ‘ 2 loop 3 loop o(fr) ‘ 2 loop 3 loop ol ](\1752) ‘ 2 loop 3 loop
BOSS 8.73  6.05 BOSS 278 19.14 BOSS | 23.66 16.65
eBOSS | 7.12  6.07 eBOSS | 22.99 18.44 eBOSS | 19.15 15.59
Fuclid 2.14 1.75 Fuclid | 10.22 7.83 Euclid 8.52 6.62
DESI 2.62  2.09 DESI 10.2  7.81 DESI 8.46 6.6

(a) Local PNG (b) Equilateral PNG (c) Quasi-single-field PNG

Table 2: The final o(fnr) for equilateral and quasi-single-field PNG (left and right), for each survey,
combining all expected galaxy catalogues. For the marginalized o(fn,), we put a Gaussian prior on each
EFT coefficient with o = 10, except for the EFT parameter £, for which we take 0 = 1. In the last row,
we also show the marginalized results without prior on the EFT coefficients.

Approach B =B§ +... B = B33+ ... ‘ a(fiS) o(fay) o gfsi)
EFT (G+NG) +BJ'¢ + BYop + BRS, 177 11.37  8.92
EFT G+SPT NG +B)'¢ + B pr BS + BYG 1.78  11.37  8.92
SPT (G+NG) +B{'¢ +BEEr + B e 6.11  27.61 21.76
SPT (G+NG tree) +BYEG +BNS + BS o + BNY | 717 3058 2423

Table 3: We show the contraints on primordial non-Gaussianity of the local, equilateral and quasi-
single-field type (last three columns). In the first row, we use the EFToLSS for both the Gaussian and
non-Gaussian part of the bispectrum (‘EFT (G4+NG)’). In the second row, we only use the EFT for
the Gaussian part of the bispectrum, and include the non-Gaussian counterterms in the higher order
corrections (‘EFT G + SPT NG’). Then, in the third row, we use only the SPT for describing the
bispectrum (‘SPT (G+NG)’). In the last row, we only include the tree level non-Gaussian contribution to
the bispectrum (‘SPT (G+NG tree)’). The second and third column denote all the contributions to the
theoretical description of the bispectrum B, and the higher order corrections B°" respectively.

4.4 EFT of LSS versus SPT

In the EFT of LSS we are forced to include free parameters over which we have to marginalize.
Above, we saw that this marginalization weakens the constraints on fyt,, be it only mildly. One
might therefore wonder how much the improvement actually is over a more conservative approach,
in which one uses only SPT results for B* and moves all other gravitational contributions to
the theoretical error. In this section we confirm that the EFT approach always performs sizably
better. We consider a couple of options, for different choices of B™ and B®*, and compute the
constraints. We use the specifications from Euclid as given in the previous section.

Table 3 shows our results, which include the usual Gaussian priors for the EFT parameters
whenever they are included in B*. The second and third columns give the theoretical description
of the bispectrum B and what we consider to be the unknown B€. For the latter, we sum the
absolute values of all contributions indicated in the table. The EFT contributions, except for
&, are multiplied by a factor 10, consistent with the priors we chose when we included them in
B™ . The first row of Table 3 corresponds to the results we find in the ‘with prior’ columns of
the ‘Euclid’ rows of Tables 1a, 1b and 1c.

We find that including the non-Gaussian counterterms does not improve the bounds on fyr,.
This could have been anticipated from the qualitative results in Figure 5 - 7 of [14]. We see
that the counterterms are negligible in many configurations. Apparently, they are negligible in
most configurations. However, using the EFT for the Gaussian part of the bispectrum performs
significantly improves the results compared with just the SPT predictions. We find that the FF'T
of LSS improves the constraints on PNG approximately by a factor 3. Finally, neglecting the
one-loop non-Gaussian contribution to the bispectrum makes only about a 10% difference. This
is consistent with the observation that the non-Gaussian counterterms are not very important,
as the non-Gaussian one loop correction itself is not very relevant.
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5 Discussion and Outlook

In this work, we have presented how the EFT of LSS helps us improve the constraints on primor-
dial non-Gaussianities (PNG), using the matter bispectrum as observable. We have accounted
for intrinsic theoretical uncertainties in the perturbative description, and studied in details their
modeling in a Fisher forecast.

Our main results are given in Table 3. The forecasted values for o( fn ) for the local, equilateral
and quasi-single field types of PNG are presented. Moreover, we show that the EFT approach
improves the constraints on PNG by almost a factor 3 with respect to the results from SPT.

Limitations Let us first discuss the limitations of these results. We would like to compare
the constraints we find with theoretically interesting benchmarks and constraints coming from
the CMB. However, we should be careful in making a direct comparison, as there are other
sources of non-linearities and noise that we have not accounted for in our analysis. First, we
have modeled the matter bispectrum. To relate it to the observed galaxy bispectrum, we have
to include galaxy bias and redshift space distortions. These introduce new uncertainties, leading
to worse constraints. However, considering the results found in [2,3], scale-dependent bias might
actually improve the constraints on (only) local PNG, since it enhances the non-Gaussian signal
in the bispectrum. Second, except for shotnoise, we neglected all observational sources of noise.
Survey geometry and survey mask may increase the errorbars as well. For instance the authors
of [6] found that the errorbars increased by a factor of 4-5. Errors in determining the redshift of
galaxies are another source of observational noise. Third, we made some simplifications in the
Fisher analysis itself, such as neglecting the covariance between different points of the bispectrum.
Combining this with the covariance induced by the survey geometry could further increase the
errorbars by a factor of 8 [39].

