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I
Introduction

In this chapter we introduce the basic notation and terminology used throughout
this thesis. We give some well-known classical results without proofs. The main
references for this chapter are [48], [26], [51], [10] and [18]. In this introduction
we also state the most important results of this thesis and outline the remaining
chapters.

1. Regular continued fractions

Every x ∈ R\Q has a unique regular continued fraction expansion (RCF-expansion)
of the form

(I.1) x = a0 +
1

a1 +
1

a2 + . . .+
1

an + . . .

= [ a0; a1, a2, . . . , an, . . . ] ,

where a0 is the integer part of x and where an for n > 0 is a positive integer. These
so-called partial quotients an are defined below.

Remark I.2. Without loss of generality we may assume x ∈ [0, 1) \ Q and write
x = [ a1, a2, . . . , an, . . . ] , omitting a0. We do so from now on, unless explicitly
stated otherwise. �

Remark I.3. If x ∈ Q there are two RCF-expansions of x = p
q , both finite. In this

case, the shorter RCF-expansion of x is obtained from Euclid’s algorithm to find
the greatest common divisor of the integers p and q; see Section 3.1.2 of [10]. �

Definition I.4. The regular continued fraction operator T : [0, 1) → [0, 1) is
defined by

T (x) =
1

x
−
⌊

1

x

⌋
if x 6= 0 and T (0) = 0.

�

Here
⌊
1
x

⌋
denotes the integer part of 1

x .

To find the continued fraction of x we put

T0 = x, T1 = T (x), T2 = T (T1), · · · , Tn = T (Tn−1), · · ·
1



I. Introduction

and we define the partial quotients an of x by

an =

⌊
1

Tn−1

⌋
, n ≥ 1.

Clearly,

an =


1 if Tn−1 ∈

(
1
2 , 1
)

k if Tn−1 ∈
(

1
k+1 ,

1
k

]
, k ≥ 2

and we find that

x =
1

a1 + T1
=

1

a1 +
1

a2 + T2

= · · · = 1

a1 + 1

a2 + · · ·+ 1

an + Tn

.

Definition I.5. The nth convergent pn/qn of x is found by finite truncation in (I.1)
after level n, i.e.

pn
qn

=
1

a1 +
1

a2 + · · ·+ 1

an

= [ a1, a2, . . . , an] for n ≥ 1.

�

We have the following recurrence relations for pn and qn

(I.6)

{
p−1 = 1; p0 = 0; pn = anpn−1 + pn−2, n ≥ 1,

q−1 = 0; q0 = 1; qn = anqn−1 + qn−2, n ≥ 1.

The regular continued fraction convergents pn
qn
∈ Q of x converge to x ∈ R \Q and

the approximations get better in each step, i.e.∣∣∣∣x− pn
qn

∣∣∣∣ < ∣∣∣∣x− pn−1
qn−1

∣∣∣∣ ;
see Sections 5 and 6 of [26]. Furthermore, it holds that

(I.7)

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

qn2
.

2. Approximation results

In 1798 Legendre proved the following result [34].

Theorem I.8. If p, q ∈ Z, q > 0, and gcd(p, q) = 1, then∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2
implies that

[
p
q

]
=

[
pn
qn

]
, for some n ≥ 0.

2



3. Dynamical systems

Legendre’s Theorem is one of the main reasons for studying continued fractions,
because it tells us that good approximations of irrational numbers by rational num-
bers are given by continued fraction convergents.

Definition I.9. Let x ∈ [0, 1)\Q and pn
qn

= [a1, . . . , an] be the nth regular continued

fraction convergent of x. The approximation coefficient Θn = Θn(x) is defined by

Θn = q2n

∣∣∣∣x− pn
qn

∣∣∣∣ , for n ≥ 0.

�

We usually suppress the dependence of Θn on x in our notation. The approximation
coefficient gives a numerical indication of the quality of the approximation. It
follows from (I.7) that Θn ≤ 1. For the RCF-expansion we have the following
classical theorems by Borel (1905) [3] and Hurwitz (1891) [19] about the quality of
the approximations.

Theorem I.10. For every irrational number x, and every n ≥ 1

min{Θn−1,Θn,Θn+1} <
1√
5
.

The constant 1/
√

5 is best possible.

Borel’s result, together with the earlier result by Legendre implies the following
result by Hurwitz.

Theorem I.11. For every irrational number x there exist infinitely many pairs of
integers p and q, such that ∣∣∣∣x− p

q

∣∣∣∣ < 1√
5

1

q2
.

The constant 1/
√

5 is best possible.

Remark I.12. If we replace 1√
5

by a smaller constant C, then there are infinitely

many irrational numbers x for which∣∣∣∣x− p

q

∣∣∣∣ ≤ C

q2

holds for only finitely many pairs of integers p and q. An example of such a number

is the small golden number g =
√
5−1
2 . �

3. Dynamical systems

We write tn and vn for the “future” and “past” of pn
qn

, respectively,

(I.13) tn = [an+1, an+2, . . . ] and vn = [an, . . . , a1].

Furthermore, t0 = x and v0 = 0. Due to the recurrence relation for the qn in (I.6)
it is easy to show by induction that vn = qn−1

qn
.

The approximation coefficients may be written in terms of tn and vn

(I.14) Θn =
tn

1 + tnvn
, and Θn−1 =

vn
1 + tnvn

, n ≥ 1;

3



I. Introduction

see Section 5.1.2 of [10].

In order to study the sequence (Θn)n≥1 we introduce the two-dimensional opera-
tor T .

Definition I.15. Put Ω = ([0, 1) \Q)× [0, 1]. The operator T : Ω→ Ω is defined
by

T (x, y) :=

(
T (x),

1⌊
1
x

⌋
+ y

)
.

�

For x ∈ [0, 1) \Q, one has T n(x, 0) = (tn, vn), n ≥ 0.

11
2

1
3

1
b

1
b+1

0

1

1/2

1/3

1/a

1/(a + 1)

an = 1

an = 2

(· · ·)
an = a

a
n
+

1
=

1

a
n
+

1
=

2

(·
··

)

a
n
+

1
=

b

tn

vn

Figure 1. Strips in Ω = ([0, 1) \Q)× [0, 1]. On a horizontal strip
the digit an is constant and on each vertical strip an+1 is constant.
For instance, the gray strip contains all points (tn, vn) with
an+1 = 2.

3.1. Ergodicity. In an ergodic system the time average is related to the space
average. Heuristically an ergodic dynamical system can not be seen as the union
of two separate systems. Ergodicity is defined for a dynamical system (X,F , µ, T ),
where X is a non-empty set, F is an σ-algebra on X, µ is a probability measure
on (X,F) and T : X → X is a surjective µ-measure preserving transformation. If
F is the Borel algebra of X we write (X,µ, T ) instead of (X,F , µ, T ).

Definition I.16. Let (X,F , µ, T ) be a dynamical system. Then T is called ergodic
if for every µ-measurable, T -invariant set A one has µ(A) = 0 or µ(A) = 1. �

4



3. Dynamical systems

The following theorem was obtained in 1977 by Nakada et al. [43]; see also [41]
and [20].

Theorem I.17. Let ν be the probability measure on Ω with density d(x, y), given
by

(I.18) d(x, y) =
1

log 2

1

(1 + xy)2
, (x, y) ∈ Ω.

Then, the dynamical system (Ω, ν, T ) is an ergodic system.

The system (Ω, ν, T ) is called the natural extension of the ergodic dynamical system
([0, 1), µ, T ), where µ is the so-called Gauss-measure, the probability measure on
[0, 1) with density

d(x) =
1

log 2

1

1 + x
, x ∈ [0, 1).

Later we derive natural extensions for other continued fractions. In general, a nat-
ural extension is the smallest invertible dynamical system, that has the dynamics
of the original transformation as a subsystem. Rohlin [49] introduced the concept
of a natural extension of a non-invertible system in 1964. He showed that a nat-
ural extension is unique up to isomorphism, and proved that it possesses similar
dynamical properties as the original system.

The ergodicity of T allows us to apply Birkhoff’s ergodic theorem.

Theorem I.19. Let (X,F , ν, T ) be a dynamical system with T an ergodic trans-
formation. Then for any function f in L1(µ) one has

lim
n→∞

1

n

n−1∑
i=1

f(T i(x)) =

∫
X

fdµ.

This is one of the main results in ergodic theory, see Chapter 3 of [10]. The following
result on the distribution of the sequence (tn, vn)n≥0 is a consequence of Birkhoff’s
ergodic theorem, and was obtained by Bosma et al. in [4]; see also Chapter 4 of [10].

Theorem I.20. For almost all x ∈ [0, 1) the two-dimensional sequence

(tn, vn) = T n(x, 0), n ≥ 0,

is distributed over Ω according to the density-function d(t, v), as given in (I.18).

Corollary I.21. Let B ⊂ Ω be a Borel measurable set with a boundary of Lebesgue
measure zero. Then

(I.22) lim
n→∞

1

n

n−1∑
k=0

IB(tn, vn) = ν(B),

where ν is as given in Theorem I.17 and IB denotes the indicator function

IB(tn, vn) =

{
1 if (tn, vn) ∈ B,
0 otherwise.

We use this corollary in Chapter II to compute the probability that certain approx-
imation coefficients are smaller than given values.

5



I. Introduction

3.2. Entropy. Entropy is an important concept of information in physics,
chemistry, and information theory. It can be seen as a measure for the amount of
“disorder” of a system. Entropy also plays an important role in ergodic theory.
Ornstein proved in 1968 that any two Bernoulli schemes (generalizations of the
Bernoulli process to more than two possible outcomes) with the same entropy are
isomorphic [46]; see also [25] or Chapter 1 of [54]. Like Birkhoff’s ergodic theorem
this is a fundamental result in ergodic theory.

For a measure preserving transformation the entropy is often defined by partitions,
but in 1964 Rohlin [49] showed that the entropy of a µ-measure preserving operator
T : [a, b]→ [a, b] is given by the beautiful formula

h(T ) =

∫ b

a

log |T ′(x)|dµ(x).

From Rohlin’s formula it follows that the entropy of the RCF-operator is given by

h(T ) =

∫ 1

0

log |T ′(x)|dµ(x) = −2

∫ 1

0

log(x)dµ(x) =
−2

log 2

∫ 1

0

log(x)

x+ 1
dx =

π2

6 log 2
.

The following results are very useful to find the entropy of other operators; see
Chapter 6 of [10].

Theorem I.23. A measure preserving transformation has the same entropy as its
natural extension.

Definition I.24. Two dynamical systems (X,F , µ, T ) and (X ′,F ′, µ′, T ′) are iso-
morphic if there exist measurable sets N ⊂ X and N ′ ⊂ X ′ with µ(X \ N) =
µ′(X ′ \N ′) = 0, T (N) ⊂ N,T ′(N ′) ⊂ N ′ and a measurable map ψ : N → N ′ such
that

(1) ψ is one-to-one and onto almost everywhere,
(2) ψ is measure preserving,
(3) ψ preservers the dynamics of T and T ′, i.e. ψ ◦ T = S ◦ ψ.

Theorem I.25. If two dynamical systems (X,F , µ, T ) and (X ′,F ′, µ′, T ′) are iso-
morphic, then they have the same entropy.

In Chapter IV we use these theorems to derive the entropy of a specific natural
extension from an isomorphic dynamical system.

3.3. Asymmetric Diophantine approximation. In Chapter II we use the
natural extension to study another quality measure for the approximations of RCF
convergents. The inequality (I.7) can be strengthened to∣∣∣∣x− pn

qn

∣∣∣∣ < 1

qnqn+1
, for n ≥ 0.

For any irrational x we define the sequence Cn, n ≥ 0 by

(I.26) x− pn
qn

=
(−1)n

Cnqnqn+1
, for n ≥ 0,

6



3. Dynamical systems

Tong derived in [57] and [58] various properties of the sequence (Cn)n≥0, and of
the related sequence (Dn)n≥0, defined by

(I.27) Dn = [an+1; an, . . . , a1] · [an+2; an+3, . . . ] =
1

Cn − 1
, for n ≥ 0.

For good approximations Cn is large and Dn small.

Remark I.28. Note that Dn ∈ R \Q and not just in [0, 1) \Q. �

In Chapter II we focus on Cn and Dn as measures of approximation quality for
regular continued fractions. Suppose the n − 1-st approximation and the n + 1-
st approximation are both good, what can we say about the n-th approximation
sandwiched between those two? Using the natural extension we prove the following
theorem.

Theorem I.29. Let x = [ a0; a1, a2, . . . , an, . . . ] be an irrational number, let r,R >
1 be reals and put

F =
r(an+1 + 1)

an(an+1 + 1)(r + 1) + 1
,

G =
R(an + 1)

(an + 1)an+1(R+ 1) + 1
and

M =
1

2

(
1

r
+

1

R
+ anan+1

(
1 +

1

r

)(
1 +

1

R

)

+

√[
1

r
+

1

R
+ anan+1

(
1 +

1

r

)(
1 +

1

R

)]2
− 4

rR

 .

Assume Dn−2 < r and Dn < R.

(1) If r − an ≥ G and R− an+1 < F , then

Dn−1 >
an+1 + 1

R− an+1
.

(2) If r − an < G and R− an+1 ≥ F , then

Dn−1 >
an + 1

r − an
.

(3) In all other cases

Dn−1 > M.

These bounds are sharp. Furthermore, in case (1) an+1+1
R−an+1

> M and in case (2)
an+1
r−an > M .

We prove a similar theorem for the case that Dn−2 > r and Dn > R in Section II.3.
In Section II.4 we calculate the asymptotic frequency that simultaneously Dn−2 > r
and Dn > R. In Section II.5 we correct an incorrect result by Tong on Cn and give
the sharp bounds for this case.

7



I. Introduction

4. Other continued fractions

There are many different types of continued fractions. In this section we describe
the nearest integer, α and (α)-Rosen fractions.

4.1. Nearest Integer Continued Fractions. The nearest integer continued
fraction (NICF) operator rounds, as the name suggests, to the nearest integer.

Definition I.30. The NICF operator f 1
2

: [− 1
2 ,

1
2 )→ [− 1

2 ,
1
2 ) is defined by

f 1
2
(x) =

ε

x
−
⌊
ε

x
+

1

2

⌋
if x 6= 0 and f 1

2
(0) = 0,

�

where ε denotes the sign of x. A NICF-expansion is denoted by

(I.31)
ε1

d1 +
ε2

d2 +
ε3

d3 + . . .

= [ ε1 : d1, ε2 : d2, ε3 : d3, . . . ],

with dn ∈ N, εn = ±1 and εn+1 + dn ≥ 2 for n ≥ 1.

The εn and dn are found by repeatedly applying f 1
2
. Let n ≥ 1 be such that

f n−11
2

(x) 6= 0 (this is always true when x is irrational); then

εn = sgn
(
f n−11

2

(x)
)

=

{
1, if f n−11

2

(x) > 0

−1, if f n−11
2

(x) < 0,

and

dn =

 εn

f n−11
2

(x)
+

1

2

 .
We recycle notation and now write pn/qn(x) for the nth NICF-convergent of x and
the accompanying Θn(x) for the n-th approximation coefficient of x. Later we use
this notation for other types of continued fractions as well.

In 1989, Jager and Kraaikamp [23] obtained a Borel result for the NICF.

Theorem I.32. For every irrational x and all positive integers n one has

min{Θn−1,Θn,Θn+1} <
5

2

(
5
√

5− 11
)
.

The constant 5
2

(
5
√

5− 11
)

is best possible.

This result was extended by Tong in [59] and [60] as follows.

Theorem I.33. For every irrational number x and all positive integers n and k
one has

min{Θn−1,Θn, . . . ,Θn+k} <
1√
5

+
1√
5

(
3−
√

5

2

)2k+3

.

8



4. Other continued fractions

The constant 1√
5

+ 1√
5

(
3−
√
5

2

)2k+3

is best possible.

4.2. α-expansions. In 1907, McKinney [38] introduced α-expansions, a class
of continued fractions generated by the operator fα.

Definition I.34. Let 1
2 ≤ α ≤ 1. The α-expansion operator fα : [α − 1, α] →

[α− 1, α] is defined by

fα(x) =
ε

x
−
⌊ ε
x

+ 1− α
⌋

if x 6= 0 and fα(0) = 0,

where ε again denotes the sign of x. �

For α = 1 we find the RCF-expansion and for α = 1
2 the NICF-expansion. For any

α ∈
[
1
2 , 1
]

and for every irrational x the α-continued fraction convergents form a
subsequence of the RCF-convergents. In 1981, Nakada [41] determined the natural
extension of the α-expansion operator and the entropy of Tα. In [39] Moussa et

al. extended these results to the case
√

2 − 1 ≤ α < 1
2 . More recently Luzzi and

Marmi [37] and Nakada and Natsui [44] analysed the case 0 ≤ α <
√

2− 1.

4.3. Rosen continued fractions. Rosen fractions were introduced in 1954
by David Rosen [50]. Let q ∈ Z, q ≥ 3 and λ = λq = 2 cos πq . For simplicity we

usually write λ instead of λq. Notice that λ→ 2 if q →∞.

Definition I.35. For each q the Rosen-expansion operator Tq : [−λ2 , λ2 )→ [−λ2 , λ2 )
is defined by

(I.36) Tq(x) =
ε

x
− λ

⌊
ε

λx
+

1

2

⌋
if x 6= 0 and Tq(0) = 0.

�

Remark I.37. If q = 3, we have λ = 1 and we see that T3 in (I.36) is the same as
the NICF-operator f 1

2
. �

Signs and digits are found in a similar way as with the nearest integer continued
fractions. A Rosen continued fraction has the form

ε1

d1λ+
ε2

d2λ+ . . .

= [ ε1 : d1, ε2 : d2, . . . , ],

where εi ∈ {−1,+1} and the di are positive integers.

Rosen defined his continued fractions in order to study aspects of the Hecke groups,
Gq ⊂ PSL(2,R) . We use the Möbius (or, fractional linear) action of 2 × 2 matri-
ces on the reals (extended to include ∞, as necessary); see [14] for an excellent
introduction to this subject.

Definition I.38. For a matrix A,

A =

[
a b
c d

]
,

9



I. Introduction

with a, b, c, d ∈ Z and detA = ad − bc ∈ {−1,+1}, we define (with slight abuse of
notation) the Möbius transformation A : C∗ → C∗ by

A(z) =

[
a b
c d

]
(z) =

az + b

cz + d
.

�

Remark I.39. Note that A and −A define the same Möbius transformation. We
often use this. In particular we write

Id =

[
1 0
0 1

]
=

[
−1 0
0 −1

]
,

since [
1 0
0 1

]
(x) =

[
−1 0
0 −1

]
(x) = x.

�

With fixed index q and λ = λq, set

(I.40) S =

[
1 λ
0 1

]
, T =

[
0 −1
1 0

]
and U =

[
λ −1
1 0

]
.

Then Gq is generated by any two of these, as U = ST . In fact, Uq = Id, [50]. It

follows that Un =

[
Bn+1 −Bn
Bn −Bn−1

]
where the sequence Bn is given by

(I.41) B0 = 0, B1 = 1, Bn = λBn−1 −Bn−2, for n = 2, 3, . . . .

We use the above extensively in Chapters III and IV.

4.4. α-Rosen continued fractions. Dajani et al. [11] introduced α-Rosen
continued fractions, a generalization of both Nakada’s α-fractions and Rosen con-
tinued fractions.

Definition I.42. Let λ be as before. For α ∈
[

0, 1
λ

]
, put Iα = [ (α − 1)λ, αλ ).

We define Tα : Iα → Iα by

(I.43) Tα(x) =
ε

x
− λ

⌊ ε

λx
+ 1− α

⌋
if x 6= 0 and Tα(0) := 0.

�

Remark I.44. Setting q = 3 gives Nakada’s α-expansions from Definition I.34.
Additionally setting α = 1 gives the regular continued fractions and α = 1

2 the

nearest integer continued fractions. On the other hand, fixing α = 1
2 gives the

Rosen expansions. �

Remark I.45. We usually suppress the dependence on q in our notation when we
are working with α-Rosen fractions. In the rest of this thesis if the subscript ∗ of T
is an integer greater than 2, it denotes the Rosen map (I.36) with q = ∗, otherwise
it denotes the α-Rosen map (I.43) with α = ∗. �

10



4. Other continued fractions

4.4.1. Borel and Hurwitz-results for α-Rosen fractions. For simplicity, we say
that a real number r/s is a Gq-rational if it has finite (α)-Rosen expansion, all other
real numbers are called Gq-irrationals. In [16], Haas and Series derived a Hurwitz-
type result using non-trivial hyperbolic geometric techniques. They showed that
for every Gq-irrational x there exist infinitely many Gq-rationals r/s, such that

s2
∣∣∣x− r

s

∣∣∣ ≤ Hq, where Hq is given by

Hq =


1

2
if q is even,

1

2
√

(1− λ
2 )2 + 1

if q is odd.

In Chapter III we use a geometric method to generalize Borel’s classical approxi-
mation results for the regular continued fraction expansion to the α-Rosen fraction
expansion. This yields the α-Rosen counterpart of Theorem I.33. We use α-Rosen
fractions to give a Haas-Series-type result about all possible good approximations
for the α for which the Legendre constant is larger than the Hurwitz constant.
Furthermore, we prove the following theorem.

Theorem I.46. Let α ∈ [1/2, 1/λ] and denote the nth α-Rosen convergent by
pn/qn. For every Gq-irrational x there are infinitely many n ∈ N for which

q2n

∣∣∣∣x− pn
qn

∣∣∣∣ ≤ Hq.
The constant Hq is best possible.

In Section III.5 we determine the Legendre constant for odd α-Rosen fractions and
extend the Borel-result to a Hurwitz-result for specific values of α.

4.4.2. Natural extensions for α-Rosen fractions. In [11] the domain Ωα of the
natural extension of Tα was derived for α ∈

[
1
2 ,

1
λ

]
. Recall that “the domain of the

natural extension of Tα” refers to the largest region on which Tα(x, y) is bijective
almost surely.

The entropy of the α-Rosen map is given by∫ αλ

(α−1)λ
log |T ′α|ψα(x) dx,

where ψα is the probability density function for the measure with respect to which
Tα is ergodic; see Chapter 10 of [18] and [11].

In Chapter IV we derive the domain for natural extensions for α-Rosen continued
fractions with α < 1

2 . We do this by appropriately adding and deleting rectangles
from the region of the natural extension for the standard Rosen fractions. We prove
the following result; also see Figure 2.

Theorem I.47. Fix q ∈ Z, q ≥ 4 and λ = λq = 2 cos πq .

11



I. Introduction

(i.) Let

α0 =


λ2 − 4 +

√
λ4 − 4λ2 + 16

2λ2
if q is even,

λ− 2 +
√

2λ2 − 4λ+ 4

λ2
otherwise.

Then (α0, 1/λ ] is the largest interval containing 1/2 for which each do-
main of the natural extension of Tα is connected.

(ii.) Furthermore, let

ω0 =

1/λ if q is even,

λ− 2 +
√
λ2 − 4λ+ 8

2λ
otherwise.

Then the entropy of the α-Rosen map for each α ∈ [α0, ω0 ] is equal to
the entropy of the standard Rosen map.

Remark I.48. The value of the entropy of the standard Rosen map was found by

H. Nakada [42] to be C · (q − 2)π2

2q
, where C is the normalizing constant (which

depends on the parity of the index q) given in [8]. �

Figure 2. Simulations of the natural extension for q = 8 with
on the x-axis [(α − 1)λ, αλ). On the left α = α0 − 0.001 and on
the right α = α0 + 0.001. For α < α0 the domain of the natural
extension is disconnected.

In Section IV.2 we sketch the main argument of our approach — when the orbits
of these basic regions agree after the same number of steps, entropy is preserved.
We give an example of our techniques in Section IV.3 by re-establishing known
results for certain classical Nakada α-fractions. In Sections IV.4 and IV.5 we give
the proof of Theorem I.47, in the even and odd index case, respectively. Finally, in
Section IV.6 we indicate how our results can be extended to show that in the odd
index case, the entropy of Tα decreases when α > ω0 .

5. Multi-dimensional continued fractions

In 1842, Dirichlet [35] (Chapter XXXV of the first volume) proved that for every
a ∈ R \Q there are infinitely many integers q such that

(I.49) ‖q a‖ < q−1,

12



5. Multi-dimensional continued fractions

where ‖x‖ denotes the distance between x and the nearest integer. The exponent−1
of q cannot be replaced by a smaller number. It follows from (I.7) that the regular
continued fraction algorithm generates an infinite sequence of fractions that satisfy
this inequality.

As to the generalization of approximations in higher dimensions Dirichlet proved
the following theorem; see Chapter II of [51].

Theorem I.50. Let an n×m matrix A with entries aij ∈ R\Q be given and suppose
that 1, ai1, . . . , aim are linearly independent over Q for some i with 1 ≤ i ≤ n. There
exist infinitely many coprime m-tuples of integers q1, . . . , qm such that with
q = max

j
|qj | ≥ 1, we have

(I.51) max
i
‖q1 ai1 + · · ·+ qm aim‖ < q

−m
n .

The exponent −mn of q is minimal.

If we take m = n = 1 this inequality is exactly (I.49). If we put m = 1, the result is
about (simultaneous) Diophantine approximation: Given numbers a1, . . . , an ∈ R,

there is an integer q such that ‖qai‖ is small compared to q
−1
n for i = 1, . . . , n . If

we take n = 1, Theorem I.50 reduces to a statement about a linear combination
with integer coefficients: given a1, . . . , am ∈ R, there exist integers q1, . . . , qm such
that ‖q1a1 + · · ·+ qmam‖ < q−m where again q = max

j
|qj |.

Definition I.52. Let an n ×m matrix A with entries aij ∈ R \ Q be given. The
Dirichlet coefficient of an m-tuple q1, . . . , qm is defined as

q
m
n max

i
‖q1 ai1 + · · ·+ qm aim‖ .

�

Remark I.53. The Dirichlet coefficient is a generalization of the approximation
coefficient in the one-dimensional case. Notice that for m = n = 1 the Dirichlet
quality equals Θ as defined in Definition I.9. �

For the case m = 1 the first multi-dimensional continued fraction algorithm was
given by Jacobi [22]. Many more followed, see for instance Perron [47], Brun [7],
Lagarias [33] and Just [24]. Brentjes [6] gives a detailed history and description of
such algorithms. Schweiger’s book [53] gives a broad overview. For n = 1 there is
amongst others the algorithm by Ferguson and Forcade [13].

However, there is no efficient algorithm that is guaranteed to find a series of ap-
proximations with Dirichlet coefficient smaller than 1. In 1982, the LLL-algorithm
for lattice basis reduction was published in [36]. Lenstra, Lenstra and Lovász noted
that their algorithm could in polynomial time find Diophantine approximations of
given rationals with Dirichlet coefficients only depending on the dimension. We
first introduce lattices and then present the LLL-algorithm.
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I. Introduction

5.1. Lattices. Let r be a positive integer. A subset L of the r-dimensional
real vector space Rr is called a lattice if there exists a basis b1, . . . , br of Rr such
that

L =

r∑
i=1

Zbi =

{
r∑
i=1

zibi; zi ∈ Z (1 ≤ i ≤ r)
}
.

We say that b1, . . . , br is a basis for L. The determinant of the lattice L is defined
by
∣∣ det(b1, . . . , br)

∣∣ and we denote it as det(L).

For any linearly independent b1, . . . , br ∈ Rr the Gram-Schmidt process yields an
orthogonal basis b∗1, . . . , b

∗
r for Rr. We define the orthogonal basis vectors induc-

tively by

b∗i = bi −
i−1∑
j=1

µijb
∗
j for 1 ≤ i ≤ r and

µij =
(bi, b

∗
j )

(b∗j , b
∗
j )
,

where ( , ) denotes the ordinary inner product on Rr.

In most cases it is impossible to find a orthogonal basis for a lattice. A reduced basis
for a lattice is a basis that consists of almost orthogonal vectors. In the original
LLL-paper the following definition of a reduced lattice basis is used.

Definition I.54. A basis b1, . . . , br for a lattice L is reduced if

|µij | ≤
1

2
for 1 ≤ j < i ≤ r

and

|b∗i + µii−1b
∗
i−1|2 ≤

3

4
|b∗i−1|2 for 1 ≤ i ≤ r,

where |x| denotes the Euclidean length of the vector x. �

The following properties of a reduced basis were shown in [36].

Proposition I.55. Let b1, . . . , br be a reduced basis for a lattice L in Rr. Then we
have

(i) |b1| ≤ 2(r−1)/4
(
det(L)

)1/r
,

(ii) |b1|2 ≤ 2r−1 |x|2, for every x ∈ L, x 6= 0,

(iii)

r∏
i=1

|bi| ≤ 2r(r−1)/4 det(L).

5.2. The LLL-algorithm. The LLL-algorithm finds a reduced basis for a
given lattice in polynomial time. In each step the algorithm either swaps two
successive basis vectors bi and bi+1 or replaces bi by bi−bµilcbl for some index l < i.
The main reasons the LLL-algorithm is fast are that only neighboring vectors are
swapped and that vectors are only swapped if the swapping gives a progress bigger
than a constant factor.

The original application of the LLL-algorithm was to give a polynomial time al-
gorithm for factorizing polynomials with rational coefficients. The lattice basis

14



5. Multi-dimensional continued fractions

reduction algorithm found many other applications in mathematics and computer
science, in areas such as polynomial factorization, integer programming, and cryp-
tology. For a description of the history of the LLL-algorithm and a survey of its
applications, see [45].

The following proposition from [36] gives a bound for the number of arithmetic
operations and for the integers on which they are performed.

Proposition I.56. Let L ⊂ Zr be a lattice with a basis b1, b2, . . . , br, and let
F ∈ R, F ≥ 2, be such that |bi|2 ≤ F for 1 ≤ i ≤ r. Then the number of arithmetic
operations used by the LLL-algorithm is O(r4 logF ) and the integers on which these
operations are performed each have binary length O(r logF ).

In the following Lemma (which we prove in Chapter V) the approach suggested in
the original LLL-paper for finding (simultaneous) Diophantine approximations is
generalized to the case m > 1.

Lemma I.57. Let an n×m-matrix A with entries aij in R and ε ∈ (0, 1) be given.
Applying the LLL-algorithm to the basis formed by the columns of the (m + n) ×
(m+ n)-matrix

B =



1 0 . . . 0 a11 . . . a1m

0 1
. . . 0 a21 . . . a2m

...
...

...
...

0 . . . 0 1 an1 . . . anm
0 . . . 0 0 c 0
...

...
...

. . .

0 . . . 0 0 0 c


,

with c =
(

2−
m+n−1

4 ε
)m+n

m

yields an m-tuple q1, . . . , qm ∈ Q with

max
j
|qj | ≤ 2

(m+n−1)(m+n)
4m ε

−n
m and

max
i
‖q1ai1 + · · ·+ qmaim‖ ≤ ε.

