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Cʍʆʕʙʊʗ4

Plectonemes?

Generally, things obtained without exertion
are not that useful.

Gʎʚʘʊʕʕʊ ʉʊMʆʗʈʔ

In the previous chapter we have mainly investigated the interaction
between DNA molecules and nucleosomes. However also naked DNA
behaves in an interesting fashion. Take, for example, the DNA persis-
tence length, 𝑙௣ ≈ 50nm: it was found by measuring the extension of
the molecule when stretched with different forces.

However when the molecule is also twisted, various theories were
proposed, but a unifying framework to describe the experimental results
was lacking. ƞis is partly due to the important role of thermal ƪuctua-
tions, extensively analyzed for low torques [51], but either leƫ out [5, 49,
8] or partially added by hand for high torques [50].

In section 1.5, the bifurcation point of a straight rod (that is without
writhe, see section 1.3 in the same chapter) was identiƧed. In terms of the
number of inserted turns, the bifurcation point is at 𝑛ୡ୰୧୲ = ඥ𝐴𝑓𝐿௖/𝜋𝐶
where 𝐿௖ is the contour length of the DNA, 𝑓 the force applied to it, and
𝐴 and 𝐶 are related to the bending and torsional persistence lengths (see
subsection 1.1) by 𝐴 = 𝑘஻𝑇𝑙௣, 𝐶 = 𝑘஻𝑇𝑙௧.

Since the DNA molecule is self-avoiding, the cheapest way to pro-
duce writhe is the plectoneme, a stretch of the chain branching off in a
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4. Plectonemes?

Figure 4.1: A plectoneme, alongwith the end loop, closing it, and the rest
of the straight DNA.ƞe path describing the plectoneme is parametrized
by 𝑠, going from 0 to 𝐿௣/2 and from 𝐿௣/2 + 𝐿୪୭୭୮ to 𝐿௣ + 𝐿୪୭୭୮. ƞe gap
is Ƨlled by the end loop.

perpendicular direction from the remaining two tails. ƞe two halves cir-
cle around each other in a helical path like an old fashioned telephone
wire and are connected by an end loop (see Ƨgure 4.1). A system with
a sufficient number of turns 𝑛 inserted has a plectoneme (plus the tails)
as its ground state. ƞis transition typically happens before 𝑛ୡ୰୧୲. Since
themolecule is too small to directly observe plectoneme formation, their
presence is inferred by measuring the DNA end-to-end extension as a
function of 𝑛. ƞese curves are called the turn-extension curves and the
increase in plectoneme length 𝐿௣ is observed as a linear decrease of the
end-to-end extension aƫer the transition.
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4.1. The DNA shape

4.1 The DNA shape

For the shape of the molecule, as seen in Ƨgure 4.1, we assume that the
tails are given by the homoclinic solutions (eqs. (1.31–1.32)) for 𝑡 > 𝑡௖ ≈
0.80424. We restrict 𝑡 since we “attach” the plectoneme at the non-zero
point of closest approach of the two tails, which exists only when 𝑡 > 𝑡௖.
At the point of closest approach the distance between the two tails can be
approximated by

𝑑ୡ୰୧୲(𝑡) = 2𝜆ቌඨ 1 − 𝑡
0.3799 − 0.00112ቍ . (4.1)

ƞerefore the radius of the plectoneme is given by 𝑅(𝑡) = 𝑑ୡ୰୧୲(𝑡)/2. Its
path, on the other hand, can be parametrized by

𝐫௣ = ൮
(𝑠଴ + 𝑠) sin 𝛼

−𝑅(𝑡)cosቀ(𝑠଴+𝑠) ୡ୭ୱఈோ(௧) ቁ
𝑅(𝑡)sinቀ(𝑠଴+𝑠) ୡ୭ୱఈோ(௧) ቁ

൲ for 𝑠 ∈ [0, 𝐿௣/2]

𝐫௣ = ൮
(𝑠଴ + 𝐿௣ + 𝐿୪୭୭୮ − 𝑠) sin 𝛼

𝑅(𝑡)cosቀ(𝑠଴+𝐿௣+𝐿୪୭୭୮−𝑠)ୡ୭ୱఈோ(௧) ቁ
−𝑅(𝑡)sinቀ(𝑠଴+𝐿௣+𝐿୪୭୭୮−𝑠) ୡ୭ୱఈோ(௧) ቁ

൲ for 𝑠 ∈ [0, 𝐿௣/2],

(4.2)

where 𝛼 is plectoneme angle (see Ƨg. 4.1) and 𝐿௣, 𝐿୪୭୭୮ are the contour
lengths of the plectoneme and of the loop. ƞe starting orientation de-
pends on the homoclinic solution and is set by 𝑠଴, chosen so that the tails
are attached in a continuous fashion to the plectoneme.
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4. Plectonemes?