Improvements On the other hand, there are also ways the constraints could be improved.
First, we have used the specifications of Euclid to get a reasonable estimate for the limitations
due to shotnoise. This determined our final forecasted result for o(fxz). It might well be
possible, in a more futuristic survey, to optimize the number densities of galaxies and redshift
range to be more suitable for constraining PNG (see for instance [2]). Moreover, we should
perform a joint analysis of all large scale structure surveys. We have assumed for simplicity that
we can do as well as the single best survey, which turned out to be Euclid for the four surveys
we considered. In principle, we can do better if the surveys are not all precisely overlapping.
Similarly, we should combine the results from different observables. For instance, we should
perform a joint analysis of the power spectrum and bispectrum. This could improve the results
by a factor of 2 for local PNG. Combining the results found in [3], and using the multitracer
technique proposed in [40] instead, which could improve upon the constraints from the power
spectrum by a factor of about 7. In addition, the trispectrum might turn out to be an important
probe for non-Gaussianity, since linear theory works for a larger range of scales compared to the
bispectrum [41]. The one loop corrections to the trispectrum in the EFT of LSS have recently
been computed in [42]. Last, we divided the full redshift range in smaller redshift bins, and only
considered correlations within each redshift bin. If we also include correlations among galaxies
separated by a larger distance along the line of sight, we might extract more information from a
given survey. We will discuss the issue elsewhere [31]. Finally, our focus here was on near future
galaxy surveys, but of course our results will be relevant in the future also for 21 cm survey (see
e.g. [43]).

One of our main results is that the EFT approach helps constraining PNG. The improvement
comes completely from the EFT corrections to the late time gravitational non-linear evolution
of matter. Both the SPT loops and EFT corrections to the primordial non-Gaussian signal,
discussed in [14], do not help much improving the constraints.

Comparing our results with the theoretically interesting benchmark o (fy; ) ~ 1, we see that it
does not look promising for equilateral PNG. Even with zero shotnoise, as we can see in Figure
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3, we barely touch the theoretical targets. Our lack of understanding of matter non-linearities is
already an important obstacle to reach o( f]e\?L) ~ 1. The same applies to quasi-single field PNG.
Additional sources of non-linearities such as bias and redshift space distortions will make things
worse. On the other hand, for local primordial non-Gaussianity, things look more promising.
Matter non-linearities can be modeled well enough to get close to o( }\?E) ~ 1 from large scale
structure experiments.

We can ask whether N-body simulations can help reaching better constraints on primordial
non-Gaussianity. As pointed out in [15], using end to end simulations, without any perturbative
input, will most likely be insufficient to reach o( f]e\?L) ~ 1. The reason is that simulations
do not solve the exact problem but make a series of approximations, such as for example the
particle mesh and tree approaches to solve Poisson equation, finite size effects and approximate
initial conditions. Currently, simulations reach approximately 1% precision [44,45]. Heuristically,
looking at our Figure 1, we see that the PNG signal we are trying to extract is much smaller
than that, so large improvements in the precision of simulations are needed. Alternatively, one
can use N-body simulations to determine the EFT parameters'®. We can then look directly at
the unmarginalized columns in Table 1c. We see that, even in the very optimistic case that all
relevant EFT parameters at one loop are fixed, o(fy}) still remains around 7.

Theoretical error Another goal of our paper is to clarify some aspects of the modeling of
theoretical uncertainties in forecasting observational constraints, and, eventually, in analyzing
data (see Section 3.5 and Appendix B). We introduced the concept of correlation length in Section
3.4, along the lines of [15]. In Appendix B, we argued that the choice of correlation length in
integrating out the theoretical error is subtle and no “right” choice can be established a priori.
However, in our particular analysis, we hardly find any dependence on the correlation length (see
Figure 7). In future studies, with different observables and different perturbative approaches, we
believe that an analysis on the choice of correlation length should be always performed.

In Figure 2 we have seen that assuming the wrong shape for the theoretical error can lead
to biased results in a y2-analysis. Therefore, if we want to fit to data, we need good estimates
for the higher order corrections. For instance by using estimates from N-body simulations, or
alternatively, by computing additional two-loop diagrams.

Outlook Our work can be extended and improved in different ways.

e Instead of dividing the survey volume in redshift bins and only consider correlations within
these bins, it would be interesting to see how much we gain including all possible cross-
correlations across redshift bins. This is work in progress [31].

e It would be interesting to perform a similar Fisher analysis with an updated study of
covariance effects due to geometry, masking and non-Gaussian gravitational evolution.

e We should join all forces. It would be interesting to do a joint analysis of multiple observa-
tions, such as the CMB, LSS surveys and the 21 cm observations. Moreover, all the different
LSS surveys should be combined to have maximum constraining power. Furthermore, the
results from the power spectrum, bispectrum and trispectrum should be combined too.
Finally, on the theory side, one should also try to use results from N-body simulations as
soon as our perturbative description starts to break down, i.e. when the theoretical error
becomes dominant.
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A Explicit Results for the Bispectrum

The purpose of this appendix is to provide, and to some extent clarify, explicit expressions for
the bispectrum in the presence of primordial non-Gaussianity. This is essentially a summary
of [14], so we refer the reader to that work for a thorough discussion and explanation of these
results. We adopt the same notation, which we summarize in Appendix D.

A.1 Perturbation Theory in the EFT of LSS

In the EFToLSS, the equations of motion for the density contrast § and the velocity divergence
0 = 0;v" on large scales are

60+60 =S, , (34a)
3
(6, +H)0 + §Qm7-[25 =S+ . (34b)

Here the source terms S, g are the standard nonlinear terms in the Euler equations, which, in
Fourier space, are given by the following convolutions,

Soller) == [Lalp - p)(p. 3k~ ala ko) = SR G
2 .
Syller) == [ oA 00— p.7) Bl ke) = EUEERE )

Clearly, we neglected large scale vorticity and large scale velocity dispersion in (34). However,
the backreaction from unknown short scale physics is taken into account through the effective
stress tensor 7p. A complete description and motivation of this term in the presence of primordial
non-Gaussianity was the main purpose of [14]. Here we just quote the leading contributions for
the types of non-Gaussianities we consider, to first order in fnr,,