It follows that the found m-tuple satisfies

(I.58) max
i
‖q1ai1 + · · ·+ qmaim‖ ≤ 2

(m+n−1)(m+n)
4n q

−m
n ,

where q = max
j
|qj |, so the approximation has a Dirichlet coefficient of at most

2
(m+n−1)(m+n)

4n .

5.3. The iterated LLL-algorithm. In Chapter V we present a multidimen-
sional continued fraction algorithm that finds a sequence of approximations with
Dirichlet coefficient only depending on the dimensions. This so-called Iterated LLL-
algorithm (ILLL) repeatedly uses the LLL-algorithm for lattice basis reduction. We
prove the following results.
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I. Introduction

Theorem I.59. Let an n × m-matrix A with entries aij in R, and qmax > 1 be
given. The ILLL algorithm finds a sequence of m-tuples q1, . . . , qm such that for

every Q with 2
(m+n+3)(m+n)

4m ≤ Q ≤ qmax one of these m-tuples satisfies

max
j
|qj | ≤ Q and

max
i
‖q1ai1 + · · ·+ qmaim‖ ≤ 2

(m+n+3)(m+n)
4n Q

−m
n .

Theorem I.60. Let an n × m-matrix A with entries aij in R and qmax > 1 be
given. Assume that γ is such that for the Dirichlet coefficient of every m-tuple
q1, . . . , qm returned by the ILLL algorithm one has

q
m
n max

i
‖q1ai1 + . . . qmaim‖ ≥ γ, where q = max

j
|qj |.

Put

(I.61) δ = 2
−(m+n)2(m+2n

4n2 m
−m
2n n

−1
2 γ

m+n
n .

Then every m-tuple s1, . . . , sm with

s = max
j
|sj | < 2−

(m+n+3)m+4n
4m

(
nδ2

m

) n
2(m+n)

qmax

satisfies
s
m
n max

i
‖s1ai1 + · · ·+ smaim‖ > δ.

In Section V.4 we present a version of the algorithm that uses only rational numbers
and prove that this modified algorithm runs in polynomial time of the input. In Sec-
tion V.5 we present some experimental results obtained with the ILLL-algorithm.
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II
Sharp bounds for symmetric and
asymmetric Diophantine approxi-
mation

In the introduction we mentioned Borel’s Theorem I.10 which states that, for every
irrational number x and every n ≥ 1,

min{Θn−1,Θn,Θn+1} <
1√
5
, where the constant 1/

√
5 is best possible.

Over the last century this result has been refined in various ways. For example,
in [15], [40], and [2], it was shown that

min{Θn−1,Θn,Θn+1} <
1√

a2n+1 + 4
, for n ≥ 0,

while J.C. Tong showed in [55] that the “conjugate property” holds

max{Θn−1,Θn,Θn+1} >
1√

a2n+1 + 4
, for n ≥ 0.

Also various other results on Diophantine approximation have been obtained, start-
ing with Dirichlet’s observation from [35], that∣∣∣∣x− pn

qn

∣∣∣∣ < 1

qnqn+1
, for n ≥ 0,

which lead to various results in symmetric and asymmetric Diophantine approxi-
mation; see e.g. [56], [57], [27], and [28].

Define for x irrational the number Cn by

(II.1) x− pn
qn

=
(−1)n

Cnqnqn+1
, for n ≥ 0.

Tong derived in [57] and [58] various properties of the sequence (Cn)n≥0, and of
the related sequence (Dn)n≥0, where

(II.2) Dn = [an+1; an, . . . , a1] · [an+2; an+3, . . . ] =
1

Cn − 1
, for n ≥ 0.

Remark II.3. Note that Dn ∈ R \Q and not just in [0, 1) \Q. In this chapter we
assume x ∈ R \Q and we use the notation x = [ a0; a1, a2, . . . , an, . . . ]. �
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II. Bounds for Diophantine approximation

Recently, Tong [61] obtained the following theorem, which covers many previous
results.

Theorem II.4. (Tong) Let x = [ a0; a1, a2, . . . , an, . . . ] be an irrational number.
If r > 1 and R > 1 are two real numbers and

MTong =
1

2

(
1

r
+

1

R
+ anan+1

(
1 +

1

r

)(
1 +

1

R

)

+

√[
1

r
+

1

R
+ anan+1

(
1 +

1

r

)(
1 +

1

R

)]2
− 4

rR

 ,

then

(1) Dn−2 < r and Dn < R imply Dn−1 > MTong;
(2) Dn−2 > r and Dn > R imply Dn−1 < MTong.

Tong derived a similar result for the sequence Cn, but it is incorrect. We state this
result, give a counterexample and present a correct version of it in Section 5.

The outline of this chapter is as follows. We derive elementary properties of the
sequence Dn in Section 1. In Section 2 we prove Theorem I.29 that gives a sharp
lower bound for the minimum of Dn−1 in case Dn−2 < r and Dn < R for real
numbers r,R > 1. We prove a similar theorem for the case that Dn−2 > r and
Dn > R in Section 3. In Section 4 we calculate the asymptotic frequency with
which simultaneously Dn−2 > r and Dn > R. Finally we correct Tong’s result for
Cn in Section 5 and give the sharp bound in this case.

1. The natural extension

The domain of the natural extension for regular continued fractions is given by
Ω = ([0, 1) \Q)× [0, 1]. We denote points in Ω by (t, v) in general and use (tn, vn)
when we are considering the point as the future and past of a number x at time n.

Lemma II.5. Let x = [a0; a1, a2, . . . ] be in R \ Q and n ≥ 2 be an integer. The
variables Dn−2, Dn−1 and Dn can be expressed in terms of future tn, past vn and
digits an and an+1 by

Dn−2 = Dn−2(tn, vn) =
(an + tn)vn

1− anvn
,(II.6)

Dn−1 = Dn−1(tn, vn) =
1

tnvn
, and(II.7)

Dn = Dn(tn, vn) =
(an+1 + vn)tn

1− an+1tn
.(II.8)

Proof. The expression for Dn−1 follows from the definition in (II.2).

Dn−1 = [ an; an−1, . . . , a1 ][ an+1; an+2, . . . ]

=
1

[ 0; an, an−1, . . . , a1 ][ 0; an+1, an+2, . . . ]
=

1

vntn
.
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1. The natural extension

It follows in a similar way that Dn = 1
tn+1

1
vn+1

and using

tn+1 =
1

tn
− an+1

vn+1 =
qn
qn+1

=
qn

an+1qn + qn−1
=

1

an+1 + vn

we find (II.8). The formula for Dn−2 can be derived in a similar way. �

Remark II.9. Of course, Dn−2, Dn−1 and Dn also depend on x, but we suppress
this dependence in our notation. �

Using Theorem I.20 and its corollary we derive the following result.

Proposition II.10. For almost all x ∈ [0, 1), and for all R ≥ 1, the limit

lim
n→∞

1

n
#{1 ≤ j ≤ n |Dj(x) ≤ R}

exists, and equals

(II.11) H(R) = 1− 1

log 2

(
log

(
R+ 1

R

)
+

logR

R+ 1

)
.

Consequently, for almost all x ∈ [0, 1) one has that

lim
n→∞

1

n

n−1∑
k=0

Dn(x) =∞.

Proof. By (II.7) and Corollary I.21, for almost every x the asymptotic frequency
with which Dn−1 ≤ R is given by the measure of those points (t, v) in Ω with
1
tv ≤ R. This measure equals

1

log 2

∫ 1

t= 1
R

∫ 1

v= 1
Rt

dv dt

(1 + tv)2
;

also see Figure 1.

v = 1
R

t = 1
R

Dn−1 = R

1

1

0

Figure 1. The curve 1
tv = R on Ω. For (tn, vn) in the gray part

it holds that Dn−1 ≤ R.

It follows that

H(R) =
1

log 2

∫ 1

1
R

[
v

1 + tv

]1
1
Rt

dt =
1

log 2

[
log 2− log

R+ 1

R
− 1

R+ 1
logR

]
,

which may be rewritten as (II.11).
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II. Bounds for Diophantine approximation

To calculate the expectation of Dn we use that the density function of Dn is given
by h(x) = H ′(x), so

h(x) =
1

log 2

log x

(x+ 1)2
, for x ≥ 1.

We can now easily calculate the expected value of Dn

lim
n→∞

1

n

n−1∑
j=0

Dj(x) =

∫ ∞
1

xh(x) dx = lim
t→∞

∫ t

1

1

log 2

x log x

(x+ 1)2
dx =∞.

�

Besides for proving metric results on the Dn’s, the natural extension (Ω, ν, T ) is
also very handy to obtain various Borel-type results on the Dn’s.

For a, b ∈ N consider the rectangle ∆a,b =

[
1

b+ 1
,

1

b

)
×
[

1

a+ 1
,

1

a

)
⊂ Ω. On this

rectangle we have an = a and an+1 = b. So (tn, vn) ∈ ∆a,b if and only if an = a
and an+1 = b . We use a and b as abbreviation for an and an+1, respectively, if we
are working in such a rectangle.

We define two functions from
[

1
b+1 ,

1
b

)
to R,

(II.12) fa,r(t) =
r

a(r + 1) + t
and gb,R(t) =

R

t
− b(R+ 1).

From (II.6) and (II.8) it follows for (tn, vn) ∈ ∆a,b that

Dn−2 < r if and only if vn < fa,r(tn),

Dn < R if and only if vn < gb,R(tn).

We introduce the following notation

(II.13) F =
r(b+ 1)

a(b+ 1)(r + 1) + 1
and G =

R(a+ 1)

(a+ 1)b(R+ 1) + 1
.

We have that F = fa,r

(
1
b+1

)
and gb,R(G) = 1

a+1 ; also see Figure 2.

Remark II.14. The position of the graph of fa,r in ∆a,b depends on a and r.

Obviously we always have fa,r
(
1
b

)
< fa,r

(
1
b+1

)
= F < 1

a . Furthermore

fa,r

(
1

b+ 1

)
≥ 1

a+ 1
if and only if r ≥ a+

1

b+ 1
,

fa,r

(
1

b

)
≥ 1

a+ 1
if and only if r ≥ a+

1

b
.
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1. The natural extension

Figure 2. The possible intersection points of the graphs of fa,r
and gb,R and the boundary of the rectangle ∆a,b, where an = a
and an+1 = b.

Similarly, the position of the graph of gb,R in ∆a,b depends on b and R. We always
have G < 1

b . Furthermore

G ≥ 1

b+ 1
if and only if R ≥ b+

1

a+ 1
,

gb,R

(
1

b+ 1

)
<

1

a
if and only if R < b+

1

a
,

gb,R

(
1

b+ 1

)
≥ 1

a+ 1
if and only if R ≥ b+

1

a+ 1
.

Compare with Figure 2.

�

We use the following lemma to determine where Dn−1 attains it extreme values.

Lemma II.15. Let a, b ∈ N, and let Dn−1(t, v) = 1
tv for points (t, v) ∈ (0, 1]×(0, 1].

(1) When t is constant, Dn−1 is monotonically decreasing as a function of v.
(2) When v is constant, Dn−1 is monotonically decreasing as a function of t.
(3) Dn−1(t, v) is monotonically decreasing as a function of t on the graph of

fa,r.
(4) Dn−1(t, v) is monotonically increasing as a function of t on the graph of

gb,R.
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II. Bounds for Diophantine approximation

Proof. The first two statements follow from the trivial observation

(II.16)
∂Dn−1
∂t

< 0 and
∂Dn−1
∂v

< 0.

For points (t, v) on the graph of fa,r we find Dn−1(t, v) = a(r+1)+t
rt and

∂Dn−1
∂t

=
−a(r + 1)

rt2
< 0,

which proves (3).

Finally, for points (t, v) on the graph of gb,R we find Dn−1(t, v) = 1
R−b(R+1)t . So

∂Dn−1

∂t > 0 and (4) is proven. �

Corollary II.17. On ∆a,b the infimum of Dn−1 is attained in the upper right
corner and its maximum in the lower left corner. To be more precise

ab < Dn−1 ≤ (a+ 1)(b+ 1).

Lemma II.18. Let a, b ∈ N, r,R > 1, and set

L = ab(r + 1)(R+ 1), w =
√

4LR+ (r −R+ L)2) and S =

(−L+R− r + w

2b(R+ 1)

)
.

On R+ the graphs of fa,r and gb,R have one intersection point, which is given by

(S, fa,r(S)) =

(−L+R− r + w

2b(R+ 1)
,

2br(R+ 1)

L+R− r + w

)
,

The corresponding value for Dn−1 in this point is given by MTong as defined in
Theorem II.4. For x < S one has that fa,r(x) < gb,R(x), while fa,r(x) > gb,R(x) if
x > S.

Proof. Solving
r

a(r + 1) + t
=
R

t
− b(R+ 1)

yields

S =
−L+R− r + w

2b(R+ 1)
or S =

−L+R− r − w
2b(R+ 1)

.

Since L > R the second solution is always negative, so this solution cannot be in
∆a,b. The second coordinate follows from substituting S = −L+R−r+w

2b(R+1) in fa,r(t)

or gb,R(t).

The corresponding value for Dn−1 in this point is given by

Dn−1

(−L+R− r + w

2b(R+ 1)
,

2br(R+ 1)

L+R− r + w

)
=
−L−R+ r − w
r(L−R+ r − w)

=
−L2 + r2 − 2Rr +R2 − 2Lw − w2

r((L−R+ r)2 − w2)
=
−2L2 − 2Lw − 2Lr − 2LR

−4RrL

=
1

2

(
1

r
+

1

R
+

L

Rr
+

w

Rr

)
= MTong.
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2. The case Dn−2 < r and Dn < R

Since lim
x↓0

fa,r(x) =
r

a(r + 1)
and lim

x↓0
gb,R(x) =∞, we immediately have that fa,r(x) <

gb,R(x) if x < S. And because there is only one intersection point on R+, it follows
that fa,r(x) > gb,R(x) if x > S. �

Remark II.19. In view of Remark II.14 and the last statement of Lemma II.18
the only possible configurations for fa,r and gb,R in ∆a,b are given in Figure 3. �

2. The case Dn−2 < r and Dn < R

We assume that both Dn−2 and Dn are smaller than some given reals r and R. We
recall Theorem I.29 from the Introduction.

Theorem II.20. Let r,R > 1 be reals, let n ≥ 1 be an integer and let F and G be
as given in (II.13). Assume Dn−2 < r and Dn < R.

(1) If r − an ≥ G and R− an+1 < F , then

Dn−1 >
an+1 + 1

R− an+1
.

(2) If r − an < G and R− an+1 ≥ F , then

Dn−1 >
an + 1

r − an
.

(3) In all other cases

Dn−1 > MTong.

These bounds are sharp. Furthermore, in case (1) an+1+1
R−an+1

> MTong and in case (2)
an+1
r−an > MTong.

Proof. We consider the closure of the region containing all points (t, v) in ∆a,b

with Dn−2(t, v) < r and Dn(t, v) < R. In Figure 3 we show all possible configura-
tions of this region.

From (II.16) it follows that the extremum of Dn+1 is attained in a boundary point.
Lemma II.15 implies that we only need to consider the following three points

(1) The intersection point of the graph of gb,R and the line t = 1
b+1 , given by(

1
b+1 , R− b

)
.

(2) The intersection point of the graph of fa,r and the line v = 1
a+1 , given by(

r − a, 1
a+1

)
.

(3) The intersection point of the graphs of fa,r and gb,R, given by MTong.

Assume r − a ≥ G and R − b < F . We know from Lemma II.18 that the graphs
of fa,r and gb,R cannot intersect more than once in ∆a,b, thus we are in case
(1); see Figure 3 (i) and (ii). In this case the minimum of Dn−1 is given by

Dn−1
(

1
b+1 , R− b

)
= b+1

R−b .
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II. Bounds for Diophantine approximation

(i)

f

F
f

g

G

R− b

(ii)

f
r − a

F

G

R− b

(a) In case (i) and (ii) we have r − a ≥ G and R − b < F . It is
allowed that R − b < 1

a+1 . In case (i) we have r − a > 1
b and in

case (ii) r − a ≤ 1
b .

(iii)

F

f

r − a G

g

(iv)

F

r − a G

R− b

(b) In cases (iii) and (iv) we have r− a < G and R− b ≥ F .
It is allowed that r−a < 1

b+1 . In case (iii) we have R−b > 1
a

and in case (iv) R− b ≤ 1
a .

(v)

f

g

(vi)

f
F

g

f
G

(c) In case (v) we have F < 1
a+1 and G < 1

b+1 . Case (vi)
contains all other cases, it can be separated in four subcases,
see Figure 6.

Figure 3. The possible configurations of the graphs of fa,r and
gb,R on ∆a,b, indicated by f and g, respectively. On the gray parts
Dn−2 < r and Dn < R, on the black parts Dn−2 > r and Dn > R

Assume r − a < G and R− b ≥ F , then we are in case (2); see Figure 3 (iii) and

(iv) and the minimum is given by Dn−1 =
(
r − a, 1

a+1

)
= a+1

r−a . A similar argument

as before shows MTong <
a+1
r−a .
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2. The case Dn−2 < r and Dn < R

Otherwise, still assuming there are points (t, v) ∈ ∆a,b with Dn−2(t, v) < r and
Dn(t, v) < R, we must be in case (3); see Figure 3 (vi). The minimum follows from
Lemma II.18.

These bounds are sharp since the minimum is attained in the extreme point. �

Example II.21. Take r = 2.9 and R = 3.6; see Figure 4.

Figure 4. Example with r = 2.9 and R = 3.6. The regions where
Dn−2 < 2.9 are light gray, the regions where Dn < 3.6 are dark
gray. The intersection where both Dn−2 < 2.9 and Dn < 3.6 is
black. The horizontal and vertical black lines are drawn to identify
the strips and have no meaning for the value of Dn−2 and Dn.

If an = an+1 = 1, then r− an = 1.9, R− an+1 = 2.6, F ≈ 0.66 and G ≈ 0.71. Since
R − an+1 > F we do not have case (i) of Theorem II.20. Since r − an > G we are
not in case (ii) either. So in this case Dn−1 > MTong ≈ 2.30. For the following
combinations the minimum is also given by MTong

an = 1 and an+1 = 2 : Dn−1 > MTong ≈ 4.04.

an = 2 and an+1 = 1 : Dn−1 > MTong ≈ 4.04.

an = 2 and an+1 = 2 : Dn−1 > MTong ≈ 7.48.

an = 2 and an+1 = 3 : Dn−1 > MTong ≈ 10.92.

If an = 1 and an+1 = 3, then F ≈ 0.70 and G ≈ 0.25. So r − an > G and
1

an+1
< R− an+1 < F . Thus

Dn−1 >
an+1 + 1

R− an+1
≈ 6.67 > MTong ≈ 5.76.

For all other values of an and an+1 either Dn−2 > r or Dn > R, or both.

�
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3. The case Dn−2 > r and Dn > R

In this section we study the case that Dn−2 and Dn are larger than given reals r
and R, respectively.

Theorem II.22. Let r,R > 1 be reals, let n ≥ 1 be an integer and let F and G be
as given in (II.13). Assume Dn−2 > r and Dn > R.

(1) If r − an ≥ G and R− an+1 < F , then

Dn−1 <
an+1 + 1

F
.

(2) If r − an < G and R− an+1 ≥ F , then

Dn−1 <
an + 1

G
.

(3) If r − an < 1
an+1+1 and R− an+1 <

1
an+1 , then

Dn−1 < (an + 1)(an+1 + 1).

(4) In all other cases
Dn−1 < MTong.

The bounds are sharp. Furthermore, in case (1) an+1+1
F < MTong, in case (2)

an+1
G < MTong and in case (3) (an + 1)(an+1 + 1) < MTong.

Proof. The proof is very similar to that of Theorem II.20. The only ‘new’ case
is the one where r − a < 1

b+1 and R − b < 1
a+1 ; see Figure 3 (v). If r − a < 1

b+1 ,

then the graph of fa,r lies below ∆a,b ⊂ Ω. Similarly, if R − b < 1
a+1 the graph

gb,R lies left left of ∆a,b ⊂ Ω. In this case we have that Dn−2 > r and Dn > R for
all (tn, vn) ∈ ∆a,b. In this case Dn−1 attains its maximum in the lower left corner(

1
b+1 ,

1
a+1

)
. For the intersection point (S, fa,r(S)) either S < 1

b+1 or fa,r(S) < 1
a+1

and from Lemma II.15 we conclude (a+ 1)(b+ 1) < MTong. �

Example II.23. We again use r = 2.9 and R = 3.6; see Figure 5 and Table 1. �
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3. The case Dn−2 > r and Dn > R

Figure 5. Example with r = 2.9 and R = 3.6. The regions where
Dn−2 > 2.9 are light gray, the regions where Dn > 3.6 are dark
gray. The intersection where both Dn−2 > 2.9 and Dn > 3.6 is
black.

an an+1 Case Upper bound for Dn−1 Tong’s upper bound
1 1 (via) 2.30 2.30
1 2 (via) 4.04 4.04
1 3 (i) 5.72 5.76
1 4 (i) 7.07 7.48
1 5, 6, . . . (i) . . . . . .
1 37 (i) 51.44 64.20
2 1 (vic) 4.04 4.04
2 2 (via) 7.48 7.48
2 3 (via) 10.92 10.92
2 4 (i) 13.79 14.36
2 5, 6, . . . (i) . . . . . .
2 42 (i) 116.00 144.97
3 1 (iii) 4.04 5.76
3 2 (iii) 7.48 10.92
3 3 (iii) 10.92 16.08
3 4 (v) 13.79 21.23
4, 5, 6 . . . 1, 2, 3 (iii) . . . . . .
3, 4, 5 . . . 4, 5, 6, . . . (v) . . . . . .
17 29 (v) 540.00 847.79

Table 1. The sharp upper bounds and the Tong bounds for Dn−1
for r = 2.9 and R = 3.6. See Figure 3 for cases (i)-(v) and Figure 6
for (via) and (vic).
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II. Bounds for Diophantine approximation

4. Asymptotic frequencies

Due to Theorem I.17 and the ergodic theorem, the asymptotic frequency of an
event is equal to the measure of the area of this event in the natural extension.
We calculate the measure of the region where Dn−2 > r and Dn > R. The same
calculations can be done in the easier case where Dn−2 < r and Dn < R.

4.1. The measure of the region where Dn−2 > r and Dn > R in a
rectangle ∆a,b. We calculate the measure in ∆a,b above the graphs of fa,r and
gb,R in the six cases from Figure 3. We denote log 2 times the measure for case (∗)
in ∆a,b by m

(∗)
a,b.

m
(i)
a,b =

∫ 1
b

1
b+1

∫ 1
a

fa,r(t)

dv dt

(1 + tv)2
=

∫ 1
b

1
b+1

[−1

t

1

1 + tv

] 1
a

r
a(r+1)+t

dt

=

∫ 1
b

1
b+1

−1

t

a

a+ t
+

1

t

a(r + 1) + t

(a+ t)(r + 1)
dt

=

∫ 1
b

1
b+1

−1

t
+

1

a+ t
+

1

t
− r

(a+ t)(r + 1)
dt

=

∫ 1
b

1
b+1

1

(a+ t)(r + 1)
dt =

1

(r + 1)

[
log(a+ t)

] 1
b
1
b+1

=
1

(r + 1)
log

(ab+ 1)(b+ 1)

(ab+ a+ 1)b
.

Next we compute m
(v)
a,b, because it is handy for finding m

(ii)
a,b .

m
(v)
a,b =

∫ 1
b

1
b+1

∫ 1
a

1
a+1

dv dt

(1 + tv)2
= log

(ab+ 1)(ab+ a+ b+ 2)

(ab+ a+ 1)(ab+ b+ 1)
.

For m
(ii)
a,b we subtract the measure of the region in ∆a,b below the graph of fa,r

from m
(v)
a,b.

m
(ii)
a,b = m

(v)
a,b −

∫ r−a

1
b+1

∫ fa,r(t)

1
a+1

dv dt

(1 + tv)2

= log
(ab+ 1)(ab+ a+ b+ 2)

(ab+ b+ 1)(ab+ a+ 1)
− r

r + 1
log

r(b+ 1)

ab+ a+ 1
− log

ab+ a+ b+ 2

(b+ 1)(r + 1)

= log
(ab+ 1)(b+ 1)(r + 1)

(ab+ b+ 1)(ab+ a+ 1)
− r

r + 1
log

r(b+ 1)

ab+ a+ 1
.

In the computation of m
(iii)
a,b we use that v = gb,R(t) if and only if t = R

v+b(R+1) , so

m
(iii)
a,b =

∫ 1
a

1
a+1

∫ 1
b

R
b(R+1)+v

dtdv

(1 + tv)2
=

1

(R+ 1)
log

(ab+ 1)(a+ 1)

(ab+ b+ 1)a
.

Note that m
(iii)
a,b is m

(i)
a,b with a interchanged with b and r replaced by R.
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4. Asymptotic frequencies

For m
(iv)
a,b we find using the same techniques as before

m
(iv)
a,b = m

(v)
a,b −

∫ R−b

1
a+1

∫ R
b(R+1)+v

1
b+1

dtdv

(1 + tv)2

= log
(ab+ 1)(a+ 1)(R+ 1)

(ab+ a+ 1)(ab+ b+ 1)
− R

R+ 1
log

R(a+ 1)

ab+ b+ 1
,

which is m
(ii)
a,b where a is interchanged with b and r replaced by R.

In case (vi) there are four possibilities for the measure of the part above the
graphs of fa,r and gb,R, depending on where the graphs intersect with ∆a,b; see

Figure 6. Denote G1 = Ra
ab(R+1)+1 (found from solving gb,R(G1) = 1

a ) and recall

from Lemma II.18 that S is the first coordinate of the intersection point of the
graphs of fa,r and gb,R. In this case we have that (S, fa,r(S)) ∈ ∆a,b.

(via)

F

f

g

GG1 S1
b+1

1
b

1
a+1

1
a

(vib)

F

f

g

GS1
b+1

1
b

1
a+1

1
a

(a) In case (via) we have r−a ≥ 1
b and R− b ≥ 1

a and

in case (vib) we have r − a ≥ 1
b and R− b < 1

a .

(vic)

F

f

g

GG1 S1
b+1

1
b

1
a+1

1
a

(vid)

F

f

g

GS1
b+1

1
b

1
a+1

1
a

(b) In case (vic) we have r− a < 1
b and R− b ≥ 1

a .

In case (vid) we have r − a < 1
b and R− b < 1

a .

Figure 6. The four possible configurations for case (vi).

(via) If r − a ≥ 1
b and R− b ≥ 1

a , then

m
(via)
a,b =

∫ S

G1

∫ 1
a

gb,R(t)

dv dt

(1 + tv)2
+

∫ 1
b

S

∫ 1
a

fa,r(t)

dv dt

(1 + tv)2
.
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(vib) If r − a ≥ 1
b and R− b < 1

a , then

m
(vib)
a,b =

∫ S

1
b+1

∫ 1
a

gb,R(t)

dv dt

(1 + tv)2
+

∫ 1
b

S

∫ 1
a

fa,r(t)

dv dt

(1 + tv)2
.

(vic) If r − a < 1
b and R− b ≥ 1

a , then

m
(vic)
a,b =

∫ S

G1

∫ 1
a

gb,R(t)

dv dt

(1 + tv)2
+

∫ r−a

S

∫ 1
a

fa,r(t)

dv dt

(1 + tv)2
+

∫ 1
b

r−a

∫ 1
a

1
a+1

dv dt

(1 + tv)2
.

(vid) If r − a < 1
b and R− b < 1

a , then

m
(vid)
a,b =

∫ S

1
b+1

∫ 1
a

gb,R(t)

dv dt

(1 + tv)2
+

∫ r−a

S

∫ 1
a

fa,r(t)

dv dt

(1 + tv)2
+

∫ 1
b

r−a

∫ 1
a

1
a+1

dv dt

(1 + tv)2
.

Using the following integrals∫ S

x

∫ 1
a

gb,R(t)

dv dt

(1 + tv)2
=

1

R+ 1
log

S(1− bx)

x(1− bS)
+ log

x(S + a)

S(x+ a)
,∫ y

S

∫ 1
a

fa,r(t)

dv dt

(1 + tv)2
=

1

r + 1
log

a+ y

a+ S
,∫ 1

b

r−a

∫ 1
a

1
a+1

dv dt

(1 + tv)2
= log

(ab+ 1)(r + 1)

(ab+ b+ 1)r
,

we find that

m
(via)
a,b =

1

R+ 1
log

S(1− bG1)

G1(1− bS)
+

1

r + 1
log

ab+ 1

(a+ S)b
+ log

G1(S + a)

S(G1 + a)
,

m
(vib)
a,b =

1

R+ 1
log

S

(1− bS)
+

1

r + 1
log

ab+ 1

(a+ S)b
+ log

S + a

S(ab+ a+ 1)
,

m
(vic)
a,b =

1

R+ 1
log

S(1− bG1)

G1(1− bS)
+

1

r + 1
log

r

a+ S
+ log

G1(S + a)(ab+ 1)(r + 1)

S(G1 + a)(ab+ b+ 1)r
,

m
(vid)
a,b =

1

R+ 1
log

S

(1− bS)
+

1

r + 1
log

r

a+ S
+ log

(S + a)(ab+ 1)(r + 1)

S(ab+ a+ 1)(ab+ b+ 1)r
.

4.2. The total measure of the region where Dn−2 > r and Dn > R in
Ω. For every r > 1 and R > 1 the asymptotic frequency with which Dn−2 > r and
Dn > R can be found by adding a finite number of integrals. Let {x} = x − bxc
and 1A be the indicator function of A, i.e.

1A =

{
1 if condition A is satisfied,
0 else.

Proposition II.24. For almost all x ∈ [0, 1), and for all r,R ≥ 1, we have that

log 2 lim
n→∞

1

n
# {2 ≤ j ≤ n+ 1;Dj−2 > r and Dj > R}
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4. Asymptotic frequencies

exists and equals

brc−1∑
a=1

∞∑
b=bRc+1

m
(i)
a,b

+

brc−1∑
a=1

(
1({R}≤F )m

(i)
a,bRc + 1({R}≥ 1

a )
m

(via)
a,bRc + 1(F<{R}< 1

a )
m

(vib)
a,bRc

)

+

brc−1∑
a=1

bRc−1∑
b=1

m
(via)
a,b +

∞∑
b=bRc+1

(
1({r}≥ 1

b )
m

(i)
brc,b + 1( 1

b+1<{r}< 1
b )
m

(ii)
brc,b

)

+ Mr,R +

bRc−1∑
b=1

(
1({r}≤G)m

(iii)
brc,b + 1({r}≥ 1

b )
m

(via)
brc,b + 1(G<{r}< 1

b )
m

(vic)
brc,b

)
+

∞∑
a=brc+1

∞∑
b=bRc+1

m
(v)
a,b

+

∞∑
a=brc+1

(
1({R}≥ 1

a )
m

(iii)
a,bRc + 1({R}≥ 1

a )
m

(via)
a,bRc + 1(F<{R}< 1

a )
m

(vib)
a,bRc

)

+

∞∑
a=brc+1

bRc−1∑
b=1

m
(iii)
a,b ,

where Mr,R is the measure of the regions where Dn−2 > r and Dn > R in ∆brc,bRc.