4.2 The writhe
We can Ƨrst calculate the writhe of the plectoneme by using the tangent
of eq (4.2) and the 𝑥̂-axis in eq. (1.39):

𝜔ଵ(𝑠) =
1
2𝜋

cos 𝛼(sin 𝛼 − 1)
𝑅(𝑡) 𝑠 ∈ [0, 𝑙௣/2],

𝜔ଶ(𝑠) =
1
2𝜋

cos 𝛼(sin 𝛼 + 1)
𝑅(𝑡) 𝑠 ∈ [𝑙௣/2 + 𝑙௟ , 𝑙௣ + 𝑙௟].

(4.3)

ƞis expression neglects end loop and tails; by summing 𝜔ଵ and 𝜔ଶ one
arrives at an “average” writhe density

𝜔଴(𝛼, 𝑡) = cos 𝛼 sin 𝛼
2𝜋𝑅(𝑡) . (4.4)

ƞis expression is very convenient, and it was normally taken to be the
writhe density of the plectoneme [49]. However, when we computed the
writhe of the tails in eq. (1.35), the reference axiswas the 𝑧̂-axis, parallel to
the force𝐹, and not the 𝑥̂-axis as in the case of eqs. (4.3). To be consistent
(the non-locality of the writhe forbids, in fact, to use different reference
axes in Fuller formula, eq. (1.39), for different sections of the curve) we
compute thewrithe of the plectonemewith respect to the 𝑧̂-axis, resulting
in

𝜔௕(𝑠) =
1
2𝜋

sin 𝛼 cos 𝛼
𝑅(𝑡) ×

× ቎1− 1
1+cos𝛼cosቀ(𝑠+𝑠଴)ୡ୭ୱఈோ(௧) ቁ

቏ . (4.5)

ƞis expression is annoying as it is 𝑠-dependent. However, while the plec-
toneme grows, the writhe of the end loop changes, as it changes its orien-
tation. ƞis loop is described by a space curve 𝐫଴ = (𝑟௫(𝑢), 𝑟௬(𝑢), 𝑟௭(𝑢)),
𝑢 ∈ [0, 𝐿୪୭୭୮], subject to the conditions, at its boundaries, 𝐫଴(0) = 𝐫௣(0)
and 𝐫଴(𝐿୪୭୭୮) = 𝐫௣(𝐿୪୭୭୮). We also assume (unlike at the boundaries
between tails and plectoneme) that the curve is smooth between plec-
toneme and end loop.
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4.2. The writhe

Increasing the contour length by an amount 2𝑠 causes a rotation of 𝐫଴
by an angle 𝜉(𝑠) = 𝑠 cos 𝛼/𝑅(𝑡) (see eq. (4.2)) about the 𝑥̂-axis, inducing
an 𝑠-dependent change in the writhe of the loop

𝑊𝑟୪୭୭୮ =
1
2𝜋 න

௅ౢ౥౥౦

଴
d𝑢cos 𝜉(𝑠)(𝑡௫(𝑢)𝑡̇௬(𝑢) − 𝑡̇௫(𝑢)𝑡௬(𝑢)

1 − sin 𝜉(𝑠)𝑡௬(𝑢) + cos 𝜉(𝑠)𝑡௭(𝑢)

− 1
2𝜋 න

௅ౢ౥౥౦

଴
d𝑢 sin 𝜉(𝑠)(𝑡௭(𝑢)𝑡̇௫(𝑢) − 𝑡̇௭(𝑢)𝑡௫(𝑢)

1 − sin 𝜉(𝑠)𝑡௬(𝑢) + cos 𝜉(𝑠)𝑡௭(𝑢)
.