1o = —d> NS — e1 A(0?) — e2 A(5?) — e30;(570;0)
— INL[9( AW = 0;(60"W)) + g1 A(WE) + g20:0;(¥sV)] (36)

where A denotes the Laplacian, and the coefficients in this expression are functions of time only.
The equations are formally solved using a Green’s function method

d(k,a) = D1(a)d1(k) + / Gs(a,d')[Ss + 19 — HO,(aSa)] - (37)
Here 41 (k) is the growing mode initial condition, and D;(a) is the linear growth factor
5 H [ dd
Di(a) = =HZQ, = | 38
l(a) 2H0 mo, /am H3(a’) ’ ( )

which in Einstein-de Sitter reduces to Di(a) = a/a;,, where a is the scale factor. This equation
can be solved perturbatively in terms of the linear solution, yielding

o0

S(k,a) =Y 6onT(k,a) + 67, (k, a), (39)

n=1
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where 6(85)T are the standard perturbation theory (SPT) terms (see [5]), sourced solely by S, s:

Son " (k, a) ~ D?(a)/k / 2m)%6p (k — ki..p) Fr(ki,- ... ky) 01(ki) ... d1(ks);  (40)

and 5"n) is the ‘counterterm’ contribution, i.e. the terms proportional to one of the free parameters
in (36), which we write as

(cn)(k,a):/ / (2m)%0p (k — ki) FS(ka, . ., knla) 81y (ki @) . .. 61) (kn, )
kl n

+fNL/k /k (2m)*6p (k — k1..n) Hy(ka, ... knla) (k1) ... 61y (kn,a) . (41)

Note that we have not specified the time dependence of the free parameters yet, which is why the
counterterm kernels are still time dependent. It turns out that at first order in the perturbations,
this is not really an issue, as the time dependence is just given by an integral of the Green’s func-
tion over some unknown function of time, which yields some other unknown function. However,
in order to get the momentum dependence right at second order, we have to make an assumption
about the first order terms. A convenient ansatz is

d*(a) = [H(a) f(a)*[Dy(a)]™** d? (42)
9(a) = [H(a) f(@)*[Di(a)] ™ g, (43)

which in Einstein-de Sitter reduces to (d?,g) « a™¢. Then the expressions for the counterterm
kernels at second order are as follows. We split up the kernels in the following way

F5(ki1, ko|a) = F3 (ki, kala) + F5¥ (ki, kola) + F2 (ki, ka|a), (44)

where the terms coming from the new counterterms at second order are

F3 (k1,kala) = = > ei(a)Ei(ky, ko), with (45)
Ei(ki, ko) = k%jl (46)
Es(ki, k) = ki, [&2%:222)2 - ;] : (47)
Bs(ki, ko) = [—ékﬂ + %kl ko [kmk'%lq + k”k'%kl” , and (48)

0 =~ A Golond) D) Pt (49)

Furthermore, the terms coming from plugging the lowest order counterterm back into the equa-
tions of motion are

F5P (K1, koa) = —£(a) Eqp(ki, ko), with (50)
Ealla k) = ot 2600 de) (0 +19) (51)
22(:;3::;) (a(kl,kz)(kg +(mg+2)k2) + {1 & 2})], and  (52)

2

§(a) = [D1(a)]™e* d? . (53)

Finally, the term from the second order contribution to the density is

(md + 1)(2md + 7)

FL(ky, kala) = —€(a)Es(ky, ky), with (54)
Es(ky, ko) = Ex 1 ;;gx j: 8 k2, Fy(ki, k) . (55)
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Similarly, for the non-Gaussian kernels we have
HS (K1, kola) = H3 (ky, kala) + HS? (ki, kola) + Hy (ky,ko|a) (56)

where second order counterterm contribution is

2

Hj (k1. kaa) = — > 7i(a)Gi(kq, ka), with (57)
=1
G1(k1, ko) = ki,, (58)
. 2

Go(ky, ko) = w ~ L and (59)

K2 3

) - _ 1 ¢ / N

o) =51 / e Gafa ) Da(a)oi (o), (60)

Subsequently, the convoluted first order counterterms give

Hy” (1, kala) = —v(a)Gag(ki, ks), with (61)
Goplki, ko) = 2m4+7 Bk, ko )k? (62)
2mg, + 5
T D m, 77 (e + Dtk ka) + ol k)b, and - (63)
2 S
v(a) = W[Dl(a)} otlg. (64)

Lastly, the second order contribution to the lowest order counterterm is given by

HY (k1,kola) = —v(a)Gy(ki, k), with (65)
mg(2mg + 5 k; -k
Gy(ky, ko) = o(2my +5) K22 _kyp k| (66)

(mg+1)(2mg +7) k%

A.2 One Loop Bispectrum

Having obtained perturbative solutions for the evolved density contrast in terms of the initial
field, we can compute correlation functions using the statistical properties of the initial distribu-
tion. Along the lines of the discussion above, we decompose the bispectrum as

Biot = BSpr + Bipr + faL (BgPGT + BSFT) . (67)

The expressions for the Gaussian part of the bispectrum at one loop were given in [12] and [13],
and read

Bgpy = Bz + [3114 + Bigs + Biy + 3222} (68)
3
Bgpr = fBgG + Z €iBe;, (69)
i=1
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where
Bi12 =2F5(ky, ko) P11 (k1) Pi1(ka) + 2 cycl. perms (70a)
Bz =8 /p Fy(=p,p + k1) Fa(p + ki, —p + ko) Fa(k2 + —p, P) (70b)
Pri(p)Pui(lp + kif) Pru(|p — kal),

B, =6Py (ks) / F3(—p,p — ko, —k3) Fa(p, ks — p) P11 (p) Pr1(|p — kao|) + 5 perms,  (70c)
p

B§1211) =6F5(ko, k3)Pr1(k2)Pri(ks) / F3(=ks,p, —p)P11(p) + 5 perms, (70d)
p
B411 :12P11(k2)P11(k3) / F4(p, —P, —kg, —k3)P11(p) + 2 CyCl. perms. (706)
o

Here Pji(k) is the linear power spectrum, whose time dependence is implied. Furthermore
BSG = -2 [Eag(kl, kg) + E5(k1, kg)] P11(k1)P11(k2) + 2 perms, (71&)
Bei = —2Ei(k1, kg)PH(kl)Pn(kg) + 2 perms. (71b)

