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Cʍʆʕʙʊʗ1

In which we lay the foundations
for the rest of the thesis

ƞis is the course of Mathematical Physics,
where physical problems are treated in a
mathematical way, thus rigorous. ƞis could
cause pleasure or pain, depending on
individual inclinations.

Fʗʆʓʈʊʘʈʔ Fʆʘʘʻ

DNA is one of those objects that, in recent times, has become a buz-
zword, i.e. a word used outside its original contest oƫen in an inaccurate
manner and inappropriately.

To clean every bit of confusion out: plainly said, DNA, or deoxyri-
bonucleic acid, is a molecule carrying the necessary information to pro-
duce proteins. Proteins, in turn, are the fundamental bricks that consti-
tutes our body, alongwith water and, if your partner happens to be amar-
velous cook, fats (alas!).

Since proteins come in a great variety, the quantity of DNA contained
in our body shouldn’t surprise anyone. With the help of four so-called
nucleotides (bp), adenine (A), guanine (G), cytosine (C) and thymine (T),
or ATCG, which are always paired together into base pairs (A with G and
C with T) forming a double helix, DNA stores the genetic information.
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1. Foundations

Toproduce all the proteins present in our body, the base pairs are read
in groups of three, giving 64 possible combinations. ƞese sequences
are then translated into 20 amino acids, proteins building blocks; for the
mathematically more inclined reader, we note that the function translat-
ing between ATCG tuples and amino acids is surjective but not injective.

ƞere is also another occasion when the genetic code is read from
DNA, cell replication: the daughter cell needs to be identical to themother
cell. While replicating thus, the whole DNA molecule has to be read and
a new copy is assembled in place! If that does not seem remarkable, think
at the numbers involved: a two meters long molecule is being read and a
copy, also two meters long at the end, is created in a portion of the cell
whose diameter is about 5millionth of a meter.

If you are still unimpressed (at this point it’s safe to assume that you’re
a mathematician), this is the moment to tell you that DNA is negatively
charged and does not like to be bent, since it is

1.1 A semiflexible polymer?
When I Ƨrst heard physicists were studying DNA I immediately thought
at how experimentalists were having fun in their labs, trying to manipu-
late our genetic code to make us live forever. I could not imagine how
wrong I was: not only experimentalists were not having fun nor trying to
live forever, haunted by immortal in-laws, but none other than theoret-
ical physicists were busy day and night to catch the secrets of that small
molecule, so simple in its components, but so complicated when in ac-
tion. A DNAmolecule behaves in fact as a polymer [23].

A polymer is an object composed of thousands (or more) of identi-
cal or similar units, called monomers. ƞe monomers are connected to
each other through ƪexible bonds. ƞe thousand of monomers implies
that a huge number of conƧgurations are possible, each with approxi-
mately the same energy, regardless of the speciƧc kind of bond. ƞe num-
ber of conƧgurations hints at a dominance of the entropy in the polymer
behavior. ƞis, together with the independence from the speciƧc kind
of bond, means that any reasonable model can describe the polymer on
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1.1. A semiflexible polymer?
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Figure 1.1: A drunk wanderer in a Dutch wood, i.e. a wood of equally
spaced and perfectly equal trees. Without an external force, there is a
high probability that the wanderer will walk randomly in the wood.

length scales much larger than the monomers’ dimensions. ƞe simplest
model to describe a polymer is

The random walk, or the drunk wanderer

Wedescribe the polymer as a sequence of monomers following a random
walk (RW) on a periodic square lattice. ƞe situation is analogous to a
drunk wanderer in a Dutch wood, as depicted in Ƨgure 1.1. Its end-to-
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1. Foundations

end vector is

𝐑 =
ே

෍
௜ୀଵ

𝐚௜ = 𝑏
ே

෍
௜ୀଵ

𝑎̂௜ (1.1)

where 𝑁 is the number of bonds of length 𝑏 and 𝑎̂௜ is their direction, in
this case either (±1, 0) or (0, ±1). ƞe randomness of the walk implies

⟨𝐑⟩ = 0

⟨𝐑ଶ⟩ = 𝑏ଶ ൾ
ே

෍
௜,௝ୀଵ

𝑎̂௜ ⋅ 𝑎̂௝ං = 𝑏ଶ൮ൾ
ே

෍
௜ୀଵ

𝑎̂ଶ௜ ං + ൾ
ே

෍
௜ஷ௝

𝑎̂௜ ⋅ 𝑎̂௝ං൲

= 𝑏ଶ ൾ
ே

෍
௜ୀଵ

𝑎̂ଶ௜ ං = 𝑏ଶ𝑁.

(1.2)

At Ƨrst, we would think that applying a force 𝑓 would change the end-to-
end vector to 𝐑 = 𝑏𝑁 ̂𝑓, i.e. a completely stretched polymer. However,
thinking at the drunkard analogy, it seems difficult that all his missteps
would disappear if we try to enforce a direction on him. Some detours
will still be present, even though with a different result than before. If
C2H5OH is the reason behind the drunkard resistance to force, entropy is
behind the polymer behavior.

To prove it, consider the probability for a RW to have an end-to-end
vector equal to 𝐑 = (𝑥, 𝑦, 𝑧)். If we denote the total number of RW’s by
𝑀 ≥ 1, the probability is given by how many RW’s end at 𝐑, divided by
𝑀. By the central limit theorem, stating that a sufficiently large number
of independent random variables is properly approximated by a Gaussian
distribution, the probability can be written as

𝑝(𝐑) ≃ const. 𝑁ିଵ/ଶ𝑒ି
ೣమ

మ⟨ೣమ⟩𝑁ିଵ/ଶ𝑒ି
೤మ

మ⟨೤మ⟩𝑁ିଵ/ଶ𝑒ି
೥మ

మ⟨೥మ⟩

= const. 𝑁ିଷ/ଶ𝑒ି యೃమ
మ್మಿ , (1.3)
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1.1. A semiflexible polymer?

where we used ⟨𝑥ଶ⟩ = ⟨𝑦ଶ⟩ = ⟨𝑧ଶ⟩ = 𝑏ଶ𝑁/3. ƞe entropy is then given
by the Boltzmann relation 𝑆(𝐑) = 𝑘஻ ln 𝑝(𝐑)𝑀, from which the free en-
ergy follows:

𝑆(𝐑) = 𝑆଴ −
3𝑘஻
2𝑏ଶ𝑁𝑅

ଶ

𝐹(𝐑) = 𝐸 − 𝑇𝑆(𝐑) = 𝐹଴ +
3𝑘஻𝑇
2𝑏ଶ𝑁𝑅

ଶ. (1.4)

ƞe free energy of a RWhas the same form ofHooke’s law, i.e. it describes
the small deformation of an elastic spring. For example applying a force
in the 𝑥̂-direction gives the end-to-end distance along 𝑥̂ through

𝑓 = d𝐹(𝐑)
d𝑥 = 3𝑘஻𝑇

𝑏ଶ𝑁 𝑥 = 𝐾(𝑇)𝑥 (1.5)

⟹

𝑥 = 𝑓𝑏ଶ𝑁
3𝑘஻𝑇

(1.6)

where𝐾(𝑇) is the temperature-dependent entropic spring constant of the
chain.