(4.6)

A change in the plectoneme contour length induces a differential change
of this writhe equal to

d𝑊𝑟୪୭୭୮
d𝑠 = − cos 𝛼

2𝜋𝑅(𝑡)× (4.7)

൮න
௟೗

଴
d𝑢

𝑡̇௫(𝑢) + sin ቀ𝑠 ୡ୭ୱఈோ(௧) ቁ (𝑡௫(𝑢)𝑡̇௬(𝑢) − 𝑡̇௫(𝑢)𝑡௬(𝑢))

൬1 − sin ቀ𝑠 ୡ୭ୱఈோ(௧) ቁ 𝑡௬(𝑢) + cos ቀ𝑠 ୡ୭ୱఈோ(௧) ቁ 𝑡௭(𝑢)൰
ଶ +

න
௟೗

଴
d𝑢

cos ቀ𝑠 ୡ୭ୱఈோ(௧) ቁ (𝑡௭(𝑢)𝑡̇௫(𝑢) − 𝑡̇௭(𝑢)𝑡௫(𝑢))

൬1 − sin ቀ𝑠 ୡ୭ୱఈோ(௧) ቁ 𝑡௬(𝑢) + cos ቀ𝑠 ୡ୭ୱఈோ(௧) ቁ 𝑡௭(𝑢)൰
ଶ൲

= cos 𝛼
𝜋𝑅(𝑡) ×

𝑡௫(0)
1 − sin ቀ𝑠 ୡ୭ୱఈோ(௧) ቁ 𝑡௬(0) + cos ቀ𝑠 ୡ୭ୱఈோ(௧) ቁ 𝑡௭(0)

,

(4.8)

wherewe used the unimodularity of the tangent vector and its symmetry:
𝑡௫(0) = −𝑡௫(𝐿୪୭୭୮), 𝑡௬,௭(0) = 𝑡௬,௭(𝐿୪୭୭୮). Making use of the boundary
conditions we Ƨnally Ƨnd

d𝑊𝑟୪୭୭୮
d𝑠 = cos 𝛼 sin 𝛼

𝜋𝑅(𝑡) ቆ1 + cos 𝛼 cos ቆ(𝑠଴ + 𝑠)cos 𝛼𝑅(𝑡) ቇቇ
ିଵ

(4.9)

By adding this differential writhe density to the “bare” writhe density of
the plectoneme ((4.5)) (half of it to each strand) we recover the standard
writhe density of a plectoneme (4.4), but now with the added bonus that

65



4. Plectonemes?

the remaining writhe of the closing loop is independent of the length of
the plectoneme. Since only in the end loop the antipodal points appear
along the homotopy, deƧned by the explicit formation of the plectoneme,
we can state that in this sense the writhe is additive:

𝑊𝑟(𝑡, 𝛼) = 𝑊𝑟୪୭୭୮(𝑡) + 𝐿௣𝜔଴(𝑡, 𝛼), (4.10)

with𝑊𝑟୪୭୭୮ and𝜔 given by (1.35) and (4.4).

4.3 Mechanical and electrostatic
energy

Starting point for the mechanical Hamiltonian of the system is eq. (1.49).
Since the number of turns is experimentally controlled, we can write

𝐻ெ = න
௅೎

଴
d𝑠 ቆ𝐴2 𝐭̇

ଶ
௦ − 𝐟 ⋅ 𝐭௦ቇ + 2𝜋ଶ 𝐶𝐿௖

(𝑛 −𝑊𝑟)ଶ (4.11)

where the writhe𝑊𝑟 is given by eq. (4.10). Using the bending energy of
the homoclinic solution, eq. (1.33), and the plectonemepath eq. (4.2), we
arrive at

𝐸ெ = −𝑓(𝐿௖ − 𝐿௣) + 𝐸୪୭୭୮ + 𝐸଴
ୠୣ୬ୢ + 2𝜋ଶ𝐶𝐿 (𝑛 −𝑊𝑟)ଶ (4.12)

𝐸଴
ୠୣ୬ୢ = 𝐿௣

𝐴
2
cosସ 𝛼
𝑅ଶ(𝑡) . (4.13)

However, since many experiments are performed at low salt concentra-
tion, where the negatively charged DNA is less “screened”, electrostatic
interactions change the energy. First the bending persistence length is
renormalized according to the OSF theory [52, 63]:

𝑙௣ = 𝑙(଴)௣ + 𝜅ିଶ
4𝑄஻

(4.14)
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4.3. Mechanical and electrostatic energy

where 𝜅ିଵ is the Debye screening length and 𝑄஻ the Bjerrum length

𝑄஻ =
𝑞ଶ

4𝜋𝜀଴𝜀௥𝑘஻𝑇
(4.15)

𝜅 = ඥ8𝜋𝑄஻𝑛௦ (4.16)

where 𝑞 is the elementary charge, 𝜀଴ the vacuum permittivity, 𝜀௥ the di-
electric constant and 𝑛௦ the number density of the salt molecules. At
𝑇 = 300K, 𝑄஻ ≈ 0.715nm and 𝜅 = 0.1√𝑐௦, where 𝑐௦ is the salt con-
centration in mM (milliMolar).