The non-Gaussian contribution at one loop is

BYSh = Bun + | Blls + B + B, + BR), (72)
Bhpr = 53?(; +7B, + 22: YiBy,, (73)
i=1
where
B§I1)3 = 3P (k) /p F3(ki + p, —p, k2)Bi11(k1, p, ki + p|) + 5 perms, (74a)
Bi1 = 3B (ky, k2, ks) /p Fy(ki1, p, —p)Pii(p) + 2 perms, (74b)

B, =4 / Fy(ks + p, —p) Fa(p, ko — p) B (k1, |ks + pl, [k — p|) P11 (p) + 2 perms,  (74c)
P

ng) = 2F5(k1, ko) P11 (k2) / F>(p, ki — p)Bi11(k1,p, k1 — p|) + 5 perms, (74d)
P
and
B?G = — (K} + k3 + k3) Bi11(k1, k2, ks), (75a)
BW = — [Gag(kl,kg) + qu(kl,kg)}PH(kl)le(kQ) + 5 perms, (75b)
B, = —Gi(ki, ko) P11(k1) Pry(k2) + 5 perms. (75c¢)

Again, the time dependence of the correlation functions is implied. Finally, we have to specify
the type of non-Gaussianity. In this work we consider the primordial bispectra given in 2.2.
The corresponding correlation between the linear density field and the first order non-Gaussian
counterterm 1) (see (41)) is given by

A
Pro(e) = EI0Z b (), (76)

where p is some arbitrary momentum scale, introduced for dimensional reasons, which cancels
when multiplied with the EFT parameter in the full contribution to the bispectrum. We therefore
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set it to unity in the numerical evaluation. In our case the k-dependence is respectively given
by A = {0, 1,2} for local, quasi-single field and equilateral type non-Gaussianities. The transfer
function was defined in (7). For this work we choose the time dependence of the lowest order
counterterms (42) to match the divergence it is supposed to cancel, which corresponds to the
choice mg = my = 1. This is was argued for in [27]. Moreover, our main results do not depend
much on this assumption.

A.3 Ansatz Two Loop Bispectrum

As an ansatz for the two loop bispectrum we compute the two reducible two loop diagrams, given
by [12],

Pi3(k1) Pi3(k2)
2 2

Blay =2F5(ky, ko) + 2 cycl. perms (77a)

Pia(k
B~ ) / F5(—p,p — ko, —k3) Fa(p, ks — p)Pi1(p) Pr1(|p — ka|) + 5 perms,  (77b)
P
with
Pis(k) = 6Py () / Fy(k, p, —p) Pt (p)- (78)
P

As an estimate for the theoretical error we use

Bssg = |B§32‘ + |B:Iag2 . (79)

B Theoretical noise

This appendix contains the details of the implementation of the theoretical error and further
investigates some issues related to it. First, we give the intermediate steps to derive (25) and
provide an alternative derivation of the effective Fisher matrix in the presence of theoretical
error. Then, we study the effect of the correlation length, both by means of a toy model and by
running the analysis for several correlations lengths. Finally, we discuss in more detail the effect
of the two possible ansétze for B.

B.1 Derivation of (25)

Let us first show how to go from equations (22), (23) and (24) to the effective Fisher matrix
given in (25). We will need to use the Woodbury matrix identity several times, which relates the
inverse of sums of matrices to their individual inverses

(A+B)yl=A1—at (A 4B ) 4l (80)
By using this identity, we can rewrite (23) as
-1 -1 -1 -1\l -1
Fog= (N + Dop) ™ =Dz~ Doy (N+D )75 Dy (81)
This allows us to compute
F\Fs; = 3 B(K)CO ' (,£,)B% (k,) (D' = D™ (N + D) "' DY) B (ks)C~ (k5. p) By (p)
R,p
= Bi(k)S s, ( Hhiayhig) — rl (N + D_l>a_ér1> S0 Bji(P)
— 5 (k) B (1)
Bi(g)
N+ D~
Ber ( + ) )aﬁ Ber(k )
ﬁaﬁﬁ
_ Bi(£g)
1 B
-y & B DN+ D)D), T
ek
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Here summation over the Greek indices is understood. Upon applying the Woodbury identity
again, the effective Fisher matrix then becomes

Bj(fs)

. Bi(ka) L _
= 3 B (0o o), ) g,
ﬁ,a,ﬁﬂ
Bi(ﬁa) _ —1B(ﬁ/3) —
= Z B, (N+D 1)a,3 JBE +(C@1)ij (82)
fiohs
-1
— 3" Bi(ka) (NGH+CB)Q6 Bj(hs) + (C5"),,
hiokis

with NST = B (ko) Nag B (kg).

B.2 Alternative derivation of the effective Fisher matrix

Next, we present a slightly different derivation of the effective Fisher matrix, by marginalizing at
the level of the likelihood function. Let us first expand x? = —21log(£) in the nuisance parameters
©.. We would like to expand about some value O, to get

_ _ _ 1 _ _ _
XZ(@% Oq) = X2(@i7 Oa) + (Oa — Ga)Xi(@ia Oa) + 5(904 - @a)(gﬁ - eﬁ)XiB(@iv Oa), (83)

where summation over repeating indices is understood, and the index « on x? denotes a derivative
with respect to the corresponding nuisance parameter. It is an equality, since the variables are
Gaussian distributed. We can rewrite this expression in more compact notation as

1
X2 = X2+ 00X, + ia@aé@ﬁyaﬁ, (84)
where X(Q) is the chi-squared we would get if we ignored the presence of the nuisance parameters
O4. By completing the square and adding some prior information on the nuisance parameters

(i.e. a covariance matrix), we can integrate them out to get an effective chi-squared. In other
words, we would like to evaluate the following integral

1 1 1
/ dV O, exp <—2 <X3 +00%X, + 25@a5@ﬂYa5>) exp <—26@Q(N_1)a556)5> . (85)

where N,z is the covariance matrix of the theoretical error parameters. The integration results
into