Proof. Let a, b ≥ 1 be integers. We denote strips with constant an or an+1 by

Ha = [0, 1]×
[

1

a+ 1
,

1

a

]
and Vb =

[
1

b+ 1
,

1

b

]
× [0, 1].

For a < brc the curve v = fa,r(t) is entirely inside the rectangle Ha and (depending
on the position of the curve v = gb,R(t)) we are either in case (i) or (vi); see Figure 3
and Remark II.14. If a > brc the curve v = fa,r(t) is entirely underneath Ha and
we are in case (iii), (iv) or (v). For a = brc the curve v = fa,r(t) is partially inside
and partially underneath Hbrc. In this strip we can have each of the six cases.

Similarly, for b < bRc, the curve of v = gb,R(t) is entirely inside the rectangle Vb
and (depending on the position of the curve v = gb,R(t)) we are in case (iii) or (vi).
For b > bRc the curve v = gb,R(t) is left of Vb and we are in case (i), (ii) or (v) .
For b = bRc the curve v = gb,R(t) is partially inside and partially left of VbRc and
we can have each of the six cases.

We use the strips Hbrc and VbRc to divide Ω in nine rectangles. Each of the nine
terms in the sum in the proposition gives the measure of the region where Dn−2 > r
and Dn > R on one of those rectangles, we work from left to right and from top to
bottom. The results follow from Corollary I.21, Remark II.14, Theorem II.22 and

the above. For instance, the first rectangle is given by
[
0, 1
bR+1c

)
×
[

1
brc , 1

)
and

we see that for every ∆a,b in this rectangle we are in case (i). �
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II. Bounds for Diophantine approximation

Remark II.25. All the infinite sums are just finite integrals, for example

(II.26)

brc−1∑
a=1

∞∑
b=bRc+1

m
(i)
a,b =

∫ 1
bRc+1

0

∫ 1
a

fa,r(t)

dv dt

(1 + tv)2
.

�

Example II.27. In this example we compute the asymptotic frequency with which
simultaneously Dn−2 > 2.9 and Dn > 3.6; see Figure 5 and Table 2. Also compare
with Table 1 where some of the upper bounds for this case are listed.

an an+1 Case asymptotic frequency
1 1 (via) 0.047
1 2 (via) 0.025
1 > 2 (i) 0.106
2 1 (vic) 0.025
2 2 (via) 0.013
2 3 (via) 0.090
2 > 3 (i) 0.044

> 2 1 (iii) 0.097
> 2 2 (iii) 0.050
> 2 3 (iii) 0.034
> 2 > 3 (v) 0.115

Table 2. The probabilities that Dn−2 > 2.9 and Dn > 3.6 in the
various cases.

Summing over the cases yields that for almost all x ∈ [0, 1) \ Q the asymptotic
frequency with which simultaneously Dn−2 > 2.9 and Dn > 3.6 is 0.64.

From this we may compute the conditional probability that MTong is the sharp
bound. Given that Dn−2 > 2.9 and Dn > 3.6 the conditional probability that
MTong is the sharp bound is 0.31. �

5. Results for Cn.

In [61], Tong states the following result as theorem without a proof.

Let t > 1, T > 1 be two real numbers and

K =
1

2

(
1

t− 1
+

1

T − 1
+ anan+1t T

+

√(
1

t− 1
+

1

T − 1
+ anan+1tT

)2

− 4

(t− 1)(T − 1)

 .

Then

(1) Cn−2 < t,Cn < T imply Cn−1 > K;
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5. Results for Cn.

(2) Cn−2 > t,Cn > T imply Cn−1 < K.

This statement is not correct; assume for instance that Cn−2 < 1.1 and Cn < 1.4,
and that an = an+1 = 1. Part (1) of Tong’s result then implies that Cn−1 > 11.94.
However, by definition Cn−1 ∈ (1, 2), so this bound is clearly wrong.

In this section we give the correct result. The bounds in our theorems are sharp.
We start with the case that both Cn−2 and Cn are larger than given reals, this is
related to the case where Dn−2 and Dn are smaller than given numbers.

Theorem II.28. Let t, T ∈ (1, 2) and put

F ′ =
an+1 + 1

(anan+1 + an + 1)t− 1
, G′ =

an + 1

(anan+1 + an+1 + 1)T − 1

and L′ = t+ T + anan+1tT − 2.

Assume Cn−2 > t and Cn > T .

(1) If
1

t− 1
− an ≥ G′ and

1

T − 1
− an+1 < F ′, then

Cn−1 <
T

(an+1 + 1)(T − 1)
.

(2) If
1

t− 1
− an < G′ and

1

T − 1
− an+1 ≥ F ′, then

Cn−1 <
t

(an + 1)(t− 1)
.

(3) In all other cases

Cn−1 < 1 +
L′ −

√
L′2 − 4(t− 1)(T − 1)

2(t− 1)(T − 1)
.

The bounds are sharp.

Proof. The proof follows from the fact that Cn = 1 + 1
Dn

and Theorem II.20. If

Cn−2 > t, then Dn−2 = 1
Cn−2−1 <

1
t−1 and likewise if Cn > T , then Dn <

1
T−1 .

Setting r = 1
t−1 and R = 1

T−1 , it directly follows from (II.13) that F = F ′ and

G = G′.

Consider case (1). The condition 1
t−1 − an ≥ G′ is equivalent to r − an ≥ G and

1

an + 1
≤ 1

T − 1
− an+1 < F ′ is equivalent to

1

an + 1
≤ R− an+1 < F in part (1)

of Theorem II.20. We find that

Cn−1 <
1

T−1 − an+1

an+1 + 1
+ 1 =

T

(an+1 + 1)(T − 1)
.
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II. Bounds for Diophantine approximation

The proof of the second case is similar. For the third case we use Theorem II.4 for
MTong.

Cn−1 < 1 +
1

MTong

= 1 +
2

t+ T + anan+1tT − 2 +
√

[t+ T + anan+1tT − 2]2 − 4(t− 1)(T − 1)

= 1 +
2

L′ +
√
L′2 − 4(t− 1)(T − 1)

· L
′ −
√
L′2 − 4(t− 1)(T − 1)

L′ −
√
L′2 − 4(t− 1)(T − 1)

= 1 +
L′ −

√
L′2 − 4(t− 1)(T − 1)

2(t− 1)(T − 1)
.

�

Example II.29. Take t = 1.1, T = 1.4 and an = an+1 = 1. We find that
F ′ = 0.870, G′ = 0.625 and L′ = 2.04. Since 1

T−1 − an+1 = 3
2 > F ′ case (1)

of Theorem II.28 does not apply. The second case does not apply either, since
1
t−1 − an = 9 > G′. So we are in case (3) and Cn−1 < 1.50. �

We state the next theorem without a proof, since it is similar to that of Theo-
rem II.28. The only difference is that the proof is based on Theorem II.22 instead
of Theorem II.20.

Theorem II.30. Let t, T ∈ (1, 2) and F ′, G′ and L′ be as defined in Theorem II.28.
Assume Cn−2 < t and Cn < T .

(1) If
1

t− 1
− an ≥ G′ and

1

T − 1
− an+1 < F ′, then

Cn−1 > 1 +
F ′

an+1 + 1
.

(2) If G′ ≤ 1

t− 1
− an and

1

T − 1
− an+1 < F ′, then

Cn−1 > 1 +
G′

an + 1
.

(3) If
1

t− 1
− an <

1

an+1 + 1
and

1

T − 1
− an+1 <

1

an + 1
, then

Cn−1 > 1 +
1

(an + 1)(an+1 + 1)
.

(4) In all other cases

Cn−1 > 1 +
L′ −

√
L′2 − 4(t− 1)(T − 1)

2(t− 1)(T − 1)
.

The bounds are sharp.
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III
Approximation results for α-Rosen
fractions

In this chapter we generalize Borel’s classical approximation results for the regular
continued fraction expansion to the α-Rosen fraction expansion, using a geometric
method. We use α-Rosen fractions to give a Haas-Series-type result about all
possible good approximations for the α for which the Legendre constant is larger
than the Hurwitz constant.

1. Introduction

We recall Legendre’s Theorem I.8 which states that all approximations with quality
smaller than 1

2 are found by the RCF-algorithm:

If p, q ∈ Z, q > 0, and gcd(p, q) = 1, then∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2
implies that

(
p
q

)
=

(
pn
qn

)
for some n ≥ 0.

We call the best possible coefficient of 1
q2 in this theorem the Legendre constant.

It is 1
2 for RCF expansions. For the nearest integer continued fraction expansion

(NICF) the Legendre constant is g2, where g is the golden number; see [21].

Also recall Borel’s Theorem I.10 which states that at least one in every three approx-
imations has quality smaller than 1√

5
and that this constant cannot be improved.

Even more so, for every longer sequence of consecutive approximations, the guaran-
teed minimum of their qualities remains 1√

5
and can only be improved if we exclude

irrationals x for which there is an integer N such that an = 1 for all n > N . This
leads in a natural way to the spectra by Markoff and Lagrange; see [9].

Because 1√
5
< 1

2 the results of Legendre and Borel imply Hurwitz’s Theorem I.11

that states that for every irrational number x there exist infinitely many pairs of
integers p and q, such that ∣∣∣∣x− p

q

∣∣∣∣ < 1√
5

1

q2

We call the best possible coefficient of 1
q2 in this inequality the Hurwitz constant.

It is 1√
5

for RCF-expansions .
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III. Approximation results for α-Rosen fractions

As mentioned in the introduction, J.C. Tong [59, 60] generalized Borel’s result for
the nearest integer continued fraction expansion (NICF). He showed that for the
NICF there exists a ‘spectrum,’ i.e., there exists a sequence of constants (ck)k≥1,

monotonically decreasing to 1/
√

5, such that for all irrational numbers x the mini-
mum of any block of k + 2 consecutive NICF-approximation coefficients is smaller
than ck.

Theorem III.1. (Tong) For every irrational number x and all positive integers n
and k one has

min{Θn−1,Θn, . . . ,Θn+k} <
1√
5

+
1√
5

(
3−
√

5

2

)2k+3

.

The constant ck = 1√
5

+ 1√
5

(
3−
√
5

2

)2k+3

is best possible.

In [17] Hartono and Kraaikamp showed how Tong’s result follows by a geometrical
method based on the natural extension of the NICF. The method will be discussed
in Section 2. In [30] this method was extended to Rosen fractions, yielding the
next theorem.

Theorem III.2. Fix q = 2p, with p ∈ N, p ≥ 2 and let λ = λq = 2 cos πq . For every

Gq-irrational number x and all positive n and k, one has

min{Θn−1,Θn, . . . ,Θn+k(p−1)} < ck,

with

ck =
−τk−1

1 + (λ− 1)τk−1
and τk =

[(
−1 : 2, (−1 : 1)

p−2
)k
,−2 : 3

]
.

The constant ck is best possible.

A similar theorem was derived for the case that q is odd. In this chapter we derive
Borel results for both even and odd α-Rosen fractions.

1.1. α-Rosen fractions. The α-Rosen fraction operator is defined in (I.43)
as

(III.3) Tα(x) =
ε

x
− λ

⌊ ε

λx
+ 1− α

⌋
if x 6= 0 and Tα(0) := 0.

Repeatedly applying this operator to x ∈ [(α− 1)λ, αλ) yields the α-Rosen expan-
sion of x. Put

(III.4) d(x) =

⌊∣∣∣∣ 1

λx

∣∣∣∣+ 1− α
⌋

and ε(x) = sgn(x).

Furthermore, for n ≥ 1 with Tn−1α (x) 6= 0 put

εn(x) = εn = ε(Tn−1α (x)) and dn(x) = dn = d(Tn−1α (x)).

This yields a continued fraction of the type

x =
ε1

d1λ+
ε2

d2λ+ . . .

= [ε1 : d1, ε2 : d2, . . . ],
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1. Introduction

where ε ∈ {±1} and di ∈ N+.

In this chapter we derive a Borel-type result for α-Rosen fractions. Let q be fixed.
As mentioned in the introduction, Haas and Series [16] showed that for every Gq-
irrational x there exist infinitely many Gq-rationals r/s, such that s2

∣∣x− r
s

∣∣ ≤ Hq,
where the Hurwitz constant Hq is given by

(III.5) Hq =


1

2
if q is even,

1√
λ2 − 4λ+ 8

if q is odd.

Theorem III.6. Let α ∈ [1/2, 1/λ] and denote the nth α-Rosen convergent by
pn/qn. For every Gq-irrational x there are infinitely many n ∈ N for which

q2n

∣∣∣∣x− pn
qn

∣∣∣∣ ≤ Hq
The constant Hq is best possible.

We remarked that for regular continued fractions the results of Borel and Le-
gendre imply Hurwitz’s result. For Rosen fractions, the case α = 1

2 it follows
from Nakada [42] that the Legendre constant is smaller than the Hurwitz constant
Hq (both in the odd and even case). This means that there might exist Gq-rationals
r/s for which

Θ(x, r/s) = s2
∣∣∣x− r

s

∣∣∣ ≤ Hq,
i.e., with “quality” Θ(x, r/s) smaller than Hq, that are not found as Rosen-conver-
gents. So a direct continued fraction proof of the generalization by Haas and Se-
ries [16] of Hurwitz’s results cannot be given for standard Rosen fractions.

1.2. Legendre and Lenstra constants. In the early 1980s H.W. Lenstra
conjectured that for regular continued fractions for almost all x and all z ∈ [0, 1],
the limit

lim
n→∞

1

n
#{1 ≤ j ≤ n |Θj(x) ≤ z}

exists and equals the distribution function F defined by

F (z) =


z

log 2
if 0 ≤ z ≤ 1

2

1− z + log 2z

log 2
if 1

2 ≤ z ≤ 1.

A version of this conjecture had been formulated by W. Doeblin [12] before. In 1983
W. Bosma et al. [4] proved the Doeblin-Lenstra-conjecture for regular continued
fractions and Nakada’s α-expansions for α ∈

[
1
2 , 1
]
.

A prominent feature of F is that there exists a unique largest positive constant L
such that F (z) is linear for z ∈ [0,L]. For the RCF we have L = 1

2 . In [42], Nakada
calls L the Lenstra constant and shows that for a large class of continued fractions
this Lenstra constant is equal to the Legendre constant. Using Lenstra constants,
it was shown in [29] that the so-called mediant Rosen map has a Legendre constant
larger than the Hurwitz constant Hq, thus yielding a Hurwitz result. These results
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III. Approximation results for α-Rosen fractions

were obtained using the Lenstra constant. We derive a Hurwitz result for each odd
q, using certain α-Rosen fractions.

The outline of this chapter is as follows. In Section 2 we give some general definitions
for the natural extensions for α-Rosen fractions and explain briefly how our method
works. The even and odd case have different properties and we handle the details
in two separate sections. The Borel result for the various subcases of even α-Rosen
fractions are derived in Section 3, and the odd case is given in Section 4. In Section 5
we find the Lenstra constants Lα for α-Rosen fractions and thereby conclude for
which values of α we can derive a Hurwitz result.

2. The natural extension for α-Rosen fractions

In this section we introduce the necessary notation. Recall from (III.3) that

Tα(t) =
ε(t)

t
− d(t)λ with ε(t) = sgn(t) and d(t) =

⌊ ε
λt

+ 1− α
⌋
.

We generalize Definition I.15 of the natural extension operator.

Definition III.7. For fixed q and α the natural extension map Tα : Ωα → Ωα is
given by

Tα(t, v) =

(
Tα(t),

1

d(t)λ+ ε(t)v

)
.

�

The shape of the domain Ωα on which the two-dimensional map Tα is bijective a.e.
was first described in [11]. We derive our results using a geometric method based
on the natural extensions Ωα. The shape of Ωα depends on α and we give the
explicit formulas for each of the different cases in the appropriate sections; see e.g.
the beginning of Subsection 3.1 for Ωα when q is even and α ∈

(
1
2 ,

1
λ

)
. The natural

extension also depends on q, but for ease of notation we suppress this dependence
and write Ωα in stead of Ωα,q.

We use the following notation in the remainder of this thesis

Ω+
α = {(x, y) ∈ Ωα with x ≥ 0} and Ω−α = {(x, y) ∈ Ωα with x < 0}

and also use these superscripts for subregions of Ω+
α or Ω−α .

We use constants ln and rn to describe Ωα, where

l0 = (α− 1)λ and ln = Tnα (l0), for n ≥ 0,

r0 = αλ and rn = Tnα (r0), for n ≥ 0.

The orbit of −λ2 in the case α = 1
2 plays an important role in describing the natural

extensions. We define ϕj = T j1
2

(
−λ2
)
.

We set δd = 1
(α+d)λ for all d ≥ 1. So if δd < x ≤ δd−1, we have d(x) = d and

ε(x) = +1; also see (III.4). For x with −δd−1 ≤ x < −δd we have d(x) = d and
ε(x) = −1.
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2. The natural extension for α-Rosen fractions

We often use the auxiliary sequence Bn already given in (I.41) by

(III.8) B0 = 0, B1 = 1, Bn = λBn−1 −Bn−2, for n = 2, 3, . . . .

Note that Bn = sin nπ
q / sin π

q . If q = 2p for p ≥ 2, we find from sin (p−1)π
2p =

sin (p+1)π
2p that

(III.9) Bp−1 = Bp+1 =
λ

2
Bp and Bp−2 =

(
λ2

2
− 1

)
Bp.

Similarly in the odd case with q = 2h+ 3 for h ∈ N we have that

(III.10) Bh+1 = Bh+2, Bh = (λ− 1)Bh+1 and Bh−1 =
(
λ2 − λ− 1

)
Bh+1.

Similar to (I.13) we define for x ∈ [l0, r0) with α-Rosen expansion [ε1 : d1, ε2 :
d2, . . . ] the future tn and the past vn of x at time n ≥ 1 by

tn = [εn+1 : dn+1, εn+2 : dn+2, . . .] and vn = [1 : dn, εn : dn−1, . . . , ε2 : d1].

Again, we set t0 = x and v0 = 0.

Remark III.11. For α-Rosen fractions it again holds that Tαn(x, 0) = (tn, vn) for
n ≥ 0. �

The (n − 1)st and nth approximation coefficients of x can be given in terms of tn
and vn (see Section 5.1.2 of [10]) as

(III.12) Θn−1 = Θn−1(tn, vn) =
vn

1 + tnvn
and Θn = Θn(tn, vn) =

εn+1tn
1 + tnvn

.

Often it is convenient to use Θm(tn+1, vn+1) = Θm+1(tn, vn).

Lemma III.13. The (n + 1)st approximation coefficient of x can be expressed in
terms of dn+1, εn+1 and εn+2 by

(III.14) Θn+1 = Θn+1(tn, vn) =
εn+2(1− εn+1dn+1tnλ)(λdn+1 + εn+1vn)

1 + tnvn
.

Proof. First we use (III.12) to write

Θn+1 = Θn(tn+1, vn+1)
εn+2 tn+1

1 + tn+1 vn+1
= εn+2 tn+1

Θn

vn+1
=
εn+2 εn+1

tn+1tn
vn+1

1 + tnvn
.

Then we use tn+1 = εn+1

tn
− dn+1λ and vn+1 = 1

λdn+1+εn+1vn
to find (III.14). �

In view of (III.12) we define functions f and g on [l0, r0) by

(III.15) f(x) =
Hq

1−Hqx
and g(x) =

|x| − Hq
Hqx

.

Then for points (tn, vn) ∈ Ωα one has
(III.16)

Θn−1 ≤ Hq ⇔ vn ≤ f(tn) and Θn ≤ Hq ⇔


vn ≤ g(tn) if tn < 0

vn ≥ g(tn) if tn ≥ 0.
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III. Approximation results for α-Rosen fractions

We define D as

(III.17) D =

{
(t, v) ∈ Ωα

∣∣ min

{
v

1 + tv
,
|t|

1 + tv

}
> Hq

}
,

so min{Θn−1,Θn} > Hq if and only if (tn, vn) ∈ D.

See Figure 2 for an example of the position of D and of the graphs of f and g in Ωα
for q = 4.

3. Tong’s spectrum for even α-Rosen fractions

Let q = 2p for p ∈ N+, p ≥ 2 and set λ = 2 cos πq . As shown in [11] there are

three subcases for the shape of Ωα: we need to study α = 1
2 , α ∈

(
1
2 ,

1
λ

)
and α = 1

λ
separately. The following result, giving the ordering of the ln and rn, was essential
in the construction of the natural extensions.

Theorem III.18. [11] Let q = 2p, p ∈ N, p ≥ 2 and let ln and rn be defined as
before. If 1

2 < α < 1
λ , then we have that

−1 < l0 < r1 < l1 < . . . < rp−2 < lp−2 < −δ1 < rp−1 < 0 < lp−1 < r0 < 1,

dp(r0) = dp(l0) + 1 and lp = rp. If α = 1
2 , then we have that

−1 < l0 < r1 = l1 < . . . < rp−2 = lp−2 < −δ1 < rp−1 = 0 = lp−1 < r0 < 1.

If α = 1
λ , then we have that

−1 < l0 = r1 < l1 = r2 < . . . < lp−2 = −δ1 = rp−1 < 0 < r0 = 1.

Let k ≥ 1 be an integer and put

(III.19) (τk, νk) =


T −k(p−1)α

(−2
3λ , λ− 1

)
if α = 1

λ ;

T −k(p−1)α (−δ1, λ− 1) otherwise.

We prove the following result in this section.

Theorem III.20. Fix an even q = 2p with p ≥ 3 and let α ∈
[
1
2 ,

1
λ

]
. There exists

a positive integer K such that for every Gq-irrational number x and all positive n
and k > K, one has

min{Θn−1,Θn, . . . ,Θn+k(p−1)} < ck with ck =
−τk−1

1 + τk−1νk−1
.

For every integer k ≥ 1 we have ck+1 < ck. Furthermore lim
k→∞

ck =
1

2
.

The case α = 1
2 was proven in [30]; c.f. Theorem III.2. The proof for α ∈

(
1
2 ,

1
λ

)
follows the same line and is given in Section 3.1. In Section 3.2 we use that the
natural extension for the case α = 1

λ is the reflection of the one for α = 1
2 to prove

Theorem III.20 for α = 1
λ .
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3. Tong’s spectrum for even α-Rosen fractions

3.1. Even case with α ∈ ( 1
2 ,

1
λ ). In this section we assume that α ∈ ( 1

2 ,
1
λ ).

In [11] the shape of Ωαwas determined.

Definition III.21. Set

J2n−1 = [ln−1, rn) and J2n = [rn, ln) for n = 1, 2, . . . , p− 1

J2p−1 = [lp−1, r0) and

H1 =
1

λ+ 1
, H2 =

1

λ
and

Hn =
1

λ−Hn−2
for n = 3, 4, . . . , 2p− 1.

The domain of Ωα upon which Tα is bijective a.e. is given by

Ωα =

2p−1⋃
n=1

Jn × [0, Hn].

�

See Figure 1 for an example of the shape of Ωα for q = 6 and α = 0.53.

We define
Ω+
α = {(t, v) ∈ Ωα | t > 0} .

Figure 1. The natural extension Ωα for q = 6 and α = 0.53 < 1
λ .

From the above description of the natural extension Ωα it follows that the natural
extension has 2p− 1 heights H1, . . . ,H2p−1. In [11] it is shown that Hi+1 > Hi for
i = 1, . . . , 2p− 2,

H2p−3 = λ− 1, H2p−2 =
λ

2
, H2p−1 = 1,

and
(III.22)

lp−2 =
αλ2 − 2

(−αλ2 + 2α+ 1)λ
, lp−1 =

(2α− 1)λ

2− αλ2 and rp−1 = − (2α− 1)λ

2− (1− α)λ2
.

Note that Theorem III.20 gives a result for q ≥ 6. The case q = 4 behaves essentially
in the same way, which we show in the following section.
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III. Approximation results for α-Rosen fractions

3.1.1. The case q = 4. In this subsection we assume that q = 2p = 4, so
λ =
√

2. In this case we have H1 =
√

2− 1, H2 = 1
2

√
2 and H3 = 1. We prove the

following result.

Theorem III.23. Let λ = 2 cos π4 =
√

2, let α ∈
(
1
2 ,

1
λ

)
and let τk be as given

in (III.19). There exists a positive integer K such that for every Gq-irrational
number x and all positive n and k ≥ K, one has

min{Θn−1,Θn, . . . ,Θn+k} < ck with ck =

√
2− 1

1 + τk−1(
√

2− 1)
.

For every integer k ≥ 1 we have ck+1 < ck. Furthermore lim
k→∞

ck =
1

2
.

We start by determining the shape of the region D ⊂ Ωα, where min{Θn−1,Θn} >
1
2 ; see (III.17).

Lemma III.24. Put α0 := 4+
√
2

8 = 0.676 . . . . For α ∈
(
1
2 , α0

)
the region D

consists of one component D1, which is bounded by the lines t = l0, v = H1, and

the graph of f ; see Figure 2. If α ∈
[
α0,

√
2
2

)
, then D consists of two components:

D1 and D2, where D2 is the region bounded by the lines t = r1, v = H2, and the
graph of g; see Figure 3.

Proof. Recall that Hq = 1
2 . First assume that t ≥ 0. The graphs of f and g do

not intersect for t ≤ r0. Thus every point (tn, vn) ∈ Ω+
α is below the graph of f or

above the graph of g. By (III.16) we have when t ≥ 0 that min{Θn−1,Θn} < 1
2 .

Assume that t < 0. The graphs of f and g intersect with the line v = H1 in the
point (1−

√
2,
√

2−1), and we find that l0 < − 1
2 < −δ1 < 1−

√
2 < r1 for α ∈ ( 1

2 ,
1
λ ).

Since both f and g are monotonically increasing we find that for l0 < t < r1 the
intersection of D and Ωα is D1.

Figure 2. Here q = 4 and α = 0.6 < α0 = 0.676 . . . . The region
D consists of one component D1.

One easily checks that g(r1) ≤ H2 if and only if α ≥ α0. So we find that for α > α0

and r1 < t < 0 the intersection of D and Ωα is D2 (for α = α0 the region D2

consists of exactly one point, (r1, g(r1))); see Figure 3. �
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3. Tong’s spectrum for even α-Rosen fractions

0

H1

H3

H2

r1 l1l0 r0

D1

D2

(t, g(t))

(t, f(t))

(t, g(t))

1−
√

2−δ1

Figure 3. Here q = 4 and α = 0.68 > α0 = 0.676 . . . . The region
D consists of two components.

Proof of Theorem III.23. Recall that (τk, νk) = T −kα (−δ1, λ− 1). For q = 4 we

find τ1 = −1
2
√
2−δ1

, τk = [(−1 : 2)k,−δ1] and νk =
√

2 − 1 for all k. Since Tα

is strictly increasing on the interval [−δ1,−δ2) we find τk−1 < τk. In this case

lim
k→∞

τk = [(−1 : 2)] =
−1√
2 + 1

= 1−
√

2. We conclude that lim
k→∞

τk = 1−
√

2.

We find ck+1 < ck, lim
k→∞

ck =

√
2− 1

1 + (1−
√

2)(
√

2− 1)
=

1

2
and conclude that ck >

1
2

for all k.

We now focus on the orbit of points in D and start with D1. First note that
Tα ([l0,−δ1)× [0, H1]) = [l1, r0) × [H2, 1] ⊂ {(t, v) ∈ Ωα| t ≥ 0}. Therefore, if
(tn, vn) ∈ D1 and tn ≤ −δ1, we have that min{Θn−1,Θn} > 1

2 , while Θn+1 <
1
2 .

For these points we have proven Theorem III.23 with K = 1.

Note that (1 −
√

2,
√

2 − 1) is a fixed-point of Tα. In particular, we have that

(1−
√

2,
√

2−1) is a repellent fixed-point for the first-coordinate map of Tα, and an
attractive fixed point for the second coordinate map of Tα. Thus points (t, v) ∈ D1

with t > −δ1 move “left and up” under Tα. Noting that f is strictly increasing, we
have that the region {(t, v) ∈ D1| t ≥ −δ1} is mapped by Tα inside D1.

Setting D1,k := {(t, v) ∈ D1| τk−1 ≤ t < τk}, for k ≥ 1, and D1,0 := {(t, v) ∈ D1| t <
−δ1}, by definition of τk and D1,k, we have for k ≥ 1 that

(t, v) ∈ D1,k implies Tα(t, v) ∈ D1,k−1.

We determine the maximum of Θn−1,Θn and Θn+1 on D1,k for k ≥ 1.

Lemma III.25. Let k ≥ 1 and (tn, vn) ∈ D1,k. Then

(III.26) Θn−1 ≤ Θn ≤ Θn+1.
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III. Approximation results for α-Rosen fractions

Proof. On D1,k we have dn+1 = 2 and εn+1 = εn+2 = −1. From (III.12) we find

Θn−1 ≤ Θn if and only if vn ≤ −tn,
and the latter inequality is true in view of the fixed point. From (III.14) we have

Θn+1 = −(1+2
√
2tn)(2

√
2−vn)

1+tnvn
and we find

Θn ≤ Θn+1 if and only if vn ≤
7tn + 2

√
2

1 + 2
√

2tn
.

On D1,k the function v(t) = 7t+2
√
2

1+2
√
2t

is decreasing in t and v(1−
√

2) =
√

2− 1. So

Θn ≤ Θn+1 on D1,k for k ≥ 1. �

We conclude that for every point (tn, vn) ∈ D1,k for k ≥ 1

min{Θn−1,Θn,Θn+1} ≤ max
(t,v)∈D1,k

Θn−1(t, v).

We determine the maximum of Θn−1 on D1,k. The partial derivatives of Θn−1 are
given by

∂Θn−1
∂tn

=
−v2n

(1 + tnvn)2
< 0 and

∂Θn−1
∂vn

=
1

(1 + tnvn)2
> 0,

so on D1,1 we see that Θn−1 attains its maximum in (−δ1,
√

2−1). Similarly on D1,k

we find that Θn−1 attains its maximum in (τk,
√

2− 1), which is the top left-hand
vertex of D1,k. We find the values

c1 =

√
2− 1

1− δ1(
√

2− 1)
and ck =

√
2− 1

1 + τk−1(
√

2− 1)
.