In theplectoneme there is another electrostatic effect: the two strands
of DNA repeal each other, resulting in an energetic contribution [68]

𝐸଴
ୣ୪ = 𝐿௣𝜈ଶୣ୤୤

𝑄஻
2 ඨ

𝜋
𝜅𝑅(𝑡)𝑒

ିଶ఑ோ(௧) Z(cot 𝛼) (4.17)

Z(𝑥) = 1 + 0.828𝑥ଶ + 0.868𝑥ସ

if cot 𝛼 < 1, with 𝜈ୣ୤୤ the effective charge density of the centerline of
a charged cylinder source of a Debye-Hückel potential that asymptoti-
cally coincides in the small potential, far Ƨeld, region with the non-linear
Poisson-Boltzmann potential of that cylinder with a given surface charge
(for DNA 2 𝑒/0.34 nm, radius 1 nm).

To compute 𝜈ୣ୤୤ and 𝑅∗ as in Ƨgure 4.2 we follow [53]. ƞe radius 𝑅∗

marks the breaking down of the linearized theory, as there the reduced
potential equals 1 [53]. ƞe energy 𝐸ெ changes therefore to

𝐸଴ = 𝐸ெ + 𝐸଴
ୣ୪ (4.18)

where the superscript indicates that no thermal ƪuctuations are taken into
account up to now and where the persistence length should be taken as
in eq. (4.14).

A plectonemewill formwhen the energy𝐸଴ has a globalminimum for
𝐿௣ > 0. Minimization of the energy shows that this transition point hap-
pens at 𝑛 < 𝑛ୡ୰୧୲. Moreover the angle 𝛼 stabilizes between 𝜋/2, where
𝐸ୠୣ୬ୢ = 0, and 𝜋/4, where 𝑊𝑟 is maximized and thus 𝑛 − 𝑊𝑟 is mini-
mized.
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Figure 4.2: 𝜈ୣ୤୤ and 𝑅∗ as a function of the salt concentration 𝑐௦.

4.4 Fluctuations
ƞe effect of thermal ƪuctuations is difficult to treat and complicated to
analyze. Without entering in the details, wewill explain the origin of each
term, referring the reader to the speciƧc papers for the details.

ƞe Ƨrst contribution from thermal ƪuctuations is the enhancement
of the electrostatic interactions in the plectoneme. ƞere the thermal un-
dulations couple non-linearly with the electrostatic interactions [68]. As
a result the interactions are strongly enhanced. In fact assuming the ƪuc-
tuations to have a Gaussian distribution we can estimate their effect by
considering one strand of the plectoneme in the mean Ƨeld potential of
the opposing strand. ƞe undulations in the plectoneme are taken in two
directions, along the radius and the pitch. ƞe radial direction is limited
by the exponent of 𝐸଴

ୣ୪ in eq. (4.17), −2𝜅𝑅(𝑡), while in the pitch direc-
tion the limit is geometrical (see Ƨgure 4.1) so thatwewill assume that the
standarddeviation in that direction is Ƨxed and equal to𝜎௣ = 𝜋𝑅(𝑡) sin 𝛼.
Calling 𝜎௥ the standard deviation in the radial direction, the electrostatic
interaction becomes

𝐸ୣ୪ = 𝐸଴
ୣ୪𝑒ସ఑

మఙమೝ . (4.19)

ƞe steep potential limits 𝜎௥ to ≈ 𝜅ିଵ/2. Here 𝜎௣ is not present as it
only affects marginally the electrostatic energy [68]. ConƧning the DNA
in the plectoneme has also an entropic cost. In fact the polymer has a
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4.4. Fluctuations

lower number of conƧgurations as it is restricted in the radial direction
by an harmonic potential, and in the pitch direction by a hard wall po-
tential (represented by the consecutive turn of the strand). Burkhardt [6]
computed the entropic contribution of such a conƧnement, but only for
the torsion-less case. Recently Emanuel [20] worked out the more diffi-
cult case where torque is present. ƞe result is that two deƪection lengths
appear, one for each conƧnement direction, 𝜆௥,௣ = (𝑃௕𝜎ଶ௥,௣)ଵ/ଷ. ƞe new
effective deƪection length for the plectoneme as a whole is then

