Cover Page

The handle http://hdl.handle.net/1887/21856 holds various files of this Leiden University
dissertation.

Author: Lanzani, Giovanni

Title: DNA mechanics inside plectonemes, nucleosomes and chromatin fibers
Issue Date: 2013-10-02


https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/21856
https://openaccess.leidenuniv.nl/handle/1887/1�

DNA mechanics inside
plectonemes, nucleosomes and
chromatin fibers

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD
VAN DOCTOR AAN DE UNIVERSITEIT LEIDEN,
OP GEZAG VAN RECTOR MAGNIFICUS
PROF. MR. C.J.J.M. STOLKER,
VOLGENS BESLUIT VAN HET COLLEGE VOOR PROMOTIES
TE VERDEDIGEN OP WOENSDAG 2 OKTOBER 2013
KLOKKE 16:15 UUR

DOOR

Giovanni Lanzani

GEBOREN TE PADUA, ITALIE IN 1984



Promotiecommissie

Promotor: Prof. dr. H. Schiessel
Overige leden: Prof. dr. J.-M. Victor
Université Pierre et Marie Curie, Paris

Prof. dr. G. Wuite
Vrije Universiteit Amsterdam

Dr. V. Vitelli
Prof. dr. E.R. Eliel
Prof. dr. CW.]. Beenakker

Casimir PhD series, Delft-Leiden 2013-7

This work is part of the research program "DNA in action: Physics of the
genome’ of the ’Stichting voor Fundamenteel Onderzoek der Materie
(FOM)’, which is financially supported by the "Nederlandse Organisa-
tie voor Wetenschappelijk Onderzoek (NWO)’.

Typeset in BTEX, written in VIV, version controlled with git and printed
by Proefschriftmaken.nl || Uitgeverij BOXPress.

The word cloud on the cover was partially realized thanks to an amazing
tool by Jonathan Feinberg, wordle (http://www.wordle.net).


http://www.wordle.net

Contents

Introduction Il
1 Foundations
1.1 Asemiflexible polymer? . ... ... ...........
1.2 TheEulerangles . . .................... 13
1.3 Twistandshout. . . ... ... .............. 21
1.4 DNAbindingproteins. . . . ... ... ... ....... 24
1.5 Buckling. . ........ ... . ... . . . ... .. 23
1.6 Nucleosomes . .. ..................... 27
2 The chromatin fiber BS
2.1 Introduction . ... .......... . . ... .. ... B3
22 Results. . .. ... ... o B7
23 Discussion. . . .. ... o A4
3 Unwrapping A9
3.1 Generalmodel . ........... . ... .. ..., A9
32 Writhe . . . .. .. oo 52
33 Energy . ... .. 53
34 Plectoneme . . .. ... ... .. e B3
3.5 Twistdefects . .. ... ... ... . ... . ... 56

36 Results. . . . . . . . e 56



4 Plectonemes?

4.1 'The DNAshape . ... ...
42 Thewrithe . ... .....

4.3 Mechanical and electrostaticenergy . . . . . .. ... ..

44 Fluctuations . . . . ... ..
4.5 Multi-plectoneme phase . .

4.6 Comparison to experiments
Bibliography
Samenvatting
Publications
Curriculum
Acknowledgments

Index

................



Introduction

All general laws are imprecise and all precise
laws are banal.

It’s much better to have a complicated
Hamiltonian with a simple domain than a
simple Hamiltonian in a complicated domain.

I'll leave a small hole in the proof, but a finite
one. For those of you not following the course
about logic, it means that it can be filled with a
countable amount of steps.

IfIsay 1 — 1 < 2, that’s true, but not really
optimal.
GIANCARLO BENETTIN

Living in a natural world means we are surrounded by things that are
there regardless of our presence. We call these things “nature”. A marked
difference between humans and animals is whether we accept this “na-
ture” as it is. Many animals build their homes by altering “nature”, but no
species knows which laws make it possible for the home not to fall apart.
Humans are different. If I went to physics, it was because the “how” was
far more interesting than any other question. Someone may object why
I didn’t became an engineer then. There are two reasons for that. The
first is the one that I gave to my wife one of the first time I met her. That



Introduction

happened when I was a freshman in physics, hence the slang:

Because, you see, every time a law of nature is confirmed by
experiments, I feel like the harmony of the universe is pre-
served. And this is, you know, cool.

I was probably referring to general relativity, a theory criticized by
many, if not most, physicists back then, proven to be correct by exper-
iments. Years later, a dear friend of mine, described the second reason
much better than I could possibly do, so the next words are his

In the modern world, the beauty and essence of physics tend
to be assigned to the endeavor of finding a single, simplest,
and unifying principle describing the root of everything we
can observe around us.

With such a premise, the reader should be surprised this thesis is about
biophysics, a lesser “physics” when compared to string theory and cos-
mology, where the above principles are felt more strongly. To understand
why that is, we need a detour. We’ll have many throughout the thesis, but
like every other tour, the intention is to have a good time while we’re at
1t.

The everyday operations taking place in our body strikingly resemble
the activity of a public library. Without much thinking we read books so
full with words that, when aligned on a single line of text, would easily
cover the distance between our home and our workplace. But instead
of jogging while reading, people were smart enough to condense text in
lines, lines in pages, pages in books and books in library shelves.

Books remain thus widely accessible and easily readable while being
compact. But what part of our organism has a similar behaviour? It turns
out that DNA, the molecule contained in the nucleus of each human cell
and carrying our genetic information, is also stored in an extremely com-
pact fashion. I am shorter (but thicker!) than the total DNA contained
in every one of my cells. No wonder then that nature had to find a clever

"This is probably the line that separates physicists from engineers: the single, simplest
and unifying principle.

2



Introduction

way to compact DNA so that it fits inside our cells’ nuclei (which are ap-
proximately one millionth of a meter wide). And things are more com-
plicated than with written words, because DNA is a semi-flexible, nega-
tively charged polymer, so it does not like to be bent, twisted or packed
together.

A first hint of universality, the unifying principle, is already there. Poly-
mers are ubiquitous around us: DNA, proteins, cellulose, PVC and many
more. While they have the most disparate usages, their behavior is univer-
sally described by simple laws (see section [[.1)). For example the entropy
makes a polymer behave like a spring, even though the two objects have
nothing else in common.

A second hint will come only later (in section [[.7): most of the shapes
that DNA will be assumed to have are derived by looking at the motion ofa
pendulum. This fascinating analogy was first noted by Gustav Kirchhoff in
1859. The German physicist was not thinking at polymers though, but at
elastic lines, or elastica. To understand the elastica we can use mechanical
equilibrium, variational calculus and elliptic integrals. Moreover, besides
the pendulum, it is analogous to a sheet holding a volume of water and
the surface of a capillary [38].

Studying DNA then is not as narrow as it may seems. DNA as a poly-
mer, or as an elastica, means that we can re-use centuries old results to
study a relative newcomer in physics textbooks, without losing any gen-
erality. And without knowing, or liking, anything about biology or chem-
istry.fl

But let me present in more details what the thesis tries to accomplish.
With the aim of better understanding the compaction and de-compaction
of DNA we will first, in chapter [I], introduce the reader to the basic physics
behind DNA. Then, in chapter Pl we present the driving forces in the equi-
librium of the chromatin fiber. The chromatin fiber is a cylinder that re-
duces the space needed to store the genetic code. However, since we still
need to access the genetic code “trapped” in the chromatin, we will look
at how to (transiently) unwrap DNA from the nucleosomes, chromatin’s
core constituents, in chapter f§. Last, but not least, we will look at the
effects of torque and tension on naked DNA, in chapter fil.