1 1 _
\/(271’)N ~det((3Y + N-1)~1) exp <—2x% + 1X7 (Y + 2]\7_1)761 X5> , (86)
and therefore,
1 _
xér = X — 5 X (Y +2N71) 5 X5+ In (det((3Y +N71)). (87)

Please note that all these terms do in general depend on ©;. Since the joint probability distri-
bution of all parameters is a multivariate Gaussian, we know that Y is independent of ©; and X
only depends linearly on ©;. In that case, we get

1 _
(ngf)ij = (Xg)ij - §Xi (Y + 2N_1)751 Xsj- (88)

The full Fisher matrix is given by

1 —1 1
ly s+ N7} 1x,
F,, = 2tap aff  2°7Q) ]9
g ( 3Xis Fz‘j) (89)
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where we have to evaluate the matrices at the maximum likelihood value of the parameters. This
means that the effective chi-squared is given by

2 2 -1
(Xeff)ij = (XO)Z']‘ - 2Fi7ny6 F5j7 (90)
or, in other words, the effective Fisher matrix for the theoretical parameters is given by
ff 1
F5 =Fj;—F vE s Fsj- (91)
This is what we found before in the main text.

Alternatively, starting from (88) we can write down immediately the expression for the effective
likelihood
1

\/det (3Y + N1

[ 1
exp |—=

Eeff —

5 (- X,y + ¥ 3,)]

exp <430, AB(8) (C5 (k. p) — C5 (k) Bar (k)(D + N1 B (ks)C5 (ks p) ) AB(p)|
B det (D + N-1)

1 —1
AB(ky) (Cp+ NT)  AB(fs)] . 92
det (D + N1 kazh:ﬁ ( B )ag (hp) (92)

Here the difference between the data and theory vector AB is evaluated at the fiducial values for
the nuisance parameters O, (i.e. at zero in our case). Taking now two derivatives with respect
to the remaining theoretical parameters ©;, we find the effective Fisher matrix

FT = 3 By( (CB + Neff) ;Bj(/éﬁ) (93)
e

with N = B (ko) Nop B (k5).

B.3 Theoretical error - a toy model

In our approach, the theoretical error on the value of the bispectrum is modeled in the following
way. For every bin, we introduce a nuisance parameter that is drawn from a Gaussian distribution
with average zero and variance set by the estimated size of the theoretical error for that bin.
Importantly, we allow for non-vanishing correlations among these nuisance parameters, i.e. we
allow for a non-diagonal covariance matrix for them. The purpose of this appendix is to show that
both the limit of zero and maximal correlation among the parameters have a clear interpretation,
neither of which resembles the way we think the theoretical error should act. To be more precise,
we prove, by means of a simple toy model that still captures the essence of the real analysis, the
intuitive statements that:

e for zero correlation length, the theoretical error just acts as shot noise per bin;

e for maximal correlation length, the theoretical error acts as some free coefficient multiplying
a fixed shape function, which by definition we think is the wrong function.

B.3.1 Toy model

We consider measuring some observable d a total of N times and collecting the data d;. Our model
is d; = = + e;, with z a Gaussian random variable with variance o2, whose average, Z, we would
like to determine as well as possible. The e; are additional Gaussmn variables that represent the
systematic error or theoretical uncertainty in every measurement. Their averages and variances
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are ¢; and agi, respectively. One can think of this scenario as determining the average weight of a
group of people, knowing that their weights are Gaussian distributed with variance o2, where we
use a different weighing scale with a systematic error €; and some uncertainty in the measurement
characterized by a%u every time we weigh someone. Since the e; are uncorrelated with x, this
leads to the likelihood

N = 2)\2
(dl — X — ei)
log L = — —_—, 94
L (94)
=1
where 02 = o2 + 02,, assuming for convenience that o,,, = o, (the arguments below do not

depend on this assumption). Without any prior information on the systematic errors, they are
completely degenerate with T, so we do not expect to be able to learn anything about z in this
case. This can be verified using a Fisher analysis. We have

N AT7T
0'2 0'2
Fo=1 /% ¢ , (95)
2Ll Gl

where a,b = T, é;. Since we are ignorant about the systematic errors, we compute the marginal-
ized error on T,

0% marg = (F) 5z (96)
which can be computed using the block matrix inversion formula (see also (22)):
A BT
o r=(5 ). (o7)
then
iy N 1 =\ 1
O-ggc,marg:(A_BTD 1B) t= <2_21T1N><N1> = (98)
o5 05 0

as expected. In a realistic situation we do have some prior information about the systematic
errors. Here, and in the paper, we assume they are also Gaussian random variables with some
variance az,-i. Moreover, we allow for nontrivial correlations among the é;, which for the scales
could mean they were produced by the same machine for instance. This means we obtain the
updated likelihood

N (di — 7 — )2
log L = _Z;%‘g — 6 (Cil)ij €js (99)
where
Cz‘j =< €iej > . (100)

In the following, we investigate the effect of zero and maximal correlation length on a%mm,g.

B.3.2 Zero correlation

Let us first assume zero correlation among the systematic errors, leading to a diagonal covariance
matrix,

Cij = 020y (101)

In terms of the weighing scales this could mean all scales really come from different companies
with uncorrelated systematic errors. We now show that in this case the ignorance about the
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systematic errors acts as shot noise per bin; it simply updates the variance of the measurements
ad — ad For any covariance matrix, the Fisher matrix is

N 47T
F % i (102)
= s B .
21 0+ (C7y

Then, using the block matrix inversion formula, zero correlation leads to an error

-1

N 1 — 1 —
2 T
Oz marg = 0'72 - 0_73 1 % T %51] 1 (103)
94 9;
— N _1
1 1 1
= Z 2 41 1 (104)
E=RNCC I
- -1 N -1
1 1
= — = — , 105
5 ()] =[5l o

which is the same error one gets from assuming the likelihood function

N _
3 (di — )
=1 i

This shows that indeed for zero correlation the systematic errors acts as shot noise per bin. In
particular, this means the error on z can be made arbitrarily small by increasing the number
of measurements (if the o, do not grow too fast for additional measurements). The intuitive
reason is of course that in this model we expect the systematic errors to average out to zero in
the long run. This is clearly not what is expected of the theoretical error in the measurement of
the bispectrum.