𝜆̄ = 2𝜆
ଷ
௥𝜆௣ + 𝜆ଶ௥𝜆ଶ௣ + 𝜆௥𝜆ଷ௣
(𝜆௥ + 𝜆௣)(𝜆ଶ௥ + 𝜆ଶ௣)

(4.20)

which contributes to a conƧnement free energy equal to

𝐸஼ =
3
8𝑘஻𝑇(𝜆

ିଵ
௥ + 𝜆ିଵ௣ )𝐿௣. (4.21)

Moreover ƪuctuations inside the plectoneme reduce its contour length by
a factor [21]

𝜌୮୪ = 1 − 𝑘஻𝑇
4𝐴 (𝜆௥ + 𝜆௣) (4.22)

that in turn change the bending energy eq. (4.13) and the writhe density
of the plectoneme eq. (4.4) to

𝐸ୠୣ୬ୢ = 𝐸଴
ୠୣ୬ୢ𝜌ସ୮୪ (4.23)

𝜔(𝛼, 𝑡) = 𝜔଴(𝛼, 𝑡)𝜌୮୪. (4.24)

Outside the plectoneme, before the transition point, thermal ƪuctu-
ations also play a role. In fact, the straight solution 𝜗, 𝜑 = 0 incurs in
Ƨnite deformation d𝜗, d𝜑 on top of it. ƞese deformations, in general, al-
ter the writhe of the chain. As a consequence, in a torsionally constrained
setup, theWhite relation eq. (1.38) implies that the twist in inƪuenced by
ƪuctuations. In practice the torsional persistence length is rescaled to

𝐶(𝜆) = 𝐶
1+ ஼௞ಳ்

ସ஺ఒ௙
(4.25)

69



4. Plectonemes?

where 𝜆 = ඥ𝐴/𝑓 in this case. When computing the torsional energy we
should use 𝐶(𝜆) instead of 𝐶. However there is no reason the 𝜆 used in
the tails should be reused in the plectoneme. ƞe correct way to do it, in
fact, is to use 𝜆̄ from eq. (4.20) for the torsional energy of the plectoneme.
ƞis results in the torsional energy of the system

𝐸் = 2𝜋ଶ ቆ𝐶(𝜆) 𝑇𝑤ଶ
ఒ

(𝐿௖ − 𝐿௣)
+ 𝐶(𝜆̄)

𝑇𝑤ଶ
ఒ̄

𝐿௣
ቇ (4.26)

where 𝑇𝑤ఒ and 𝑇𝑤ఒ̄ are the twist values in the tails and in the plectoneme.
ƞe linking number density in plectoneme, 𝑇𝑤ఒ̄, and tails, 𝑇𝑤ఒ, do not
need to be the same. Twist relaxation is fast, as is conƧrmed by experi-
ments [9]. Since the twist degree of freedom only couples globally, (by
means of the White’s equation), to the tangential degrees of freedom, we
can integrate out the twist ƪuctuations and simplify the model by equat-
ing the twist free energy densities:

𝐶(𝜆) 𝑇𝑤ଶ
ఒ

(𝐿௖ − 𝐿௣)ଶ
= 𝐶(𝜆̄)

𝑇𝑤ଶ
ఒ̄

𝐿ଶ௣
. (4.27)

Wewill use 𝑇𝑤ఒ/(𝐿௖−𝐿௣) ≡ 𝑡𝑤ఒ as one of theminimization parameters:
𝑇𝑤ఒ̄ ≡ 𝑡𝑤ఒ̄𝐿௣ can be inferred from eq. (4.27). In principle, the end loop
should be treated separately from the tails, with yet another 𝜆. However
the end loop only affects marginally the straight chain entropic contribu-
tion [34], justifying the use of a unique 𝜆 for tails and end loop. ƞerefore
whenwriting𝑇𝑤ఒ and𝑊𝑟୪୭୭୮(𝑡) (see eq. (1.35))we alwaysmean the twist
and the writhe of tails and loop together.