Equation (1.5) might seems artiƧcial since it gives results for 𝑥 > 𝑁𝑏
(the maximum extension the polymer reaches before breaking) and for
values of 𝑥 not belonging to the lattice. Moreover requiring a drunkard
to wander on a grid is quite ambitious. To solve these limitations we con-
sider the Ƭeely jointed chain, i.e. a chain with completely ƪexible joints.
Formally the chain is deƧned by {𝐑௜}, 𝑖 ∈ 1, … , 𝑁, 𝐑௜ = 𝑏𝑅̂௜ with 𝑅̂௜ a
random vector on the unit sphere (if we are considering a three dimen-
sional chain). In this case ⟨𝐑⟩ = 0 and ⟨𝐑ଶ⟩ = 𝑏ଶ𝑁 as in equation (1.2)
hinting at a universal behaviour for polymers. Applying a force 𝑓 along
the 𝑧̂-direction gives the Hamiltonian

𝐻 = −
ே

෍
௜ୀଵ

𝑏𝑓 cos 𝜗௜ (1.7)

where 𝜗௜ is the angle between 𝐑௜ and 𝑧̂.
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1. Foundations

ƞe partition function 𝑍 follows

𝑍 = න
ଶగ

଴
d𝜑ଵ…d𝜑ேන

గ

଴
d𝜗ଵ sin 𝜗ଵ…d𝜗ே sin 𝜗ே𝑒ିఉு

= (2𝜋)ேන
ଵ

ିଵ
d cos 𝜗ଵ…d cos 𝜗ே𝑒ఉ௕௙∑೔ ୡ୭ୱణ೔

= ቆ 4𝜋
𝛽𝑏𝑓ቇ

ே

sinhே 𝛽𝑏𝑓.

(1.8)

ƞe equivalent of equation (1.6) then is

⟨𝑧⟩ = ൾ෍
௜
𝑏 cos 𝜗௜ං =

1
𝛽 ቆ1𝑍

𝜕𝑍
𝜕𝑓ቇ =

1
𝛽
𝜕
𝜕𝑓 ln 𝑍

= 𝑏𝑁 ቆcoth 𝛽𝑏𝑓 − 1
𝛽𝑏𝑓ቇ ≃ ൝

௕మே
ଷ௞ಳ்𝑓 for 𝛽𝑏𝑓 ≪ 1
𝑏𝑁− ே

ఉ௙ for 𝛽𝑏𝑓 ≫ 1.

ƞeparadoxes of equation (1.6) are now gone, as ⟨𝑧⟩ < 𝑏𝑁, even for large
forces, and continuous values of 𝑧 are now possible as the polymer is not
restricted by a lattice.

Another interesting case is the freely rotating chainmodel, deƧned by
{𝐑௜} where each 𝐑௜ forms a Ƨxed angle 𝜗 with 𝐑௜ିଵ, as depicted in Ƨg-
ure 1.2, i.e. a vector should lie on the surface of a cone centered on the
previous vector. ƞis requirement implies

⟨𝐑௜ ⋅ 𝐑௜ାଵ⟩ = 𝑏ଶ cos 𝜗,

i.e. the vector will, on average, be exactly in the centrum of the cone,
whose height is 𝑏 cos 𝜗. For more consecutive vectors, by induction we
have

⟨𝐑௜ ⋅ 𝐑௜ାଶ⟩ = 𝑏ଶ cosଶ 𝜗;

⟨𝐑௜ ⋅ 𝐑௜ା௝⟩ = 𝑏ଶ cos௝ 𝜗. (1.9)
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1.1. A semiflexible polymer?

Figure 1.2: A section of the freely rotating chain. Each 𝐑 lies on the sur-
face of its own cone.

ƞis is enough to compute the equivalent of equation (1.2)

⟨𝐑ଶ⟩ =
ே

෍
௜,௞ୀଵ

⟨𝐑௜𝐑௞⟩ =
ே

෍
௜ୀଵ

ேି௜

෍
௝ୀି௜ାଵ

⟨𝐑௜𝐑௜ା௝⟩

≈
ே

෍
௜ୀଵ

ஶ

෍
௝ୀିஶ

⟨𝐑௜𝐑௜ା௝⟩ = 𝑏ଶ
ே

෍
௜
ቌ1 + 2

ஶ

෍
௝ୀଵ

cos௝ 𝜗ቍ

= 𝑏ଶ𝑁ቌ−1 + 2
ஶ

෍
௝ୀ଴

cos௝ 𝜗ቍ = 1 + cos 𝜗
1 − cos 𝜗𝑏

ଶ𝑁 ≡ 𝑏ଶୣ୤୤𝑁.

ƞe approximation used is acceptable because, thanks to equation (1.9),
the correlation decays exponentially for large 𝑗’s. Comparing the mean-
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1. Foundations

squared end-to-end distance of the threemodels presentedwe see a com-
mon scaling behaviour, i.e. ⟨𝐑ଶ⟩ ∼ 𝑁 (with a pre-factor depending on
the details of the model). As promised in the introduction, the knowl-
edge of the speciƧc polymers’ chemistry is not needed to understand it
behaviour: its mean-squared end-to-end distance always scales with𝑁.

What about DNA?

Up to now we treated monomers as points, without volume. Real poly-
mers, however, have a Ƨnite volume. ƞis Ƨniteness forbids the pres-
ence of two monomers at the same place (at the same time). ƞis is an
effect of the excluded volume interactions. As a consequence the mean-
squared end-to-end distance increases changing from ඥ⟨𝐑ଶ⟩ ∼ 𝑁ଵ/ଶ to
ඥ⟨𝐑ଶ⟩ ∼ 𝑁ଷ/ହ.

To derive the new scaling behaviour a variation to the RW model is
used, the self-avoiding walk (SAW). While similar to a RW, a SAW is
more difficult to solve, because the excluded volume interactions are long
ranged: pieces of the polymer separated by many monomers could still
overlap in a RW, and therefore need to be kept apart in a SAW.

Although DNA is a real polymer, for the length scales considered in
this thesis we can safely ignore excluded volume effects. In fact DNA is
half way in between a completely ƪexible polymer, for which we expect
strong excluded volume effects, and a stiff rod, difficult to bend and for
which excluded volume is only relevant over very long distances. Such
a polymer is called a semi-ƫexible polymer and is studied with the worm-
like chain framework (WLC).гƞeWLCmodel candescribe semi-ƪexible
polymers and, using a coarse grained approximation, also long strands of
DNA where the particular sequence of base pairs (bp) is ignored.