B.3.3 Maximal correlation

Next we assume maximal correlation, which by definition means

Cij =< ;e >= \/@\/@T = 0,0j. (107)

Since this matrix has rank one (all columns are multiples of the same vector), it is not invertible
in more than one dimension. One way to deal with this is to introduce a regulator, such as a small
matrix ed;;, to break the degeneracy. Using our block matrix inversion formula, this is however
not necessary. In the notation of ((97)), we wish to compute D~!. Let us write D = S + C~1,
where S = —(5” The Woodbury identity then gives

(S+CcHt=5"1_g (st ) st (108)

Hence, we have to compute the inverse of S~! + C, where S~ = afldij, and C' = 0;0j. Conve-
niently, since C' is of the form o ()7, we can use the Sherman-Morrison formula to compute
the inverse

_ _ S(oi04)S
St+o)yt=9- —2— 109
( + ) 1+ O‘iSijO'j ( )
Plugging this into the previous formula, we find
S+ Yy t=gt gty %% %% (110)
1+ &g 1)

94
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This finally leads to the error on Z:

2 -1
O mars = |5~ @i . (111)
e Neg oi+ (Xe7)
In order to interpret this result, let us rewrite this expression as follows
) -1
SEPS £ QR DE 2 S (112)
74 T4 1+ Z(g)

where we have introduced the dimensionful parameter ¢ to keep the dimensions clean. Now
observe that we get exactly the same error on Z from the following likelihood function

N 7 _ Tiz\2 =2
di—x— 2%
logL:—ZM—e—. (113)

— 202 202
whose Fisher matrix is
% 0%21 > ? 2 (114)
2TE b+ =)

e o'd

F=

This means that the maximal correlation case is equivalent to having a single, unknown parameter
multiplying a known ‘shape’ function o; /0. In terms of the weighing scales this would mean that
we know in advance exactly the ratios between the systematic errors of the scales. In terms of
the bispectrum this would mean that we claim to know the theoretical error is exactly some
number times the two loop estimate we put in, which it is clearly not. Finally note that if we
choose all o; to be equal, which for convenience we take to be o, we find

-1
N N?Z 1 o2
2 d 2
S =44 452 115
r 03 030—12—1—0% N (115)

meaning the error on & can never get below the uncertainty in the degenerate parameter €. In
terms of the weighing problem this makes perfect sense, as this case is equivalent to simply
using one and the same scale for every measurement. In this case we never expect to beat the
unknown systematic error in the scale. In terms of the bispectrum this shows the importance of
the relation between the shapes of the non-Gaussian signal and the theoretical error. In fact, in
the maximal correlation limit we treat the theoretical error exactly the same as the EFT terms.

B.3.4 Conclusions

From the above example it is clear that in neither limit the implementation of the theoretical
error is completely satisfactory. Moreover, if the shapes are not too similar, the estimates from
both limits are probably too optimistic. For this reason we recommend a conservative use of the
method. In particular, we choose to use the correlation length that gives the weakest constraints
on fnr, as we show in the next subsection.

B.4 Choice of correlation length

In order to find the most conservative correlation length to work with, we ran a test computation
of o(fx1,). We did this at redshift zero with kmyi, = 0.001 AMpc™! and kpax = 1 hMpc~!, where
we divide the k-range in 9 (blue), 15 (orange), 27 (green), 45 (red) and 81 (purple) bins. We find
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Correlation length [ (red) and 81 (purple) bins.

that the weakest constraints are obtained for [ ~ 0.5, see Figure 7. This is therefore the value
we take for the analysis in the paper.

Remarkably, the error is actually very insensitive to the correlation length, despite the very
different nature of the effect of small and large correlation length. We believe the reason for this
to be the fact that our ansatz for the theoretical error is a much steeper function of k£ than the
non-Gaussian signal. The transition from the k’s for which the error is negligible to the region
where it is completely dominant is therefore very small, and the shape of the error is therefore
not very important in this case.

Another observation is that the error keeps increasing as we increase the correlation length
beyond 10 decades, whereas the k’s we consider only run over a couple of decades. This makes
the nuisance parameters almost maximally correlated for all these large correlation lengths. At
the moment, we have no good explanation for the fact that the error seems to keep improving,
other than it being a numerical fluke, perhaps related to the inversion of the correlation matrix.

B.5 Ansatze for higher loop corrections

We compare the ansétze for the higher loop corrections in Figure 8. It is a zoom-in of Figure 1,
where we now show in addition the ansatz used in [15], for the two and three loop contribution
to the bispectrum. Please note that in [14], we only showed one of the two reducible two loop
diagrams contributing to Bsss. Therefore, the plots look different now, in particular in the
squeezed configuration of the bispectrum. We see that in the squeezed configuration, the ansatz
Bjss is an order of magnitude smaller than Fj. This explains why we have to multiply Bsso by
a factor 10 in section 3.5 to get reliable results. Furthermore, we note that at redshift zero, Bsss
allows one to go to higher k. in the squeezed configuration, whereas Ejp allows one to go further
in the equilateral configuration (for fy bigger than 10). This explains why using B3y as an
ansatz gives more optimistic results for local PNG, whereas Fj} gives more optimistic results for
equilateral PNG (see section 4.1). Keep in mind also that the time dependence of the theoretical
error terms is different from the signal, making the signal stronger at higher redshifts.