*I can hear the sighs of relief from here.






CHAPTER 1

In which we lay the foundations
for the rest of the thesis

This is the course of Mathematical Physics,
where physical problems are treated in a
mathematical way, thus rigorous. This could
cause pleasure or pain, depending on
individual inclinations.

FRANCESCO FassoO

DNA is one of those objects that, in recent times, has become a buz-
zword, i.e. a word used outside its original contest often in an inaccurate
manner and inappropriately.

To clean every bit of confusion out: plainly said, DNA, or deoxyri-
bonucleic acid, is a molecule carrying the necessary information to pro-
duce proteins. Proteins, in turn, are the fundamental bricks that consti-
tutes our body, along with water and, if your partner happens to be a mar-
velous cook, fats (alas!).

Since proteins come in a great variety, the quantity of DNA contained
in our body shouldn’t surprise anyone. With the help of four so-called
nucleotides (bp), adenine (A), guanine (G), cytosine (C) and thymine (T),
or ATCG, which are always paired together into base pairs (A with G and
C with T) forming a double helix, DNA stores the genetic information.

5



1. Foundations

To produce all the proteins present in our body, the base pairs are read
in groups of three, giving 64 possible combinations. These sequences
are then translated into 20 amino acids, proteins building blocks; for the
mathematically more inclined reader, we note that the function translat-
ing between ATCG tuples and amino acids is surjective but not injective.

There is also another occasion when the genetic code is read from
DNA, cell replication: the daughter cell needs to be identical to the mother
cell. While replicating thus, the whole DNA molecule has to be read and
anew copy is assembled in place! If that does not seem remarkable, think
at the numbers involved: a two meters long molecule is being read and a
copy, also two meters long at the end, is created in a portion of the cell
whose diameter is about 5 millionth of a meter.

If you are still unimpressed (at this point it’s safe to assume that you’re
a mathematician), this is the moment to tell you that DNA is negatively
charged and does not like to be bent, since it is

1.1 A semiflexible polymer?

When I first heard physicists were studying DNA I immediately thought
at how experimentalists were having fun in their labs, trying to manipu-
late our genetic code to make us live forever. I could not imagine how
wrong I was: not only experimentalists were not having fun nor trying to
live forever, haunted by immortal in-laws, but none other than theoret-
ical physicists were busy day and night to catch the secrets of that small
molecule, so simple in its components, but so complicated when in ac-
tion. A DNA molecule behaves in fact as a polymer [23].

A polymer is an object composed of thousands (or more) of identi-
cal or similar units, called monomers. The monomers are connected to
each other through flexible bonds. The thousand of monomers implies
that a huge number of configurations are possible, each with approxi-
mately the same energy, regardless of the specific kind of bond. The num-
ber of configurations hints at a dominance of the entropy in the polymer
behavior. This, together with the independence from the specific kind
of bond, means that any reasonable model can describe the polymer on
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Figure 1.1: A drunk wanderer in a Dutch wood, i.e. a wood of equally
spaced and perfectly equal trees. Without an external force, there is a
high probability that the wanderer will walk randomly in the wood.

length scales much larger than the monomers’ dimensions. The simplest
model to describe a polymer is

The random walk, or the drunk wanderer

We describe the polymer as a sequence of monomers following a random
walk (RW) on a periodic square lattice. The situation is analogous to a
drunk wanderer in a Dutch wood, as depicted in figure [[.1. Its end-to-
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1. Foundations

end vector is
N N
R = Z a, = Z (1.1)
i=1 i=1

where N is the number of bonds of length b and 4; is their direction, in
this case either (£1, 0) or (0, £1). The randomness of the walk implies

(R)y=0
N N N
(R?) = b’ Zai-dj = b2 Zal? + Zai-aj
ij=1 i—1 iz

(1.2)

At first, we would think that applying a force f would change the end-to-
end vector to R = bNf, i.e. a completely stretched polymer. However,
thinking at the drunkard analogy, it seems difficult that all his missteps
would disappear if we try to enforce a direction on him. Some detours
will still be present, even though with a different result than before. If
C,H;OH is the reason behind the drunkard resistance to force, entropy is
behind the polymer behavior.

To prove it, consider the probability for a RW to have an end-to-end
vector equal to R = (x,y,z)". If we denote the total number of RW’s by
M = 1, the probability is given by how many RW’s end at R, divided by
M. By the central limit theorem, stating that a sufficiently large number
of independent random variables is properly approximated by a Gaussian
distribution, the probability can be written as

__x2 _? _ z?
p(R) = const. N™1/2e 265 N~1/2 275 N~12¢ " 2%

_ 3R
= const. N~3/%2e” 27w, (1.3)



1.1. A semiflexible polymer?

where we used (x*) = (y?) = (z%) = b?N/3. The entropy is then given
by the Boltzmann relation S(R) = kg In p(R)M, from which the free en-
ergy follows:

SR)=S§ 3BRZ

(R) 0 2b2N

FRy=E—-TS(R) =F +BBR2 1.4
(R) (R) " 22N (14

The free energy of a RW has the same form of Hooke’s law, i.e. it describes
the small deformation of an elastic spring. For example applying a force
in the X-direction gives the end-to-end distance along £ through

_dF(R)  3kgT (T Ls
f=—g = x = K(Dx (15)
)
_szN
x = 36,7 (1.6)

where K(T) is the temperature-dependent entropic spring constant of the
chain.

Equation ([[.3) might seems artificial since it gives results for x > Nb
(the maximum extension the polymer reaches before breaking) and for
values of x not belonging to the lattice. Moreover requiring a drunkard
to wander on a grid is quite ambitious. To solve these limitations we con-
sider the freely jointed chain, i.e. a chain with completely flexible joints.
Formally the chain is defined by {R;},i € 1,...,N,R; = bﬁi with I?L- a
random vector on the unit sphere (if we are considering a three dimen-
sional chain). In this case (R) = 0 and (R?*) = b?N as in equation ([.2)
hinting at a universal behaviour for polymers. Applying a force f along
the Z-direction gives the Hamiltonian

N
H= —becosﬁi (1.7)
i=1

where ¥, is the angle between R; and Z.



1. Foundations

The partition function Z follows

2T Vs
VA =f do, ...d(pr dd, sind; ...dJ, sin9ye PH
0 0

1
= 2n)" | dcosd, ...d cos 9P Licos D (1.8)
-1
4m N_ N
= BT sinh™ Sbf.

The equivalent of equation ([[.§) then is

_IS, _1(1az\_19
(Z)— Z COSI9i _E<Eﬁ>_ﬁﬁ nz

1 T for Bbf « 1
= bN ( coth Bbf — — | = {3&T" or fbf
Bbf)  |bN—%  for Bbf » 1.

The paradoxes of equation ([[.6) are now gone, as (z) < bN, even for large
forces, and continuous values of z are now possible as the polymer is not
restricted by a lattice.