To see what is the threshold between the ƪexible and the stiff regimes
for a DNA molecule, we consider the energy needed to bend it. Within
the WLC model, the curvature 𝜅(𝑠) is used to quantify the bending en-
ergy. Here 0 ≤ 𝑠 ≤ 𝐿 is the arc length of the polymer with countour

гƞe framework was Ƨrst introduced in 1949 by Kratky and Porod [32].
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1.1. A semiflexible polymer?

length 𝐿. More speciƧcally

𝐸௣ =
𝐴
2 න

௅

଴
𝜅ଶ(𝑠)d𝑠 (1.10)

where 𝐴 is the bending modulus whose value (≈ 50 nm 𝑘஻𝑇) is experi-
mentally determined by measuring the energy needed to deform a por-
tion of DNA from the straight state to another state, with a well deƧned
𝜅(𝑠) (easy when 𝜅(𝑠) is constant). ƞe curvature 𝜅(𝑠) that minimizes the
energy is given, through the Euler-Lagrangian equations, by 𝜅̇(𝑠) = 0 i.e.
𝜅(𝑠) = 𝑚/𝐿,𝑚 constant; the resulting energy is 𝐸௣ = 𝐴𝑚ଶ/2𝐿; includ-
ing thermal ƪuctuations the equipartition theorem yields ⟨𝐸⟩ = 𝑘஻𝑇/2
so that ⟨𝑚ଶ⟩ = 𝐿𝑘஻𝑇/𝐴. Considering the orientation of the polymer be-
tween 𝑠 and 𝑠 + 𝑙 we can write

⟨𝐭(𝑠) ⋅ 𝐭(𝑠 + 𝑙)⟩ = ⟨cos 𝜅(𝑠)𝑙⟩ = ⟨cos𝑚ଶ⟩ ≈ 1 − 1
2⟨𝑚

ଶ⟩

= 1 − 𝑙
2
𝑘஻𝑇
𝐴

where 𝐭(𝑠) represent the tangent of the polymer at 𝑠. With the same rea-
soning between 𝑠 and 𝑠 + 2𝑙 using the independence of the bending be-
tween 𝑠 and 𝑠 + 𝑙, and between 𝑠 + 𝑙 and 𝑠 + 2𝑙

⟨𝐭(𝑠) ⋅ 𝐭(𝑠 + 2𝑙)⟩ = ⟨cos(2𝜅𝑙)⟩
= ⟨cos 𝜅𝑙⟩ଶ − ⟨sin 𝜅𝑙⟩ଶ

= (1 − 𝑙
2
𝑘஻𝑇
𝐴 )ଶ − 0.

By induction when 𝑛𝑙 = 𝐿 and 𝑛 → ∞we can write

⟨𝐭(𝑠) ⋅ 𝐭(𝑠 + 𝐿)⟩ = lim
௡→ஶ

ቆ1 − 𝐿
𝑛
𝑘஻𝑇
2𝐴 ቇ

௡

= 𝑒ି௅/ଶ௟೛
(1.11)

where 𝑙௣ ≡ 𝐴/𝑘஻𝑇 is the bending persistence length. ƞe interpretation of
𝑙௣ using equation (1.11) is that points 𝑙௣ apart along the chain have uncor-
related orientation. Equation (1.11) gives the mean-squared end-to-end
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1. Foundations

distance of a DNAmoleculeд

⟨𝐑ଶ⟩ = ൽቆන
௅

଴
𝐭(𝑠)d𝑠ቇ

ଶ

ඁ = න
௅

଴
d𝑠න

௅

଴
d𝑠ᇱ⟨𝐭(𝑠) ⋅ 𝐭(𝑠ᇱ)⟩

= න
௅

଴
d𝑠න

௅

଴
d𝑠ᇱ𝑒ି|௦ି௦ᇲ|/௟೛ = 2න

௅

଴
d𝑠න

௦

଴
d𝑠ᇱ𝑒ି(௦ି௦ᇲ)/௟೛ =

= 2𝑙ଶ௣ ቆ
𝐿
𝑙௣
+ 𝑒ି௅/௟೛ − 1ቇ (1.12)

≈ ൝𝐿
ଶ for 𝐿 ≪ 𝑙௣
2𝑙௣𝐿 for 𝐿 ≫ 𝑙௣.

(1.13)

When 𝐿 ≪ 𝑙௣ the polymer behaves as a stiff rod, where no bending takes
place, while when 𝐿 ≫ 𝑙௣ we recover the ideal chain result, ⟨𝐑ଶ⟩ ∼ 𝑁. We
can thus describe DNA at larger length scales as a randomwalk with step
size equal to 𝑙௣ ≈ 50nm (at room temperature).

Obviously at some point the excluded volume interactions will play
a role, but the disproportion between length and diameter of the DNA
molecule make the use of the RW justiƧed up to 𝐿 ≤ 5𝜇m. For further
details we invite the reader to buy a copy of the book about biophysics
authored by my supervisor.

Besides 𝑙௣, DNA has another persistence length, the torsional persis-
tence length, 𝑙௧ = 𝐶/𝑘஻𝑇 ≈ 100nm. Usually 𝐶 is called the torsional
modulus. As the origin of 𝑙௣ lies in the bending resistance, the origin of
𝑙௧ lies in the resistance to twist that DNA opposes when its twist deviates
from the natural valueе of 2𝜋/10 bp. ƞe total energy then results in

𝐻଴ =
1
2 න

௅

଴
d𝑠 ൥𝐴𝜅ଶ(𝑠) + 𝐶 ቆd𝜂d𝑠ቇ

ଶ

൩ . (1.14)

We stress that the twist d𝜂/d𝑠 in equation (1.14) is the twist exceeding
the natural twist.

дWe switch here silently to three dimensions. One can show that in this case the
persistence length is twice as short than in two dimensions, because the chain can bend
in two independent directions.

еWe use the word “natural value” because DNA is naturally twisted when relaxed.
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1.2. The Euler angles

Figure 1.3: An example of a ribbon.

Twist is easier to understand when we visualize DNA as a ribbon: the
centerline of DNA, 𝐫(𝑠), represents the axis of the ribbon, and with one
of the two strands, represented by 𝐫ଵ(𝑠), we completely determine the
ribbon geometry, see Ƨgure 1.3. ƞe two vectors are enough to compute
the curvature and the twist, and therefore the energy of the DNA chain.

1.2 The Euler angles
Starting from 𝐫(𝑠)we can conveniently represent DNA through theEuler
angles. Consider 𝐭(𝑠) = 𝐫̇(𝑠)/|𝐫̇(𝑠)|, 𝐧(𝑠), pointing towards 𝐫ଵ(𝑠), and
𝐦(𝑠) = 𝐧(𝑠) × 𝐭(𝑠). ƞe three vectors, 𝐭, 𝐧 and𝐦, are, respectively, the
tangent, normal and binormal of 𝐫(𝑠). ƞey form a coordinate system
that moves along the chain (hence the 𝑠 dependency).