One sees that if (tn, vn) ∈ D1,k for some k ≥ 3, then (tn+1, vn+1) ∈ D1,k−1,
(tn+2, vn+2) ∈ D1,k−2, . . . , (tn+k−1, vn+k−1) ∈ D1,1. It follows that

(tn, vn) ∈ D1,k implies
1

2
< min{Θn−1, . . . ,Θn+k} < Θn−1(τk−1,

√
2− 1) = ck

and Θn+k+1 <
1

2
.(III.27)

For α < α0 the above implication (III.27) is actually an equivalence, since D2 is
void for these values of α. Thus Theorem III.23 for the case q = 4 and α < α0

follows with K = 1.

We continue by studying the orbit of points in D2 and assume that α ∈
[
α0,

1
λ

)
, so

D2 is non-empty.

It follows from the fact that (1−
√

2,
√

2− 1) is a repellent fixed-point on the first
coordinate map of Tα, and an attractive fixed-point on the second coordinate map
of Tα, that for (t, v) ∈ D2

1−
√

2 < r1 < t < π1(Tα(t, v)) and H2 > v > π2(Tα(t, v)) >
√

2− 1,

(here πi is the projection on the ith coordinate), i.e., Tα “moves” the point (t, v) ∈
D2 to the right, and “downwards towards”

√
2− 1.
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3. Tong’s spectrum for even α-Rosen fractions

Let (t1,
√

2 − 1 + v1) be a point in D2. The lowest point in D2, the closure of D2,

is given by (r1, g(r1)) =
(

1−2α√
2α
, (
√
2−4)α+2
2α−1

)
, so 0 < −(2+

√
2)α+1+

√
2

2α−1 < v1 for every

point (t1,
√

2− 1 + v1) ∈ D2 and trivially v1 < 1.

For the second coordinate we find

π2(Tα(t1,
√

2− 1 + v1)) =
1√

2 + 1− v1
=
√

2− 1 +

√
2− 1√

2 + 1− v1
v1.

For all points in D2 we have d = 2 and ε = −1. Thus in every consecutive step the

second coordinate will be closer to the value
√

2−1 by a factor
√
2−1√

2+1−v1
<
√
2−1√
2

< 1.

Hence there exists a smallest positive integer K such that for all (t, v) ∈ D2 one has
T Kα (t, v) 6∈ D2. In words: the region D2 is “flushed” out of D in K steps, and the
implication in (III.27) is an equivalence for k > K. This proves Theorem III.23. 2

Remark III.28. More can be said with (considerable) effort. We start by deriving
α1 such that for α ∈ [α0, α1] the region D2 is non-empty, but flushed after one
iteration of Tα. We find α1 by solving for which value of α we have that the point

Tα(r1, H2) =
(
r2,
√
2
3

)
is on the graph of g. Using that d(r1) = 2 for α ∈

[
α0,

1
λ

)
we

find that the only solution is given by α1 := 24+
√
2

36 = 0.70595 . . . .

So if α ∈ [α0, α1] =
[
4+
√
2

8 , 24+
√
2

36

]
and (tn, vn) ∈ D2, then min{Θn−1,Θn} > 1

2 ,

and Θn+1 <
1
2 .

For α > α1 and i ≥ 1, we define the pre-images gi of g for t ∈ [1−
√

2, β] by

v = gi(t) ⇔ π2(T iα(t, v)) = g
(
π1(T iα(t, v))

)
,

i.e., the point (t, v) is on the graph of gi if and only if T iα(t, v) is on the graph of g.

Note that for every i ≥ 1 one has that (1−
√

2,
√

2− 1) is on the graph of gi.

By definition of Kα it follows that the graph of gi has a non-empty intersection
with D2 if and only if i = 1, . . . ,Kα − 1. These Kα − 1 graphs gi divide D2 like a
“cookie-cutter” into regions D2,i for i = 1, . . . ,Kα; setting g0 := g,

D2,i := {(t, v) ∈ D2| gi−1(t) ≤ v < min{H2, gi(t)}}.
We have that

(tn, vn) ∈ D2,i ⇒ min{Θn−1, . . . ,Θn+i−1} >
1

2
and Θn+i <

1

2
.

In principle it is possible to determine the optimal constant c̃k for (tn, vn) ∈ D2

and k = 1, . . . ,K − 1 such that

min{Θn−1, . . . ,Θn+k} < c̃k.

In this way, Theorem III.20 can be further sharpened. �

Remark III.29. From the proof of Lemma III.26 it easily follows that for points
(tn, vn) ∈ D2

min{Θn−1,Θn,Θn+1} = Θn.
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The partial derivatives of Θn on D2 are given by

∂Θn

∂tn
=

−1

(1 + tnvn)2
< 0 and

∂Θn

∂vn
=

t2n
(1 + tnvn)2

> 0.

�

Example III.30. An easy but tedious calculation yields that T 2
α (r1, H2) is on the

graph of g if α = α2 := 140+
√
2

200 = 0.707071 . . . .

For α ∈ (α1, α2] we have that Kα = 2. For α ∈ (α1, α2] the region D2 consists of
two parts: D2,1 and D2,2. The region D2,1 is immediately flushed and is therefore
not interesting for us. For (tn, vn) ∈ D2,2 we have that

1

2
< min{Θn−1,Θn,Θn+1} < Θn (Tα(r1, H2)) = 9

√
2α− 6

√
2.

The comparable value of c1 is

c1 =
δ1

1− δ1H1
=

(α+ 1)(2−
√

2)√
2α+ 2

√
2− 1

.

We find that 9
√

2α − 6
√

2 > (α+1)(2−
√
2)√

2α+2
√
2−1 when α > 12−9

√
2+
√

378+216
√
2

36 = 0.6944.

So we find for α ∈ (α1, α2] that

min{Θn−1,Θn,Θn+1} < 9
√

2α− 6
√

2.

�

3.1.2. Even case with α ∈ ( 1
2 ,

1
λ ) and q ≥ 6. For the remainder of this section

we assume q ≥ 6. The shape of the region D ⊂ Ωα, where min{Θn−1,Θn} > 1
2 is

given in the next lemma; see Figure 4.

Lemma III.31. For α ∈ ( 1
2 ,

λ2+4λ−4
2λ3 ] the region D consists of two components D1

and D2. The subregion D1 is bounded by the lines t = l0, v = H1 and the graph of
f ; D2 is bounded by the graph of g from the right, by the graph of f from below and
by the boundary of Ωα.

If α ∈
(
λ2+4λ−4

2λ3 , −λ
2+4λ+4
8λ

]
, then D2 splits into two parts and D consists of three

components.

If α ∈
(
−λ2+4λ+4

8λ , 1
λ

)
, then D consists of four components: D1, the two parts of

D2 and an additional part D3, bounded by the line t = rp−1, the graph of g and the
line v = H2p−2; see Figure 5.

Proof. Recall that Hq = 1
2 . First assume t ≥ 0. Arguing as in the case of q = 4,

when t ≥ 0 we have min{Θn−1,Θn} < 1
2 .

Assume t < 0. The graph of f(t) intersects the line v = H1 in the point (−H2p−3, H1),
but also l0 < −H2p−3 < r1 if α < 1

λ . Since the function f(t) is strictly increasing

and f(0) = Hq < 1
λ = H2 it follows that the graph of f(t) does not intersect any

of the line segments v = Hi for i = 2, . . . , 2p− 2 for t < 0.
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Figure 4. Sketch of D in Ωα. The number of steps on the
left boundary of D2 is about p − 4. In this figure we took

α ∈ (−λ
2+4λ+4
8λ , 1

λ ), so D2 is split into two components and there
is a region D3.

Next we consider the intersection points of the graph of g(t) with the line segments
v = Hi for i = 1, . . . , 2p − 2. We work from right to left. The intersection point

of the graph of g and the line v = H2p−2 = λ
2 is given by

(
−2
λ+4 ,

λ
2

)
. The first

coordinate of this point is larger than rp−1 if and only if α > −λ2+4λ+4
8λ and always

smaller than lp−1, since lp−1 > 0 . We conclude that −2λ+4 is in the interval J2p−2 if

and only if α ∈
(
−λ2+4λ+4

8λ , 1
λ

)
.

The intersection point of the graph of g(t) with the line v = H2p−3 = λ − 1 is
given by (−H1, H2p−3). Since −δ1 < −H1 < rp−1 we have by Theorem III.18 that
−H1 ∈ J2p−3 for all α ∈

(
1
2 ,

1
λ

)
.

Furthermore g(lp−2) = −2− (−αλ2+2α+1)λ
αλ2−2 and we find that g(lp−2) > H2p−4 = λ− 2

λ

if and only if α > λ2+4λ−4
2λ3 . So if α ∈

(
λ2+4λ−4

2λ3 , 1
λ

)
then D2 consists of two

separated parts.

The graph of g(t) does not intersect any of the other lines v = Hi with i = 1, . . . , 2p−
5, since g is strictly increasing and g(rp−2) = −2− 1

rp−2
= −2+λ+rp−1 < 0, where

we used that rp−2 = −1
λ+rp−1

, λ < 2 and rp−1 < 0. �

We see that D stretches over several intervals Jn - which was not the case for q = 4.
Points (tn, vn) in D1 have tn ∈ J1 = [l0, r1), points in D2 have tn ∈ J2∪· · ·∪J2p−1 =
[r1, rp−1) and points in D3 have tn ∈ J2p−2 = [rp−1, lp−1].

47



III. Approximation results for α-Rosen fractions

On D we consider Θn+1, the ”next” approximation coefficient. We wish to express
Θn+1 locally as a function of only tn and vn. We divide D into subregions where
dn+1, εn+1 and εn+2 are constant. This gives three regions; see Table 1 for the
definition of the subregions.

Region dn+1 εn+1 εn+2

(I)

{
(tn, vn) ∈ D | l0 ≤ tn < −1

λ

}
1 −1 −1

(II)

{
(tn, vn) ∈ D | −1λ ≤ tn < −δ1

}
1 −1 1

(III)

{
(tn, vn) ∈ D | − δ1 ≤ tn < −1

2λ

}
2 −1 −1

Table 1. Subregions of D giving constant coefficients.

We analyse Θn+1 on the three regions.

Region(I). On Region (I) we have that Θn+1 <
1
2 if and only if vn >

2λtn+2λ+1
2λtn−tn+2 .

Region(II). Region (II) is mapped to Ω+
α under Tα, so on Region (II) Θn+1 <

1
2

for all points (tn, vn).

Region(III). We denote the intersection of D2 and Region (III) by A. The

vertices of A are given by (−δ1, g(−δ1)) ,
(
−1
λ+1 , λ− 1

)
and (−δ1, λ− 1). The ver-

tices of D3 are given by (rp−1, g(rp−1)) ,
(
−2
λ+4 ,

λ
2

)
and (rp−1, λ2 ). See Figure 5.

We focus on Region (III) and discuss points in Region (I) later.

Figure 5. Region (III) in Ωα. If α < −λ2+4λ+4
8λ there is no region D3.
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3. Tong’s spectrum for even α-Rosen fractions

We want to determine bounds for the minimum of three consecutive approximation
coefficients on A and D.

Lemma III.32. For each point (tn, vn) in Region (III)

min{Θn−1,Θn,Θn+1} = Θn.

Proof. On region (III) it holds that vn > −tn, so from (III.12) it immediately
follows that

Θn−1 > Θn.

Using (III.14) we find that Θn+1 > Θn if and only if vn < (4λ2−1)tn+2λ
2λtn+1 . Put

v(t) = (4λ2−1)t+2λ
2λt+1 . This function is decreasing in t for t < −1

2λ . We find that

v
(
−2
λ+4

)
> 1 if and only if λ > 11+

√
73

12 . This last inequality is satisfied for all λq

with q ≥ 6. �

Corollary III.33. For each point (tn, vn) in Region (III)

min{Θn−1,Θn,Θn−1} >
1

2
.

It follows that for every point (tn, vn) in Region (III) we have

min{Θn−1,Θn,Θn+1} ≤ max
(t,v)∈ Region (III)

Θn(t, v).

The partial derivatives of Θn on Region (III) are given by

∂Θn

∂tn
=

−1

(1 + tnvn)2
< 0 and

∂Θn

∂vn
=

t2n
(1 + tnvn)2

> 0.

We find that Θn takes its maximum on A in the upper left corner, the point
(−δ1, H2p−3), and on D3 in the vertex (rp−1, H2p−2). Using (III.22) we find that
these maxima are given by

Θn(−δ1, λ− 1) =
δ1

1− δ1(λ− 1)
=

1

αλ+ 1
,

Θn

(
rp−1,

λ

2

)
=

−rp−1
1 +

rp−1λ
2

=
2λ(2α− 1)

4− λ2 .

We find that Θn(−δ1, λ − 1) > Θn

(
rp−1, λ2

)
if and only if α < λ−2+

√
−3λ2+4λ+20
4λ .

For all λ < 2 we have −λ
2+4λ+4
8λ < λ−2+

√
−3λ2+4λ+20
4λ < 1

λ

Corollary III.34. For every point (tn, vn) in Region (III)

min{Θn−1,Θn,Θn+1} ≤


1

αλ+1 if α ∈
(

1
2 ,

λ−2+
√
−3λ2+4λ+20
4λ

]
,

2λ(2α−1)
4−λ2 if α ∈

(
λ−2+

√
−3λ2+4λ+20
4λ , 1

λ

)
.
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Orbit of points in Region (III). We study the orbit of points in A and D3 to
derive the spectrum for α-Rosen fractions. We call p−1 consecutive applications of
Tα a round. We use Möbius transformations from Definition I.38 to find an explicit
formula for T p−1α ; see [14] for background, or [30], where such techniques are used.
Let S and T be the generating matrices of the group Gq

(III.35) S =

[
1 λ
0 1

]
and T =

[
0 −1
1 0

]
.

Recall that in this context we consider matrices M and −M to be equivalent.

Lemma III.36. Let (t, v) ∈ Ωα be given. Put d = d(t), ε = ε(t) and

A =

[
−dλ ε

1 0

]
. Then

Tα(t, v) = (A(t), TAT (v)).

Proof. Formula (III.3) gives

Tα(t) =
ε

t
− dλ =

−dλt+ ε

t
=

[
−dλ ε

1 0

]
(t).

Now it easily follows that

TAT (v) =

[
0 1
ε dλ

]
(v) =

1

εv + dλ
.

Hence Tα(t, v) = (A(t), TAT (v)) as given in Definition III.7. �

Lemma III.37. Put M = (S−1T )p−2 S−2T . For (t, v) ∈ A ∪ D3 we have

Tαp−1(t, v) = (M(t), TMT (v)).

Proof. First assume (t, v) ∈ A, so −δ1 ≤ t ≤ −1
λ+1 < −δ2. We have ε(t) = −1 and

d(t) = 2, and

Tα(t) =
−1

t
− 2λ.

We note that

S−2T (t) =

[
−2λ −1

1 0

]
(t) =

−1

t
− 2λ.

We find

Tα(−δ1) = (α− 1)λ = l0 and Tα

( −1

λ+ 1

)
= 1− λ = −H2p−3.

As noted in the proof of Lemma III.31, one has −H2p−3 < r1. From Theorem III.18
and the above estimates it follows that for both −δ1 and rp−1 the following p − 2
applications of Tα give ε = −1 and d = 1. Thus we use p− 2 times

Tα(t) =
−1

t
− λ =

−λt− 1

t
=

[
−λ −1
1 0

]
(t) = V (t).

Combining the first step with these p − 2 steps we find M = (S−1T )p−2S−2T for
points (t, v) ∈ A. From Lemma III.36 and the fact that T T = I we find that the
second coordinate is given by TMT .
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Now assume (t, v) ∈ D3. In this case α ∈
(
−λ2+4λ+4

8λ , 1
λ

)
and −δ1 < rp−1 ≤ t ≤

−2
λ+4 < −δ2. We again have ε(t) = −1 and d(t) = 2, and find

Tα(rp−1) =
2 + λ2(1− 3α)

(2α− 1)λ
= rp and Tα

( −2

λ+ 4

)
= 2− 3λ

2
.

For α ∈
(
−λ2+4λ+4

8λ , 1
λ

)
we have rp < 2− 3λ

2 < l1, so like before we apply Tα in the

next p− 2 steps with ε = −1 and d = 1. �

We use the auxiliary sequence Bn from (III.8) to find powers of S−1T .

Lemma III.38. For n ≥ 1 we have

(S−1T )n =

[
−Bn+1 −Bn
Bn Bn−1

]
.

Proof. We use induction. For n = 1 we have

S−1T =

[
−λ −1

1 0

]
=

[
−B2 −B1

B1 B0

]
.

Assume that

(S−1T )n−1 =

[
−Bn −Bn−1
Bn−1 Bn−2

]
.

We find

(S−1T )n =

[
−Bn −Bn−1
Bn−1 Bn−2

] [
−λ −1
1 0

]
=

[
−Bn+1 −Bn
Bn Bn−1

]
.

�

Lemma III.39. The function Tαp−1 is explicitly given by

Tαp−1(t, v) =
Bp
2

([
−λ2 − 2 −λ
λ3 − λ λ2 − 2

]
(t),

[
−λ2 + 2 λ3 − λ
−λ λ2 + 2

]
(v)

)
.

Proof. We compute M given in Lemma III.37 by M = (S−1T )p−2S−2T .

From Lemma III.38 we find

(S−1T )p−2 =

[
−Bp−1 −Bp−2
Bp−2 Bp−3

]
.

Using (III.9) and (III.8) we find

Bp−1 =
λ

2
Bp, Bp−2 =

(
λ2

2
− 1

)
Bp and Bp−3 =

(
λ3

2
− 3λ

2

)
Bp.

So

(S−1T )p−2 =
Bp
2

[
λ λ2 − 2

−λ2 + 2 −λ3 + 3λ

]
,

and we find

M = (S−1T )p−2S−2T =
Bp
2

[
−λ2 − 2 −λ
λ3 − λ λ2 − 2

]
.

The second coordinate is easy to calculate. �
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III. Approximation results for α-Rosen fractions

With the explicit fomula for M(t) we can easily compute its fixed points, they are
given by

t1 =
−1

λ+ 1
and t2 =

−1

λ− 1
.

The fixed points of TMT (v) are given by

v1 = λ+ 1 and v2 = λ− 1.

Corollary III.40. The point
(
−1
λ+1 , λ− 1

)
is a fixed point of T p−1α (t, v).

Remark III.41. If ε = −1 and d is constant, then Tα(t) is strictly increasing in
t. From this and the above corollary we find that for (t, v) ∈ A we have M(t) ≤ t,
whilst for points (t, v) ∈ D3 we have M(t) > t. �

Flushing. We say a point is flushed when it is mapped from D to a point
outside of D by Tα. We look at the flushing of points in A and D3.

Flushing from A. Combining all the above we find that the vertices of A are
mapped as follows under T p−1.

(−δ1, λ− 1) 7→
(

αλ2 − 2

(−αλ2 + 2α+ 1)λ
, λ− 1

)
= (lp−2, λ− 1)( −1

λ+ 1
, λ− 1

)
7→

( −1

λ+ 1
, λ− 1

)
,

(−δ1, g(−δ1)) 7→
(
lp−2, λ−

(2α− 1)λ− 4

(αλ− 2)λ− 2

)
.

A

T p−1(A)

Figure 6. A and its (p− 1)st transformation under Tα.

The image of A under T p−1α is a long, thin “triangle” that has a “triangular”
intersection with A; see Figure 6. We notice in particular that (−δ1, H2p−3) is
included in T p−1α (A). However, the part of T p−1α (A) on the left-hand side of the
line t = −δ1 is in Region (II). So these points are flushed in the next application of
Tα.

We conclude that for the points (tn, vn) ∈ A with T p−1α (tn) < −δ1 we have

min{Θn−1,Θn,Θn+1, . . . ,Θn+p−1 > Hq} and Θn+p < Hq.

The following theorem generalizes this idea to multiple rounds. Recall from (III.19)
that we define τk by

(τk, νk) = T −k(p−1)α (−δ1, H1).
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3. Tong’s spectrum for even α-Rosen fractions

Theorem III.42. Let k ≥ 1 be an integer.

Any point (t, v) of A is flushed after exactly k rounds if and only if

τk−1 ≤ t < τk.

For any x with τk−1 ≤ tn < τk,

min{Θn−1,Θn, . . . ,Θn+k(p−1)−1,Θn+k(p−1)} > Hq,
while

Θn+k(p−1)+1 < Hq.

Proof. A point (t, v) ∈ A is flushed after exactly k rounds if k is minimal such

that T k(p−1)α (t, v) has its first coordinate smaller than −δ1. The result follows from
the definition of τk and the above. �

Flushing from D3. Recall that the vertices of D3 are given by (rp−1, g(rp−1)),(
−2
λ+4 ,

λ
2

)
and (rp−1, λ2 ); see Figure 5. We have −1

λ+1 < rp−1 < −2
λ+4 and λ − 1 <

g(rp−1) < λ
2 . The fixed point

(
−1
λ+1 , λ− 1

)
of T p−1 is repelling in the t-direction

and attractive in the v-direction.

Lemma III.43. There exists a positive integer K such that all points in D3 are
flushed after K rounds.

Proof. Let (t1, λ − 1 + v1) be a point in D3, it follows that 0 < v1 < 1. With
Lemma III.39 we find for the second coordinate

π2(T p−1α (t1, λ−1+v1)) =
(−λ2 + 2)(λ− 1 + v1) + λ3 − λ
−λ(λ− 1 + v1) + λ2 + 2

= λ−1+
2− λ

λ+ 2− λv1
v1.

As 2−λ
λ+2−λv1 < 1− λ

2 < 1, the result follows. �

Remark III.44. We could divide D3 in parts that get flushed after 1, 2, . . . ,K
rounds, respectively. As we saw in the example for q = 4 the formulas needed to
do this are rather ugly and in this general case they only get worse. For our main
result we only need that after finitely many rounds all points are flushed out of D3.

�

We still need to consider points in Region (I). It follows from Theorem III.18 that
after at most p− 2 steps each such point is either flushed or mapped into A ∪D3.
We are now ready to prove Theorem III.20 for this case.

Proof of Theorem III.20 for α ∈
(
1
2 ,

1
λ

)
. By definition τk < τk+1. In [8] it was

shown that −1
λ+1 = [(−1 : 2), (−1 : 1)p−2] and we find lim

k→∞
τk =

−1

λ+ 1
. Recall that

ck =
−τk−1

1 + τk−1νk−1
. It follows that ck+1 < ck and lim

k→∞
ck =

1

2
.

Take an integer k such that k > K from Lemma III.43. Take a point (tn, vn) ∈ D
that did not get flushed in the first k − 1 rounds. There exists an index i with
0 ≤ i ≤ p − 2 such that (tn+i, vn+i) is either in A or is flushed. We assume
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III. Approximation results for α-Rosen fractions

(tn+i, vn+i) ∈ A, otherwise we are done. From Theorem III.42 we find that tn+i ≥
τk. Thus Θn(tn+i, vn+i) ≤ Θn(τk−1, λ− 1) = ck. 2

3.2. Even case for α = 1
λ . The natural extension Ω1/λ can be found from

Ω1/2 by reflecting in the line v = −t if t ≤ 0, and in the line v = t if x ≥ 0; see the
remark on page 9 of [DKS].

In the case α = 1
2 we have ln = rn for n ≥ 1, see Theorem III.18. We put

ϕ0 = l0 = −λ2 and denote ϕn = ln = rn = Tn1/2 (ϕ0). Put

L1 =
1

λ+ 1
and Ln =

1

λ− Ln−1
for n = 2, 3, . . . , p− 1.

We know from [11] that

Ω1/2 =

(
p−1⋃
n=1

[ϕn−1, ϕn)× [0, Ln]

)
∪ [0,−ϕ0)× [0, 1],

Ω1/λ =

(
p−2⋃
n=1

[−Lp−n,−Lp−n−1)× [0,−ϕp−n−1]

)
∪ [−L1, 1)× [0,−ϕ0],

see Figure 7 for an example with q = 8.

v = −t v = t

−L1−L2−L3 0 1

−ϕ0

−ϕ1

−ϕ2

Figure 7. We find Ω 1
λ

by reflecting Ω 1
2

(dashed) in v = |t|. In

this example q = 8.

We use the following lemma to derive the shape of

D =

{
(t, v) ∈ Ω1/λ|min

{
v

1 + tv
,
|t|

1 + tv

}
>

1

2

}
.

Lemma III.45. Under reflection in the lines v = |t|, the graph of f is the image
of the graph of g and vice versa.
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3. Tong’s spectrum for even α-Rosen fractions

Proof. If t ≤ 0, the points on the graph of f(t) are reflected to points (−f(t),−t) =(
−1
2−t ,−t

)
. Write t′ = −1

2−t . The reflection can be written as
(
t′, −2t

′−1
t′

)
= (t′, g(t′)).

If t ≥ 0, the points on the graph of f(t) are reflected to points (f(t), t) =
(

1
2−t , t

)
.

Write t′ = 1
2−t . The reflection can be written as

(
t′, 2t

′−1
t′

)
= (t′, g(t′)) (and vice

versa in both cases). �

Thanks to the reflecting it is easy to describe the shape of D = D1/λ in Ω1/λ; it is
simply the reflection of D1/2 in Ω 1

2
, also see Figure 8.

Lemma III.46. [30] For all even q, D1/2 consists of two components D1/2,1 and
D1/2,2. The subregion D1/2,1 is bounded by the lines t = ϕ0, v = L1 and the graph
of f ; D1/2,2 is bounded by the graph of g from the right, by the graph of f from
below and by the boundary of Ω1/2.

Figure 8. The graphs of f and g in Ω1/λ for q = 8. We shaded
the area D grey. The bigger part on the left is called D1, the small
‘triangle’ is D2.

Corollary III.47. For all even q the region D1/λ consists of two components D1

and D2. The area D1 is bounded by t = −Lp−1 on the left, the boundary of Ω1/λ

and the graphs of f and g. The other area D2 is bounded by the lines t = −L1 and
v = −ϕ0 and the graph of g.

Remark III.48. We have D1 = DT1/2,2 and D2 = DT1/2,1. �

We now could proceed as in the previous two subsections; For t ≥ 0 one easily
sees that the graphs of f and g do not meet in Ω1/λ (they meet in (1, 1), which
is outside Ω1/λ). As before, from this it follows that for tn ≥ 0 we have that

min{Θn−1,Θn} < 1
2 . So we only need to focus on the region D, and how it is

eventually “flushed”. However, we can also derive the result directly from the case
α = 1

2 .
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III. Approximation results for α-Rosen fractions

Define the map M : Ω1/λ → Ω1/2 by

(III.49) M(t, v) =

{
(−v,−t) if t < 0,

(v, t) if t ≥ 0.

In [11] it was shown that

(III.50) T1/λ(t, v) = M−1
(
T −11/2 (M(t, v))

)
.

This implies that the dynamical systems (Ω1/2, µ1/2, T1/2) and (Ω1/λ, µ1/λ, T1/λ) are
isomorphic. These systems “behave dynamically in the same way”, also see Chap-
ter IV. Usually, this is not much of help if we want to obtain Diophantine properties
of one system from the other system. But the special form of the isomorphism M
makes it possible to prove directly that these systems possess the same “Diophan-
tine properties.” Essentially, if one “moves forward in time” in (Ω1/2, µ1/2, T1/2),
then one “moves backward in time” in (Ω1/λ, µ1/λ, T1/λ) and vice versa.

Theorem III.51. Let ` ∈ N, and let Θn−1,Θn, . . . ,Θn+` be ` + 2 consecutive
approximation coefficients of the point (tn, vn) ∈ Ω1/λ, then there exists a point

(t̃m, ṽm) ∈ Ω1/2 and approximation coefficients Θ̃m, Θ̃m−1, . . . , Θ̃m−`−1, given by

Θ̃m = Θm(t̃m, ṽm) =
|t̃m|

1 + t̃mṽm
, Θ̃m−1 = Θm−1(t̃m, ṽm) =

ṽm

1 + t̃mṽm
, . . . ,

Θ̃m−`−1 = Θm−`−1(t̃m−`, ṽm−`) =
ṽm−`

1 + t̃m−`ṽm−`
,

such that

(III.52) Θn−1 = Θ̃m, Θn = Θ̃m−1, Θn+1 = Θ̃m−2, . . . , Θn+` = Θ̃m−`−1.

Proof. Let (t̃m, ṽm) = M(tn, vn) ∈ Ω1/2 be the point in Ω1/2 corresponding to
(tn, vn) ∈ Ω1/λ under the isomorphism M from (III.49). Then

(t̃m, ṽm) =

 (−vn,−tn) if tn < 0,

(vn, tn) if tn ≥ 0,

and we find that

Θ̃m−1 = Θm−1(t̃m, ṽm) =
ṽm

1 + t̃mṽm
=

|tn|
1 + tnvn

= Θn.

Similarly,

Θ̃m = Θm(t̃m, ṽm) =
|t̃m|

1 + t̃mṽm
=

vn
1 + tnvn

= Θn−1.

So we have (Θn−1,Θn) = (Θ̃m, Θ̃m−1).

Furthermore, by (III.50) we have that

(tn+1, vn+1) = T1/λ(tn, vn) = M−1
(
T1/2(M(tn, vn))

)
= M−1

(
T1/2(t̃m, ṽm)

)
= M−1(t̃m−1, ṽm−1),
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3. Tong’s spectrum for even α-Rosen fractions

and we see that

(t̃m−1, ṽm−1) = M (tn+1, vn+1) =

 (−vn+1,−tn+1) if tn+1 < 0

(vn+1, tn+1) if tn+1 ≥ 0.

But then we have that

Θ̃m−2 =
ṽm−1

1 + t̃m−1ṽm−1
=

|tn+1|
1 + tn+1vn+1

= Θn+1.

By induction it follows that

Θn−1 = Θ̃m, Θn = Θ̃m−1, Θn+1 = Θ̃m−2, . . . , Θn+` = Θ̃m−`−1.

�

Lemma III.53. Let Θn−1 and Θn be two consecutive approximation coefficients
of the point (tn, vn). Then

tn =
1 + εn+1

√
1− 4εn+1Θn−1Θn

2Θn−1
and vn =

εn+1 +
√

1− 4εn+1Θn−1Θn

2Θn
.

Proof. From (III.12) we have Θn−1 =
vn

1 + tnvn
and Θn =

εn+1tn
1 + tnvn

. It follows

that

(III.54) vn =
εn+1Θn−1 tn

Θn
,

and substituting (III.54) in the formula for Θn yields

εn+1Θn−1t
2
n − εn+1tn + Θn = 0,

from which we find tn. Substituting tn in (III.54) yields vn. �

Proof of Theorem III.20 for α = 1/λ. Let x be a Gq-irrational with 1/λ-expansion
[ ε1 : d1, ε2 : d2, ε3 : d3, . . . ] and let n ≥ 1 be an integer. Assume there exists a
k ∈ N such, that

min{Θn−1,Θn, . . . ,Θn+k(p−1)} >
1

2
,

otherwise we are done. From Lemma III.53 we find the appropriate (tn, vn) ∈ Ω1/λ

for this sequence of approximation coefficients. From Theorem III.51 if follows that
we can find (t̃m, ṽm) ∈ Ω1/2 such that

Θn−1 = Θ̃m,Θn = Θ̃m−1, . . . ,Θn+k(p−1) = Θ̃m−k(p−1)−1.