Next, we consider o(fnr) as function of kpax at various redshifts in Figure 9. We do not
include shotnoise, but we integrate out the theoretical error. The result for local PNG is shown
in the left panel. We see that at redshift zero, the signal freezes out at some kyax < 1AMpc™!.
Furthermore, in agreement with what we expect from Figure 8, we see that using Bsso as ansatz
for the two loop corrections gives more optimistic results. More specifically, o(fnyr) is a factor 5
smaller. At higher redshifts, we find that o(fx1) does not freeze when we reach kpyax = 1hMpc~t.
We think this is due to the fact that we keep gaining information as we go to more and more
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Figure 8: Comparison of the ansétze for the higher loop corrections. We plot Ej, from equation (27) for
two and three loops (yellow and green dashed lines) versus Bsss (green dashed line) defined in equation
(77). For the two loop ansatz using Ej we take n = —1.4, knp, = 0.45hMpc™! and [ = 2 and for the
three loop ansatz we use n = —1.5, knr, = 0.50hMpc™! and | = 3. We compare these ansétze with the
non-Gaussian contribution to the bispectrum up to one loop with fyr = 10 for local, equilateral and quasi-
single-field PNG (red, blue and purple solid lines). In the left panel we compare the different contributions
in the configuration B(kr,k, k) where we varied k and fixed k7, = 0.012hMpc~". The smaller k the more
squeezed the configuration is. In the right panel we show the equilateral configuration B(k, k, k).

squeezed configurations. This is also important for equilateral PNG, shown in the right panel,
even though, o(fnz) does freeze out in this case. Interestingly, compared to scaling estimates
for kmax for equilateral PNG (see for instance [15]) we find that we can go to much smaller
scales than naively thought. The squeezed limit allows us to extract more information, also for
equilateral PNG. The fact that kpax = 1hMpc ™! is not large enough to ensure that o(fyz) is
frozen when we ignore shotnoise explains the results we find in section 4.1.

Local PNG Equilateral PNG

Zmax Zmax

Figure 9: We show o(fn) as function of ky,.y using Bsss and Ej as ansatz for the two loop corrections
(solid and dashed lines). In the left panel we show the results for local PNG and in the right panel for
equilateral PNG. The redshift takes values between z = 0 and z = 5. We use kyin = O.OOthpc_1 and
V = (27 /kmin)® at each redshift.

C Choice of binning and volume of the bins

In this appendix, we motivate the decision of section 3.3 to use logarithmic binning and exactly
computed values of Vio3.

C.1 Exact computation of Vo3

We will now explain how to compute Vis3 exactly and systematically by dividing all the bins
in ‘interior’ and ‘edge’ bins. Moreover, the selection of bins is now determined by whether it
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contains at least some valid triangles instead of the usual selection rule that the central point
should be a triangle.
Recall that Vi93 is defined as

V123=/ / / dp(ki + ko + k3). (116)
q1 Y q2 Y q3

We choose logarithmic binning, i.e. we have
~tame . Llamk
qi = |Q|z € ke 2 ,kie2 . (117)

The integrand above only depends on the relative orientations of the vectors and their lengths.
Fixing q; along the z-direction and q2 to be in the (x, z)-plane, their relative orientation is given
by 612 = 02. Now the lengths of these vectors, together with cjo, the cosine of 612, completely

1
Alnk,kgeQAlnk

1
determine q3. The length of qs is then restricted to be in [k3€_2 , which means

IINAS Lame)’
(k362 “) — ¢ - <k362 “) — ¢ - ¢

c12 € |—1,11N )
! ] 2q1q2 2q142

) (118)

where ¢; and g2 also take values within their bin. Then, if [-1, 1] contains the range on the right
for all values of ¢; and ¢o, we are dealing with an ‘interior bin’, and we get

/ derodqrdge ¢iqs = kiksk3 sinh®(Aln k). (119)
Finally, accounting for the fact that we fixed 61, ¢1 2 and the factors of (27r)3 we find

1
Viss = oo 82k k3kE sinh®(Alnk). (120)

(27)

This approximation breaks down when the two ranges are partly overlapping, in which case we
have an ‘edge bin’.
let us evaluate Vjo3 more precisely. We have seen that the integral simplifies to

]2
Vieg = / / / @ (121)
(27T)9 q1 q2 C12 e

where the ci2 is restricted to be in the range given above. This integral can therefore be rewritten
as

872 . n e
Vieg = 9/ / $¢1g2 max [07 <m1n [(ql + q2)?, k3R ! k] — max [(ql — )2, k3e At k])} :
(2) q1 Jq2

In other words we integrate over the overlap
[(a1 = )2 (a1 + @2)?] N [KFe™ 25 ke k] (122)

There are multiple possibilities:

e The overlap is always zero.

1 1 .
This happens whenever |q; + ¢2|max < k36_2Alnk or |¢g1 — ¢2|min > k362Amk. This means

we should exclude the cases k3 > (k1 +k‘2)6A1nk and k3 < ko. The latter is already excluded
since we have ki < ko < k3. The first leads to a constraint to select the bins, namely

ks < (kp + kp)er 1ok, (123)
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e The first range always contains the second range.

- YNV IAmek
This happens when |¢1 — ¢2|max < kze™ 2 and |q1 + q2|min > kse2 . So we need
both Alnk
ks > koe™ ™% — Ky
{kg < (kl =+ kz)efAlnk . (124)
In this case the volume takes the simple form
87 27272 1.3
Vigg = Wklk2k3 sinh®(Alnk). (125)

e Any other type of overlap.
For the other cases we have to compute the actual volume of the bin. We will numerically
perform the integral given above. This is when one of the two options below is satisfied

{ kg < erAInk — k1

kg > (kl + k2)6—Alnk (126)

Not for all these edge bins the central point has to be a triangle, since there are some cases
for which k3 > ki 4+ ks, considering the second inequality. Thus, we can either decide to
define another point in the bin to represent the central triangle or we can merge these bins
with one of their neighbors. In the first case a valid central triangle in the bin (kq, ko, k3)
is given by

k3 k3 _ ks
<k~1€2(k2+k1) , koe2(katk)  kge 2(katkr) (127)

The other option is to merge (i.e. we add the volumes) the bin with one of its neighbors,
which has the advantage that we never have to change the representing triangle of a given
bin. For practical reasons, we choose this option. We implement this by merging each bin
k for which k3 > ki + ko with the bin p which has p; = k1, po = ko and p3 the biggest
value below or equal to k1 + ko.