Once the three vector at 𝑠 = 0 are speciƧed, 𝐭଴, 𝐧଴ and 𝐦଴, we can
deƧne three angles, 𝜑(𝑠), 𝜗(𝑠) and 𝜓(𝑠) such that 𝐭(𝑠), 𝐧(𝑠) and 𝐦(𝑠)
are given by a rotation of 𝜑(𝑠) around 𝐭଴ followed by a rotation of 𝜗(𝑠)
about the new 𝑛̂-axis, and Ƨnished by a rotation of𝜓(𝑠) about the new 𝑡̂-
axis. In other words in terms of the rotation matrices the transformation

15



1. Foundations

matrix is⁴

𝑂(𝑠) = 𝑂𝐭ೞ(𝜓௦)𝑂𝐧ೞ(𝜗௦)𝑂𝐭బ(𝜑௦) (1.15)

where 𝑂௜(𝛼) represents a rotation of 𝛼 radians about the ̂𝑖-axis. ƞese
three angles are called the Euler angles. ƞrough them the vector 𝐭௦ can
be expressed as

𝐭௦ = (sin 𝜗௦ cos𝜑௦, sin 𝜗௦ sin𝜑௦, cos 𝜗௦)் (1.16)

and the Hamiltonian in equation (1.14) takes the form

𝐻଴ =
1
2 න

௅

଴
d𝑠 ൣ𝐴 𝐭ଶ௦ + 𝐶 (𝐮௦ × 𝐮̇௦ ⋅ 𝐭௦)ଶ൧

= 1
2 න

௅

଴
d𝑠 ቂ𝐴 ቀ𝜑̇௦

ଶ sinଶ 𝜗௦ + ̇𝜗௦
ଶቁ + 𝐶 ൫𝜑̇௦ cos 𝜗௦ + 𝜓̇௦൯

ଶቃ .
(1.17)

We deƧne here Δ𝜓௦ = 𝐮௦ × 𝐮̇௦ ⋅ 𝐭௦ related to the twist of the polymer by

𝑇𝑤 = න
௅

଴
d𝑠Δ𝜓௦

2𝜋 . (1.18)

Adding a force 𝐹 along the 𝑧̂-axis changes equation (1.17) to

𝐻 = 𝐻଴ − 𝐹න
௅

଴
d𝑠 cos 𝜗௦. (1.19)

Equation (1.19) is similar to the Hamiltonian of a symmetric spinning
top with a Ƨxed point on a gravitational Ƨeld. ƞe analogy is so powerful
that it is called, aƫer its inventor, theKirchhoffkinetic analogy. A complete
classiƧcation of its solutions exists (see [51]).

In the Kirchhoff analogy 𝜗௦ is the precession, 𝜑௦ the nutation and 𝜓௦
the rotation of the top.

Weoutline how to solve the system in the planar case (𝜑̇௦ = 0). When
𝜑̇௦ = 0 the Hamiltonian is

𝐻௣ =
1
2𝐴න

௅

଴
d𝑠𝜗̇ଶ௦ − 𝐹න

௅

଴
d𝑠 cos 𝜗௦ +

𝐶
2 න

௅

଴
𝜓̇ଶ
௦ . (1.20)

⁴From now on we use 𝜑௦ to indicate 𝜑(𝑠) (and similarly with other symbols, when
the notation does not create confusion).
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1.2. The Euler angles

ƞe angle 𝜓௦ has a trivial solution. Instead 𝜗௦ has, as Lagrangian,

ℒ = 𝐴
2 𝜗̇

ଶ
௦ + 𝐹 cos 𝜗௦ (1.21)

that can be interpreted as the Lagrangian of a pendulum. Depending on
the total energy the pendulum could be revolving or oscillating. ƞe La-
grangian remains as in equation (1.21), but the interpretation of the pa-
rameters changes. DeƧning 𝜗 = 0 to be the pendulum at rest and 𝜗 = 𝜋
the upside-down pendulum, the boundary condition 𝜗଴ = 0 yields

ℒ = 𝑀𝑙ଶ 𝜗̇
ଶ
௦
2 +𝑀𝑔𝑙 cos 𝜗௦. (1.22)

Figure 1.4: ƞe revolving pendu-
lum with the relevant boundary
conditions.

Figure 1.5: ƞe oscillating pen-
dulum with the relevant bound-
ary conditions. Here 𝛾 is half the
pendulum’s period.

If the total energy of the system 𝐸୲୭୲ is bigger than 𝐸୫ୟ୶ = 2𝑀𝑔𝑙 (the
maximum potential energy of an oscillating pendulum) then the pendu-
lum is revolving, otherwise it will oscillate. ƞe Lagrangian eq. (1.22)
gives

𝜗̈௦ = −𝑔𝑙 sin 𝜗௦ (1.23)

that can be rewritten as

ቆ𝜗̇௦2 ቇ
ଶ

= 𝑔
𝑙 ቆ𝑚 − sin 𝜗௦2 ቇ (1.24)
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1. Foundations

where𝑚 is an integration constant. Multiplying by 2𝑙ଶ𝑀 gives the kinetic
energy on the LHS. When 𝜗 = 0 the total energy is purely kinetic and
equation 1.24 gives

𝐸୲୭୲ = 2𝑔𝑙𝑚𝑀
= 𝑚𝐸୫ୟ୶
⟶

𝑚 = 𝐸୲୭୲
𝐸୫ୟ୶

= ൝> 1 for 𝐸୲୭୲ > 𝐸୫ୟ୶ (revolving)
∈]0, 1[ for 𝐸୲୭୲ < 𝐸୫ୟ୶ (oscillating).

(1.25)

ƞis elegantly links𝑚 with the energy of the system, allowing for an im-
mediate physical interpretation of the equations. From eq. (1.24), calling
𝑔/𝑙 ≡ 𝜆ିଶ, we get

ቆ𝜗̇௦2 ቇ = √𝑚𝜆ିଵඨ1 −
1
𝑚 sin 𝜗௦2

dణೞ
ଶ

ට1− ଵ
௠ sinଶ ణೞ

ଶ

= d𝑠√𝑚𝜆 . (1.26)

To proceed we Ƨrst make a distinction for the boundary condition in the
two different cases. When the pendulum is revolving the conditions are
illustrated in Ƨgure 1.4 while the oscillating one is depicted in Ƨgure 1.5.
In the Ƨrst case integrating from 𝑠 = 0 to 𝑠 gives

න
ഛೞ
మ

଴

dణ
ଶ

ට1− ଵ
௠ sinଶ ణೞ

ଶ

= √𝑚
𝜆 𝑠.

ƞe integral results in the elliptic function F, whose inverse function is am,
so that

Fቆ 𝜗௦2 ቤ
1
𝑚ቇ = √𝑚

𝜆 𝑠 (1.27)

→
𝜗௦
2 = amቆ √𝑚𝜆 𝑠ቤ 1𝑚ቇ .
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1.2. The Euler angles

Using the Jacobi elliptic function sn deƧned as sn(𝑥|𝑦) ≡ sin(am(𝑥|𝑦)),
the well known identity cos 𝑥 = 1 − 2 sinଶ 𝑥/2 yields

cos 𝜗௦ = 1 − 2 snଶ ቆ √𝑚𝜆 𝑠ቤ 1
√𝑚

ቇ . (1.28)

ƞis is the solution for the revolving pendulum. Note that eq (1.27) gives
the 𝑠̄ at which 𝜗௦̄ = 𝜋 (upside-down pendulum) as a function of𝑚

𝑠̄ = Kቆ 1𝑚ቇ 1
√𝑚

𝜆.