Another interesting case is the freely rotating chain model, defined by
{R;} where each R; forms a fixed angle 9 with R;_;, as depicted in fig-
ure [[.7, i.e. a vector should lie on the surface of a cone centered on the
previous vector. This requirement implies

(R; - R;y;) = b%cos ),

i.e. the vector will, on average, be exactly in the centrum of the cone,
whose height is b cos 9. For more consecutive vectors, by induction we
have

(R; - R;;,) = b? cos? U;

(R; - Ry ) = b? cos’ ¥. (1.9)

10



1.1. A semiflexible polymer?

Figure 1.2: A section of the freely rotating chain. Each R lies on the sur-
face of its own cone.

This is enough to compute the equivalent of equation ([[.2))

(RZ) = ZN:<RiRk> =ZN: Sf (RiRi+j>

ik=1 i=1 j=—it+1
N 0 N oo
~ Z Z (RRy,) = bzz 1+ ZZcosjﬁ
i=1 j=—oo i =1
= b?N —1+22cosf19 ZMbZNEbZ N.
s 1—cosd eff

The approximation used is acceptable because, thanks to equation ([.9),
the correlation decays exponentially for large j’s. Comparing the mean-

11



1. Foundations

squared end-to-end distance of the three models presented we see a com-
mon scaling behaviour, i.e. (R*) ~ N (with a pre-factor depending on
the details of the model). As promised in the introduction, the knowl-
edge of the specific polymers’ chemistry is not needed to understand it
behaviour: its mean-squared end-to-end distance always scales with N.

What about DNA?

Up to now we treated monomers as points, without volume. Real poly-
mers, however, have a finite volume. This finiteness forbids the pres-
ence of two monomers at the same place (at the same time). This is an
effect of the excluded volume interactions. As a consequence the mean-

squared end-to-end distance increases changing from /(R2) ~ N/2 to
J(R?) ~ N3/5,

To derive the new scaling behaviour a variation to the RW model is
used, the self-avoiding walk (SAW). While similar to a RW, a SAW is
more difficult to solve, because the excluded volume interactions are long
ranged: pieces of the polymer separated by many monomers could still
overlap in a RW, and therefore need to be kept apart in a SAW.

Although DNA is a real polymer, for the length scales considered in
this thesis we can safely ignore excluded volume effects. In fact DNA is
half way in between a completely flexible polymer, for which we expect
strong excluded volume effects, and a stiff rod, difficult to bend and for
which excluded volume is only relevant over very long distances. Such
a polymer is called a semi-flexible polymer and is studied with the worm-
like chain framework (WLC).] The WLC model can describe semi-flexible
polymers and, using a coarse grained approximation, also long strands of
DNA where the particular sequence of base pairs (bp) is ignored.

To see what is the threshold between the flexible and the stiff regimes
for a DNA molecule, we consider the energy needed to bend it. Within
the WLC model, the curvature k(s) is used to quantify the bending en-
ergy. Here 0 < s < L is the arc length of the polymer with countour

"The framework was first introduced in 1949 by Kratky and Porod [B2].

12



1.1. A semiflexible polymer?

length L. More specifically

A L
E,= Ef k?(s)ds (1.10)
0
where A is the bending modulus whose value (= 50 nm kzT) is experi-
mentally determined by measuring the energy needed to deform a por-
tion of DNA from the straight state to another state, with a well defined
k(s) (easy when k(s) is constant). The curvature x(s) that minimizes the
energy is given, through the Euler-Lagrangian equations, by k(s) = O i.e.
k(s) = m/L, m constant; the resulting energy is E,, = Am?/2L; includ-
ing thermal fluctuations the equipartition theorem yields (E) = kzT/2
so that (m?) = LkyT/A. Considering the orientation of the polymer be-

tween s and s + [ we can write

(t(s) - t(s + D)) = (cos k(s)l) = (cosm?) ~ 1 — %(mz)
L k,T

2 A

where t(s) represent the tangent of the polymer at s. With the same rea-
soning between s and s + 2/ using the independence of the bending be-
tween s and s + [, and between s + [ and s + 21

(t(s) - t(s + 21)) = (cos(2kl))
= (cos kl)? — (sin kl)?

l kT
=(-g7) -0

By induction when nl = L and n — oo we can write

LkgT\"
ﬁ@yt@+L»=E£<1—H—_)

= e~ L/2l

(1.11)

where [, = A/kpT is the bending persistence length. The interpretation of
L, using equation ([.T1)) is that points [, apart along the chain have uncor-
related orientation. Equation ([[.TT]) gives the mean-squared end-to-end

13



1. Foundations

distance of a DNA moleculef]

(fL t(s)ds>2> = fL dst ds'(t(s) - t(s"))

L L L N
=j dsf ds'enmol =2 f ds j ds’e-G—s/1y —
0 0 0 0

L
=212 (l_ + e L — 1) (1.12)

P
ILZ for L < 1,

(R?) =

~
~

1.13
2L,L for L > L,. ( )

When L < [, the polymer behaves as a stiff rod, where no bending takes
place, while when L > L, we recover the ideal chain result, (R*) ~ N. We
can thus describe DNA at larger length scales as a random walk with step
size equal to [,, # 50 nm (at room temperature).

Obviously at some point the excluded volume interactions will play
a role, but the disproportion between length and diameter of the DNA
molecule make the use of the RW justified up to L < 5 um. For further
details we invite the reader to buy a copy of the book about biophysics
authored by my supervisor.

Besides [,, DNA has another persistence length, the torsional persis-
tence length, l, = C/kgT =~ 100nm. Usually C is called the torsional
modulus. As the origin of 1, lies in the bending resistance, the origin of
l; lies in the resistance to twist that DNA opposes when its twist deviates
from the natural valuef] of 2/10 bp. The total energy then results in

1 L

We stress that the twist d/ds in equation ([[.T4) is the twist exceeding
the natural twist.

Ax? Cd772 1.14
k“(s) + (E) (1.14)

*We switch here silently to three dimensions. One can show that in this case the
persistence length is twice as short than in two dimensions, because the chain can bend
in two independent directions.

*We use the word “natural value” because DNA is naturally twisted when relaxed.

14



1.2. The Euler angles

Figure 1.3: An example of a ribbon.

Twist is easier to understand when we visualize DNA as a ribbon: the
centerline of DNA, r(s), represents the axis of the ribbon, and with one
of the two strands, represented by r, (s), we completely determine the
ribbon geometry, see figure [[.3. The two vectors are enough to compute
the curvature and the twist, and therefore the energy of the DNA chain.

1.2 The Euler angles

Starting from r(s) we can conveniently represent DNA through the Euler
angles. Consider t(s) = r(s)/|r(s)|, n(s), pointing towards r,(s), and
m(s) = n(s) X t(s). The three vectors, t, n and m, are, respectively, the
tangent, normal and binormal of r(s). They form a coordinate system
that moves along the chain (hence the s dependency).