C.2 Logarithmic versus linear binning

Let us now compare logarithmic binning with linear binning. We will show two examples of a
computation of a Fisher matrix and show that the linear binning might cause problems.
We assume the following form for the Fisher matrix

Vias

)
5123

F= Y f(ki k2 ks)

k1,k2,k3

(128)

for some function f(k1, k2, k3). We will consider a ‘local’-type function f'°¢ and an ‘equilateral’-
type function f¢4. The local function corresponds to assuming the late time power spectrum
scales as P(k) ~ k=3, where F represents the (fyr, fnr)-component of the Fisher matrix for
local PNG. Forgetting about the right normalization, this gives

132 13/2 13/2 2
£ (K, ko, k) = szt saaz T 3 (129)
k§/2k§>/2 kzi’/zkgﬂ k;ﬂki’»/?
Similarly, we can define a function that corresponds to equilateral PNG
kikok
[k, b, k3) = 2 (130)

(kl + ko + k3)6.

We compute F' over a range k € [0.003,0.5] hMpc~! for both logarithmic and linear bins and
for both the approximate and exact computation of Vj93. In Figure 10 we plot F' as function of
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number of bins (number of triangles) considered.

First of all, in Figure 10a, restricting ourselves to about 10.000 bins, we see that if we use the
approximate value for Vo3 (the usual assumption), the linear bins seem to converge quickly to
the asymptotic value. The logarithmic bins seem to converge much slower. However, as we keep
increasing the number of triangles, suddenly the graph of the linear bins jumps to the graph of
the logarithmic bins. This shows that if we would have trusted the linear binning for a smaller
number of bins we would have gotten the wrong result. This is quite unexpected and alarming
as it seems we cannot always trust linear binning! If we now change to the exact Vis3 we see
that both linear and logarithmic binning converge much faster and both to the same value. In
fact, it turns out that they reach one percent agreement for about 15.000 triangles. Let us try to
understand why this happens. As we are summing over a function which peaks in the squeezed
limit we do in fact get most signal from k-triplets which satisfy k3 ~ ko > ky. In particular
the edge bins will contribute an important part to the final result. We know that precisely
for these bins the approximate value for Vio3 does not work, which is probably why the results
improve dramatically when using the exact Vio3. Now one can still wonder why the linear binning
performs so badly in this case. A reason might be that we are sampling the values for k; much
better in case of logarithmic binning. However one could argue exactly the opposite, namely that
linear binning samples the values of ko and ks much better. We have not found a convincing
argument why linear binning fails, this remains an open question. As we are also studying the
Fisher matrix for local PNG in our paper, we decided to stick to logarithmic binning. Even
with the exact value of Va3 the result converges quite slowly for the local function. In order to
be within a couple of percent of the actual outcome of the Fisher analysis we need quite some
triangles. For the analysis therefore we divide the k-axis over three logarithmic decades in 45
bins. By this we mean that if for instance each k; from the triplet can take values in the range
[0.001, 1] hMpc~!, it can take one of the 45 logarithmically separated values.

We did the same analysis for the equilateral function. In Figure 10b we see again a jump of the
graph corresponding to linear binning. This time we do not expect to gain most signal from the
edge bins. However, when we use the exact value for V}o3 everything seems to be fine again. The
jump takes place at a comparable value of Nypi,s. The graph of the logarithmic binning remains
a bit wiggly, but we find one percent agreement between linear and logarithmic binning already
for 1000 triangles. For equilateral PNG we therefore divide the k-axis over three logarithmic
decades in either 27 or 45 bins.

Approximate/exact Vigg (solid/dashed) Approximate/exact Vias (solid/dashed)
2x10°
—— Linear binning 0.541 —— Linear binning
Log binning Log binning
1x105} 0.52
. , 0.50
5x1041 1 pa S
_________________________ [ e——
0.48 7 ——
0.46
2x10% . . . . . L .
100 1000 10* 10° 100 1000 10* 10° 10°
Noins Nbins
(a) Local function flo¢ (b) Equilateral function fe4

Figure 10: Computation of F' as function of the number of triangles Nyi,s for (a) f1°¢ and (b) fed
as given in equations (129) and (130). We show the results for both the approximate (solid) and exact
(dashed) expression for Via3. Moreover we denote the results from linear binning with a blue line and
logarithmic binning with a orange line.
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D Table of parameters

’ Symbol ‘Relation

‘ Meaning

a scale factor
T adr =dt conformal time
H = dln(a)/dr conformal Hubble parameter
Ho present value of H
x comoving coordinate
k momentum
Qm matter density in units of the critical density
Qa dark energy density
h dimensionless Hubble constant
) dark matter density
) =dp/p dark matter density contrast
0 = 0,0’ velocity divergence
d(n) density contrast in SPT at order n
F, kernel function in ()
Pon | = (0m)0n))’ power spectrum in SPT
Binn | = (00)0m)9n))’ bispectrum in SPT
¢ Newtonian potential
i) AP =4 rescaled Newtonian potential
© o =T(k)p primordial potential
©g Gaussian primordial potential
T(k) transfer function
M (k) transfer function in the Poisson equation
Dy linear growth factor
f =dlnD;/Ina growth rate
P, primordial power spectrum
B, primordial bispectrum
N scalar spectral index
P correlation in the initial conditions
U U(x) =9(q(x)) Eulerian definition of ¢
A scaling dimension in Knr,
NL amplitude of the primordial bispectrum
d? =2+ f(c2,, +¢%,) | parameter in 7,
€i, 9, Gi parameters in 7,
19 parameter in 5231)
~ parameter in 6&)
€ parameter in 552)
Vi parameter in 5(02)
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’ Symbol \Relation

‘ Meaning

Sa,8 SPT quadratic source terms

TH EFT source in Euler equation

fn) viscosity counterterm at order n

E¢ kernel function in 5€n)

H¢ kernel function in 5€n)

Gs Green’s function for ¢

Ds evolution operator in the fluid equation
Py | = {60yy) correlation of §(;) and v
BSGPT Gaussian SPT contributions to Bj
BSNP?'T non-Gaussian SPT contributions to B
BSFT sum of Gaussian EFT counterterms
BgFGT sum of non-Gaussian EFT counterterms
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