When the pendulum is oscillating, starting from eq. (1.26) we Ƨnd

cos 𝜗௦ = 1 − 2𝑚 snଶ ൬ 𝑠𝜆ฬ𝑚൰ (1.29)

where we used the equality sn(√𝑚𝑥|𝑚ିଵ) = √𝑚 sn(𝑥|𝑚).
When the tangent vector is deƧned as in eq. (1.16), with 𝜑௦ = 0, its

path will be given by 𝑥௦ = ∫ sin 𝜗௦d𝑠, 𝑧௦ = ∫ cos 𝜗௦d𝑠. In Ƨgure 1.6 we
plot the resulting shapes for different values of𝑚. ƞe boundary between
the two cases,𝑚 = 1, is the homoclinic loop, which has ends alignedwith
the 𝑧̂-axis (i.e. in the force direction) and is described by

cos 𝜗௦ = 1 − 2 sechଶ 𝑠𝜆 . (1.30)

An interesting aspect of paths with ends aligned with the 𝑧̂-axis is that
they are, not without some efforts [51], also solvable in the non-planar
case, i.e. 𝜑௦ ≠ 0. ƞe solution, for 𝑡 ∈ [0, 1], is

cos 𝜗௦ = 1 − 2𝑡ଶ sechଶ 𝑠𝑡𝜆 (1.31)

𝜑௦ = arctan ቆ 𝑡
√1 − 𝑡ଶ

tanh 𝑠𝑡𝜆 ቇ +
ඥ1 − 𝑡ଶ 𝑠𝜆 . (1.32)

Ignoring the 𝐶-term, irrelevant now (but it will be included later), the
elastic and potential energy contributions follows from eq. (1.19) adding
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1. Foundations

Figure 1.6: ƞe various orbits obtained through integration of eqs. (1.28–
1.30). ƞe plot for different𝑚 are not in scale.

up to

𝐸୪୭୭୮ = 2𝐹𝐿୪୭୭୮ (1.33)

𝐿୪୭୭୮ = න
ାஶ

ିஶ
d𝑠(1 − cos 𝜗) = 4𝜆𝑡 (1.34)

where 𝐿୪୭୭୮ is the length lost to the loop when compared to the straight
chain. Fuller’s equation, eq. (1.39) below gives the writhe of the path us-
ing the 𝑧̂-axis as reference

𝑊𝑟୪୭୭୮(𝑡) =
2
𝜋 arcsin 𝑡. (1.35)
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1.3. Twist and shout

1.3 Twist and shout
Tospeak aboutwrithe,weneed toƧrst address twistmore carefully. Twist
added or removed is only relevant when a polymer cannot relax the in-
serted turns, as in the case ofDNAheldwith amagnetic or opticalwrench.
ƞis is a typical experimental setupused to study thepolymer torsional re-
sponse. ƞe bead is attached to one end of the DNA, while the other end
is anchored to a surface. As the bead is turned, the polymer is over- or
under-twisted. In this case the Hamiltonian of equation (1.19) becomes

𝐻ఛ = 𝐻− 2𝜋𝑛𝜏ி (1.36)

where 𝑛 is the number of turns inserted by the beads and 𝜏ி is the torque
in thedirectionof the force and acts here as aLagrangemultiplier (number
of turns clamp).

Ignoring the natural twist of DNA (2𝜋/10 bp) we interpret 𝑛 as the
linking number. ƞe linking number indicates how two closed, oriented
curves are linked with each other. Abbreviated with 𝐿𝑘, it is an integer
normally fairly easy to compute for two curves that lie in the same plane,
except when crossing. Take in fact the curves 𝐴 and 𝐵 and examine the
pointswhere they cross eachother. For every crossing, use the right-hand
rule with your right foreƧnger alignedwith the direction of the curve that
passes above and your long Ƨnger aligned with the direction of the other.
If your thumb, stretched in a natural position, points up, then assign to
that crossing a+1, otherwise−1. DeƧne 𝑛ା as the sum of all+1’s and 𝑛ି
as the sum of all −1’s. ƞen 𝐿𝑘 = 𝑛ା + 𝑛ି. Since a picture goes a long
way, in Ƨgure 1.7 an examplewith two simple curves is depicted. Another
way to compute the linking number, especially useful when the curves do
not live on the same plane, is to use the Gauss integrals of the two closed
curves, i.e.

𝐿𝑘 = 1
4𝜋 ර

஺
ර
஻

𝐚̇(𝑠) × 𝐛̇(𝑡) ⋅ (𝐚(𝑠) − 𝐛(𝑡))
ห𝐚(𝑠) − 𝐛(𝑡)หଷ

d𝑠d𝑡. (1.37)

Since a DNA molecule can be interpreted as a ribbon, we take the two
curves 𝐫 and 𝐫ଵ (see Ƨgure 1.3) that deƧne the ribbon, and compute the
linkingnumber througheq (1.37). However, the energyof a polymerdoes
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1. Foundations

not depend on 𝐿𝑘, but on its twist 𝑇𝑤 (see eq. (1.14)), experimentally dif-
Ƨcult to measure. Luckily White [70] found a relation, now going by its
name, that relates twist and linking number with the writhe𝑊𝑟

𝐿𝑘 = 𝑇𝑤 +𝑊𝑟. (1.38)

For closed curveswe can compute𝑊𝑟 through equation (1.37) in the limit
𝐛 → 𝐚. However equation (1.38) is of little help to compute the energy,
even if 𝐿𝑘 is experimentally controlled. In fact to compute 𝑇𝑤 (and thus
the energy), we still have to use the cumbersome equation (1.37) for𝑊𝑟.⁵

An alternativemethod is to calculate thewritheof a curvewith respect
to another, by using a relation provided by Fuller [25]:

𝑊𝑟஻ −𝑊𝑟஺ =
1
2𝜋 න

𝐭஺ × 𝐭஻ ⋅ ୢ
ୢ௦(𝐭஺ + 𝐭஻)

1 + 𝐭஺ ⋅ 𝐭஻
d𝑠. (1.39)

Here 𝐭஺,஻(𝑠) is the unit tangent vector for 𝐴, 𝐵. Both curves share the
same parameter 𝑠, one is deformable into the other in a continuous way
and the two tangents are never anti-parallel⁶. If they are antiparallel, the
denominator of equation (1.39) diverges and the integral gives the correct
answer mod 2.

Applying eq. (1.39) to “open” DNA molecules requires attention, as
the formula can only be applied when the curves are closed. However
Starostin [64] showed how to “close” the polymer by connecting its ends,
aligned with an axis at inƧnity, by using a geodesic on the tangent sphere.
A commonway tomake use of equation (1.39) then is by taking 𝐭஺ ∥ 𝐹 ∥ 𝑧̂
(i.e.𝑊𝑟஺ = 0) and 𝐭஻ = 𝐭; since the “closing” is the same, we only need
equation (1.39) when 𝐭஺ ≠ 𝐭஻.