Once the three vector at s = 0 are specified, t,, n, and m,, we can
define three angles, ¢(s), 9(s) and ¥ (s) such that t(s), n(s) and m(s)
are given by a rotation of ¢(s) around t, followed by a rotation of 9(s)
about the new 7i-axis, and finished by a rotation of (s) about the new -
axis. In other words in terms of the rotation matrices the transformation

15



1. Foundations

matrix is[]

0(s) = Oy, (¥5)0n, (95) 0y, (¢5) (1.15)

where 0;(a) represents a rotation of a radians about the I-axis. These
three angles are called the Euler angles. Through them the vector t; can
be expressed as

t, = (sin Y, cos @, sin Y, sin @, cos I;)" (1.16)

and the Hamiltonian in equation ([[.T4) takes the form

1 L
H, Ef ds[A€2 + C (ug X 0y - t,)°]
0

(1.17)

% foL ds[4 (6. sin® 0.+ 8.7) + € (g cos 9, +46.)’].

We define here A = ug X Uy - t related to the twist of the polymer by

LAY
Tw = j ds . (1.18)
o 2n

Adding a force F along the Z-axis changes equation ([[.17) to
L
H=H0—Ff ds cos Y. (1.19)
0

Equation ([[.19) is similar to the Hamiltonian of a symmetric spinning
top with a fixed point on a gravitational field. The analogy is so powerful
thatitis called, afterits inventor, the Kirchhoff kinetic analogy. A complete
classification of its solutions exists (see [51]).

In the Kirchhoff analogy  is the precession, ¢ the nutation and g
the rotation of the top.

We outline how to solve the system in the planar case (¢ = 0). When
¢ = 0 the Hamiltonian is

1 L L c (t.
H, = EAf ds9? — Ff ds cos 9, + Ef P2, (1.20)
0 0 0

*From now on we use @ to indicate ¢(s) (and similarly with other symbols, when
the notation does not create confusion).

16



1.2. The Euler angles

The angle 1, has a trivial solution. Instead Y, has, as Lagrangian,

A.,
L= 5195 + F cos Y (1.21)

that can be interpreted as the Lagrangian of a pendulum. Depending on
the total energy the pendulum could be revolving or oscillating. The La-
grangian remains as in equation ([[.21)), but the interpretation of the pa-
rameters changes. Defining ¥ = 0 to be the pendulum at restand 9 =
the upside-down pendulum, the boundary condition 9, = 0 yields

92

L=Mlzl9—S+Mglcosw9 (1.22)
> - .

190=06‘ 19}/20 19}//2:0 Y9 =0

Figure 1.5: The oscillating pen-
dulum with the relevant bound-
ary conditions. Here y is half the
pendulum’s period.

Figure 1.4: The revolving pendu-
lum with the relevant boundary
conditions.

If the total energy of the system E\, is bigger than E ., = 2ZMgl (the
maximum potential energy of an oscillating pendulum) then the pendu-
lum is revolving, otherwise it will oscillate. The Lagrangian eq. ([.22))
gives

I, = —% sin 9, (1.23)
that can be rewritten as

9%\ g W,
(;) —T(m—sm?> (1.24)

17



1. Foundations

where m is an integration constant. Multiplying by 212M gives the kinetic
energy on the LHS. When 9 = 0 the total energy is purely kinetic and

equation [[.24 gives
E.or = 2glmM
= mEmaX

—

Eiot {> 1 for Eor > Ephax (revolving) (1.25)

m= N €]0,1[ for Ey; < Eax (oscillating).

Emax

This elegantly links m with the energy of the system, allowing for an im-
mediate physical interpretation of the equations. From eq. ([.24), calling
g/l =272, we get

s vm
47 = ds-. (1.26)
29,
1-Lsin®%

To proceed we first make a distinction for the boundary condition in the
two different cases. When the pendulum is revolving the conditions are
illustrated in figure [[.4 while the oscillating one is depicted in figure [[.3.
In the first case integrating from s = 0 to s gives

= —s=.
0 1 1 cin Vs A

The integral results in the elliptic function F, whose inverse function is am,
so that

U1 vm
F<7 E) = TS (127)
v vm | 1
2T E)'

18



1.2. The Euler angles

Using the Jacobi elliptic function sn defined as sn(x|y) = sin(am(x|y)),
the well known identity cos x = 1 — 2 sin® x/2 yields

\/m

1
cost; =1 — 2sn? <—s

\/—m> (1.28)

This is the solution for the revolving pendulum. Note that eq ([.27) gives
the § at which 9; = m (upside-down pendulum) as a function of m

(1) 1

When the pendulum is oscillating, starting from eq. ([[.26) we find

A

s
cosVg = 1—2msn2(1‘m> (1.29)

where we used the equality sn(v/mx|m™) = y/m sn(x|m).

When the tangent vector is defined as in eq. ([[.14), with ¢, = 0, its
path will be given by x; = [ sind,ds, z; = [ cos9,ds. In figure [.q we
plot the resulting shapes for different values of m. The boundary between
the two cases, m = 1, is the homoclinic loop, which has ends aligned with
the Z-axis (i.e. in the force direction) and is described by

S

7 (1.30)

cos 9, = 1 — 2 sech?

An interesting aspect of paths with ends aligned with the Z-axis is that
they are, not without some efforts [51], also solvable in the non-planar
case, i.e. @, # 0. The solution, for t € [0, 1], is

st
cosd, = 1 — 2t%sech® = (1.31)

st s
tanh —) +V1—t?-. (1.32)

t
Ps = arctan< — 7 7

Ignoring the C-term, irrelevant now (but it will be included later), the
elastic and potential energy contributions follows from eq. ([.19) adding
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[ m=05] [—m=08] [—m=0821] [—m=09
—m=10][—m=11] [—m=15 [ m=10°

-

Figure 1.6: The various orbits obtained through integration of eqs. ([.28-
[[.30). The plot for different m are not in scale.

up to

Eloop = ZFLIOOp (133)

+00
Ligop = J ds(1 — cos ) = 44t (1.34)

where L)y, is the length lost to the loop when compared to the straight
chain. Fuller’s equation, eq. ([[.39) below gives the writhe of the path us-
ing the Z-axis as reference

2
Wrigop(t) = - arcsin t. (1.35)
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1.3. Twist and shout

1.3 Twist and shout

To speak about writhe, we need to first address fwist more carefully. Twist
added or removed is only relevant when a polymer cannot relax the in-
serted turns, as in the case of DNA held with a magnetic or optical wrench.
Thisis a typical experimental setup used to study the polymer torsional re-
sponse. The bead is attached to one end of the DNA, while the other end
is anchored to a surface. As the bead is turned, the polymer is over- or
under-twisted. In this case the Hamiltonian of equation ([[.I9) becomes

H, = H — 2nnt; (1.36)

where n is the number of turns inserted by the beads and 7 is the torque
in the direction of the force and acts here as a Lagrange multiplier (number
of turns clamp).

Ignoring the natural twist of DNA (2m/10 bp) we interpret n as the
linking number. The linking number indicates how two closed, oriented
curves are linked with each other. Abbreviated with Lk, it is an integer
normally fairly easy to compute for two curves that lie in the same plane,
except when crossing. Take in fact the curves A and B and examine the
points where they cross each other. For every crossing, use the right-hand
rule with your right forefinger aligned with the direction of the curve that
passes above and your long finger aligned with the direction of the other.
If your thumb, stretched in a natural position, points up, then assign to
that crossing a +1, otherwise —1. Define n, as the sum of all +1’sand n_
as the sum of all —1’s. Then Lk = n, + n_. Since a picture goes a long
way, in figure [[.7/an example with two simple curves is depicted. Another
way to compute the linking number, especially useful when the curves do
not live on the same plane, is to use the Gauss integrals of the two closed
curves, i.e.