It follows from Theorem III.2 for α = 1
2 that

min{Θn−1,Θn, . . . ,Θn+k(p−1)} = min{Θ̃m−k(p−1)−1, . . . , Θ̃m−1, Θ̃m, } < ck,

where ck is defined in (III.19) and Theorem III.20. This proves Theorem III.20 for
the case α = 1/λ. 2
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III. Approximation results for α-Rosen fractions

4. Tong’s spectrum for odd α-Rosen fractions

Let q = 2h+ 3 for h ≥ 1 and define

(III.55) ρ =
λ− 2 +

√
λ2 − 4λ+ 8

2
.

Remark III.56. We often use the following relations for ρ

ρ2 + (2− λ)ρ− 1 = 0 and
ρ

ρ2 + 1
= Hq =

1√
λ2 − 4λ+ 8

.

�

Remark III.57. For q = 3 (i.e. λ = 1) we are in the “classical” case of Nakada’s

α-expansions [41]. In this case ρ
λ =

√
5−1
2 = g and Hq = 1√

5
, see also [17] for a

discussion of this case. �

For a fixed λ we define the following constants

α1 =
(λ− 2)Hq + 1

λ
,

α2 =
−λ+

√
5λ2 − 4λ+ 4

2λ
,

α3 =
(2− λ)2Hq + 2λ

4λ
,

α4 =
(2− λ)Hq − 2

(λHq − 2Hq − 2)λ
.

For all admissible λ we have

(III.58)
1

2
< α1 < α2 < α3 <

ρ

λ
< α4 <

1

λ
.

Remark III.59. These numbers are very near to each other. For example, if q = 9,

α1 ≈ 0.500058, α2 ≈ 0.500515, α3 ≈ 0.500966

ρ

λ
≈ 0.500967, α4 ≈ 0.500994,

1

λ
≈ 0.532089.

�

In [11] it was shown that there are four subcases for the natural extension of odd
α-Rosen fractions: α = 1

2 , α ∈
(
1
2 ,

ρ
λ

)
, α = ρ

λ and α ∈
(
ρ
λ ,

1
λ

]
. Again, the case

α = 1
2 had been dealt with in [30] and we give the details for the other cases in

this section.

The following theorem from [11] is the counterpart for the odd case of Theo-
rem III.18.

Theorem III.60. Let q = 2h+ 3, h ∈ N,h ≥ 1. We have the following cases.

α = 1
2 : l0 < rh+1 = lh+1 < r1 = l1 < . . . < rh+n = lh+n < rn = ln < . . . <

r2h−1 = l2h−1 < rh−1 = lh−1 < r2h = l2h < −δ1 < rh = lh < −δ2 <
r2h+1 = l2h+1 = 0 < r0.
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4. Tong’s spectrum for odd α-Rosen fractions

1
2 < α < ρ

λ : l0 < rh+1 < lh+1 < r1 < l1 < . . . < rh+n < lh+n < rn < ln < . . . <
r2h−1 < l2h−1 < rh−1 < lh−1 < r2h < l2h < −δ1 < rh < lh < r2h+1 < 0 <
l2h+1 < r0.
Furthermore, we have lh < −δ2, l2h+2 = r2h+2 and d2h+2(r0) = d2h+2(l0)+
1.

α = ρ
λ : l0 = rh+1 < lh+1 = r1 < . . . < ln−1 = rh+n < lh+n = rn < . . . < lh−1 =

r2h < l2h = rh = −δ1 < lh = r2h+1 < −δ2 < 0 < r0.

ρ
λ < α < 1

λ : l0 < r1 < l1 < r2 < . . . < lh−1 < rh < −δ1 < lh < 0 < rh+1 < r0.
Furthermore, we have lh+1 = rh+2 and dh+1(l0) = dh+2(r0) + 1.

α = 1
λ : l0 = r1 < l1 = r2 < . . . < lh−1 = rh < −δ1 < lh = 0 = rh+1 < r0.

Remark III.61. In a preliminary version of [11] there was a small error in the
above theorem in the case 1

2 < α < ρ
λ : it stated that −δ2 < r2h+1. But this is only

true if α < α2. For all 1
2 < α < ρ

λ one has r2h+1 = − (2α−1)λ
αλ2−2λ+2 , so

r2h+1 ≥ −δ2 ⇔ −
(2α− 1)λ

αλ2 − 2λ+ 2
≥ −1

(α+ 2)λ

⇔ −λ−
√

5λ2 − 4λ+ 4

2λ
< α ≤ −λ+

√
5λ2 − 4λ+ 4

2λ
= α2.

We conclude that r2h+1 ≥ −δ2 if α ∈
(
1
2 , a2

)
and that r2h+1 < −δ2 if α ∈

[
a2,

ρ
λ

)
.
�

In this section we prove the following result.

Theorem III.62. Fix an odd q = 2h+ 3, with h ≥ 1.

(i) Let α ∈
[
1
2 ,

ρ
λ

]
. Then there exists a positive integer K such that for every

Gq-irrational number x and all positive n and k > K,

min{Θn−1,Θn, . . . ,Θn+k(2h+1)} < ck,

for certain constants ck with ck+1 < ck and lim
k→∞

ck = Hq.

(ii) Let α ∈
(
ρ
λ ,

1
λ

]
. For every Gq-irrational number x and all positive n, one has

min{Θn−1,Θn, . . . ,Θn+(3h+2)} < Hq.

As Theorem III.60 already suggests, the behavior of the dynamical system drasti-
cally changes at the point α = ρ/λ. Case (i) is similar to the even case, but case
(ii) yields a finite spectrum. We note such a finite spectrum was already described
for the case q = 3 in [17].

For odd q = 2h+ 3 we define a round by 2h+ 1 consecutive applications of Tα.

Intersection of the graphs of f(t) and g(t). We start by looking at the
behavior of the graphs of f(t) and g(t) as given in (III.15) on Ωα for odd q.
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l0 r00

(t, g(t))
(t, f(t))(t, g(t))

D+

Figure 9. For α > ρ/λ we have a part D+ for positive t.

In case t > 0 we find that

f(t) = g(t) if and only if t =
1±

√
1− 4H2

q

2Hq
.

Since Hq < 1/2,

1 +
√

1− 4H2
q

2Hq
> 1 ≥ αλ

for all α ∈ [1/2, 1/λ], so we only need to consider
1−
√

1−4H2
q

2Hq = ρ.

Note that f(ρ) = ρ. In case

(III.63) α =
1−

√
1− 4H2

q

2λHq
=
ρ

λ
,

we find that for t > 0 the intersection of the graphs of f and g is on the boundary
of Ωα, so if α ∈ [1/2, ρ/λ) we have that the intersection point for t > 0 is outside
Ωα, while for α ∈ (ρ/λ, 1/λ] it is inside Ωα. Therefore, for the latter values of
α we have an extra part D+ for positive t; see Figure 9. In this case we denote
D− = {(x, y) ∈ D |x ≤ 0} and D+ = {(x, y) ∈ D |x > 0}.

4.1. Odd case for α ∈ ( 1
2 ,

ρ
λ ). In this case the natural extension is given by

Ωα =
⋃4h+3
n=1 Jn × [0, Hn], with

J4n−3 = [ln−1, rh+n), J4n−2 = [rh+n, lh+n) for n = 1, . . . , h+ 1,

J4n−1 = [lh+n, rn), J4n = [rn, ln) for n = 1, . . . h,

and

H1 =
1

λ+ 1/ρ
, H2 =

1

λ+ 1
, H3 =

1

λ+ ρ
, H4 =

1

λ
,

and Hn =
1

λ−Hn−4
for n = 5, 6, . . . , 4h+ 3.
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4. Tong’s spectrum for odd α-Rosen fractions

In [11] is shown that H4h−1 = λ− 1
ρ , H4h = λ− 1, H4h+1 = λ− ρ and H4h+2 = λ

2 .

Furthermore, from [11] we have that

lh =
1− αλ

(λ− 1)αλ− 1
, rh = − 1− (1− α)λ

1− (1− α)λ(λ− 1)
and

r2h+1 = − (2α− 1)λ

αλ2 − 2λ+ 2
.

We define D as in (III.17). We have proved above that in case α ≤ ρ/λ we have
D+ = ∅. We could divide D− into regions where dn, εn+1 and εn+2 are constant, as
we did in Section 3.1.2. However, like before the region where dn = 2 is the crucial
one and we only describe the subregion of D− that is on the right hand side of the
line t = −δ1.

Figure 10. Schematic presentation of the part ofD− with t > −δ1
in two cases. If α1 ≤ α < α2, we have a similar picture as on the
left: the only difference is that D2 is split into two component in
this case. If α2 < α ≤ α3 the picture is similar to the one on the
right, but there is no D3 in this case.

Lemma III.64. If α ∈
(
1
2 , α1

)
, then the subregion of D with −δ1 < t < 0 consists

of two components: D1 bounded by the line t = −δ1 from the left, the line v = H4h−1
from above and the graph of g from below. The second component D2 is bounded by
line segments with t = rh, v = H4h, t = lh, v = H4h+1 and by the graph of g.

If α ∈ [α1, α3], then D1 is as in the above case, but D2 is split into two components
bounded by line segments as above and by the graph of g.

If α ∈
(
α3,

ρ
λ

)
, then D1 and D2 are as in the previous case, but there is also a

component D3, bounded by the line t = r2h+1 from the left, the line v = H4h+2 from
above and the graph of g from below.

Proof. Recall that H4h−1 = λ− 1
ρ , H4h = λ− 1, H4h+1 = λ− ρ and H4h+2 = λ

2 .

First of all g(lh) = − 1
Hq −

1
lh

= − 1
Hq −

(λ−1)αλ−1
1−αλ and we find

H4h−1 < g(lh) < H4h if
1

2
< α < α1,

H4h ≤ g(lh) < H4h+1 if α1 ≤ α <
ρ

λ
.
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III. Approximation results for α-Rosen fractions

From g(r2h+1) = − 1
Hq + αλ2−2λ+2

(2α−1)λ we find that

g(r2h+1) > H4h+2 if and only if α <
(2− λ)2Hq + 2λ

4λ
= α3.

Finally, for all α ∈
(
1
2 ,

ρ
λ

)
we have that

g(−δ1) < H4h−1 < g(rh) < H4h, g(r2h+1) > H4h+1 and g(−δ2) > H4h+2,

which finishes the proof. �

The proof of Theorem III.62 for 1
2 ≤ α <

ρ
λ . Consider the intersection point of the

graph of g with the line v = H4h+1 = λ − ρ. The first coordinate of this point is
given by

t1 =
−Hq

1 + (λ− ρ)Hq
=
−ρ

1 + ρλ
.

Note that t1 ∈ (lh,−δ2). We find Tα(t1) = 1
ρ − λ and it easily follows that we have

Tα(t1) ∈ (lh+1, r1) for all α < ρ
λ . From Theorem III.60 we conclude that Thα (t1) =

(S−1T )h−1S−2T (t1). From Lemma III.38 and relations (III.8) and (III.10) we get

(S−1T )h−1S−2T =

[
−Bh −Bh−1
Bh−1 Bh−2

] [
−2λ −1

1 0

]
= Bh+1

[
−λ+ 1 −λ2 + λ+ 1

λ2 − λ− 1 λ3 − λ2 − 2λ+ 1

] [
−2λ −1

1 0

]
= Bh+1

[
λ2 − λ+ 1 λ− 1
−λ3 + λ2 + 1 −λ2 + λ+ 1

]
.

We find Thα (t1) = − λ− ρ− 1

λ(λ− ρ− 1) + ρ− 1
. And using ρ2 + (2− λ)ρ− 1 = 0 we find

g(Thα (t1)) =
−1

Hq
− 1

Thα (t1)
= −ρ− 1

ρ
+ λ+

ρ− 1

λ− ρ− 1
= λ− 1

ρ
= H4h−1.

So (Thα (t1), λ − 1
ρ ) is the intersection point of the graph of g with the height v =

H4h−1. From the proof of Lemma III.64 it follows that Thα (t1) ∈ (−δ1, rh). We find
that

Th+1
α (t1) = Tα(Thα (t1)) = −λ+

ρ− 1

λ− ρ− 1
.

Since Th+1
α (t1) < rh+1, we conclude that

T 2h+1
α (t1) = (S−1T )hS−2T (S−1T )h−1S−2T (t1)

= Bh+1

[
−1 −λ+ 1
λ− 1 λ2 − λ− 1

](
−λ+

ρ− 1

λ− ρ− 1

)
=

λ− 2ρ

2 + λ(ρ− 2)
=
−ρ

1 + λρ
= t1.

We find that (t1, λ− ρ) is a fixed point of T 2h+1
α .

The rest of the proof is similar to the even case for α ∈
(
1
2 ,

1
λ

)
. In this case

(τk, νk) = T
−k(2h+1)
α (lh, λ− ρ). We have τk−1 < τk and lim

k→∞
τk = t1. From ck =
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4. Tong’s spectrum for odd α-Rosen fractions

Θn(τk, νk) = −τk−1

1+τk−1νk−1
, we find ck < ck−1 and

lim
k→∞

ck =
−1

1
t1

+ λ− ρ =
−1

1+(λ−ρ)Hq
−Hq + λ− ρ

= Hq.

4.2. Odd case for α = ρ
λ . Hitoshi Nakada recently observed that the dy-

namical systems (Ω1/2, µ1/2, T1/2) and (Ωρ/λ, µρ/λ, Tρ/λ) are metrically isomorphic
via M given in (III.49). In Section 3.2 we used this isomorphism to derive results
for (Ω1/λ, µ1/λ, T1/λ) from (Ω1/2, µ1/2, T1/2) by applying Theorem III.51. For odd
q and α = ρ

λ we can do the same and for this case the proof of Theorem III.62 is

similar to the one for the even case with α = 1
λ given in Section 3.2.

For q = 3 this result (where one can take K = 1) had been known for a long time
for the nearest integer continued fraction expansion (the case α = 1/2) and for the

singular continued fraction expansion (α = 1
2 (
√

5− 1)), cf. [17].

4.3. Odd case for α ∈ ( ρλ , 1/λ]. In this last case the natural extension Ωα is

given by Ωα =
⋃4h+3
n=1 Jn × [0, Hn]. With intervals given by

J2n−1 = [ln−1, rn) for n = 1, 2, . . . , h+ 1

J2n = [rn, ln) for n = 1, 2, . . . , h and J2h+2 = [rh+1, r0),

and heights defined by

H1 =
1

λ+ 1
, H2 =

1

λ
and Hn =

1

λ−Hn−2
for n = 3, 4, . . . , 2h+ 2.

In [11] was shown that H2h = λ − 1, H2h+1 = λ
2 and H2h+2 = 1. If α = 1

λ the

intervals J2n−1 are empty, see Theorem III.60. Again we have lh = αλ−1
1−αλ(λ−1) .

4.3.1. Points in D+. We saw in Section 4 that D+ 6= ∅. The leftmost point
of D+ is given by (ρ, ρ). Using the same techniques as in the rest of this chapter
yields

Th+1
α (ρ) = (S−1T )hST (ρ)

= Bh+1

[
−1 −1
1 λ− 1

]
(−ρ) =

ρ− 1

−ρ+ λ− 1
= ρ.

It easily follows that T h+1
α (ρ, ρ) = (ρ, ρ).

Remark III.65. In [8] was shown that ρ = [+1 : 1, (−1 : 1)h] from which imme-
diately follows Th+1

α (ρ) = ρ. �

We note that Tα ‘flips’ D+ in the first step, in the sense that Tα(ρ, ρ) is the rightmost

point of T (D+). The orientation is preserved in the next h steps, so we know that

the rightmost point of T h+1
α (D+) is given by T h+1

α (ρ, ρ) = (ρ, ρ). Therefore we find
that

T h+1
α (D+) ∩ D+ = ∅.
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III. Approximation results for α-Rosen fractions

So after one round all points in D+ are flushed out of D. Furthermore, it is
straightforward to check that Tα(D+) ⊂ D, and that T iα(D+) ∩ T jα (D+) = ∅ for
0 ≤ i < j ≤ h+ 1.

4.3.2. Points in D−. As in the previous section we only describe the part of
D− on the right hand side of the line t = −δ1.

Lemma III.66. If α ∈
(
ρ
λ , α4

]
, then D− consists of two components: D1 bounded

by the line t = −δ1 from the left, the line v = H2h = λ − 1 from above and the
graph of g from below and D2 bounded by the line t = lh from the left, the line
v = H2h+1 = λ

2 from above and the graph of g from below.

If α ∈
(
α4,

1
λ

]
, then D− = D1.

Proof. For all α ∈
(
ρ
λ ,

1
λ

]
we have that g(−δ1) < H2h < g(lh). Furthermore

g(lh) < H2h+1 if and only if α < α4. �

Again we must distinguish between two subcases; also see Figure 11.

Figure 11. On the left we used α = 0.50098 < α4, on the right
we use α = 0.52 > α4.

Proof of Theorem III.62 for ρ
λ < α ≤ α4. First we note that Th+1(−δ1) = lh and

thus after one round all points in D1 are either flushed or send to D2.
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4. Tong’s spectrum for odd α-Rosen fractions

We look at the orbit of lh under Tα. We find Tα(lh) = 1+αλ(λ+1)−2λ
1−αλ and some

calculations show that r1 < Tα(lh) < l1. We conclude that

Thα (lh) = (S−1T )h−1S−2T (lh) =

[
λ2 − λ+ 1 λ− 1
−λ3 + λ2 + 1 −λ2 + λ+ 1

]
(lh)

=
2λ+ (α− 1)λ2 − 2

((1− α)λ2 + 2α+ 1− 2λ)λ
.

One can check that for α > ρ
λ we have −δ1 < Thα (lh) < lh. We find

Th+1
α (lh) = Tα(Thα (lh)) =

(λ2 − 2λ− α(λ2 + 2) + 3)λ

2λ+ (α− 1)λ2 − 2
< r1.

So we finally conclude that the image of lh after one round of 2h+ 1 steps is given
by

T 2h+1
α (lh) = (S−1T )hS−2T (S−1T )h−1S−2T (lh) =

[
λ2 + 2 λ
−2λ2 + λ 2− 2λ

]
(lh)

=
(−α+ 1)λ2 − 2αλ− λ+ 2

(3α− 2)λ2 + (3− 2α)λ− 2
.

The right end point of D2 is given by
(
−2Hq
λHq+2 ,

λ
2

)
. Since for ρ

λ < α ≤ α4 we have

−2Hq
λHq+2 <

(−α+1)λ2−2αλ−λ+2
(3α−2)λ2+(3−2α)λ−2 < 0, we find that all points are flushed out of D2 after

one round. So all points in D1 are flushed after at most 3h+ 2 steps.

Proof of Theorem III.62 for α4 < α ≤ 1
λ . All points are flushed out of D1 after

h + 1 steps, since the line t = −δ1 is mapped by Tα to the line t = l0. So after
h+ 1 steps all points in D are mapped to points that lie on the right hand side of
the line t = lh and thus outside of D1.

We need to check that T h+1
α (D1) ∩ D+ = ∅. The rightmost vertex of D1 is given

by

(
−1

λ− 1 + 1
Hq

, λ− 1

)
. With similar techniques as before we find that applying

(h+ 1)-times Tα to the rightmost vertex of D1 yields as first coordinate

Th+1
α

(
−1

λ− 1 + 1
Hq

)

=

[
−λ −1
1 0

] [
λ2 − λ+ 1 λ− 1
−λ3 + λ2 + 1 −λ2 + λ+ 1

]( −1

λ− 1 + 1
Hq

)

=
1− 2Hq

1 + (Hq − 1)λ
< ρ.

This completes the proof. �
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III. Approximation results for α-Rosen fractions

5. Borel and Hurwitz constants for α-Rosen fractions

In this section we first prove the Borel-type Theorem III.6 and then derive a
Hurwitz-type result for certain values of α.

5.1. Borel for α-Rosen fractions. Let q ≥ 3 be an integer. Recall that for
all α ∈

[
1
2 ,

1
λ

]
and every Gq-irrational x ∈ [(α− 1)λ, αλ) the future tn and past vn

satisfy

(III.67) T nα (x, 0) = (tn, vn) for all n ≥ 0.

We denote by r the number of steps in a round, so r = p−1 for even q and r = 2h+1
for odd q. Furthermore, for even q we define ρ = 1. Compare the following with
Lemma 12 of [30].

Lemma III.68. Let either q be even and α ∈
[
1
2 ,

1
λ

]
or q be odd and α ∈

[
1
2 ,

ρ
λ

]
.

Let F denote the fixed point set in D of T rα . Then

(i) F =

{
T iα
(
−ρ

1+λρ , λ− ρ
) ∣∣∣∣ i = 0, 1, . . . , r − 1

}
;

(ii) For every x and every n ≥ 0, (tn, vn) /∈ F ;
(iii) For every Gq-irrational number x there are infinitely many n for which

(tn, vn) /∈ D;

(iv) For each i = 0, 1, . . . , r − 1, let xi = T iα

(
−ρ

1+λρ

)
. Then for all n ≥ 0,

T nα (xi, 0) /∈ D. However, T krα (xi, 0) converges from below on the vertical

line x = xi to Tαi
(
−ρ

1+λρ , λ− ρ
)

.

Proof. Assume that q is even and α ∈
(
1
2 ,

1
λ

)
, the other cases can be proven

in a similar way. In this case r = p − 1 and we have by Corollary III.40 that(
−1
λ+1 , λ− 1

)
is a fixed point of T p−1α . It follows that points in the Tα-orbit of(

−1
λ+1 , λ− 1

)
must also be fixed points of T p−1α , which proves (i). In each fixed

point of T p−1α both of the coordinates have a periodic infinite expansion. For (ii)
we note that by definition vn has a finite expansion of length n and therefore for
every x and every n we have vn /∈ F . We conclude from the section on flushing on
page 52, that for every Gq-irrational number x there are infinitely many n for which
(tn, vn) /∈ D, which is (iii). Finally, for each i = 0, 1, . . . , r− 1 and every n ≥ 0 the

points T nα (xi, 0) are below the graph of f . The fixed points Tαi
(
−1
1+λ , λ− 1

)
are

attractors for these points, cf. the proof of Lemma III.43. �

Proof of Theorem III.6. Let q ≥ 3 be an integer and let x be a Gq-irrational. We
first assume that we do not have a finite spectrum, so if q is even, we consider all
α ∈

[
1
2 ,

1
λ

]
and if q is odd we assume α ∈

[
1
2 ,

ρ
λ

]
.

From Lemma III.68 (ii) we see that (tn, vn) can never be a fixed point for any n ≥ 0.
From (iii) we know that here are infinitely many n for which (tn, vn) /∈ D, so there
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5. Borel and Hurwitz constants for α-Rosen fractions

are infinitely many n ∈ N for which

q2n

∣∣∣∣x− pn
qn

∣∣∣∣ ≤ Hq.
It remains to show that also in this case Hq cannot be replaced by a smaller con-

stant. Take x such that t1 = −ρ
1+λρ . By definition of Ωα we know that v1 ≤

λ − 1 and since v1 has a finite expansion we find v1 < λ − 1. For all l ≥ 1 we
have (t1+r l, v1+r l) /∈ D and for every 0 ≤ i < r one has lim

l→∞
T iα(t1+r l, v1+r l) =

T iα
( −ρ

1 + λρ
, λ− ρ

)
. So, Hq cannot be replaced by a smaller constant.

Finally, assume q is odd and α ∈
(
ρ
λ ,

1
λ

]
. From the finite spectrum in Theorem III.62

it immediately follows that in this case there are infinitely many n for which

q2n

∣∣∣∣x− pn
qn

∣∣∣∣ ≤ Hq.
It remains to show that in this case the constant Hq cannot be replaced by a smaller
constant. Consider (ρ, ρ), the fixed point of T h+1

α . We find

Tα(ρ, ρ) =

(
1

ρ
− λ, 1

λ+ ρ

)
.

Note that H1 = 1
λ+1 <

1
λ+ρ <

1
λ = H2. Furthermore

f

(
1

ρ
− λ
)

=
Hq

1−Hq
(

1
ρ − λ

) =
ρ

ρ2 + 1− ρ
(

1
ρ − λ

) =
1

λ+ ρ
.

So Tα(ρ, ρ) lies on the graph of f bounding D. Points in D on the left hand side
of x = −δ1 are mapped into D by Tα and we find T 2

α (ρ, ρ), T 3
α (ρ, ρ), . . . , T h−1α (ρ, ρ)

all are in D.

It is easy to check that Tα
(
−1
λ+ρ , λ− 1

ρ

)
= (ρ, ρ) and that g

(
−1
λ+ρ

)
= λ − 1

ρ . We

conclude that T hα (ρ, ρ) = T −1α (ρ, ρ) =
(
−1
λ+ρ , λ− 1

ρ

)
lies on the graph of g.

Now consider any point (tn, vn) = (ρ, y), since ρ has a periodic infinite expansion
we know y 6= ρ. However the periodic orbit of (ρ, ρ) is an attractor of the orbit of

(ρ, y), so lim
k→∞

T k(h+1)
α (ρ, y) = (ρ, ρ). It follows that the constant Hq is best possible

in this case. 2

5.2. Hurwitz for α-Rosen fractions. For odd q and some values of α we
can generalize Theorem III.6 to a Hurwitz-type theorem, which is the Haas-Series
result mentioned in Section 1.1. From [4] it follows that for all α ∈

[
1
2 ,

1
λ

]
, for all

z ≥ 0 and for almost all x, the limit

lim
n→∞

1

n
#{1 ≤ j ≤ n|Θj(x) ≤ z}

exists and equals the distribution function Fα, which satisfies

Fα(z) = µ̄

({
(t, v) ∈ Ωα | v ≤ f(t) =

z

1− zt

})
,
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III. Approximation results for α-Rosen fractions

where µ̄ is the invariant measure for Tα given in [11]. Defining the Lenstra constant
Lα by

(III.69) La = max

{
c > 0

∣∣∣∣(t, c

1− ct

)
∈ Ωα , for all t ∈ [l0, r0]

}
.

As mentioned in Section 1.2, the distribution function Fα is a linear map with
positive slope for z ∈ [0,Lα]. Nakada showed in [42] that the Lenstra constant is
equal to the Legendre constant whenever the latter constant exists. In his article
he particularly mentioned Rosen fractions and α-expansions, but this result also
holds for α-Rosen fractions. So if p/q is a Gq-rational and

q2
∣∣∣∣x− p

q

∣∣∣∣ < Lα,
then p/q is an α-Rosen convergent of x.

Since for the standard Rosen fractions (where α = 1
2 ) one has that Lα < Hq, the

Haas-Series result does not follow from Theorem III.6, see also the discussion on
the results of Legendre, Borel and Hurwitz in Section 1.2.

One wonders whether α-Rosen fractions could yield a continued fraction proof of
the Haas-Series result for particular values of α. Proposition 4.3 of [11] states that
for even α-Rosen-fractions

La = min

{
λ

λ+ 2
,
λ(2− αλ2)

4− λ2
}
.

Since Lα < Hq = 1
2 , we see that a direct continued fraction proof of a Hurwitz-

result cannot be given in this case. In [11] the more involved formula for Lα for
odd α-Rosen fractions was not given. For odd q we have the following proposition.

Proposition III.70. Let q ≥ 3 be an odd integer and let αL =
Hq

λ(1−Hq) . Then

Lα < Hq for α ∈ [1/2, αL), while Lα = αλ
αλ+1 > Hq for α ∈ [αL, 1/λ].

Proof. For every α ∈ [1/2, αL) there is a C < Hq such that
(
t, C

1−Ct

)
/∈ Ωα. We

only prove this for α = ρ/λ. Consider the point
(
ρ, C

1−Cρ

)
. This point is in Ωρ if

the y-coordinate is smaller than top height λ
2 . We have

C

1− Cρ <
λ

2
if and only if C <

λ

λρ+ 2
.

So by (III.69) we have that Lα = λ
λρ+2 < Hq.

Let α ∈ [αL, 1/λ]. Consider the point
(
r1,

C
1−Cr1

)
, this point is in Ωα if the y-

coordinate is smaller than H1 = 1
λ+1 . Using r1 = 1

αλ − λ we find that C
1−Cr1 ≤

1
λ+1 if and only if C ≤ αλ

αλ+1 . For C = αλ
αλ+1 we easily find that all points

(
t, C

1−Ct

)
with t ∈ (l0, r0) are in Ωα, so Lα = αλ

αλ+1 . Finally we see that Lα > Hq if and only
if α > αL. �
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Thus the Hurwitz-type theorem of Haas-Series in the case of odd index q follows
from Theorem III.6, Proposition III.70 and Nakada’s result from [42] by using any
α ∈ [αL, 1/λ].
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IV
Quilting natural extensions for α-
Rosen continued fractions

In this chapter we give a method that starts from the explicit domain of the natural
extension of a Rosen fraction and determines the domains for the natural extensions
for various α-Rosen fractions. One advantage of this approach is that one easily
sees that these α-Rosen fraction maps determine isomorphic dynamical systems. In
particular we find that the associated one-dimensional maps have the same entropy.
This finding can be compared to results on the entropy of Nakada’s α-continued
fractions obtained by Nakada [41] and others [39], [37], [44].

1. Introduction

Let q ∈ Z, q ≥ 3 and λ = λq = 2 cos πq . For α ∈
[

0, 1
λ

]
, we let Iα := [ (α−1)λ, αλ ) .

Recall from the Chapters I and III that the α-Rosen fraction operator for x ∈ Iα is
defined as

(IV.1) Tα(x) =
ε

x
− λ

⌊ ε

λx
+ 1− α

⌋
if x 6= 0 and Tα(0) := 0.

Setting α = 1/2 yields the Rosen fractions.

The domain of the natural extension of Tα is denoted by Ωα and refers to the largest
region on which Tα is bijective, where the two-dimensional operator Tα is defined
by

(IV.2) Tα(x, y) =

(
Tα(x),

1

d(x)λ+ ε(x)y

)
, for(x, y) ∈ Ωα.

In [11] Dajani, Kraaikamp and Steiner used direct methods, similar to those of [8]
for the classical Rosen fractions, to determine natural extensions for α ∈

[
1
2 ,

1
λ

]
.