ƞe fact that the curves are open explains why we identiƧed 𝐿𝑘with 𝑛
above. For a closed ribbon 𝐿𝑘 is Ƨxed and deforming it only changes𝑊𝑟
and𝑇𝑤, leaving 𝐿𝑘 unaffected. Howeverwhen the ribbon (polymer in our
case) is “open”, if we insert 𝑛 turns inside it, 𝑇𝑤 and/or𝑊𝑟 will increase,
making 𝐿𝑘 equal to 𝑛 (if it was 0 when 𝑛 = 0).

⁵To clarify: equation (1.37) can be solved in the limit 𝐛 → 𝐚, but the process is long
and error prone.

⁶More precisely they should be homotopic as non-intersecting space curves and the
tangent of the homotopy should never be anti-parallel to one of the end curves.
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1.3. Twist and shout

Figure 1.7: An example of
two curves with 𝐿𝑘 = −4.

(A) (B)
Figure 1.8: An example where Fuller
equation can be fruitfully applied.

To further clarify these concepts, we can apply equation (1.39) to Ƨg-
ure 1.8: while curve A has zero writhe, curve B has some. ƞe com-
mon part of the two curves will not contribute to the integral of equa-
tion (1.39), since the cross product vanishes when 𝐭஺ = 𝐭஻. We restrict
thus the integral where 𝐭஻ differs from 𝐭஺. In the case of Figure 1.8 the two
tangent vectors are

𝐭஺ = (0, 0, 1)்

𝐭஻ =
𝜕
𝜕𝑠𝐫஻ =

𝜕
𝜕𝑠𝑟(sin 𝜋𝑠, − cos 𝜋𝑠, 𝜋𝑠 tan 𝛼)் . (1.40)

Renormalizing 𝐭஻ equation (1.39) gives

𝑊𝑟஻ −𝑊𝑟஺ = −𝑠∗(1 − sin 𝛼) (1.41)

where 𝑠∗ is the number of helical turns (𝑠∗ = 1 indicates one full turn,
𝑠∗ = 2 indicates two full turns, etc.).

We now rewrite equation (1.36) using equation (1.38)

𝐻ఛ = 𝐻− 2𝜋(𝑇𝑤 +𝑊𝑟)𝜏ி . (1.42)

Here 𝑊𝑟 does not depend on Δ𝜓௦: therefore using the Euler-Lagrange
equations for Δ𝜓௦ through equation (1.18), we Ƨnd that the twist rate is
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Figure 1.9: How proteins that enforce an angle on a polymer binds to
DNA.ƞe situation is analogous to the experiments performed in [18].

constant and equal to Δ𝜓௦ = Δ𝜓 = 2𝜋𝑇𝑤/𝐿. ƞis makes the torsional
energy equal to

𝐸் =
𝐶
2 න

௅

଴
ቆ2𝜋𝑇𝑤𝐿 ቇ

ଶ

d𝑠 = 2𝜋ଶ𝐶
𝐿 𝑇𝑤ଶ = 2𝜋ଶ𝐶

𝐿 (𝑛 −𝑊𝑟)ଶ (1.43)

1.4 DNA binding proteins.
An interesting application of the various path that DNA assumes in Ƨg-
ure 1.6 is the following: suppose we have a DNA molecule held with a
force 𝐹, with 𝑛௣ proteins bound to it. Each protein enforces a kink with a
certain angle 𝛼 on the DNA, as in Ƨgure 1.9. If we know the difference Δ𝐿
between the contour length of the molecule and its end-to-end distance
when it has 𝑛௣ proteins bound, we can estimate 𝑛௣ through

Δ𝑧𝑛௣ = Δ𝐿 (1.44)

whereΔ𝑧 is the length lost per protein in the force direction. ƞeproblem
is interesting because knowing how 𝑛௣ changes with the force is a fun-
damental step to understand the binding behavior of these proteins [18].
Calling 𝑙 the contour lengthof theDNAbetween consecutive proteins, we
use eq. (1.29) to Ƨnd a Δ𝑧௘ to be used in eq. (1.44). ƞe resulting length
lost per protein is

Δ𝑧௘ = 𝑙 − න
௦̄ା௟

௦̄
cos 𝜗(𝑠, 𝜆,𝑚)d𝑠 (1.45)
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for 𝑠̄ and𝑚 found through

cos 𝜗(𝑠̄ + 𝑙, 𝜆,𝑚) = cos 𝜗(𝑠̄, 𝜆,𝑚) = cos 𝛼 (1.46)

and cos 𝜗 given by eq. (1.29). ƞis approach means that we are “cutting”
the paths in Ƨgure 1.6 at the points where they are orientated in the 𝛼 di-
rection. If 𝑙, however, is large enough, the DNA between two proteins
will be approximately straight, and we can use the simpler eq. (1.30) in-
stead of eq. (1.29). In that case the length lost per protein is

Δ𝑧௛ = 2න
ஶ

௦̄
(1 − cos 𝜗௛(𝑠, 𝜆)) d𝑠. (1.47)

with cos 𝜗௛ given by eq. (1.30) and 𝑠̄ given by

cos 𝜗௛(𝑠̄, 𝜆) = cos 𝛼. (1.48)

ƞe relative difference between the two Δ’s, Δ𝑧௛ and Δ𝑧௘ turns out to be
lower than 20%, and thus acceptable, as long as 𝑙 > 𝜆. Using these ideas
in ref. [18], the numbers of bound crenarchaeal chromatin proteins Cren7
and Sul7 (for which the kink angles are known from molecular dynamics
simulation) were determined.

1.5 Buckling
When dealing with a water hose⁷ one source of continuous stress is the
coiling of the hose around itself. Pulling on it will hopefully uncoil it, but
eventually the hose will coil again.

A similar coiling happens with a DNAmolecule: when twisted, a cer-
tain torquewill be reached, causing the coiling of themolecule. ƞepoint
when a straight molecule becomes energetically unstable is the bifurca-
tion point. Its value can be determined as follows. ƞeHamiltonian of the

⁷For the Dutch readers: a water hose is a ƪexible tube utilized for watering plants;
widely used in countries where it does not rain every other day, it is practically unknown
in the Netherlands.
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system can be written as (see eqs. (1.17, 1.18, 1.19, 1.42)):

𝐻 =න
௅

଴
d𝑠 ቈ𝐴2 𝐭̇

ଶ
௦ +

𝐶
2Δ𝜓

ଶ
௦ − 𝐅 ⋅ 𝐭௦቉

− 2𝜋 ቆ𝑊𝑟(𝐭௦) + න
௅

଴
d𝑠Δ𝜓௦

2𝜋 ቇ 𝜏ி . (1.49)

If we choose 𝐅 ∥ 𝑥̂ and

𝐭௦ = (cos𝜑௦ cos 𝜗௦, sin 𝜑௦ cos 𝜗௦, sin 𝜗௦)் (1.50)

then eq. (1.49) changes to

𝐻 =12 න
௅

଴
d𝑠 ൣ𝐴 ൫𝜑̇ଶ

௦ cosଶ+𝜗̇௦൯ + 𝐶Δ𝜓ଶ
௦ ൧

− න
௅

଴
d𝑠𝐹 cos𝜑௦ cos 𝜗௦

− 2𝜋 ቆ𝑊𝑟(𝐭௦) + න
௅

଴
d𝑠Δ𝜓2𝜋 ቇ 𝜏ி

with

𝑊𝑟(𝐭௦) =
1
2𝜋 නd𝑠𝜗̇௦ sin𝜑௦ + 𝜑̇௦ cos𝜑௦ sin 𝜗௦ cos 𝜗௦

1 + cos𝜑௦ cos 𝜗௦
(1.51)

the writhe computed with Fuller’s equation (1.39) using 𝑥̂ as reference
axis. Since the twist rate, Δ𝜓௦, is constant in the number of turns clamp
case (see section 1.3) we can drop the Δ𝜓௦-term in eq. (1.51) when ana-
lyzing ƪuctuations d𝜑, d𝜗 on top of the straight solution 𝜑 = 0, 𝜗 = 0
(i.e. (1, 0, 0)்).