1 : b(o) - -b
Ik = - i 553 a(s) x b(t) - (a(s) — b(t)) dsd. (1.37)

la(s) —b(®)|’

Since a DNA molecule can be interpreted as a ribbon, we take the two
curves r and r; (see figure [[.3) that define the ribbon, and compute the
linking number through eq ([[.37). However, the energy of a polymer does
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1. Foundations

not depend on Lk, but on its twist Tw (see eq. ([[.14)), experimentally dif-
ficult to measure. Luckily White [[/0] found a relation, now going by its
name, that relates twist and linking number with the writhe Wr

Lk =Tw + Wr. (1.38)

For closed curves we can compute Wr through equation ([[.37) in the limit
b — a. However equation ([[.38) is of little help to compute the energy,
even if Lk is experimentally controlled. In fact to compute Tw (and thus
the energy), we still have to use the cumbersome equation ([[:37) for Wr.[]

An alternative method is to calculate the writhe of a curve with respect
to another, by using a relation provided by Fuller [25]:

1 (t, Xty L(t,+t
f" poatatts) o (1.39)

Wry = Wra = o0 1+t,-t
A B

Here t, z(s) is the unit tangent vector for A, B. Both curves share the
same parameter s, one is deformable into the other in a continuous way
and the two tangents are never anti-parallelf]. If they are antiparallel, the
denominator of equation ([[.39) diverges and the integral gives the correct
answer mod 2.

Applying eq. ([.39) to “open” DNA molecules requires attention, as
the formula can only be applied when the curves are closed. However
Starostin [64] showed how to “close” the polymer by connecting its ends,
aligned with an axis at infinity, by using a geodesic on the tangent sphere.
A common way to make use of equation ([[.39) then is by taking t, || F Il Z
(i.e. Wr, = 0) and tz = t; since the “closing” is the same, we only need
equation ([.39) when t, # t;.

The fact that the curves are open explains why we identified Lk with n
above. For a closed ribbon Lk is fixed and deforming it only changes Wr
and Tw, leaving Lk unaffected. However when the ribbon (polymer in our
case) is “open”, if we insert n turns inside it, Tw and/or Wr will increase,
making Lk equal to n (if it was 0 when n = 0).

*To clarify: equation ([37) can be solved in the limit b — a, but the process is long
and error prone.

*More precisely they should be homotopic as non-intersecting space curves and the
tangent of the homotopy should never be anti-parallel to one of the end curves.
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1.3. Twist and shout

Wry,=0

(A) (B)

Figure 1.7: An example of
two curves with Lk = —4. Figure 1.8: An example where Fuller

equation can be fruitfully applied.

To further clarify these concepts, we can apply equation ([.39) to fig-
ure [[.8: while curve A has zero writhe, curve B has some. The com-
mon part of the two curves will not contribute to the integral of equa-
tion ([[.39), since the cross product vanishes when t, = t;. We restrict
thus the integral where t; differs from t,. In the case of Figure [[.§ the two
tangent vectors are

t, =(0,0,1)
0 0 ] r
t; = %rlg = %r(sm 7S, — COS TS, mS tan )" . (1.40)

Renormalizing tz equation ([[.39) gives
Wrg —Wr, = —s"(1—sina) (1.41)

where s* is the number of helical turns (s* = 1 indicates one full turn,
s* = 2 indicates two full turns, etc.).
We now rewrite equation ([[.36) using equation ([[.38)

H, =H = 2n(Tw + Wr)t1g. (1.42)

Here Wr does not depend on Ayy: therefore using the Euler-Lagrange
equations for Ay, through equation ([.18), we find that the twist rate is
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Figure 1.9: How proteins that enforce an angle on a polymer binds to
DNA. The situation is analogous to the experiments performed in [[18].

constant and equal to AY, = AY = 2nTw/L. This makes the torsional
energy equal to

C (*(2nTw\* 2m’C_ , 2m%C ,
ET:EL L ds = L Tw* = L (n—Wr) (1.43)

1.4 DNA binding proteins.

An interesting application of the various path that DNA assumes in fig-
ure [[.4 is the following: suppose we have a DNA molecule held with a
force F, with n, proteins bound to it. Each protein enforces a kink with a
certain angle & on the DNA, asin figure [[.9. If we know the difference AL
between the contour length of the molecule and its end-to-end distance
when it has n,, proteins bound, we can estimate n, through

Azn, = AL (1.44)

where Az is the length lost per protein in the force direction. The problem
is interesting because knowing how n, changes with the force is a fun-
damental step to understand the binding behavior of these proteins [[18].
Calling [ the contour length of the DNA between consecutive proteins, we
use eq. ([[.29) to find a Az, to be used in eq. ([.44). The resulting length
lost per protein is

S+l
Az, = l—f cos (s, A, m)ds (1.45)
s
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1.5. Buckling

for § and m found through
cosV(S +[,4,m) =cosI(5,A4,m) = cosa (1.46)

and cos 9 given by eq. ([.29). This approach means that we are “cutting”
the paths in figure [[.§ at the points where they are orientated in the a di-
rection. If [, however, is large enough, the DNA between two proteins
will be approximately straight, and we can use the simpler eq. ([[.30) in-
stead of eq. ([.29). In that case the length lost per protein is

Az, =2 ']-_00 (1 —cos¥I,(s,4)) ds. (1.47)

with cos 9}, given by eq. ([[.30) and S given by
cos Y, (5,4) = cosa. (1.48)

The relative difference between the two A’s, Az, and Az, turns out to be
lower than 20%, and thus acceptable, as long as | > A. Using these ideas
inref. [18], the numbers of bound crenarchaeal chromatin proteins Cren?7
and Sul7 (for which the kink angles are known from molecular dynamics
simulation) were determined.

1.5 Buckling

When dealing with a water hosef] one source of continuous stress is the
coiling of the hose around itself. Pulling on it will hopefully uncoil it, but
eventually the hose will coil again.

A similar coiling happens with a DNA molecule: when twisted, a cer-
tain torque will be reached, causing the coiling of the molecule. The point
when a straight molecule becomes energetically unstable is the bifurca-
tion point. Its value can be determined as follows. The Hamiltonian of the

“For the Dutch readers: a water hose is a flexible tube utilized for watering plants;
widely used in countries where it does not rain every other dayj, it is practically unknown
in the Netherlands.
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system can be written as (see eqs. ([[.17, [[.18, [[.19, [.42)):

H—de At2+CA2 F-t
_0 SZS les S
By
2 ) F

t, = (cos @, cos Y, sin @, cos Y, sin I )"

then eq. ([.49) changes to

—2r (Wr(ts) + fL ds

If we choose F || X and

1t ;
H = j ds [A (¢? cos? +9,) + CAY?]
0

L
—f dsF cos ¢, cos Y,
0

-2 <Wr(ts) + fL ds%) Tp

with

9, sin g + @ cos @ sind cos I

1
Wrt)=—1|d
r(t) 271,[ > 1+ cos ¢4 cos I

(1.49)

(1.50)

(1.51)

the writhe computed with Fuller’s equation ([[.39) using % as reference
axis. Since the twist rate, Ay, is constant in the number of turns clamp
case (see section [[.3) we can drop the Ay,-term in eq. ([[.51)) when ana-
lyzing fluctuations d¢, d9 on top of the straight solution ¢ = 0,9 = 0

(ie. (1,0,0)7).