In [11] it was shown that the domain of the natural extension is connected for all
α ∈ [ 1/2, 1/λ ] . In this chapter we determine the least α0 such that for all α ∈
(α0, 1/λ ] the natural extension is connected. We prove Theorem I.47 announced
in the introduction:
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Theorem IV.3. Fix q ∈ Z, q ≥ 4 and λ = λq = 2 cos πq and let

α0 =


λ2 − 4 +

√
λ4 − 4λ2 + 16

2λ2
if q is even,

λ− 2 +
√

2λ2 − 4λ+ 4

λ2
otherwise.

(i) Then (α0, 1/λ ] is the largest interval containing 1/2 for which each do-
main of the natural extension of Tα is connected.

(ii) Furthermore, let

ω0 =

1/λ if q is even,

λ− 2 +
√
λ2 − 4λ+ 8

2λ
otherwise.

Then the entropy of the α-Rosen map for each α ∈ (α0, ω0 ] is equal to
the entropy of the standard Rosen map. Here ω0 cannot be replaced by a
larger number.

Remark IV.4. For every q we have α0 <
1
2 < ω0 ≤ 1

λ ; see Figure 1. �
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Figure 1. Some values of α0(◦) and of ω0(∗) with even index q
on the left and odd index q on the right.

The value of the entropy of the standard Rosen map was found by H. Nakada [42]
to be

C · (q − 2)π2

2q
,

where C is the normalizing constant (which depends on the parity of the index q)
found in [8]. We give the value of C in (IV.23) for q even and in (IV.29) for q odd.

Our approach is to determine the domain of the natural extension from the domain
for Rosen fractions, denoted here by Ω1/2 . The shape of Ω1/2 was determined
in [8]. It depends on the parity of q. We give the explicit formulas for Ω1/2 in Def-
initions IV.22 and IV.28 in the sections about the even and odd case, respectively.

For fixed λ and given α, we determine the domain by adding and deleting various
regions to and from Ω1/2 by a process that we informally refer to as “quilting”; see
Figure 2 for an example. The regions are determined from appropriate orbits (under
the two-dimensional operator Tα ) of the strips in Ω1/2 above intervals where the
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1. Introduction

Tα-“digits” (see below) differ from the T1/2-digits. These strips are mapped by T1/2
to a region that must be deleted, their images under Tα must be added; thereafter
their further Tα-orbits are deleted and added, respectively. Our approach succeeds
without great difficulty, because in a small number of steps the orbits of the added
regions agree with the orbits of the deleted regions — the infinitely many potential
holes are quilted over by the added regions.

0

Ω1/2

−λ/2 λ/2

0 r0

D0
D1

r1

D2

r2

D3

r3l0

A0

A1

l1

A2

l2

A3

l3

Ωα

0 r0l0

Figure 2. An example for q = 8. The first picture is Ω1/2 and
below it is Ω1/2 with the blocks we add (A0, A1, A2 and A3) and
the blocks we delete (D0, D1, D2 and D3). Below is the resulting
Ωα.

The next two subsections complete this Introduction by giving basic notation and
then defining our building blocks, the basic deleted and added regions. In Section 2
we sketch the main argument of our approach — when the orbits of these basic
regions agree after the same number of steps, entropy is preserved. We give an
example of our techniques in Section 3 by re-establishing known results for certain
classical Nakada α-fractions. In Sections 4 and 5 we give the proof of Theorem IV.3,
in the even and odd index case, respectively. Finally, in Section 6 we indicate how
our results can be extended to show that in the odd index case, the entropy of Tα
decreases when α > ω0 .
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IV. Quilting natural extensions for α-Rosen fractions

1.1. Basic Notation. As in the previous chapter, for x ∈ Iα we put
d(x) := dα(x) =

⌊∣∣ 1
λx

∣∣+ 1− α
⌋

and ε(x) := sgn(x). Again for n ≥ 1 with Tn−1α (x) 6= 0
we put

εn(x) = εn = ε(Tn−1α (x)) and dn(x) = dn = d(Tn−1α (x)).

When studying the dynamics of these maps, the orbits of the interval endpoints of
Iα = [ (α− 1)λ, αλ ) are of utmost importance. Like in the previous chapter we use

l0 = (α− 1)λ and ln = Tnα (l0), for n ≥ 1 ,

r0 = αλ and rn = Tnα (r0), for n ≥ 1 .

For the orbit of the left end point in the Rosen case with α = 1
2 we define

ϕj = T j1/2(−λ/2) for integers j ≥ 0.

The cylinders ∆(ε : d) are intervals in Iα where d(x) and ε(x) are constant. For
x ∈ Iα they are defined by

∆(ε : d) = {x | sgn(x) = ε and d(x) = d } .

Letting

(IV.5) δd := δd(α) =
1

(α+ d)λ
,

we have

∆(+1 : 1) = ( δ1, r0 ) and ∆(−1 : 1) = [ l0,−δ1 ]

For d ≥ 2, we have full cylinders of the form

∆(+1 : d) = ( δd, δd−1 ] and ∆(−1 : d) = [−δd−1,−δd ).

Each full cylinder is mapped surjectively by Tα onto Iα = [(α− 1)λ, αλ); see [11].

For future reference, we introduce notation for strips that fiber over cylinders: for
(x, y) ∈ Ωα we put

D(ε : d) := { (x, y) | x ∈ ∆(ε : d) } .
The strip D(ε : d) contains all points (x, y) ∈ Ωα with sgn(x) = ε and d(x) = d.

We use the auxiliary sequence Bn from (I.41) again:

B0 = 0, B1 = 1, Bn = λBn−1 −Bn−2, for n = 2, 3, . . . .

As remarked in the previous chapter it holds for q = 2p with p ≥ 2 an integer that

(IV.6) Bp−1 = Bp+1 =
λ

2
Bp and Bp−2 =

(
λ2

2
− 1

)
Bp.

In the odd case with q = 2h+ 3 for h ∈ N we have

(IV.7) Bh+1 = Bh+2, Bh = (λ− 1)Bh+1 and Bh−1 =
(
λ2 − λ− 1

)
Bh+1.
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1. Introduction

1.2. Regions of changed digits; basic deletion and addition regions.
Fix q, hence λ, and choose some α ∈ [ 0, 1

λ ] . For α in the range that we consider, our
intention is to find Ωα from Ω1/2 using the operator Tα . Of course, for many points
(x, y) ∈ Ω1/2, we have Tα(x, y) = T1/2(x, y) . We focus on the points (x, y) ∈ Ω1/2

where Tα(x, y) differs from T1/2(x, y) . For instance for x between δ2(1/2) = 2
5λ and

δ2(α) = 1
(α+2)λ we have d1/2(x) = 2, but dα(x) = 3.

Definition IV.8. The region of changed digits is

C = { (x, y) ∈ Ω1/2 | x ∈ Iα ∩ I1/2 and dα(x) 6= d1/2(x) } .
�

It turns out that the region C is a disjoint union of rectangles; in general, for each
digit d, the subset of C determined by x whose digit has changed to dα(x) consists
of two components, one with x negative, the other with positive x values. See
Figure 4 for a schematic representation of C in the classical λ = 1 setting.

We identify a region of Ω1/2 that obviously cannot be part of the new natural
extension, as its marginal projection onto the x-axis is outside of Iα .

Definition IV.9. The basic deleted region is the T1/2-image of the region of
changed digits:

D0 := T1/2(C ) .

�

Lemma IV.10. For α < 1/2 , the basic deleted region is

D0 = { (x, y) ∈ Ω1/2 | x ≥ αλ } .
For α > 1/2 , the basic deleted region is

D0 = { (x, y) ∈ Ω1/2 | x < (α− 1)λ } .

Proof. The projection of C to the real line is a disjoint union of intervals. For
x < 0 these intervals have the form (−δd(α),−δd(1/2)] and for x > 0 they have
the form [δd(1/2), δd(α)). The boundaries of the cylinders for the map Tz are
determined by the values δd(z) = 1

λ(d+z) ; thus, each of the components of the

projection of C is at an end of a cylinder for T1/2. Since for fixed d the function

z 7→ 1
λ(d+z) is decreasing, each component is at the right end of a cylinder for

negative x, and at the left end of a cylinder for positive x values. Recall that these
cylinders are mapped surjectively onto

[−λ
2 ,

λ
2

)
and that on a cylinder T1/2 itself

is an increasing function for negative x and a decreasing function for positive x .
Thus, this projection of C is exactly the T1/2-preimage of [αλ, λ/2 ) . From this, it

easily follows that T1/2(C ) = { (x, y) ∈ Ω1/2 | x ≥ αλ } . The proof for α > 1
2 is

similar. �

Analogously to Definition IV.9, we define the basic added region to be

A0 := Tα(C ) .
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IV. Quilting natural extensions for α-Rosen fractions

Definition IV.11. Let D0 and C be as defined above. Then

Ω∗α :=

(
Ω1/2 \ ∪∞k=0 T kα (D0 )

)⋃
∪∞k=1 T kα (C).

�

2. Successful quilting results in equal entropy

Let µ denote the probability measure on Ω∗α induced by dµ =
dx dy

(1 + xy)2
. Let Bα

denote the Borel σ-algebra of Ω∗α .

Proposition IV.12. Fix q ∈ Z, q ≥ 3 and λ = λq = 2 cos πq , and choose some

α ∈ [ 0, 1/λ ]. Let A0 and D0 be defined as above. Suppose that there is some natural
number k such that

T kα (A0) = T kα (D0) ,

and T iα(D0)∩T jα(D0) = ∅ for all i, j < k, i 6= j. Then (Tα,Ω∗α,Bα, µ ) is isomorphic
to (T1/2,Ω1/2,B1/2, µ ) .

Proof. By [8], T1/2 is bijective (up to µ-measure zero) on Ω1/2 . By the imposed

condition Tα is injective onto ∪k−1j=0 T jα (D0 ) . Therefore, we can define f : Ω1/2 →
Ωα by

f(x, y) =

{
(x, y), if (x, y) ∈ Ω1/2 \

⋃k=1
j=0 T

j
α(D0 ),

T j+1
α ◦ T −11/2 ◦ T −jα (x, y), if (x, y) ∈ T jα (D0 ) for j ∈ {0, 1, . . . k − 1}.

Since each of Tα and T1/2 preserves the measure µ , one easily shows that this is an
isomorphism. �

Proposition IV.13. With notation as above, let µα denote the marginal mea-
sure obtained by integrating µ on the fibers of π : Ω∗α → Iα . Further let Bα de-
note the Borel σ-algebra of Iα . Then (Tα,Ω∗α,Bα, µ ) is the natural extension of
(Tα, Iα,Bα, µα ) .

This can be proven with the variant of Schweiger’s formalism (see Section 22 of
[52]) that was used in [11].

We conclude that we will have proven part (ii) of Theorem IV.3 once we show that
for each α ∈ (α0, ω0 ] there exists some k satisfying the hypotheses of Proposi-
tion IV.12.

From the above we conclude that if there exists a k as in Proposition IV.12, then
Ω∗α = Ωα, where Ωα is the domain for the natural extension of Tα. For α ∈ (α0, 1/2)
we show in Lemma IV.26 that for q = 2p, with p ≥ 2 a positive integer we have
k = p and in Lemma IV.32 that for q = 2h+ 3, with h a positive integer, we have
k = 2h+ 2. Therefore, from now on we denote Ω∗α by Ωα.

Corollary IV.14. Under the hypotheses of Proposition IV.12, the systems
(Tα, Iα,Bα, µα ) have the same entropy.
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3. Classical case, λ = 1 : Nakada’s α-continued fractions

Proof. It is known that a system and its natural extension have the same entropy
[49]. Since the natural extensions here are all isomorphic, they certainly have the
same entropy. �

Remark IV.15. Rohlin [49] introduced the notion of natural extension explicitly
in order to treat entropy. �

3. Classical case, λ = 1 : Nakada’s α-continued fractions

In this section we illustrate how our method works by deriving the form of the
natural extension for Nakada’s α-continued fraction (where λ = 1) from Ω1/2 in

case
√

2− 1 ≤ α ≤ 1/2 .

In this case Ω1/2 is given by [−1/2, 0) × [0, g2]
⋃

[0, 1/2) × [0, g], where g =
√
5−1
2 ;

see Figure 3.

0

g

g2

1/2−1/2

Figure 3. The natural extension Ω1/2 for λ = 1.

Our goal is to re-establish the following result from [41].

Theorem IV.16. For all α ∈ [
√

2− 1, 1/2], the system (Tα,Ωα,Bα, µ ) is isomor-
phic to (T1/2,Ω1/2,B1/2, µ ) , where

Ωα := [α− 1, l1 )× [ 0, g2 ]
⋃

[ l1, r1 )×
(

[ 0, g2 ] ∪ [ 1/2, g ]

) ⋃
[ r1, α )× [ 0, g ] ,

and Bα denotes the σ-algebra of µ-Borel subsets of Ωα . Furthermore, the entropy of

Tα with respect to the marginal measure of the above system equals
1

log(1 + g)

π2

6
.

Remark IV.17. The constancy of the entropy in this setting was first established
by Moussa, Cassa and Marmi [39], the value at α = 1/2 having been determined
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IV. Quilting natural extensions for α-Rosen fractions

in [41]. We also note that Nakada and Natsui [44] explicitly show the isomorphism
of these natural extensions (see their Appendix). �

3.1. Explicit form of the basic deleted and basis addition region.
From Lemma IV.10 we find that the basic deleted region D0 is given by [α, 1/2)×
[0, g), also see Figure 4.

Before we derive the shape of the basic added region A0 we note that for d fixed, δd
as defined in (IV.5) is a decreasing function in α . Note also that for α ∈ (

√
2−1, 1/2)

one has δ2(α) < α .

Lemma IV.18. The basic added region is given by

A0 = [α− 1,−1/2)× [0, g2] .

Proof. Similarly to the proof of Lemma IV.10, we note that for x < 0 each
component of the marginal projection of C is at the left end of a Tα-cylinder (see
Figure 4) and is sent by (the locally increasing function) Tα to [α−1,−1/2). When
x > 0 , the component is at the right end of its cylinder and is also sent by Tα to
[α − 1,−1/2). One trivially checks that no other points of Iα are sent to this
subinterval.

0

g

g2

1/2−1/2 α

D0

α− 1

A0

−δ2(1/2)
δ2(α)

C3

−δ2(1/2)
−δ2(α)

C−3

−δ3(1/2)
−δ3(α)

C−4

. . . . . .

Figure 4. Regions of change of digit, basic deletion D0 and basic
addition A0. To aid visualization, we use here Cεd = C ∩∆(ε : d) .
Note that C =

⋃
{ε,d} Cε,d.

We now discuss the y-coordinates of points in Tα(A0 ) . The fibers of Ω1/2 above

cylinders where x < 0 are of the form [0, g2] , while above cylinders with x > 0
the fibers are of the form [0, g] . Now, for (x, y) ∈ D(ε : d) , the y-coordinate
of Tα(x, y) is 1/(d + εy) . Thus, Tα sends D(−1 : d) = [−δd−1,−δd) × [0, g2] and

D(+1 : d) = [δd, δd−1)×[0, g] to horizontal strips whose y-values lie in
[

1
d+g ,

1
d−g2

]
.

But, g2 = 1 − g and thus this image is directly above that of the horizontal strip
given by Tα applied to D(−1 : d+ 1) and D(+1 : d+ 1) . Now, the greatest y-value
of Tα(C) comes from the intersection of the projection of C with D(−1 : 3) . Thus,
A0 = [α− 1,−1/2)× [0, 1/(3− g2) ) . Since 1/(3− g2) = g2, the result follows. �
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3. Classical case, λ = 1 : Nakada’s α-continued fractions

3.2. Quilting. We now show that the Tα-orbits of the added regions even-
tually match the orbits of the deleted regions, and thus Tα is bijective (modulo
µ-measure zero) on Ωα .

Lemma IV.19. The following equality holds:

l2 = r2 .

Furthermore, there is a d ∈ N such that

l1 ∈ ∆(−1 : d) and r1 ∈ ∆(1 : d− 1) .

Proof. We have that l0 = α− 1 ∈ ∆(−1 : 2) and r0 = α ∈ ∆(+1 : 2) , giving

l1 =
2α− 1

1− α and r1 =
1− 2α

α
.

Therefore,

l2 =
1− α
1− 2α

− d and r2 =
α

1− 2α
− d′ ,

with d, d′ the appropriate Tα-digits. Now, l2 − r2 = 1 + d′ − d and is the difference
of two elements in Iα , a half-open interval of length one. We thus conclude that
d′ = d− 1 and l2 = r2 . �

The orbit of the basic addition region, A0 , is quickly synchronized with that of
the basic deletion region, D0 . Recall that D(ε : d) is the strip that fibers over the
interval ∆(ε : d) .

Lemma IV.20. We have

T 2
α (A0 ) = T 2

α (D0 ) .

Proof. Let A1 := Tα(A0 ) . Since A0 ⊂ D(−1 : 2), an elementary calculation
shows that

A1 = [ l1 , 0)× [ 1/2, g ] .

Similarly, defining D1 := Tα(D0 ) , one has D1 ⊂ D(1 : 2), and finds

D1 = ( 0, r1 ]× [ g2, 1/2 ] ;

see Figure 5.

With d as in Lemma IV.19, let

A′1 := A1 ∩ D(−1 : d) and D′1 := D1 ∩ D(+1 : d− 1) .

By elementary calculation, Lemma IV.19, and an application of the identity g2 =
1− g , one finds that

Tα(A′1) = Tα(D′1) = [ l2, α)×
[

2

2d− 1
,

1

d− g

]
.

Each of A1 \A′1 and D1 \D′1 projects to the union of full cylinders:

A1 \A′1 =

∞⋃
m=d+1

∆(−1 : m)× [ 1/2, g ] and D1 \D′1 =

∞⋃
m=d

∆(+1 : m)× [ g2, 1/2 ] .

From this and Tα
(

∆(−1 : m) × [ 1/2, g ]
)

= Tα
(

∆(+1 : m − 1) × [ g2, 1/2 ]
)
, we

conclude that Tα(A1 ) = Tα(D1 ) , and the result follows. �
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IV. Quilting natural extensions for α-Rosen fractions

α− 1 −1/2 0 α 1/2

D0

D1

r1

A0

l1

A1

g2

1/2

g

Figure 5. Representative region Ωα for α ∈ (
√

2− 1, 1/2 ) ; q = 3 .

3.3. Isomorphic systems. In this subsection, we complete the proof of The-
orem IV.16.

Corollary IV.21. We have

Ωα = [α− 1, l1 )× [ 0, g2 ]
⋃

[ l1, r1 )×
(

[ 0, g2 ] ∪ [ 1/2, g ]

) ⋃
[ r1, α )× [ 0, g ] .

Furthermore, the µ-area of Ωα equals that of Ω1/2 .

Proof. From Corollary IV.11

Ωα =

(
Ω1/2 \ (D0 ∪D1 )

)⋃
(A0 ∪A1) .

This proves the first part. By definition of A0 and by Lemma IV.10, A0 and D0

are the images of the union of the change of digit regions under Tα and T1/2,
respectively. Since both Tα and T1/2 are µ-measure preserving, µ(D0) = µ(A0) .
Again since Tα preserves measure, we also have µ(D1) = µ(A1) . �

See Figure 5 for an example of the shape of Ωα and the deleted and added regions.

Of course, the equality of the areas is already implied by the arguments of Section 2.
From Lemma IV.20 and Proposition IV.12 we find that for λ = 1 and

√
2 − 1 ≤

α ≤ 1
2 the system (Tα, Iα,Bα, µα ) is isomorphic to (T1/2, I1/2,B1/2, µ1/2 ) . From

Corollary IV.14 it follows that the entropy of the system (Tα, Iα,Bα, µα ) is equal

to that of the NICF, which is known to be
1

log(1 + g)

π2

6
. This finishes the proof

of Theorem IV.16.
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4. Even q ; α ∈ (α0, 1/2 ]

4. Even q ; α ∈ (α0, 1/2 ]

The natural extension for the Rosen fractions was determined in [8]. The exact form
of the domain depends on the parity of the index q. In this section we describe
quilting for even indices q.

4.1. Natural extensions for Rosen fractions. The domain Ωα was given
in [8] as in the following definition; also see the beginning of Section 3.2. Recall

that ϕj = T j1/2(−λ/2).

Definition IV.22. Let q = 2p for p ∈ N and p ≥ 2 . Let Jj be defined as follows:

Jj = [ϕj−1, ϕj) for j ∈ {1, 2, . . . , p− 1} and Jp =

[
0,
λ

2

)
.

Put L1 = 1/(λ + 1) and Lj = 1/(λ − Lj−1) for j ∈ {2, . . . , p − 1}. Further, set
Kj = [0, Lj ] for j ∈ {1, 2, . . . , p− 1} and Kp = [0, 1] . Then

Ω1/2 =

p⋃
j=1

Jj ×Kj .

�

In [8] is shown that Lp−1 = λ− 1. See Figure 2 for an example with q = 8.

The normalizing constant C such that Cdµ gives a probability measure on Ωα is

(IV.23) C =
1

log ( (1 + cosπ/q )/ sinπ/q )
,

see Lemma 3.2 of [8].

The key to understanding the system for Tα is that for all q = 2p , one has that
lp = rp for all of our α . In proving this, it is convenient to use the fact that the
orbits of r0 and −r0 coincide after one application of Tα , so T jα(r0) = T jα(−r0) for
j ≥ 1. We start from −r0 instead of r0.

Lemma IV.24. For any α > α0, the Tα-expansion of both l0 and −r0 starts as
[(−1 : 1)p−1, . . . ] .

Proof. Like in the previous chapter we use Möbius transformations from Defini-
tion I.38. Recall that

S =

[
1 λ
0 1

]
and T =

[
0 −1
1 0

]
.

Any x with a negative sign and ones for its first p − 1 digits is to the left of
the appropriate (p − 2)nd pre-image of −δ1. This pre-image is found by applying
p − 2 times T −1α with ε = −1 and d = 1, so it is given by (S−1T )−p+2(−δ1) , cf.
Lemma III.37.

From Lemma III.38 and (IV.6) we find

(S−1T )−p+2 =
Bp
2

[
−λ3 + 3λ −λ2 + 2
λ2 − 2 λ

]
.
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IV. Quilting natural extensions for α-Rosen fractions

Thus the appropriate (p− 2)nd pre-image of −δ1 is given by

T−p+2
α (−δ1) =

(λ3 − 3λ)δ1 − λ2 + 2

(−λ2 + 2)δ1 + λ
= −α(λ3 − 2λ) + λ

αλ2 + 2
.

In particular, −r0 starts with p− 1 digits one if

−r0 = −αλ < −α(λ3 − 2λ) + λ

αλ2 + 2
.

Rewriting this inequality yields that it holds whenever

α > α0 :=
λ2 − 4 +

√
λ4 − 4λ2 + 16

2λ2
.

Finally, if α > α0, then it immediately follows that l0 also starts with p − 1 ones
since l0 = (α− 1)λ < −αλ = −r0. �

Lemma IV.25. For α ∈ (α0, 1/2) , rp = lp . Furthermore, there is d ∈ N such that

lp−1 ∈ ∆(−1 : d) and rp−1 ∈ ∆(1 : d− 1) .

Proof. As in the proof of the previous lemma, we use Lemma III.38 and (IV.6)
and find

lp−1 = T p−1α (l0) = (S−1T )p−1
(

(α− 1)λ
)

=

[
−2 −λ
λ λ2 − 2

]
( (α− 1)λ) =

(1− 2α)λ

αλ2 − 2
,

and similarly, since Tα(r0) = Tα(−r0),

rp−1 = T p−1α (−r0) =
(2α− 1)λ

(1− α)λ2 − 2
.

For α ∈ (α0,
1
2 ) one has

αλ2 − 2 < 0, (1− 2α)λ > 0 and (1− α)λ2 − 2 < 0

and we find ∣∣∣∣ 1

lp−1

∣∣∣∣− ∣∣∣∣ 1

rp−1

∣∣∣∣ =
αλ2 − 2

(2α− 1)λ
− (1− α)λ2 − 2

(2α− 1)λ
= λ .

But, then Tα(lp−1) − Tα(rp−1) is an integer multiple of λ. However, this is the
difference of two elements of Iα, and thus this multiple must be zero. We conclude
that rp = lp . That the digits of these points are as claimed follows as in the proof
of Lemma IV.19. �

To describe the initial orbits of A0 and D0, we use the following sequence.

H1 =
1

λ
and Hi =

1

λ−Hi−1
for i ≥ 2 .

In [8] it is shown that Hp−1 = λ
2 .

Lemma IV.26. For α ∈ (α0, 1/2) , T pα (A0) = T pα (D0) .
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4. Even q ; α ∈ (α0, 1/2 ]

0 r0

D0
D1

r1

D2

r2

D3

r3l0

A0

A1

l1

A2

l2

A3

l3

Figure 6. The added and deleted rectangles for α = 0.48 in the
natural extensions for q = 8 . Here Ai = T i(A0) and Di = T i(D0) .

Proof. One easily checks that the basic added region and basic deleted regions
are

A0 = [ l0,−λ/2 )× [0, L1] and D0 = [r0, λ/2 )× [ 0, 1] .

Since l0 < −λ/2 < −r0 , we find from Lemma IV.24 that all x ∈ [ l0,−λ/2 ) share
the same first p − 1 of their Tα-digits. Since the first p − 1 of the T1/2 digits of

−λ/2 are all ones, we have that T p−1α (−λ/2) = T p−11/2 (−λ/2) and from [8] we know

ϕp−1 = T p−11/2 (−λ/2) = 0 .

For the second coordinate we recall that 1/(λ− Lp−1) = 1. We find that

T p−1α (A0) = [ lp−1, 0)× [Hp−1, 1 ] .

Paying attention to sign and orientation, one finds that

Tα(D0) = [ϕ1, r1)× [L1, H1 )

and thus

T p−1α (D0) = ( 0, rp−1]× [Lp−1, Hp−1 ] .

Analogously to the classical case, with d from Lemma IV.25, we let

A′p−1 := T p−1α (A0) ∩ D(−1 : d) ,

and

D′p−1 := T p−1α (D0) ∩ D(+1 : d− 1) .
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IV. Quilting natural extensions for α-Rosen fractions

We show that the Tα images of A′p−1 and D′p−1 agree. From Lemma IV.25, Hp−1 =
λ
2 and Lp−1 = λ− 1 we find

Tα(A′p−1) = [lp, r0)×
[

1

dλ−Hp−1
,

1

dλ− 1

]
= [lp, r0)×

[
1

(d− 1
2 )λ

,
1

dλ− 1

]
,

Tα(D′p−1) = [rp, r0)×
[

1

(d− 1)λ+Hp−1
,

1

(d− 1)λ+ Lp−1

]
= [lp, r0)×

[
1

(d− 1
2 )λ

,
1

dλ− 1

]
.

Analogously to the proof of Lemma IV.20 each of A1 \A′p−1 and D1 \D′p−1 projects
to the union of full cylinders:

A1 \A′p−1 =

∞⋃
m=d+1

∆(−1 : m)× [Hp−1, 1 ] and

D1 \D′p−1 =

∞⋃
m=d

∆(+1 : m)× [Lp−1, Hp−1 ] .

From this and Tα
(

∆(−1 : m)× [Hp−1, 1 ]
)

= Tα
(

∆(+1 : m− 1)× [Lp−1, Hp−1 ]
)
,

we conclude that Tα(Ap−1 ) = Tα(Dp−1 ) . The result follows. �

Figure 7. Change of topology at α = α0 : Simulations of the
natural extension for q = 8 with on the left α = α0− 0.001 and on
the right α = α0 + 0.001.

Lemma IV.27. The region Ωα0 is not connected.

Proof. From the proof of Lemma IV.24 it follows that the first p − 2 steps are
similar for the case α = α0, and Aj and Dj are as before for j = 1, . . . , p − 2.
However we find that if α = α0 then rp−2 = T p−2α (r0) = −δ1 . Hence

Dp−1 = T p−1α0
(D0) = ( 0, α0λ]× [Lp−1, Hp−1 ] .

Furthermore,

Ap−1 = T p−1α0
(A0) = ( lp−1, 0]× [Hp−1, 1 ] .
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5. Odd q ; α ∈ (α0, 1/2 ]

Like in the proof of Lemma IV.26 the added blocks in all consecutive steps will
be cancelled out by deleted blocks (and there will be some extra blocks deleted).
Therefore, the entire rectangle ( 0, α0λ]× [Lp−1, Hp−1 ] will remain deleted and Ωα0

is indeed disconnected. �

We know from [11] that for α ∈
[
1
2 ,

1
λ

]
the region Ωα is connected. Thus Lemma IV.26

and Lemma IV.27 prove part (i) of Theorem IV.3 for even index q . From Lemma IV.26,
Proposition IV.12 and Corollary IV.11 it follows that for α ∈

(
α0,

1
2

]
and even q the

entropy of the α-Rosen map equals that of the standard Rosen map. In Section 6
we finish the proof of part (ii) of Theorem IV.3.

5. Odd q ; α ∈ (α0, 1/2 ]

In this section we fix q = 2h+3 for a positive integer h and consider α ∈ (α0, 1/2 ].
Let ρ be the positive root of ρ2 + (2− λ)ρ− 1 = 0, also see (III.55).

5.1. Natural extensions for Rosen fractions. We start with the definition
of Ω1/2 from [8], again using ϕj = T j1/2(−λ/2).

Definition IV.28. Let q = 2h+ 3 , for h ≥ 1. Set

J2k = [ϕh+k, ϕk), for k ∈ {1, · · · , h},
J2k+1 = [ϕk, ϕh+k+1), for k ∈ {0, 1, · · · , h},

and J2h+2 = [0, λ2 ). Put

L1 =
1

λ+ 1/ρ
, L2 =

1

λ+ ρ
and Lj =

1

λ− Lj−2
for 2 < j ≤ 2h+ 2.

Let Kj = [0, Lj ] for j ∈ {1, · · · , 2h+ 1} and let K2h+2 = [0, ρ] .

Then

Ω1/2 =

2h+2⋃
j=1

Jj ×Kj .

�

Furthermore, L2h = λ− 1
ρ and L2h+1 = λ− ρ.

Also from [8] we have that the normalizing constant C such that Cdµ gives a prob-
ability measure on Ωα is

(IV.29) C =
1

log(1 + ρ )
.

Remark IV.30. In [8] it is shown that − 2
3λ < ϕh < − 2

5λ , ϕ2h+1 = 0, and

−λ
2
≤ ϕj < −

2

3λ
for j ∈ {0, 1, . . . , h− 1} ∪ {h+ 1, . . . , 2h} .

Note that − 2
3λ = −δ1

(
1
2

)
and − 2

5λ = −δ2
(
1
2

)
. �
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IV. Quilting natural extensions for α-Rosen fractions

Similarly to the even case, for each of our α, the basic added region and basic
deleted regions are given by

A0 = [ l0,−λ/2)× [0, L1] , D0 = [r0, λ/2)× [0, ρ] .