ƞe energetic contributions of ƪuctuations d𝜑, d𝜗 ≪ 1 sums up to

d𝐸 = න
௅

଴
𝑋்𝑇̂𝑋d𝑠 (1.52)

𝑋் = (d𝜑௦, d𝜗௦) (1.53)

𝑇̂ = 1
2 ቆ

−𝐴 ୢమ
ୢ௦మ + 𝐹 𝜏ி ୢ

ୢ௦
𝜏ி ୢ

ୢ௦ −𝐴 ୢమ
ୢ௦మ + 𝐹 ቇ . (1.54)
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Fourier-modes with wave-number 𝑘௠ = ඥ𝜏ଶி/2𝐴ଶ − 𝐹/𝐴 minimize the
determinant of 𝑇̂:

(det 𝑇̂)|௞೘ = 𝜏ி
4𝐴ଶ ቆ𝐴𝐹 −

𝜏ଶி
4 ቇ . (1.55)

For 𝜏ୡ୰୧୲ = 2√𝐴𝐹 the determinant changes sign, and the straight rod so-
lution becomes unstable. At this point, where 𝑛 = 𝑛ୡ୰୧୲ = 𝜏ୡ୰୧୲𝐿/2𝜋𝐶 =
√𝐴𝐹 𝐿/𝜋𝐶, the ground state, for an inƧnite long chain with tangents at
inƧnity aligned with the force 𝐹, shiƫs from the straight rod to a homo-
clinic solution (see section 1.2). As said above, we call this point the bifur-
cation point. ƞis point is independent from the force direction or from
the particular parametrization of 𝐭௦. In fact, in chapter 4 we will use this
results even though the force will be in the 𝑧̂-axis, with 𝐭௦ parametrized as
in eq. (1.16).

1.6 Nucleosomes
ƞe nucleosome core particle (NCP) (Ƨg. 1.10) is composed by 147 bp of
DNAwrapped≈ 1.7 turns along a leƫ-handed superhelicalwrappingpath
of 4.75 nm radius around an octamer of histone proteins. Each octamer
consists of four pairs of H2A, H2B, H3 and H4, called the four core his-
tones. ƞe shape of the NCP is similar to a wedge, i.e. a cylinder with the
two surfaces not parallel. ƞe diameter of the octamer is approximately
𝑎 = 7.5 nm, with an average height of 𝑏 = 6 nm. Since the radius of
the nucleosome is so small, the bending energy required for wrapping
is extremely high. However 14 binding sites at the octamer surface pro-
vide electrostatic interaction and hydrogen bonding with the DNA, mak-
ing the NCP stable with a net negative energy per binding site of about
∼ 1.5 ÷ 2𝑘஻𝑇. Indicating with 𝑠∗ the number of wrapped turns of DNA
around the NCP, the net adsorption energy density results in

d𝐸ୟୢୱ
d𝑠 = ൞

𝜀 − 𝜀௕ if |𝑠∗| ≤ 1
𝜀 − 𝜀௕ − 𝜀ୣ୪ if 1.67 ≥ |𝑠∗| > 1
−𝜀௕ − 𝜀ୣ୪ if |𝑠∗| > 1.67;

(1.56)
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(a) Top view (b) Side view

Figure 1.10: ƞe geometry of the nucleosome [39].

Here 𝜀 is the pure adsorption energy density whereas 𝜀௕ accounts for the
DNA bending cost and 𝜀ୣ୪ for the electrical repulsion between the two
wrapped turns. ƞese quantities are estimated to be 𝜀 = 1.51𝑘஻𝑇/nm,
𝜀௕ = 0.75𝑘஻𝑇/nm and 𝜀ୣ୪ = 0.2𝑘஻𝑇/nm [46].

For every DNAmolecule in our cells, many nucleosomes are present,
forming a beads-on-a-string like structure (the nucleosomes representing
the beads). On average nucleosome are separated by 10−70 bp of linker
DNA. Summing the length of the linker DNAwith the length of the DNA
wrapped around the nucleosome gives the repeat length⁸ which can vary
from cell to cell (and from species to species).

To Ƨt inside the cell, the nucleosomes sequence fold into a Ƨber (see
Ƨgure 1.11a). ƞis partially explains how a negatively charged polymer of
twometers of contour length can Ƨt inside the cells’ nuclei: the positively
charged octamer offset the charge on the DNA, and the hydrogen bonds
help offsetting the bending energy required to compact the molecule.

⁸ƞe relation between repeat and linker length is straightforward: repeat length =
147 bp+ linker length.
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1.6. Nucleosomes

(a) A picture of the
chromatin Ƨberwith di-
ameter 𝐷. ƞe DNA
around each octamer is
omitted.

(b) ƞe nucleosome-footprint running
through the nucleosomes centers, hence
the 𝜋(𝐷 − 𝐴) dimension, obtained by
rolling out the cylinder of Ƨgure 1.11a on a
plane.

Figure 1.11: ƞe geometry of the chromatin Ƨber.

However many questions remain open. ƞis structure, with diam-
eter approximately equal to 𝐷 = 30 nm, is commonly called the chro-
matin ƨber. Its constituents, NCP’s and DNA, are known at atomic reso-
lution but the Ƨber itself remains poorly understood, despite more than
three decades of experiments. A wide range of models was put forward
to explain the experiments that can be divided in roughly two classes:
solenoid [22] and crossed-linker [74, 3]models. ƞe former class assumes
that consecutive nucleosomes along the DNA stack on top of each other,
while in the latter the nucleosomes sit on opposite sides of the Ƨber. Nei-
ther class predicts, however, the optimal Ƨber conformation and the ge-
ometry of the Ƨber, i.e. its diameter, is Ƨxed ad hoc. ƞe resulting insight is
then rather limited due to the huge number of possible conƧgurations and
hardly any experiments to distinguish between them. Since the ground-
breaking study of the Rhodes groups [55] there is, however, more to ex-
plain than a single diameter. In these experiments regular Ƨbers were re-
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Figure 1.12: A side
view of the nucleo-
some, showing the
precise meaning of 𝛼.
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Figure 1.13: ƞe diameters of the chromatin
Ƨber as presented in [55].

constituted by placing about 50 nucleosomes equally spaced onto a piece
of DNA. To space the nucleosomes the group used a positioning sequence,
i.e. a certain combination of ATCG. ƞe sequence used is called the 601
positioning sequence and the NCP have a higher affinity with it, meaning
that they are most likely to bind there than in other places. If the 601 se-
quences are equally spaced then there is a high probability that also the
nucleosomes will be equally spaced.