The energetic contributions of fluctuations d¢, d9 « 1 sums up to

L

dE = f XTTXds
0

X" = (dgs, d9;)

d? d
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1.6. Nucleosomes

Fourier-modes with wave-number k,,, = \/ 1%/2A% — F /A minimize the
determinant of T':

. T T2
(detT)lkm = A7 AF — 7] (1.55)

For 7., = 2VAF the determinant changes sign, and the straight rod so-
lution becomes unstable. At this point, where n = n = tL/2nC =
VAF L/mC, the ground state, for an infinite long chain with tangents at
infinity aligned with the force F, shifts from the straight rod to a homo-
clinic solution (see section[[.7). As said above, we call this point the bifur-
cation point. This point is independent from the force direction or from
the particular parametrization of t;. In fact, in chapter f we will use this
results even though the force will be in the Z-axis, with t; parametrized as

in eq. (L.16).

1.6 Nucleosomes

The nucleosome core particle (NCP) (fig. [.10) is composed by 147 bp of
DNAwrapped = 1.7 turns along aleft-handed superhelical wrapping path
of 4.75 nm radius around an octamer of histone proteins. Each octamer
consists of four pairs of H2A, H2B, H3 and H4, called the four core his-
tones. The shape of the NCP is similar to a wedge, i.e. a cylinder with the
two surfaces not parallel. The diameter of the octamer is approximately
a = 7.5nm, with an average height of b = 6 nm. Since the radius of
the nucleosome is so small, the bending energy required for wrapping
is extremely high. However 14 binding sites at the octamer surface pro-
vide electrostatic interaction and hydrogen bonding with the DNA, mak-
ing the NCP stable with a net negative energy per binding site of about
~ 1.5 + 2kgT. Indicating with s* the number of wrapped turns of DNA
around the NCP, the net adsorption energy density results in

£E—¢, if[s*]| <1
=<e—¢&,—& if1.67=|s*|>1 (1.56)
—&p — &g if |s*] > 1.67;

dE ads
ds
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(a) Top view (b) Side view

Figure 1.10: The geometry of the nucleosome [39].

Here ¢ is the pure adsorption energy density whereas ¢, accounts for the
DNA bending cost and & for the electrical repulsion between the two
wrapped turns. These quantities are estimated to be ¢ = 1.51kzT/nm,
gy, = 0.75kpT/nm and &, = 0.2kzT /nm [44].

For every DNA molecule in our cells, many nucleosomes are present,
forming a beads-on-a-stringlike structure (the nucleosomes representing
the beads). On average nucleosome are separated by 10 — 70 bp of linker
DNA. Summing the length of the linker DNA with the length of the DNA
wrapped around the nucleosome gives the repeat lengthf] which can vary
from cell to cell (and from species to species).

To fit inside the cell, the nucleosomes sequence fold into a fiber (see
figure [[.114). This partially explains how a negatively charged polymer of
two meters of contour length can fit inside the cells’ nuclei: the positively
charged octamer offset the charge on the DNA, and the hydrogen bonds
help offsetting the bending energy required to compact the molecule.

®The relation between repeat and linker length is straightforward: repeat length =
147 bp + linker length.
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a/cosy
n(D —a)
(a) A picture of the (b) The nucleosome-footprint running
chromatin fiber with di- through the nucleosomes centers, hence
ameter D. The DNA the m(D — A) dimension, obtained by
around each octamer is rolling out the cylinder of figure [.ITq on a

omitted. plane.

Figure 1.11: The geometry of the chromatin fiber.

However many questions remain open. This structure, with diam-
eter approximately equal to D = 30nm, is commonly called the chro-
matin fiber. Its constituents, NCP’s and DNA, are known at atomic reso-
lution but the fiber itself remains poorly understood, despite more than
three decades of experiments. A wide range of models was put forward
to explain the experiments that can be divided in roughly two classes:
solenoid [22] and crossed-linker [[74, 3] models. The former class assumes
that consecutive nucleosomes along the DNA stack on top of each other,
while in the latter the nucleosomes sit on opposite sides of the fiber. Nei-
ther class predicts, however, the optimal fiber conformation and the ge-
ometry of the fiber, i.e. its diameter, is fixed ad hoc. The resulting insight is
then ratherlimited due to the huge number of possible configurations and
hardly any experiments to distinguish between them. Since the ground-
breaking study of the Rhodes groups [55] there is, however, more to ex-
plain than a single diameter. In these experiments regular fibers were re-
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Figure 1.12: A side Figure 1.13: The diameters of the chromatin
fiber as presented in [53].

view of the nucleo-
some, showing the
precise meaning of a.

constituted by placing about 50 nucleosomes equally spaced onto a piece
of DNA. To space the nucleosomes the group used a positioning sequence,
i.e. a certain combination of ATCG. The sequence used is called the 601
positioning sequence and the NCP have a higher affinity with it, meaning
that they are most likely to bind there than in other places. If the 601 se-
quences are equally spaced then there is a high probability that also the
nucleosomes will be equally spaced.

Varying the distance between the 601 sequences the Rhodes group
studied repeat lengths from 187 to 237 bp in steps of 10 bp. The experi-
mental findings were surprising (figure [[.13): for the three shorter repeat
lengths, fibers with 33 nm diameter were reported. Even more remark-
ably, for the larger three repeats thick fibers, with a non-canonical 44 nm
diameter, were observed. These findings point toward a discrete set of
optimal nucleosome configurations that act as the main driving force for
fiber formation. This leads to two questions: (i) which principle underlies
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that discrete set of optimal nucleosome arrangements? (ii) Why does the
rather stiff DNA double helix not affect the fiber diameter when the repeat
length is varied over a range of at least 20 bp for the 33 and 44 nm wide
fibers respectively? These two questions remain unanswered by the fiber
model proposed in [55] and by models built upon it, like reference [73],
where the fiber diameters are set ad hoc. In particular question (i7) re-
mains unanswered by the two-angle models that predict fiber diameters
that depend linearly on the DNA linker length (see for example refer-
ences [74, 60, 37, 31, 15]).

A recent paper [[14] gives a possible answer to (7). The authors start
by assuming that nucleosomes pack densely inside the chromatin fiber,
stacked on top of each other in a structure similar to figure [[.T1. Each
nucleosome belongs to a ribbon that follows an helical path with radius
R = (D — a)/2 and pitch angle +y.

In principle the nucleosomes could also stack side by side (rotating
the nucleosomes footprints of figure [[.ITH by 90°) as suggested in [535].
However NCP’s are know to spontaneously stack face to face [[19] as a
consequence of the short-range attractive interaction between their faces.

A dense footprint packing implies that the area of the cylinder onto
which the nucleosomes pack is equal to the total area of the footprints,
ie.

oba = (D — a) (1.57)

where o is the nucleosome line density (NLD). The linear relation be-
tween the fiber diameter and o can be experimentally verified since o is
a measurable quantity. In figure [[.14 we see how data from [535] fit equa-
tion ([[.57).