In this section we prove that for q = 2h + 3 one has that l2h+2 = r2h+2 for all
α ∈

(
α0,

1
2

)
and consequently that the added blocks coincide with the deleted

blocks after 2h + 2 steps. Here also, we use the fact that the orbits of r0 and −r0
coincide after one application of Tα .

Lemma IV.31. For any α ∈
(
α0,

1
2

]
, the Tα-expansion of both l0 and −r0 starts

as
[ (−1 : 1)h, (−1 : 2), (−1 : 1)h, . . . ] .

Proof. A point x ∈ [l0, r0) has starting Tα digits [ (−1 : 1)h, (−1 : 2), (−1 : 1)h] if

and only if x <
(
(S−1T )h−1S−2T (S−1T )h

)−1
(−δ1). We find(

(S−1T )h−1S−2T (S−1T )h
)−1

(−δ1) =

[
(3− 2λ)λ 2(1− λ)
λ2 − 2 λ

]
(−δ1)

=
−2αλ2 + 2αλ− λ

αλ2 + 2
.

.

We find that −r0 = −αλ < −2αλ2 + 2αλ− λ
αλ2 + 2

if and only if α > λ−2+
√
2λ2−4λ+4
λ2 .

Obviously, l0 < −r0 and we are done.

�

Lemma IV.32. For α ∈ (α0, 1/2) one has that T 2h+2(A0) = T 2h+2(D0) .

Proof. One has

l2h+1 = T 2h+1(l0) = (S−1T )hS−2T (S−1T )h(l0) =

[
−2 −λ
λ 2λ− 2

]
((α− 1)λ)

=
(−2α+ 1)λ

(α− 1)λ2 + 2λ− 2
,

r2h+1 = T 2h+1(r0) = T 2h+1(−r0) =

[
−2 −λ
λ 2λ− 2

]
(−αλ) =

(2α− 1)λ

−αλ2 + 2λ− 2
.

We find that for α ∈
(
α0,

1
2

)
one has −αλ2 +2λ−2 < 0 and (α−1)λ2 +2λ−2 < 0.

Thus,∣∣∣∣ 1

r2h+1

∣∣∣∣− ∣∣∣∣ 1

l2h+1

∣∣∣∣ =
−αλ2 + 2λ− 2

(2α− 1)λ
− (α− 1)λ2 + 2λ− 2

(2α− 1)λ
=
−2αλ2 + λ2

(2α− 1)λ
= −λ .

Arguments completely analogous to the even case now give that that l2h+2 = r2h+2

and in fact that T 2h+2(A0) = T 2h+2(D0) . �

As stated in the introduction, [11] shows that the domain Ωα is connected for all
q and all α ∈ ( 1/2, 1/λ ] . Arguing as in Lemma IV.27 shows that Ωα0 is not con-
nected, thus part (i) of Theorem IV.3 follows for odd index q . From Lemma IV.32,
Proposition IV.12 and Corollary IV.11 it follows that for α ∈

(
α0,

1
2

]
and odd q the
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6. Large α, by way of Dajani et al.

Figure 8. Change of topology at α = α0 : Simulations of the
natural extension for q = 9 ; on the left α = α0 − 0.001 , on the
right α = α0 + 0.001.

entropy of the α-Rosen map equals that of the standard Rosen map. In Section 6
we finish the proof of part (ii) of Theorem IV.3.

Remark IV.33. As we displayed in each of Sections 3, 4 and 5, the key to suc-
cessful quilting is equality of orbits of r0 and of l0 after a fixed number of steps.
Compare this with the discussion in [44] relating eventual equality of these orbits
and behavior of the entropy in the classical case. �

6. Large α, by way of Dajani et al.

We finish the proof of part (ii) of Theorem IV.3 by appropriately interpreting results
of [11] on α > 1

2 .

6.1. Successful quilting for α ∈ (1/2, ω0 ]. For even q and α ∈ ( 1/2, 1/λ ] ,
Theorem 2.2 of [11] shows that rp = lp, d(rp−1) = d(lp−1) + 1 and ε(rp−1) =
−ε(lp−1). From this, just as above, one can in fact show that T p(A0) = T p(D0) in
these cases as well.

For odd q and α ∈ ( 1/2, ω0 ] , Theorem 2.9 of [11] shows that r2h+2 = l2h+2 and
that just as in the even case their orbit predecessors have opposite signs and digits
differing by 1. Thus, here one can show that T 2h+2(A0) = T 2h+2(D0) .

We find that for α ∈ (α0, ω0] the entropy of the α-Rosen map equals that of the
standard Rosen map. To finish the prooaleorem IV.3 it remains to show that ω0

cannot be replaced by a larger number.

As we must take α ≤ 1
λ to ensure that all the digits are positive, the optimality of

ω0 in the even case follows immediately.

6.2. Nearly successful quilting and unequal entropy. We now show that
the entropy of Tα is not equal to that of T1/2 for α0 > ω0 in the case of odd
q . Indeed, for these values, the results of [11] show that although the natural
extensions remain connected, the conditions for successful quilting are not fully
satisfied.
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IV. Quilting natural extensions for α-Rosen fractions

Lemma IV.34. With notation as above, suppose that there are distinct natural
numbers k, k′ such that

T kα (A0) = T k′α (D0) .

Then the entropy of (Tα,Ωα,Bα, µ ) differs from that of (T1/2,Ω1/2,B1/2, µ ) .

Proof. If k < k′, then we can produce a new system (Ω′α, T
′
α,B

′
α, µ ) by induc-

ing past k′ − k “copies” of A0 . This system can be shown to be isomorphic to
(T1/2,Ω1/2,B1/2, µ ) . But, by the Abramov formula [1], the induced system has
entropy differing from that of the full system by a multiplicative factor equal to
k′ − k times the measure of A0 . Thus, the entropy of (Tα,Ωα,Bα, µ ) is less than
that of the system of index 1/2 .

Similarly, if k > k′ , we form a new system by inducing past the appropriate steps
in the orbit of D0 in the index 1/2 system. This allows us to conclude that the
entropy of (Tα,Ωα,Bα, µ ) is greater than that of the system of index 1/2 by a
multiplicative factor of k − k′ times the measure of A0 . �

The following is part of Theorem 2.9 of [11].

Lemma IV.35. (Dajani et al. [11]) For odd q and α ∈ (ω0, 1/λ ] there are distinct
natural numbers k, k′ such that lk = rk′ and that the Tα-digits of lk−1 and rk′−1
differ by one.

Corollary IV.36. For odd q and α ∈ (ω0, 1/λ ] , the maps Tα and T1/2 have
distinct entropy values.

Proof. From Lemma IV.35, one can show that T kα (A0) = T k′α (D0) . Lemma IV.34
then applies. �

In fact, Theorem 2.9 of [11] shows that k′ = k + 1 ; thus, from Lemmas IV.34
and IV.35, we see that the entropy of Tα for α ∈ (ω0, 1/λ ] is decreasing, confirming
the results for the case q = 3 of [41], see also [37].

If follows from Corollary IV.36 that ω0 in part (ii) of Theorem IV.3 cannot be
replaced by a larger number, which finishes the proof of this theorem.
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V
An iterated LLL-algorithm for find-
ing approximations with bounded
Dirichlet coefficients

In this final chapter we study multi-dimensional continued fractions. We give an al-
gorithm that finds a sequence of approximations with Dirichlet coefficients bounded
by a constant only depending on the dimension. The algorithm uses the LLL-
algorithm for lattice basis reduction. We present a version of the algorithm that
runs in polynomial time of the input.

1. Introduction

We repeat Theorem I.50 and Definition I.52 from the Introduction.

Theorem V.1. Let an n×m matrix A with entries aij ∈ R\Q be given and suppose
that 1, ai1, . . . , aim are linearly independent over Q for some i with 1 ≤ i ≤ n. There
exist infinitely many coprime m-tuples of integers q1, . . . , qm such that with
q = max

j
|qj | ≥ 1, we have

(V.2) max
i
‖q1 ai1 + · · ·+ qm aim‖ < q

−m
n .

The exponent −mn of q is minimal.

Definition V.3. Let an n ×m matrix A with entries aij ∈ R \ Q be given. The
Dirichlet coefficient of an m-tuple q1, . . . , qm is defined as

q
m
n max

i
‖q1 ai1 + · · ·+ qm aim‖ .

�

Remark V.4. If m = n = 1, then the Dirichlet coefficient of an approximation p
q

for a is exactly the approximation coefficient Θ = q2
∣∣∣a− p

q

∣∣∣, see Definition I.9 �

The proof of the theorem does not give an efficient way of finding a series of ap-
proximations with a Dirichlet coefficient of 1. As mentioned in Section 1.5 there are
many multi-dimensional algorithms that generalize one or more of the properties
of the continued fraction algorithm, but there is no efficient algorithm known that
guarantees to find a series of approximations with a Dirichlet coefficient of 1.
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V. The ILLL-algorithm

In 1982 the LLL-algorithm for lattice basis reduction was published in [36]. The au-
thors noted that their algorithm could be used for finding Diophantine approxima-
tions of given rationals with Dirichlet coefficient only depending on the dimension;
see (V.13).

Just [24] developed an algorithm based on lattice reduction that detects Z-linear
dependence in the ai; in this case m = 1. If no such dependence is found her
algorithm returns integers q with

max
i
‖qai‖ ≤ c

(
n∑
i=1

a2i

)1/2

q−1/(2n(n−1)),

where c is a constant depending on n. The exponent −1/(2n(n− 1)) is larger than
the Dirichlet exponent −1/n.

Lagarias [32] used the LLL-algorithm in a series of lattices to find good approx-
imations for the case m = 1. Let a1, . . . , an ∈ Q and let there be a Q ∈ N
with 1 ≤ Q ≤ N such that max

j
||Qaj || < ε. Then Lagarias’ algorithm on input

a1, . . . , an and N finds in polynomial time a q with 1 ≤ q ≤ 2
n
2N such that

max
j
||q aj || ≤

√
5n2

d−1
2 ε. The main difference with our work is that Lagarias fo-

cuses on the quality ||q aj ||, while we focus on Dirichlet coefficient q
1
n ||q aj ||. Besides

that we also consider the case m > 1.

The main result of this chapter is an algorithm that by iterating the LLL-algorithm
gives a series of approximations of given rationals with optimal Dirichlet exponent.
Where the LLL-algorithm gives one approximation our dynamic algorithm gives a
series of successive approximations. To be more precise: For a given n×m-matrix A
with entries aij ∈ Q and a given upper bound qmax the algorithm returns a sequence

of m-tuples q1, . . . , qm such that for every Q with 2
(m+n+3)(m+n)

4m ≤ Q ≤ qmax one of
these m-tuples satisfies

max
j
|qj | ≤ Q and

max
i
‖q1ai1 + · · ·+ qmaim‖ ≤ 2

(m+n+3)(m+n)
4n Q

−m
n .

The exponent −m/n of Q can not be improved and therefore we say that these
approximations have optimal Dirichlet exponent.

Our algorithm is a multi-dimensional continued fraction algorithm in the sense
that we work in a lattice basis and that we only interchange basis vectors and add
integer multiples of basis vectors to another. Our algorithm differs from other multi-
dimensional continued fraction algorithms in that the lattice is not fixed across the
iterations.

In Lemma V.24 we show that if there exists an extremely good approximation, our
algorithm finds a very good one. We derive in Theorem V.33 how the output of
our algorithm gives a lower bound on the quality of possible approximations with
coefficients up to a certain limit. If the lower bound is positive this proves that
there do not exist linear dependencies with all coefficients qi below the limit.
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2. Systems of linear relations

In Section 4 we show that a slightly modified version of our algorithm runs in
polynomial time. In Section 5 we present some numerical data.

2. Systems of linear relations

Recall from Definition I.54 that a basis b1, . . . , br for a lattice L is reduced if

|µij | ≤
1

2
for 1 ≤ j < i ≤ r

and

|b∗i + µii−1b
∗
i−1|2 ≤

3

4
|b∗i−1|2 for 1 ≤ i ≤ r,

where |x| denotes the Euclidean length of the vector x.

We also repeat the following results from [36] already mentioned in the Introduc-
tion.

Proposition V.5. Let b1, . . . , br be a reduced basis for a lattice L in Rr. Then we
have

(i) |b1| ≤ 2(r−1)/4
(
det(L)

)1/r
,

(ii) |b1|2 ≤ 2r−1 |x|2, for every x ∈ L, x 6= 0,

(iii)

r∏
i=1

|bi| ≤ 2r(r−1)/4 det(L).

Proposition V.6. Let L ⊂ Zr be a lattice with a basis b1, b2, . . . , br, and let F ∈ R,
F ≥ 2, be such that |bi|2 ≤ F for 1 ≤ i ≤ r. Then the number of arithmetic
operations needed by the LLL-algorithm is O(r4 logF ) and the integers on which
these operations are performed each have binary length O(r logF ).

We prove Lemma I.57 announced in the introduction.

Lemma V.7. Let an n × m-matrix A with entries aij in R and an ε ∈ (0, 1)
be given. Applying the LLL-algorithm to the basis formed by the columns of the
(m+ n)× (m+ n)-matrix

(V.8) B =



1 0 . . . 0 a11 . . . a1m

0 1
. . . 0 a21 . . . a2m

...
...

...
...

0 . . . 0 1 an1 . . . anm
0 . . . 0 0 c 0
...

...
...

. . .

0 . . . 0 0 0 c


,

with c =
(

2−
m+n−1

4 ε
)m+n

m

yields an m-tuple q1, . . . , qm ∈ Q with

max
j
|qj | ≤ 2

(m+n−1)(m+n)
4m ε

−n
m and(V.9)

max
i
‖q1ai1 + · · ·+ qmaim‖ ≤ ε.(V.10)
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V. The ILLL-algorithm

Proof. The LLL-algorithm finds a reduced basis b1, . . . , bm+n for this lattice. Each
vector in this basis can be written as

q1a11 + · · ·+ qma1m − p1
...

q1an1 + · · ·+ qmanm − pn
cq1
...

cqm


,

with pi ∈ Z for 1 ≤ i ≤ n and qj ∈ Z for 1 ≤ j ≤ m.

Proposition V.5(i) gives an upper bound for the length of the first basis vector,

|b1| ≤ 2
m+n−1

4 c
m

m+n .

From this vector b1 we find integers q1, . . . , qm, such that

max
j
|qj | ≤ 2

m+n−1
4 c

−n
m+n and(V.11)

max
i
‖q1ai1 + · · ·+ qmaim‖ ≤ 2

m+n−1
4 c

m
m+n .(V.12)

Substituting c =
(

2−
m+n−1

4 ε
)m+n

m

gives the results. �

From equations (V.11) and (V.12) it easily follows that the m-tuple q1, . . . , qm
satisfies

(V.13) max
i
‖q1ai1 + · · ·+ qmaim‖ ≤ 2

(m+n−1)(m+n)
4n q

−m
n ,

where q = max
j
|qj |, so the approximation has a Dirichlet coefficient of at most

2
(m+n−1)(m+n)

4n .

3. The Iterated LLL-algorithm

We iterate the LLL-algorithm over a series of lattices to find a sequence of approxi-
mations. We start with a lattice determined by a basis of the form (V.8). After the
LLL-algorithm finds a reduced basis for this lattice, we decrease the constant c by
dividing the last m rows of the matrix by a constant greater than 1. By doing so,
ε is divided by this constant to the power m

m+n . We repeat this process until the

upper bound (V.9) for q guaranteed by the LLL-algorithm exceeds a given upper
bound qmax. Motivated by the independence on ε of (V.13) we ease notation by
fixing ε = 1

2 .

Define

(V.14) k′ :=

⌈
− (m+ n− 1)(m+ n)

4n
+
m log2 qmax

n

⌉
.
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3. The Iterated LLL-algorithm

Iterated LLL-algorithm (ILLL)

Input
An n×m-matrix A with entries aij in R.
An upper bound qmax > 1.

Output
For each integer k with 1 ≤ k ≤ k′, see (V.14), we obtain a vector q(k) ∈ Zm with

max
j
|qj(k)| ≤ 2

(m+n−1)(m+n)
4m 2

kn
m ,(V.15)

max
i
‖q1(k) ai1 + · · ·+ qm(k) aim‖ ≤

1

2k
.(V.16)

Description of the algorithm

(1) Construct the basis matrix B as given in (V.8) from A.
(2) Apply the LLL-algorithm to B.
(3) Deduce q1, . . . , qm from the first vector in the reduced basis returned by

the LLL-algorithm.

(4) Divide the last m rows of B by 2
m+n
m

(5) Stop if the upper bound for q guaranteed by the algorithm (V.15) is larger
than qmax; else go to step 2.

Remark V.17. The number 2
m+n
m in step 4 may be replaced by d

m+n
m for any real

number d > 1. When we additionally set ε = 1
d this yields that

max
j
|qj(k)| ≤ 2

(m+n−1)(m+n)
4m d

kn
m and(V.18)

max
i
‖q1(k)ai1 + · · ·+ qm(k)aim‖ < d−k.(V.19)

In the theoretical part of this chapter we always take d = 2 corresponding to our
choice ε = 1

2 . �

Lemma V.20. Let an n×m-matrix A with entries aij in R and an upper bound
qmax > 1 be given. The number of times the ILLL-algorithm applies the LLL-
algorithm on this input equals k′ from (V.14).

Proof. One easily derives the number of times we iterate by solving k from the
stopping criterion (V.15)

qmax ≤ 2
(m+n−1)(m+n)

4m 2
kn
m ,

�

We define

c(k) = c(k−1)/2
m+n
m for k > 1, where c(1) = c as given in Lemma V.7.

In iteration k we are working in the lattice defined by the basis in (V.8) with c
replaced by c(k).
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V. The ILLL-algorithm

Lemma V.21. The k-th output, q(k), of the ILLL-algorithm satisfies (V.15)
and (V.16).

Proof. In step k we use c(k) =
(

2−
m+n+3

4 −k+1
)m+n

m

. Substituting c(k) for c in

equations (V.11) and (V.12) yields (V.15) and (V.16), respectively. �

The following theorem gives the main result mentioned in the introduction. The
algorithm returns a sequence of approximations with all coefficients smaller than
Q, optimal Dirichlet exponent and Dirichlet coefficient only depending on the di-
mensions m and n .

Theorem V.22. Let an n ×m-matrix A with entries aij in R, and qmax > 1 be
given. The ILLL-algorithm finds a sequence of m-tuples q1, . . . , qm such that for

every Q with 2
(m+n+3)(m+n)

4m ≤ Q ≤ qmax one of these m-tuples satisfies

max
j
|qj | ≤ Q and

max
i
‖q1ai1 + · · ·+ qmaim‖ ≤ 2

(m+n+3)(m+n)
4n Q

−m
n .

Proof. Take k ∈ N such that

(V.23) 2
(m+n+3)(m+n)

4m · 2 (k−1)n
m ≤ Q < 2

(m+n+3)(m+n)
4m · 2 knm .

From Lemma V.21 we know that q(k) satisfies the inequality

max
j
|qj(k)| ≤ 2

(m+n+3)(m+n)
4m 2

(k−1)n
m ≤ Q.

From the right hand side of inequality (V.23) it follows that

1

2k
< 2

(m+n+3)(m+n)
4n Q

−m
n .

From Lemma V.21 and this inequality we derive that

max
i
‖q1(k) ai1 + · · ·+ qm(k) aim‖ ≤

1

2k
< 2

(m+n+3)(m+n)
4n Q

−m
n .

�

Proposition V.5(ii) guarantees that if there exists an extremely short vector in the
lattice, then the LLL-algorithm finds a rather short lattice vector. We extend this
result to the realm of successive approximations. In the next lemma we show that
for every very good approximation, the ILLL-algorithm finds a rather good one not
too far away from it.

Lemma V.24. Let an n ×m-matrix A with entries aij in R, a real number 0 <
δ < 1 and an integer s > 1 be given. If there exists an m-tuple s1, . . . , sm with

s = max
j
|sj | > 2

(m+n−1)n
4m

(
nδ2

m

) n
2(m+n)

(V.25)

and

max
i
‖s1ai1 + · · ·+ smaim‖ ≤ δs

−m
n ,(V.26)
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then applying the ILLL-algorithm with

(V.27) qmax ≥ 2
m2+m(n−1)+4n

4m

( m

nδ2

) n
2(m+n)

s

yields an m-tuple q1, . . . , qm with

max
j
|qj | ≤ 2

m2+m(n−1)+4n
4m

( m

nδ2

) n
2(m+n)

s(V.28)

and

max
i
‖q1ai1 + · · ·+ qmaim‖ ≤ 2

m+n
2
√
nδs

−m
n .(V.29)

Proof. Let 1 ≤ k ≤ k′ be an integer. Proposition V.5(ii) gives that for each q(k)
found by the algorithm

n∑
i=1

‖q1(k)ai1 + · · ·+ qm(k)aim‖2 + c(k)2
m∑
j=1

qj(k)2

≤ 2m+n−1

 n∑
i=1

‖s1a11 + · · ·+ smaim‖2 + c(k)2
m∑
j=1

s2j

 .

From this and (V.25) and (V.26) it follows that

(V.30) max
i
‖q1(k)ai1 + · · ·+ qm(k)aim‖2 ≤ 2m+n−1

(
nδ2s

−2m
n + c(k)2ms2

)
.

Take the smallest positive integer K such that

(V.31) c(K) ≤
√
n

m
δs−

m+n
n .

We find for step K from (V.30) and (V.31)

max
i
‖q1(K)ai1 + · · ·+ qm(K)aim‖ ≤ 2

m+n
2
√
nδs

−m
n ,

which gives (V.29).

We show that under assumption (V.27) the ILLL-algorithm makes at least K steps.
We may assume K > 1, since the ILLL-algorithm always makes at least 1 step.
From Lemma V.20 we find that if qmax satisfies

qmax > 2
Kn
m 2

(m+n−1)(m+n)
4m ,

then the ILLL-algorithm makes at least K steps. Our choice of K implies

c(K − 1) =
c(1)

2
(m+n)(K−2)

m

=
2−

(m+n+3)(m+n)
4m

2
(m+n)(K−2)

m

>

√
n

m
δs−

m+n
n ,

and we obtain

2
Kn
m < 2−

(m+n−5)n
4m

( m

nδ2

) n
2(m+n)

s.

From this we find that

qmax > 2
m2+m(n−1)+4n

4m

( m

nδ2

) n
2(m+n)

s

is a satisfying condition to guarantee that the algorithm makes at least K steps.
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V. The ILLL-algorithm

Furthermore, either 2
−(m+n)

m

√
n
mδs

−m+n
n < c(K) or K = 1. In the former case we

find from (V.11) that

max
j
|qj(K)| ≤ 2

m+n−1
4 c(K)

−n
m+n < 2

m+n−1
4 2

n
m

( m

nδ2

) n
2(m+n)

s.

In the latter case we obtain from (V.11)

max
j
|qj(1)| ≤ 2

m+n−1
4 c(1)

−n
m+n = 2

m+n−1
4 2

(m+n+3)n
4m

and, by (V.25),

2
m+n−1

4 2
(m+n+3)n

4m = 2
m+n−1

4 2
n
m 2

(m+n−1)n
4m < 2

m+n−1
4 2

n
m

( m

nδ2

) n
2(m+n)

s.

We conclude that for all K ≥ 1

max
j
|qj(K)| ≤ 2

m2+m(n−1)+4n
4m

( m

nδ2

) n
2(m+n)

s.

�

Note that from (V.28) and (V.29) it follows that

(V.32) q
m
n max

i
‖q1ai1 + · · ·+ qmaim‖ ≤ 2

m2+m(3n−1)+4n+2n2

4n m
m

2(m+n) (nδ2)
n

2(m+n) ,

where again q = max
j
|qj |.

Theorem V.33. Let an n × m-matrix A with entries aij in R and qmax > 1 be
given. Assume that γ is such that for every m-tuple q1, . . . , qm returned by the
ILLL-algorithm

(V.34) q
m
n max

i
‖q1ai1 + . . . qmaim‖ > γ, where q = max

j
|qj |.

Then every m-tuple s1, . . . , sm with s = maxj |sj | and

2
(m+n−1)n

4m

(
nδ2

m

) n
2(m+n)

< s < 2−
m2+m(n−1)+4n

4m

(
nδ2

m

) n
2(m+n)

qmax

satisfies
s
m
n max

i
‖s1ai1 + · · ·+ smaim‖ > δ,

with

(V.35) δ = 2
−(m+n)(m2+m(3n−1)+4n+2n2)

4n2 m
−m
2n n

−1
2 γ

m+n
n .

Proof. Assume that every vector returned by our algorithm satisfies (V.34) and
that there exists an m-tuple s1, . . . , sm with s = maxj |sj | such that

2
(m+n−1)n

4m

(
nδ2

m

) n
2(m+n)

< s < 2−
m2+m(n−1)+4n

4m

(
nδ2

m

) n
2(m+n)

qmax

and s
m
n max

i
‖s1ai1 + · · ·+ smaim‖ ≤ δ.

From the upper bound on s it follows that qmax satisfies (V.27). We apply
Lemma V.24 and find that the algorithm finds an m-tuple q1, . . . , qm that satis-
fies (V.32). Substituting δ as given in (V.35) gives

q
m
n max

i
‖q1ai1 + · · ·+ qmaim‖ ≤ γ,
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which is a contradiction with our assumption. �

4. A polynomial time version of the ILLL-algorithm

We have used real numbers in our theoretical results, but in a practical implemen-
tation of the algorithm we only use rational numbers. Without loss of generality we
may assume that these numbers are in the interval [0, 1]. In this section we describe
the necessary changes to the algorithm and we show that this modified version of
the algorithm runs in polynomial time.

As input for the rational algorithm we take

• the dimensions m and n,
• a rational number ε ∈ (0, 1),

• an integer M that is large compared to (m+n)2

m − m+n
m log ε,

• an n × m-matrix A with entries 0 < aij ≤ 1, where each aij =
pij
2M

for
some integer pij ,

• an integer qmax < 2M .

When we construct the matrix B in step 1 of the ILLL-algorithm we approximate
c as given in (V.8) by a rational

(V.36) ĉ =
d2Mce

2M
=

⌈
2M
(

2−
m+n−1

4 ε
)m+n

m

⌉
2M

.

Hence c < ĉ ≤ c+ 1
2M
.

In iteration k we use a rational ĉ(k) that for k ≥ 2 is given by

ĉ(k) =

⌈
2M ĉ(k − 1)2−

m+n
m

⌉
2M

and ĉ(1) = ĉ as in (V.36),

and we change step 4 of the ILLL-algorithm to ‘multiply the last m rows of B by
ĉ(k − 1)/ĉ(k)’. The other steps of the rational iterated algorithm are as described
in Section 3.

4.1. The running time of the rational algorithm.

Theorem V.37. Let the input be given as described above. Then the number of
arithmetic operations needed by the ILLL-algorithm and the binary length of the
integers on which these operations are performed are both bounded by a polynomial
in m,n and M .

Proof. The number of times we apply the LLL-algorithm is not changed by ra-
tionalizing c, so we find the number of steps k′ from Lemma V.20

k′ =

⌈
− (m+ n− 1)(m+ n)

4n
+
m log2 qmax

n

⌉
<

⌈
mM

n

⌉
.

It is obvious that steps 1, 3, 4 and 5 of the algorithm are polynomial in the size
of the input and we focus on the LLL-step. We determine an upper bound for the
length of a basis vector used at the beginning of an iteration in the ILLL-algorithm.
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V. The ILLL-algorithm

In the first application of the LLL-algorithm the length of the initial basis vectors
as given in (V.8) is bounded by

|bi|2 ≤ max
j

{
1, a21j + · · ·+ a2nj +mĉ2

}
≤ m+ n, for 1 ≤ i ≤ m+ n .

where we use that 0 < aij < 1 and ĉ ≤ 1.

The input of each following application of the LLL-algorithm is derived from the
reduced basis found in the previous iteration by making some of the entries strictly
smaller. Part (ii) of Proposition V.5 yields that for every vector bi in a reduced
basis it holds that

|bi|2 ≤ 2
(m+n)(m+n−1)

2 (det(L))2
m+n∏

j=1,j 6=i
|bi|−2.

The determinant of our starting lattice is given by ĉm and the determinants of all
subsequent lattices are strictly smaller. Every vector bi in the lattice is at least
as long as the shortest non-zero vector in the lattice. Thus for each i we have
|bi|2 ≥ 1

2M
. Combining this yields

|bi|2 ≤ 2
(m+n+2M)(m+n−1)

2 ĉ2m ≤ 2
(m+n+2M)(m+n−1)

2

for every vector used as input for the LLL-step after the first iteration.

So we have

(V.38) |bi|2 < max
{
m+ n , 2

(m+n+2M)(m+n−1)
2

}
= 2

(m+n+2M)(m+n−1)
2

for any basis vector that is used as input for an LLL-step in the ILLL-algorithm.

Proposition V.6 shows that for a given basis b1, . . . , bm+n for Zm+n with F ∈ R,
F ≥ 2 such that |bi|2 ≤ F for 1 ≤ i ≤ m + n the number of arithmetic operations
needed to find a reduced basis from this input is O((m + n)4 logF ). For matrices
with entries in Q we need to clear denominators before applying this proposition.
Thus for a basis with basis vectors |bi|2 ≤ F and rational entries that can all be
written as fractions with denominator 2M the number of arithmetic operations is
O((m+ n)4 log(22MF )).

Combining this with (V.38) and the number of steps yields the proposition. �

4.2. Approximation results from the rational algorithm. Assume that
the input matrix A (with entries aij =

pij
2M
∈ Q) is an approximation of an n×m-

matrix A (with entries αij ∈ R), found by putting aij =
d2Mαije

2M
. In this subsection

we derive the approximation results guaranteed by the rational iterated algorithm
for the αij ∈ R.
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4. A polynomial time version of the ILLL-algorithm

According to (V.11) and (V.12) the LLL-algorithm applied with ĉ instead of c
guarantees to find an m-tuple q1, . . . , qm such that

q = max
j
|qj | ≤ 2

(m+n−1)(m+n)
4m ε

−n
m ,

and

max
i
‖q1ai1 + · · ·+ qmaim‖ ≤ 2

m+n−1
4

((
2−

m+n−1
4 ε

)m+n
m

+
1

2M

) m
m+n

≤ ε+ 2
(m+n−1)(m+n)−4Mm

4(m+n) ,

the last inequality follows from the fact that (x + y)α ≤ xα + yα if α < 1 and
x, y > 0.

For the αij we find that

max
i
‖q1αi1 + · · ·+ qmαim‖ ≤ max

i
‖q1ai1 + · · ·+ qmaim‖+mq2−M

≤ ε+ 2
m+n−1

4 − Mm
m+n +mε

−n
m 2

(m+n−1)(m+n)
4m −M .

On page 97 we have chosen M large enough to guarantee that the error introduced
by rationalizing the entries is negligible.