Varying the distance between the 601 sequences the Rhodes group
studied repeat lengths from 187 to 237 bp in steps of 10 bp. ƞe experi-
mental Ƨndings were surprising (Ƨgure 1.13): for the three shorter repeat
lengths, Ƨbers with 33 nm diameter were reported. Even more remark-
ably, for the larger three repeats thick Ƨbers, with a non-canonical 44 nm
diameter, were observed. ƞese Ƨndings point toward a discrete set of
optimal nucleosome conƧgurations that act as the main driving force for
Ƨber formation. ƞis leads to twoquestions: (i)which principle underlies
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1.6. Nucleosomes

that discrete set of optimal nucleosome arrangements? (ii)Why does the
rather stiffDNAdouble helix not affect the Ƨber diameterwhen the repeat
length is varied over a range of at least 20 bp for the 33 and 44 nm wide
Ƨbers respectively? ƞese two questions remain unanswered by the Ƨber
model proposed in [55] and by models built upon it, like reference [73],
where the Ƨber diameters are set ad hoc. In particular question (ii) re-
mains unanswered by the two-angle models that predict Ƨber diameters
that depend linearly on the DNA linker length (see for example refer-
ences [74, 60, 37, 31, 15]).

A recent paper [14] gives a possible answer to (i). ƞe authors start
by assuming that nucleosomes pack densely inside the chromatin Ƨber,
stacked on top of each other in a structure similar to Ƨgure 1.11. Each
nucleosome belongs to a ribbon that follows an helical path with radius
𝑅 = (𝐷 − 𝑎)/2 and pitch angle±𝛾.

In principle the nucleosomes could also stack side by side (rotating
the nucleosomes footprints of Ƨgure 1.11b by 90∘) as suggested in [55].
However NCP’s are know to spontaneously stack face to face [19] as a
consequenceof the short-range attractive interactionbetween their faces.

A dense footprint packing implies that the area of the cylinder onto
which the nucleosomes pack is equal to the total area of the footprints,
i.e.

𝜎𝑏𝑎 = 𝜋(𝐷 − 𝑎) (1.57)

where 𝜎 is the nucleosome line density (NLD). ƞe linear relation be-
tween the Ƨber diameter and 𝜎 can be experimentally veriƧed since 𝜎 is
a measurable quantity. In Ƨgure 1.14 we see how data from [55] Ƨt equa-
tion (1.57).

ƞepitch angle 𝛾 is related to the Ƨber diameter by requiring the num-
ber of ribbons to precisely cover the periphery of the Ƨber

𝜋(𝐷 − 𝑎) = 𝑎𝑁୰୧ୠ/ cos 𝛾. (1.58)

Without entering into the details, provided by [14], taking the three di-
mensional packing into account, the wedge angle 𝛼 (see Ƨgure 1.12) is
related to the pitch angle 𝛾 by
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Figure 1.14: A comparison between the experimental data in [55] and
equation (1.57).

𝛼 ≈ 2𝑏
𝐷 − 𝑎 (1 − cosଶ 𝛾) . (1.59)

Another conditions on the possible Ƨber structure stems from the linker
DNA.Denoting𝑁ୱ୲ୣ୮ the distance across ribbons between connected nu-
cleosomes, the necessary and sufficient condition for a regular backbone
winding (BW) — deƧned by (𝑁୰୧ୠ, 𝑁ୱ୲ୣ୮)— is the existence of two inte-
gers 𝑛 and 𝑘 such that

𝑘𝑁ୱ୲ୣ୮ − 𝑛𝑁୰୧ୠ = 1, 0 ≤ 𝑛 ≤ 𝑘 ≤ 𝑁୰୧ୠ. (1.60)

ƞe condition ensures that, aƫer 𝑘 steps and 𝑛 turns, neighboring rib-
bons are connected so that every ribbon is visited by the backbone. For
example, the BW (𝑁୰୧ୠ, 1) has consecutive nucleosomes in neighboring
ribbons, and it obeys equation (1.60) for every𝑁୰୧ୠ. Figure 1.16, instead,
represents BW (5, 1). As noted in [14] this approach covers all major
models for the Ƨber structure [28, 74, 72, 75, 41, 12, 60] i.e. the solenoid
(BW (1, 1) [22]), crossed-linker and interdigitatedmodels, includingnew
possibilities not considered previously.
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Figure 1.15: A plot of equation (1.59) and of 𝛼 ≈ 8∘. ƞe intersections
between the straight line and the curves mark the diameters compatible
with the measured value of 𝛼.

Reference [14] provides thus anunifying framework for the chromatin
Ƨber models presented in the past. ƞese models were so successful be-
cause, once they set the diameter of the Ƨber, they could predict their
NLD’s. However equation (1.57) implies a linear relationship between
the diameter of the Ƨber and the NLD meaning that setting the former
implies the latter: therefore those models lose their predictive power in
the dense-packing scenario.

To test the model we could use the connection that equations (1.58)
and (1.59) provide between the wedge angle, 𝛼 ≈ 8∘, a microscopic pa-
rameter independently veriƧed, the number of ribbons of the chromatin,
𝑁୰୧ୠ, and its macroscopic diameter, 𝐷, experimentally accessible. If the
dense-packing assumption is correct, the 33 and 44 nm diameters ob-
served should correspond to the measured 𝛼. ƞis is indeed the case, as
the plot of equation (1.59) in Ƨgure 1.15 shows: of the four possible diam-
eters compatible with 𝛼 ≈ 8∘ (for 𝐷 ≲ 80 nm) two are the one actually
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Figure 1.16: ƞe (5, 1) BW.

measured.

𝑁୰୧ୠ 5 6 7 8

𝐷 33 38 44 52

Table 1.1: Number of of nucleosome stacks,𝑁୰୧ୠ, in dense Ƨbers together
with their diameters in nm. ƞe diameters follow from the geometry of
the nucleosomes that are wedge shaped with a wedge angle of 𝛼 = 8.1∘.

Table 1.1 identiƧes, for each𝑁୰୧ୠ, the diameter that the Ƨber with that
number of ribbons should have to be consistent with the dense packing
assumption and with 𝛼 ≈ 8∘. However there is no information about the
sign of 𝛾, the positive or negative backbonewinding⁹ andwhich𝑁ୱ୲ୣ୮ the
observed Ƨbers have. Moreover the reason for the jump from 33 nm to
44 nm is still unanswered. Chapter 2 will satisfy the curious reader.

⁹ƞe sign of the backbone winding depends on whether, aƫer starting from nucleo-
some 𝑥 and visiting𝑁୰୧ୠ nucleosomes, we end up above or below nucleosome 𝑥. In case
above (below), the backbone winding has positive (negative) helicity.
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