The pitch angle y is related to the fiber diameter by requiring the num-
ber of ribbons to precisely cover the periphery of the fiber

n(D —a) = aN,/ cosy. (1.58)
Without entering into the details, provided by [[4], taking the three di-

mensional packing into account, the wedge angle a (see figure [.12)) is
related to the pitch angle y by
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Figure 1.14: A comparison between the experimental data in [55] and

equation ([[.57).

2b
D—a

a~ (1 —cos?y). (1.59)
Another conditions on the possible fiber structure stems from the linker
DNA. Denoting N, the distance across ribbons between connected nu-
cleosomes, the necessary and sufficient condition for a regular backbone
winding (BW) — defined by (N, Ngep) — is the existence of two inte-
gers n and k such that

sttep —nNp =1, 0<n<k< Ny, (1.60)

The condition ensures that, after k steps and n turns, neighboring rib-
bons are connected so that every ribbon is visited by the backbone. For
example, the BW (N,y,, 1) has consecutive nucleosomes in neighboring
ribbons, and it obeys equation ([[.60) for every N.;;,. Figure [[.16, instead,
represents BW (5,1). As noted in [14] this approach covers all major
models for the fiber structure [28, 74, 72, [75, #1, 12, 60] i.e. the solenoid
(BW (1, 1) [22]), crossed-linker and interdigitated models, including new
possibilities not considered previously.
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Figure 1.15: A plot of equation ([[.59) and of @ = 8°. The intersections
between the straight line and the curves mark the diameters compatible
with the measured value of a.

Reference [[14] provides thus an unifying framework for the chromatin
fiber models presented in the past. These models were so successful be-
cause, once they set the diameter of the fiber, they could predict their
NLD’s. However equation ([I.57) implies a linear relationship between
the diameter of the fiber and the NLD meaning that setting the former
implies the latter: therefore those models lose their predictive power in
the dense-packing scenario.

To test the model we could use the connection that equations ([[.58)
and ([[.59) provide between the wedge angle, @ ~ 8°, a microscopic pa-
rameter independently verified, the number of ribbons of the chromatin,
N, and its macroscopic diameter, D, experimentally accessible. If the
dense-packing assumption is correct, the 33 and 44 nm diameters ob-
served should correspond to the measured a. This is indeed the case, as
the plot of equation ([[.39) in figure [[.I§shows: of the four possible diam-
eters compatible with « = 8° (for D < 80 nm) two are the one actually
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\ P —

Figure 1.16: The (5,1) BW.

measured.

Niy 5 6 7 8
D 33 38 44 52

Table 1.1: Number of of nucleosome stacks, N, in dense fibers together
with their diameters in nm. The diameters follow from the geometry of
the nucleosomes that are wedge shaped with a wedge angle of @ = 8.1°.

Table [.T identifies, for each N ;,, the diameter that the fiber with that
number of ribbons should have to be consistent with the dense packing
assumption and with @ = 8°. However there is no information about the
sign of y, the positive or negative backbone windingf] and which N, the
observed fibers have. Moreover the reason for the jump from 33 nm to
44 nm is still unanswered. Chapter ] will satisfy the curious reader.

°The sign of the backbone winding depends on whether, after starting from nucleo-
some x and visiting N, nucleosomes, we end up above or below nucleosome x. In case
above (below), the backbone winding has positive (negative) helicity.
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CHAPTER 2

The chromatin fiber

I’ve made the calculation at home. That
doesn’t imply that the result is correct, but,
merely, that it tends towards being correct.

GIUSEPPE DE MARCO

This chapter is a direct continuation of section [[.§. You really should
read it if you haven’t. There we introduced the concept of dense pack-
ing of nucleosomes and used this concept to explain the results presented

n [55]. The reader should always keep in mind that we assume that the
nucleosomes are densely packed. Low nucleosome line densities (NLD),
as typically observed for natural fibers in vitro [#] and in situ [59] indicate
non-dense fibers and are not considered in our current study.

2.1 Introduction

In this chapter we study the linker DNA more precisely. Previously we
presented the various structures compatible with the measured wedge an-
gle, but the role of the linker DNA remained unclear. Since bending DNA
can require tens of k3T of energy, we expect the linker DNA to play a
fundamental role in the chromatin fiber formation. Before continuing,
we introduce the linker histones H1/HS. The first and last 10bp of every
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2. The chromatin fiber

linker DNA (at the entry and exit point of the nucleosome, see figure 2.1])
are strongly bound to the globular domain of these histones [66]. The
DNA that can be bent to go from one nucleosome to the consecutive one
is therefore given by the repeat length shortened by the length wrapped
around the nucleosome (147 bp) and the one bound to the linker histones
(20bp). When considering a repeat length of 207 bp the linker DNA is
therefore only 40 bp. If these 40 bp have to connect nucleosomes in two
consecutive ribbons, for nucleosomes in the same plane, their bending
energy alone would lie in the 50 kzT range — even if one does not en-
force a particular DNA entry-exit angle at the nucleosome.

Such energies would clearly overrule the stacking energy, the energy
gain from putting one nucleosome on top of another, that has been esti-
mated from chromatin fiber stretching experiments [ 1], theory [60] and
simulations [42] to be on the order of 3 k5 T.

z a/2 —z | |

a/2
Figure 2.1: Half nucleosome
with the nucleosomal DNA

(red), the stem (orange), and

Figure 2.2: A cartoon of the nu-
cleosome from another perspec-
tive. For simplicity, the linker hi-
stone is omitted. x and y are the

distances between the centerline
of the DNA and the dyad axis of
the nucleosome.

the linker histone (green). Here
r, = 3.75nmand = 0.33m.

Here we demonstrate how to solve this problem. Keeping the dense
nucleosomal packing intact, the nucleosomal stacks can be shifted “out-
of-register” in a way that reduces the elastic energy per linker to about one
kT without changing the stacking energy. The predictions of our model
— based only on geometrical constraints and DNA elasticity — agree re-
markably well with the experimental data from ref. [55]. Our model ap-
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plies to dense fibers that only form for perfectly spaced nucleosomes but
not for native fibers like in ref. [71]]. Also fibers with regularly spaced nu-
cleosomes were excluded if the linker length was too short [58, 56], the
total number of nucleosomes too small [17, 58, 61, 33, 27], or if there were
no linker histones present [61, 16, 58].

2.2 Results

Since the elastic energy of the DNA is quite sensitive to the distance be-
tween two nucleosome, we discuss in detail the geometry of the nucleo-
some. Figure .1 shows a top view of a nucleosome half. The DNA exits
the wrapped part to the left. The linker histone, close to the entry-exit
point, binds the two DNA linkers together forming a stem region [66].
The tip of the stem has a distance r = D/2 — a + z from the centerline
of the fiber. If the centerline of the DNA is shifted from the dyad axis of
the nucleosome by an x- and y-offset (see figure P.7), the distance d that
a linker has to span to connect two consecutive nucleosomes is

N x"\])?
d(A, Nyip, Ngtep) = {A’Z + 212 Il— cos <27r P L A’tan r_ 2—)]}
Nrib R r
(2.1)

with

A'(y) = A+ 2y’ sign(4) sign(y),

x'(y) =y (x + y?) cos(§ +v),

Y'(¥) =+ (x* +y?)sin(d +y).
In these equations A is the vertical offset between the two nucleosomes
and § = tan~' y/x. Note that y and R in equation (2.I)) depend on N,
[14].