We show that in every step the difference between ĉ(k) and c(k) is bounded by 2
2M

.

Lemma V.39. For each integer k ≥ 0,

c(k) ≤ ĉ(k) < c(k) +
1

2M

k∑
i=0

2−
i(m+n)
m < c(k) +

2

2M
.

Proof. We use induction. For k = 0 we have ĉ(0) =
dc(0)2Me

2M
and trivially

c(0) ≤ ĉ(0) < c(0) +
1

2M
.

Assume that c(k − 1) ≤ ĉ(k − 1) < c(k − 1) +
1

2M

k−1∑
i=0

2−
i(m+n)
m and consider ĉ(k).

From the definition of ĉ(k) and the induction assumption it follows that

ĉ(k) =

⌈
ĉ(k − 1) 2−

m+n
m 2M

⌉
2M

≥ ĉ(k − 1)

2
m+n
m

≥ c(k − 1)

2
m+n
m

= c(k)

and

ĉ(k) =

⌈
ĉ(k − 1) 2−

m+n
m 2M

⌉
2M

<
ĉ(k − 1)

2
m+n
m

+
1

2M

<
c(k − 1) + 1

2M

∑k−1
i=0 2−

i(m+n)
m

2
m+n
m

+
1

2M

= c(k) +
1

2M

k∑
i=0

2−
i(m+n)
m .

Finally note that

k∑
i=0

2−
i(m+n)
m < 2 for all k. �
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V. The ILLL-algorithm

One can derive analogues of Theorem V.22, Lemma V.24 and Theorem V.33 for the
polynomial version of the ILLL-algorithm by carefully adjusting for the introduced
error. We do not give the details, since in practice this error is negligible.

5. Experimental data

In this section we present some experimental data from the rational ILLL-algorithm.
In our experiments we choose the dimensions m and n and iteration speed d. We fill
the m×n matrix A with random numbers in the interval [0, 1] and repeat the entire
ILLL-algorithm for a large number of these random matrices to find our results.
First we look at the distribution of the approximation quality. Then we look at the
growth of the denominators q found by the algorithm.

5.1. The distribution of the approximation qualities. For one-
dimensional continued fractions the approximation coefficients Θk are defined as

Θk = q2k

∣∣∣∣a− pk
qk

∣∣∣∣ ,
where pk/qk is the nth convergent of a.

For the multi-dimensional case we define Θk in a similar way

(V.40) Θk = q(k)
m
n max

i
‖q1(k) ai1 + · · ·+ qm(k) aim‖.

5.1.1. The one-dimensional case m = n = 1. In [5] it was shown that for
optimal continued fractions for almost all a one has that

limN→∞ 1
N# {1 ≤ n ≤ N : Θn(x) ≤ z} = F (z), where

F (z) =



z

logG
, 0 ≤ z ≤ 1√

5
,

√
1− 4z2 + log(G 1−

√
1−4z2
2z )

logG
, 1√

5
≤ z ≤ 1

2 ,

1, 1
2 ≤ z ≤ 1,

where G =
√
5+1
2 .

As the name suggests, the optimal continued fraction algorithm gives the optimal
approximation results. The denominators it finds, grow with maximal rate and all
approximations with Θ < 1

2 are found.

We plot the distribution of the Θ’s found by the ILLL-algorithm for m = n = 1
and d = 2 in Figure 1. The ILLL-algorithm might find the same approximation
more than once. We see in Figure 1 that for d = 2 the distribution function
differs depending on whether we leave in the duplicates or sort them out. With the
duplicate approximations removed the distribution of Θ strongly resembles F (z) of
the optimal continued fraction. The duplicates that the ILLL-algorithm finds are
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usually good approximations: if they are much better than necessary they will also
be an admissible solution in the next few iterations.
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* d=2 with duplicates

. Optimal CF

Figure 1. The distribution function for Θ from ILLL with
m = n = 1 and d = 2, with and without the duplicate approxi-
mations, compared to the distribution function of Θ for optimal
continued fractions.

For larger d we do not find so many duplicates, because the quality has to improve
much more in every step; also see Figure 2 for an example with d = 64.
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Figure 2. The distribution function for Θ from ILLL with
m = n = 1 and d = 64, with and without the duplicate approx-
imations, compared to the distribution function of Θ for optimal
continued fractions.

From now on we remove duplicates from our results.
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Figure 3. The distribution function for Θ from ILLL (with du-
plicates removed) with m = n = 1 and various values of d.

5.2. The multi-dimensional case. In this section we show some results for
the distribution of the Θ’s found by the ILLL-algorithm. For fixed m and n there
also appears to be a limit distribution for Θ as d grows. See Figure 4 for an
example with m = 3 and n = 2, and compare this with Figure 3. In this section
we fix d = 512.
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Figure 4. The distribution function for Θ from ILLL with m = 3
and n = 2 for d = 2, 8, 128 and 512.

In Figure 5 we show some distributions for cases where either m or n is 1.

In Figure 6 we show some distributions for cases where m = n.

Remark V.41. Very rarely the ILLL-algorithm returns an approximation with
Θ > 1, but this is not visible in the images in this section. �
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Figure 5. The distribution for Θ from ILLL when either m = 1
or n = 1.
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Figure 6. The distribution of Θ from ILLL when m = n.

5.3. The denominators q. For regular continued fractions, the denominators
grow exponentially fast, to be more precise, for almost all x we have that

lim
k→∞

q
1/k
k = e

π2

12 log 2 ,

see Section 3.5 of [10].

For nearest integer continued fractions the constant π2

12 log 2 is replaced by π2

12 logG

with G =
√
5+1
2 . For multi-dimensional continued fraction algorithms little is known

about the distribution of the denominators qj . Lagarias defined in [31] the notion
of a best simultaneous Diophantine approximation and showed that for the ordered
denominators 1 = q1 < q2 < . . . of best approximations for a1, . . . , an it holds that

lim
k→∞

inf q
1/k
k ≥ 1 +

1

2n+1
.

We look at the growth of the denominators q = maxj |qj | that are found by the
ILLL-algorithm. Dirichlet’s Theorem V.1 suggests that if q grows exponentially
with a rate of m/n, then infinitely many approximation with Dirichlet coefficient
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smaller than 1 can be found. In the iterated LLL-algorithm it is guaranteed

by (V.15) that q(k) is smaller than a constant times d
kn
m . Our experiments in-

dicate that q(k) is about d
kn
m , or equivalently that e

m log qk
k n is about d; see Figure 7

which gives a histogram of solutions that satisfy e
m log qk
k n = x.
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Figure 7. Histograms of e
m log q(k)

k n for various values of m,n and
d. In these experiments we used qmax = 1040 and repeated the
ILLL-algorithm

⌊
2000
k′

⌋
times, with k′ from Lemma V.20.
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Samenvatting

Deze samenvatting is bedoeld voor mijn moeder – en alle andere lezers die niet veel
van wiskunde weten, maar wel graag willen zien waar ik de afgelopen jaren aan heb
gewerkt. Wiskundigen verwijs ik graag door naar Hoofdstuk I. Daar staan definities
van de gebruikte begrippen, klassieke stellingen en de belangrijkste resultaten uit
dit proefschrift.

1. Hoeveel decimalen van π ken je?

Han, o lief, o zoete hartedief...

Bovenstaande dichtregel is niet alleen een liefdesverklaring, het is ook een ezels-
bruggetje om de eerste decimalen van π = 3,14159265358 . . . (de verhouding tussen
de omtrek van een cirkel en zijn diameter) te onthouden. Tel maar eens het aantal
letters van de woorden. Er zijn veel meer van dit soort ezelsbruggetjes in allerlei
talen:

How I wish I could recollect pi easily today ...

Sol y Luna y Cielo proclaman al Divino Autor del Cosmo ...

Wat u door ’n goede ezelsbrug te kennen immer met gemak onthoudt ...

How I want a drink, alcoholic of course, after the heavy lectures ...

3 1 4 1 5 9 2 6 5 3 5 8 ...

Eigenlijk heeft π oneindig veel decimalen achter de komma. Wat betekent het
als je alleen de eerste vijf decimalen van π gebruikt? Je benadert π dan met
314159
100000 = 3,14159.

Misschien herinner je je een andere benadering van π die vaak gebruikt wordt op
school: 22

7 ≈ 3,14285714. Deze breuk met een heel kleine noemer (7) benadert de
eerste twee decimalen van π. Archimedes gebruikte deze benadering al rond 200
voor Christus, maar het kan nog veel beter. Bijvoorbeeld met de breuk 355

113 . Die is
ongeveer gelijk aan 3,14159292 en benadert π op maar liefst zes decimalen. Deze
benadering is zo goed, dat geen enkele breuk met noemer kleiner dan 16604 dichter
bij π ligt. Hulde dus voor de Chinese wiskundige Zu Chongzhi die in 480 (zo’n vier
jaar na de val van het Romeinse rijk) met veel moeite deze benadering vond.

Archimedes en Chongzhi vonden hun benaderingen voor π door veelhoeken in cirkels
te tekenen. Maar je kunt voor elk willekeurig getal goede benaderingen maken met
kettingbreuken.
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2. Wat is een kettingbreuk?

Een kettingbreuk is een breuk in een breuk in een breuk, enzovoorts. Zo ziet de
kettingbreuk voor π er bijvoorbeeld uit:

3 +
1

7 +
1

15 +
1

1 +
1

292 + . . .

.

In de breuk heb je steeds een 1, een deelstreep, een positief geheel getal en dan
weer een nieuwe breuk die begint met een 1. Dit soort kettingbreuken noemen we
reguliere kettingbreuken. We noteren het getal voor de breuk met a0, voor π geldt
dus a0 = 3. De positieve gehele getallen in de breuk noteren we als a1, a2, a3, . . . .
In het voorbeeld hierboven geldt a1 = 7, a2 = 15, a3 = 1 en a4 = 292.

Een getal dat geen breuk is, kun je op precies één manier schrijven als een oneindig
lange kettingbreuk. Zulke getallen noemen we irrationaal.1

3. Hoe haal je benaderingen uit een kettingbreuk?

Als je de oneindig lange kettingbreuk afkapt, krijg je een benaderingsbreuk. Je
neemt alleen het eerste deel en schrijft dat als een gewone breuk. Laten we eens
kijken wat we dan vinden voor π. We noteren voortaan alleen de eerste acht cijfers
achter de komma.

π ≈ 3,14159265

1) 3 +
1

7
=

22

7
≈ 3,14285714

2) 3 +
1

7 + 1
15

=
333

106
≈ 3,14150943

3) 3 +
1

7 + 1
15+ 1

1

=
355

113
≈ 3,14159292

We zien hier de twee eeuwenoude benaderingen 22
7 en 355

113 tevoorschijn komen.

Voor een willekeurig getal x schrijven we de benaderingen die we op deze manier
vinden als p1

q1
, p2q2 , . . . . In het algemeen noemen we de benadering die we vinden

door de eerste n termen van de kettingbreuk te gebruiken pn
qn

.

1Kijk eens voor een mooi bewijs dat
√

2 geen breuk is op http://nl.wikipedia.org/wiki/

Bewijs_dat_wortel_2_irrationaal_is.
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5. Waarom werkt het recept om kettingbreuken te maken?

4. Hoe maak je zo’n kettingbreuk?

Neem een willekeurig irrationaal getal dat je wilt benaderen (zoals net bijvoorbeeld
π = 3,14152965 . . . ). Het deel voor de komma is al een geheel getal, dus dat hoef
je niet te benaderen. Noem het niet-gehele deel achter de komma x. Het recept om
die kettingbreuk te maken is eenvoudiger dan dat voor saltimbocca:

Bereken 1
x en neem het gehele deel van 1

x als volgende getal a in

je kettingbreuk. Zet x = 1
x − a en begin opnieuw.

Wiskundigen noemen zo’n recept een algoritme.

Als voorbeeld maken we de kettingbreuk voor π = 3,14159265 . . . . We passen het
recept toe op π − 3 = 0,14159265 . . . .

Stap 1) geeft 1
0,14159265... = 7,06251330 . . . , dus a1 = 7.

We zetten x = 0,06251330 . . . .

Stap 2) geeft 1
0,06251330... = 15,99659440 . . . , dus a2 = 15.

We zetten x = 0,99659440 . . . .

Stap 3) geeft 1
0,99659441... = 1,00341723 . . . , dus a3 = 1.

We zetten x = 0,00341723 . . . .

Enzovoorts.

We vinden π = 3 +
1

7 +
1

15 +
1

1 + . . .

.

Je kunt dit voor elk irrationaal getal doen en nu bijvoorbeeld zelf narekenen dat
voor

√
2 ≈ 1,41421356 de kettingbreuk wordt gegeven door

√
2 = 1 +

1

2 +
1

2 +
1

2 + . . .

.

5. Waarom werkt het recept om kettingbreuken te maken?

Wiskundigen gebruiken in plaats van het bovenstaande recept graag een functie
T (x). Je kunt het recept namelijk ook beschrijven als het steeds herhalen van
T (x) = 1

x − a(x), oftewel x = 1
a(x)+T (x) , waarbij a(x) het gehele deel van 1

x is.

Voor de eerste stap geldt dus:

T (x) =
1

x
− a1 oftewel x =

1

a1 + T (x)
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In de volgende stap pas je T toe op T (x) en krijg je

T (T (x)) =
1

T (x)
− a(T (x)) =

1
1
x − a1

− a2 oftewel x =
1

a1 +
1

a2 + T (T (x))

.

Zo ga je verder en je ziet hoe de kettingbreuk zich na elke stap een stukje verder
uitrolt.

6. Wat is een goede benadering?

In het voorbeeld hierboven kwam je met elke stap dichter bij π. Dat is altijd zo
bij het kettingbreukalgoritme: elke benadering pn

qn
ligt dichter bij x dan de vorige

benadering pn−1

qn−1
. Of zoals wiskundigen het schrijven∣∣∣∣x− pn

qn

∣∣∣∣ < ∣∣∣∣x− pn−1
qn−1

∣∣∣∣ ;
waarbij | | staat voor het nemen van de absolute waarde. De limiet van de benade-
ringsbreuken pn

qn
is x.

Neem nu een willekeurige breuk p
q die dicht bij x ligt. Wanneer noem je deze breuk

een goede benadering van x? Het ligt voor de hand om de noemer van de breuk
mee te nemen in de kwaliteit. Het is natuurlijk veel makkelijker om dicht bij x te
komen als je een breuk met noemer 100.000.000 neemt, dan wanneer je een breuk
met noemer 10 gebruikt.

Een veel gebruikte maat voor de kwaliteit van een benadering is de noemer in het
kwadraat keer het verschil tussen x en de breuk p

q , in wiskundige notatie

q2
∣∣∣∣x− p

q

∣∣∣∣ .
Een benadering is goed als de kwaliteit zo klein mogelijk is: dan heb je zowel een
kleine noemer als een korte afstand tot x. In tegenstelling tot de Consumentenbond
geven we dus breuken met een lage kwaliteit het predicaat ‘beste keus’.

Het blijkt dat hoe groter een getal a in de kettingbreuk is, des te beter de benadering
is die je krijgt door net daarvoor af te kappen. In het voorbeeld met π hebben we
a2 = 15, a3 = 1 en a4 = 292. Als we afkappen voor a2 = 15 dan krijgen we als
benadering 22

7 met kwaliteit van ongeveer 0,062. Afkappen voor a3 = 1 geeft 333
106 en

die doet het met een kwaliteit van 0,94 minder goed. Als we afkappen voor de grote
a4 = 292, dan krijgen we Chongzi’s benadering 355

113 en die heeft een spectaculaire
kwaliteit van 0,0034.

7. Waar vind je die goede benaderingen?

We zagen hierboven dat de kwaliteit van de benaderingen steeds tussen de nul en één
lag. Dit is altijd waar, voor elke kettingbreukbenadering van welk irrationaal getal
dan ook. Het is helemaal niet zo vanzelfsprekend dat een benadering zulke goede
kwaliteit heeft. De benadering 314159

100000 voor π heeft bijvoorbeeld kwaliteit 26535,9.
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7. Waar vind je die goede benaderingen?

Het is dus bijzonder dat het kettingbreukalgoritme alleen maar benaderingen met
kwaliteit kleiner dan één vindt.

Kan het nu zo zijn dat er breuken bestaan die ontzettend goede benaderingen zijn,
maar die het kettingbreukalgoritme per ongeluk ńıet vindt? Legendre bewees in
1798 (het jaar dat Napoleons troepen Egypte binnentrokken) dat dit niet kan.

Stelling 1. Als p
q een breuk is die x benadert met een kwaliteit van minder dan 1

2 ,

dan wordt deze breuk gevonden door het kettingbreukalgoritme.

Kortom: alle echt goede benaderingen worden gevonden door het kettingbreukal-
goritme.

Borel bewees in 1905 (het jaar waarin Albert Einstein zijn speciale relativiteitsthe-
orie publiceerde) dat bovendien één in elke drie opeenvolgende benaderingen heel
goed is.

Stelling 2. Voor elke irrationale x en voor elke drie willekeurige achtereenvolgende
kettingbreukbenaderingen geldt dat het minimum van de drie bijbehorende kwalitei-
ten kleiner is dan 1√

5
≈ 0,44721 . De constante kan niet vervangen worden door

een kleinere.

Voor elke constante kleiner dan 1√
5

bestaan er getallen x waarvoor je geen drie

opeenvolgende benaderingen kunt aanwijzen die elk kwaliteit kleiner dan die con-
stante hebben. De gulden snede ϕ is een voorbeeld van zo’n getal waarbij het dan
misgaat. De gulden snede is de beroemde ‘mooie’ verdeling van een lijnstuk in twee
stukken, zie Figuur 1.

a b

a + b

a

b
=

a + b

a
= ϕ ≈ 1,618 . . .

Figuur 1. Bij een lijnstuk dat verdeeld is volgens de gulden snede
verhoudt het grootste van de twee delen zich tot het kleinste, zo-
als het gehele lijnstuk zich verhoudt tot het grootste deel. Als
we het langste stuk a noemen en het kortste b, dan hebben we
ϕ = a

b = a+b
a . We vinden dat a = bϕ en invullen in ϕ = a+b

a geeft

ϕ = b ϕ+b
b ϕ = ϕ+1

ϕ . Dus ϕ2 − ϕ − 1 = 0. Oplossen van deze verge-

lijking (bijvoorbeeld met de abc-formule) geeft als enige positieve

oplossing ϕ = 1+
√
5

2 ≈ 1,61803399.

We kunnen de kettingbreuk voor de gulden snede zonder het kettingbreukenrecept
maken. Uit de vergelijking ϕ2 − ϕ − 1 = 0 concluderen we dat ϕ = 1 + 1

ϕ . Door

aan de rechterkant herhaaldelijk ϕ = 1 + 1
ϕ in te vullen is de kettingbreuk van de
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gulden snede makkelijk te vinden:

ϕ = 1 +
1

ϕ
= 1 +

1

1 + 1
ϕ

= 1 +
1

1 +
1

1 +
1

1 +
1

ϕ

= 1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

. . .

.

We zien dat de kettingbreuk van de gulden snede uit alleen maar enen bestaat,
daarom zijn de benaderingen de slechtst mogelijke.

Hurwitz bewees in 1891 (het jaar waarin Stanford University zijn deuren opende)
de volgende stelling.

Stelling 3. Voor elke irrationale x bestaan er oneindig veel breuken p/q die x met
kwaliteit kleiner dan 1√

5
benaderen:

q2
∣∣∣∣x− p

q

∣∣∣∣ < 1√
5
.

De constante kan niet worden vervangen door een kleinere.

Merk op dat de stelling van Hurwitz direct volgt uit de resultaten van Legendre en
Borel omdat 1√

5
< 1

2 .

8. Is dit hét kettingbreukalgoritme?

Hierboven maakten we de kettingbreuk voor x door steeds het gehele deel van 1
x te

nemen. Maar we kunnen ook andere kettingbreuken maken. Bijvoorbeeld door 1
x

af te ronden naar het dichtstbijzijnde gehele getal. Bij het benaderen van π kregen
we in Stap 2) bijvoorbeeld 1

0,06251330... ≈ 15,99659441, toen namen we a2 = 15. Zou

het niet logischer zijn om af te ronden naar 16? Als we dat consequent doen, dan
krijgen we voor π de volgende dichtstbijzijnde-gehele-getallen-kettingbreuk

π = 3 +
1

7 +
1

16− 1

294 + . . .

.

Afkappen geeft als eerste benaderingen 22
7 ,

355
113 en 104348

33215 . Deze kettingbreuk slaat de

slechte benadering 333
106 over, maar elke benadering die wordt gevonden, is er één die

het reguliere kettingbreukalgoritme ook vindt. Het reguliere kettingbreukalgoritme
vindt dus meer benaderingen.

Wie wiskundigen kent, weet dat zij het liefste alles, altijd en overal generaliseren.
Dit leidt tot een op het eerste gezicht wat bizarre versie van het kettingbreukal-
goritme: α-Rosen-kettingbreuken. In plaats van 1

x af te ronden, nemen we hierbij

het gehele deel van
∣∣ 1
λx

∣∣+ 1− α, waarbij λ = 2 cos πq (voor een geheel getal q ≥ 3)

en waarbij α een reëel getal is tussen 1
2 en 1

λ . Deze kettingbreuken bestuderen
we in Hoofdstuk III en IV van dit proefschrift. In 1954 (het jaar dat zowel Lord
of the flies als Lord of the rings uitkwamen) introduceerde David Rosen de naar
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10. Heb je ook kettingbreuken in hogere dimensies?

hem genoemde Rosen-kettingbreuken (met α = 1
2 ) om eigenschappen van bepaalde

groepen te bestuderen. De stap naar α-Rosen-kettingbreuken is veel recenter: deze
breuken werden slechts twee jaar geleden voor het eerst onderzocht door Dajani,
Kraaikamp en Steiner.

Het grote voordeel van α-Rosen-kettingbreuken is dat ze allerlei andere soorten
kettingbreuken omvatten. Als je een eigenschap van α-Rosen-kettingbreuken be-
wijst, dan heb je die eigenschap bijvoorbeeld ook onmiddellijk bewezen voor gewone
kettingbreuken.

9. Hoe houd je alle informatie bij?

We kijken vanaf nu alleen naar irrationale getallen tussen 0 en 1. We benaderen
immers toch alleen het niet-gehele deel van een getal met een kettingbreuk. Omdat

het wat onhandig is om
1

a1 +
1

a2 +
1

a3 +
1

. . .

te schrijven, introduceren we de kortere

notatie [a1, a2, a3, . . . ].

Als je het kettingbreukalgoritme steeds herhaalt, dan zagen we hierboven hoe je één
voor één de getallen ai krijgt. Maar verder raak je alle informatie over de rest van
de kettingbreuk kwijt. Daarom introduceren we twee kettingbreuken: de toekomst
tn en het verleden vn op plaats n.

tn = [an+1, an+2, an+3, . . . ] and vn = [an, an−1, an−2, . . . , a1].

De toekomst representeert alles wat er na an komt en omgekeerd representeert het
verleden juist alles wat er tot en met an kwam.

We gebruiken een twee-dimensionale functie T die (tn, vn) naar (tn+1, vn+1) stuurt.
Zo blijft alle informatie bewaard: om van tn naar tn+1 te gaan, hoef je alleen de
eerste term an+1 weg te gooien. Om van vn naar vn+1 te gaan, moest je juist an+1

aan het begin toevoegen.

In dit proefschrift maak ik veel gebruik van een meetkundige methode op het groot-
ste gebied waarop T netjes werkt. We noemen dit de natuurlijke uitbreiding. We
tekenen de natuurlijke uitbreiding in een assenstelsel met tn op de x-as en vn op
y-as. Voor reguliere kettingbreuken is het een vierkant met zijde 1, zie figuur 2.

Voor de andere soorten kettingbreuken in dit proefschrift is de natuurlijke uitbrei-
ding wat ingewikkelder, zie figuur 4 voor voorbeelden voor α-Rosen kettingbreuken.

10. Heb je ook kettingbreuken in hogere dimensies?

Als je wiskundigen wilt uitdagen, dan kun je altijd vragen of hun resultaten nog
zijn uit te breiden, bijvoorbeeld naar hogere dimensies. Bij kettingbreuken is dit
een pijnlijk punt. Er zijn namelijk wel allerlei generalisaties voor hogere dimensies,
maar die hebben lang niet zulke mooie eigenschappen als het reguliere ketting-
breukalgoritme.
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Figuur 2. De natuurlijke uitbreiding voor reguliere kettingbreu-
ken. Op de getekende horizontale strips is an constant, op elke
verticale strip is an+1 constant. In de grijze strip geldt bijvoor-
beeld dat tn = 1

an+1+...
groter is dan 1

3 en kleiner dan 1
2 . Dus deze

strip bevat alle punten (tn, vn) waarvoor an+1 = 2.

Bij reguliere kettingbreuken zoeken we voor een willekeurige x een breuk p
q die dicht

bij x ligt. In hogere dimensies kunnen we de volgende twee kanten op.

De eerste optie is om niet één maar meer getallen te benaderen met breuken met
dezelfde noemer. Je hebt dan een aantal (zeg m) irrationale getallen x1, x2, . . . , xm
en zoekt m + 1 gehele getallen p1, p2, . . . , pm en q zodat de breuk p1

q dicht bij x1
ligt, p2

q dicht bij x2, enzovoorts.

De tweede optie is om voor een aantal (zeg n) getallen x1, x2, . . . , xn in totaal n+ 1
gehele getallen p, q1, . . . , qn te zoeken zodat q1x1 + q2x2 + · · ·+ qnxn dicht bij p ligt.

Je kunt de twee opties combineren door voor m× n gegeven getallen x11, . . . , xmn
te zoeken naar m + n gehele getallen p1, p2, . . . , pm en q1, . . . , qn zodat de som
q1xi1 + q2xi2 + · · ·+ qnxin dicht bij pi ligt voor elke i tussen 1 en m. Meerdimensi-
onale benaderingen hebben toepassingen van jpeg-compressie tot het oplossen van
optimaliseringsproblemen.

Nu nemen we voor de kwaliteit het grootste verschil tussen één van de i sommen
en de bijbehorende pi, vermenigvuldigd met de grootste van de qj ’s tot de macht
m/n. Of zoals wiskundigen het schrijven:

q
m
n max

i
|q1 xi1 + · · ·+ qm xim − pi| waarbij q = max

j
|qj |.

Een benadering heet weer goed als de kwaliteit klein is. Als m = n = 1, dan is dit
precies de kwaliteit van een benadering die we eerder gebruikten.

In 1842 (het jaar dat Nabucco van Verdi in première ging) bewees Dirichlet het
volgende.
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11. Wat staat er in dit proefschrift?

Stelling 4. Voor elke gegeven x11, . . . , xmn bestaan er oneindig veel benaderingen
met kwaliteit kleiner dan 1.

Voor de wiskundigen die dit toch stiekem lezen: we nemen aan dan er minstens één
i is waarvoor 1, xi1, . . . , xim lineair onafhankelijk zijn over Q.

Dirichlet bewees deze stelling met zijn beroemde ladenprincipe: als je meer dan n
balletjes verdeelt over n laden, dan is er minstens één lade met meer dan één balletje
erin. Zijn bewijs geeft helaas geen goede methode om benaderingen met kwaliteit
kleiner dan 1 te vinden. Ruim 150 jaar later hebben we nog steeds geen efficiënt
algoritme gevonden om alle benaderingen met kwaliteit kleiner dan 1 te geven.
Behalve als m = n = 1 natuurlijk, want dan kunnen we het kettingbreukalgoritme
gebruiken.

11. Wat staat er in dit proefschrift?

In het inleidende hoofdstuk I geef ik definities van de gebruikte begrippen, klassieke
stellingen en de belangrijkste resultaten uit dit proefschrift

In hoofdstuk II kijk ik naar reguliere kettingbreuken, maar gebruik ik een andere
kwaliteitsmaat voor wat een goede benadering is. De vraag die ik voor deze maat
beantwoord is: stel dat n− 1-ste en n+ 1-ste benaderingen heel goed zijn, wat kun
je dan zeggen over de kwaliteit van de n-de benadering die daar tussenin zit? En
andersom: hoe goed moet een benadering zijn die tussen twee slechte benaderingen
inzit? Daarnaast bereken ik ook de kans dat zulke situaties voorkomen.

Figuur 3. Een voorbeeld van de meetkundige methode uit hoofd-
stuk II, zie voor meer uitleg bladzijde 27.

In Hoofdstuk III kijk ik zoals gezegd naar α-Rosen-kettingbreuken. Ik generaliseer
de stellingen van Borel (die het minimum van de kwaliteit in een reeks opeenvol-
gende benaderingen geeft) en Hurwitz (die de kleinste kwaliteit geeft die oneindig
vaak voorkomt) voor deze kettingbreuken.

Ook Hoofdstuk IV gaat over α-Rosen-kettingbreuken. Ik bepaal de kleinste waarde
voor α waarbij de natuurlijke uibreiding nog één gebied vormt – als α te klein wordt,
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Figuur 4. Een voorbeeld van quilten. Links staat de natuurlijke
uitbreiding voor α-Rosen-kettingbreuken met α = 1

2 . In het mid-
den hebben we aangegeven welke rechthoeken weg moeten (zwart)
en welke rechthoeken erbij moeten (grijs) om de natuurlijke uitbrei-
ding voor een α-Rosen-kettingbreuk met zekere α < 1

2 te vinden.
Het resultaat staat rechts.

dan valt het gebied in stukken uit elkaar; zie figuur 5. We vinden de natuurlijke
uitbreiding met een techniek die we quilten noemen: we beginnen met de al bekende
natuurlijke uitbreiding voor het geval α = 1

2 en plakken daar rechthoeken aan en
halen daar rechthoeken af. We kunnen door deze constructie ook eigenschappen
van de natuurlijke uitbreiding voor een α-Rosen-kettingbreuk afleiden. Zodra de
natuurlijke uitbreiding in twee stukken uit elkaar valt, verandert bijvoorbeeld de
entropie van het systeem.

Figuur 5. Simulaties van de natuurlijke uitbreiding van α-Rosen-
kettingbreuken. Links is α te klein, waardoor de natuurlijke uit-
breiding in twee losse stukken uit elkaar valt. Rechts is α iets groter
en zit er een verbinding tussen de twee delen die in het linkerplaatje
los zijn.

In Hoofdstuk V geef ik een meerdimensionaal kettingbreukalgoritme dat efficiënt
benaderingen zoekt met een gegarandeerde kwaliteit die alleen afhangt van de di-
mensies m en n. Uit de benaderingen die dit algoritme vindt, leid ik een ondergrens
af voor de kwaliteit van alle mogelijke benaderingen tot een bepaalde grens voor q.
Tenslotte toon ik experimentele data voor de verdeling van de kwaliteiten in meer
dimensies.
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