When using 𝑇𝑤ఒ/(𝐿௖ − 𝐿௣) as a minimization parameter, the length
of the plectoneme 𝐿௣ is given throughWhite’s relation eq. (1.38)

𝐿𝑘 = (Writhe+ Twist)୮୪ୣୡ୲୭୬ୣ୫ୣ + (Writhe+ Twist)୲ୟ୧୪ୱ
𝑛 = (𝜔(𝛼, 𝑡) + 𝑡𝑤ఒ̄)𝐿௣ +𝑊𝑟୪୭୭୮ + 𝑡𝑤ఒ(𝐿௖ − 𝐿௣) (4.28)

from which

𝐿௣ =
𝑛 −𝑊𝑟୪୭୭୮ − 𝐿௖𝑡𝑤ఒ
𝜔(𝛼, 𝑡) + 𝑡𝑤ఒ̄ − 𝑡𝑤ఒ

. (4.29)
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4.5. Multi-plectoneme phase

ƞermal ƪuctuations in the tails alsomodify, to lowest order, the−𝑓𝐿௖
term in equation (4.12) to

𝐸୲ୟ୧୪ୱ = ቆ−𝑓 + 𝑘஻𝑇
𝜆 − (𝑘஻𝑇)ଶ

4𝐴 ቇ (𝐿௖ − 𝐿௣) (4.30)

and shorten the end-to-end distance by a factor 𝜌୲ୟ୧୪ = 1 − 𝜆𝑘஻𝑇/2𝐴
according to [47].

ƞe total energy is thus

𝐸ୱ୧୬୥୪ୣ = 𝐸஼ + 𝐸் + 𝐸ୣ୪ + 𝐸ୠୣ୬ୢ + 𝐸୪୭୭୮ + 𝐸୲ୟ୧୪ୱ (4.31)

4.5 Multi-plectoneme phase
From a purely mechanical point of view the energy cost of the end loop
and tails is so high that only one plectoneme will form in the system, its
length growing when increasing 𝑛. However the prominent role of ther-
mal ƪuctuations and entropy could increase the contributions of multiple
plectonemes, which act in this case as local minima. We call𝑚 the num-
ber of plectonemes, with total length 𝐿௣, given by equation (4.29) with
𝑊𝑟୪୭୭୮ → 𝑚𝑊𝑟୪୭୭୮. ƞe total energy will be

𝐸(𝑚) = 𝐸஼ + 𝐸் + 𝐸ୣ୪ + 𝐸ୠୣ୬ୢ +𝑚𝐸୪୭୭୮ + 𝐸୲ୟ୧୪ୱ (4.32)

Assuming that 𝐿௣ grows faster than𝑚, we can neglect 𝐸୪୭୭୮ in eq. (4.32).
ƞis has the advantage that the minimization of the total energy with re-
spect to 𝛼, 𝑅(𝑡), 𝜎௥ and 𝑡𝑤ఒ is𝑚-independent. ƞe partition sum is com-
puted with these values. We choose a hardcore repulsion between plec-
tonemes (for simplicity) and a cutoff Λ = 3.4 nm (for structural reasons)
to calculateг the density of states. ƞe resulting partition sum is [21]

𝑍 = 𝑒ିா(଴) + ෍
௠ୀଵ

𝐺௠𝑒ିா(௠) (4.33)

𝐺௠ =
൫𝜌୲ୟ୧୪(𝐿௖ − 𝐿 − 𝑝) − 𝑛𝐿୪୭୭୮൯

௡ 𝐿௡ିଵ௣
𝑛! (𝑛 − 1)! Λ௡Λ௡ିଵ (4.34)

гRemoving thehardcore repulsionor changing the cutoff in a reasonable range affect
the curves below the experimental error.
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4. Plectonemes?

(a) 320mM ionic strength.

 

 

(b) 20mM ionic strength.

Figure 4.3: Turns-extension plots comparison between the theory and
experimental data from [5] for a DNA chain with contour length 600 nm.

where the upper limit is chosen so that 𝐿௣ ≥ 0. For long chains the dis-
tribution is strongly peaked around an average ⟨𝑚⟩. ƞere are 2 ways
the extension decreases with increasing linking number, through an in-
crease of plectoneme length and through an increase of the number of
plectonemes. At high salt concentrations the single plectoneme conƧgu-
ration becomes the groundstate at Ƨnite plectoneme length. ƞe jump as
seen in experiments [24, 13] is partly caused by the end loop, partly by the
Ƨnite size plectoneme. ƞe nature of these conƧgurations differs enough
from the former to speak of a multi-plectoneme phase (MP): they affect
the slope and the torque aƫer the transition. To characterize the MP we
introduce the multi-plectoneme parameter

𝜁 ≡ exp ቈ−
𝑊𝑟୪୭୭୮
𝑘஻𝑇

ቆ
𝐸୪୭୭୮
𝑊𝑟୪୭୭୮

− Δ𝑓
𝜔(𝛼, 𝑡)ቇ቉ ቆ

𝑊𝑟୪୭୭୮/𝐿୪୭୭୮
𝜔(𝛼, 𝑡) ቇ

ଶ

(4.35)

Δ𝑓 = 𝐸஼ + 𝐸ୣ୪ + 𝐸ୠୣ୬ୢ
𝐿௣

− 𝐸୲ୟ୧୪ୱ
𝐿௖ − 𝐿௣

(4.36)

For 𝜁 ≪ 1 the experimental turn-extension plots and torques, are well
described by a single plectoneme whereas for 𝜁 ≈ 1, the slope is a result
of an increase of plectonemes with increasing 𝑛. ƞe inset of Fig. 4.4a
shows 𝜁 as a function of salt concentration for different tensions.

72



4.6. Comparison to experiments
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(a) Phase diagramof the average number
of plectonemes as a function of tension
and salt concentration for a 7.2 𝜇m long
chain. Note the shiƫ of the maximum
from low tension at high salt to high ten-
sion at low salt. ƞe inset shows the MP
parameter vs salt concentration for 1 pN
(blue), 2 pN (green) and 3 pN (red).
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(b) ƞe results of the theory with and
without the possibility to form more
than one plectoneme are presented
alongside the experimental results
(3 pN, 20mM, experimental data
from [5]).

Figure 4.4: Howmany plectonemes and do they make a difference?

4.6 Comparison to experiments
ƞe predicted turn-extension plots of the model agree remarkably well
with experiments, see Fig. 4.3. Our model has only two parameters, 𝐴
and 𝐶, both known to some extent from other experiments. ƞe gen-
eral consensus for 𝐴 is from 45 to 50nm 𝑘஻𝑇. For the numerics we took
𝐴 = 50nm 𝑘஻𝑇+ OSF [52] corrections. ƞe value of 𝐶 inƪuences fore-
most the transition point. To Ƨt the measurements its value ranges from
100 to 120 nm 𝑘஻𝑇. Only for a salt concentration of 20 mM, a lower
value of 90 nm 𝑘஻𝑇was needed to get the transition point right. Since the
plectoneme length starts at 0 at the transition, our approximation of not
treating the end loop separately is debatable. Detailed modelling of en-
tropic and electrostatic repulsion within the end loop might improve the
model, for example starting from [7], although in the end the proximity of
the bifurcation point might invalidate a simple perturbation calculation.
For low salt concentrations, older models predict slopes too step [5]. As
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4. Plectonemes?

shown in Fig. 4.4b the MP phase corrects this picture.

(a) 750 nm DNA chain at 150mM
ionic strength. Comparison be-
tween theory and torques directly
measured [24].

(b) 5600 nmDNA chain at 100mM
ionic strength. Comparison be-
tween theory and inferred torques
[48].

Figure 4.5: Predicted versus measured (dashed lines) torque.

In theMPphase the torque of the system is not constant aƫer the tran-
sition. ƞis could explain the difference between torques measured in
optical tweezer experiments [24] and torques calculated using Maxwell
relations in a magnetic tweezer setup [48]. ƞe latter method assumes a
constant torque aƫer the transition. However, in theMPphase our theory
predicts a non-constant torque. In Fig. 4.5bwe showwhat ourmodel pre-
dicts for the data presented in [48]. To facilitate comparisonwith the orig-
inal paper, not the linking number, but the supercoiling density is used,
deƧned as the ratio of the linking number density to the linking density
of the two strands of free DNA. As can be seen in Fig. 4.5b, the assump-
tion of constant torque underestimates the torque difference between the
high and low tension curves. Our model, however, correctly reproduces
the direct torque measurements of [24] (see Ƨgure 4.5a).

A Ƨnal consequence of theMP phase is the change in the dynamics of
plectonemes. Multiple plectonemes can change their length distribution
fast as twist diffusion is fast [9]. ƞismakes a fast diffusion of plectonemes
possible also in the crowded environment of the plasmoid in bacteria or
through a dense chromatin Ƨber in eukaryotes. ƞe implications might
be important, from cellular processes to transcription to segregation.
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