The derivation of equation (2.1)) is quite simple if we define the cen-
terline of any ribbon to be described by

siny _ siny
r(s) =|rcos|s R +9;|,rsin|s R +9; |scosy (2.2)

37



2. The chromatin fiber

withd; = i2nNgep/Nyip, § = 0, ... Nyj,—1. Note that R = (D—a)/2 since
the pitch of the ribbon depends on R instead of r. Taking into account
the correction due to the x-, y- and z-offsets as in figures L.1-2.7 we find
equation (2.1)).

(B)

Figure 2.3: The 5 ribbon fiber rolled out in a plane, omitting the wrapped
DNA in the figure for clarity. A) A constant vertical offset b cosy/N
between connected nucleosomes (e.g. A-B) leads to highly bent linkers.
B) A zig-zag geometry with vertical offsets A for A-B and A, for B-C can
have nearly straight DNA linkers, except close to the entry/exit points
where we assume denaturation. Note that the fiber connectivity does not
change from a) to b) and that the Z-axis indicates here the axis of the fiber
and is not related to the z in figure 2.1].

The vertical offset A is not a free parameter. Starting from some ar-
bitrary nucleosome after N, steps every ribbon has been visited once
and the DNA ends up at the starting ribbon, just one nucleosome above
or below. The sum of all the N, offsets between the connected ribbons
must equal h = +b cosy where b = 6 nm is the height of a nucleosome
and h its height projected on the fiber axis. The sign of h determines the
helicity of the linker path. We choose the geometry such that a positive h-
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value leads to a positive helicity. The most obvious choiceis A = h/N
for every vertical offset. But, as mentioned above, this would increase
the bending energy too much, making the stacking of nucleosomes too
costly. However, a vertical offset alternating between positive and nega-
tive values (still adding up to h after one round) circumvents this problem.
Starting from a fiber where the offsets are uniform and the linkers highly
bent, see figure .3A, one can arrive, by shifting stacks up and down, at a
conformation where the linkers are almost straight, see figure £.3B.

Before computing the energies we assume that a small DNA portion
at the point where it enters/exits the linker histone is denaturated. This
allows the linker DNA to point in any direction and to twist without fur-
ther cost. Obviously the denaturation comes at some cost, typically about
1 — 3kgT per base pair [57]. As a few base pairs need to be denatured,
this might cost about 10k;T in total. We justify this assumption by the
fact that the resulting elastic energy per linker is substantially reduced,
namely by several tens of kzT. We furthermore speculate that the linker
histone might facilitate the formation of the denaturated region, lowering
its free energy cost. Recent experiments showing how the linker histone
enhances the conformational flexibility of the DNA at the entry/exit point
of the nucleosome [62] might support this idea.

Since the DNA freely rotates and twists at the nucleosome entry/exit
points it assumes a planar shape. Its optimal energy is given by finding the
minimum of

‘A,
E= fo Ef (s) (2.3)

where ¢(s) represents the Euler angle parametrizing the linker DNA and [
is the length of the linker DNA. The distance between entry and exit point
is given by
!
x(D) —x(0) = ] cosé(s)ds =d (2.4)

0

with d given by equation (£.T). This end-to-end distance clamp can be
incorporated as a Lagrange multiplier, so that the minimization of the en-
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ergy has to be done with the Lagrangian

1 .
L= EAfZ(S) + u cosI(s);
the Euler-Lagrange equations give
AE(s) = —psin9(s)
Ad .. d _
5 g5 (8" = Ky cosé;

integrating gives (m, is an integration constant)
A.,
Ef =pcosé+my

=u—2usinzg+m1

-
:\ 2

§\ _u R
(E) —Z(m—sm E)

withm = (1 +m,/u)/2. Itis possible to rewrite this as an integral (only
up to /2, since the solution is symmetric)

9(s/2)/2
f /2 _ ﬁ(s_i)_ 25)
3

A 2
W2)/2 1 sin®

N

-1
m

The solution is symmetric, with entry and exit angle opposite but ar-
bitrary and £(I/2) = 0. Equation (£.3) becomes

F(@ 1>: @(SJ)

2 |m A 2
$(s) pm L\ 1
T=am< 7(“5)‘%)

sin@=5n< @(s—£>|l>
2 A 2)[m
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cosé(s) =1-— 25n2< % <s - %)‘ %)
cosé(s) =1 — 2msn? <% <s — é>| m> (2.6)

&(s) = arccos <1 — 2m sn? <% (s - é)‘ m)) (2.7)

with 2 = (4/p)'/2. Here F is the elliptic integral of the first kind, am its
inverse and sn = sin am. Equation (P.§) enables us to compute

s l
x(s) = —f cosé(s)ds = (s — E) — 2AE(am((2s — 1)/2A|m)|m).
1/2
(2.8)
with E the elliptic integral of the second kind.

The derivative of £(s) at s = 0 should also be 0, since the ends are
free. This gives, using equation (22.6)

. 2
)| _, = fﬁ en((2s — /221m)| _,

2{m

cn(l/2Alm) = 0.

Therefore, for the periodic properties of cn (cn = cos am)

l
A= IR+ D)’

n € N, (2.9)

Plugging this into Eq. (£.8) yields

[
x(s) =<s— E>_

l 2s
Kem@n+ D) © (am <<T - 1) Kim)(@n + 1)‘ m>| m) ‘
(2.10)
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2. The chromatin fiber

here K(m) = F(m/2|m). Equation (2.4) gives

0) = 2 : E K(m)(2n+1 -2
x(0) = =5 ~ gemzn g1 E(@m (K @n + Dm)[m) = 5.
(2.11)

Once the linker length [ and the distance between entry/exit point d
are known, choosing the desired n (as in eq. (2.9)) we solve Eq. (2.11)
numerically to find m(d, [). Once found, it can be used to compute the
energy. Plugging infact £ from Eq. (277) in Eq. (2.3), taking into account
Eq. (2.9), results in

/2 A .
E(d, 1) = zf S§2(9)ds| _,

= — <A8Kl(2m)lE (am( (Zsl— 2 K(m)‘ m)‘ m>>

_ (A 8 Kl(zm) (1 —m)(l - 25) K(m))
_ 8A+(m) (E (%| m> —(-m) K(m)) 2.12)

where the explicit dependency of m on d and [ has been omitted for sim-
plicity.

From eq. l(\@) we can calculate the average energy per linker DNA,
E,({A}) = X2 E(A;, 1) /Ny, Considering the stacking energy, Egiacx ~
—3kgT, this leads to the total energy of the fiber per nucleosome:

n—N rib

El({Ai}' Tl) = El({Ai}) + Estack— -

Here E g, is multiplied by a factor that accounts for a finite size effect.

For a sufficiently small number n of nucleosomes, fibers with less ribbons

might be favored because they have less end nucleosomes. When com-

paring our model to experimental data we account in our calculations for
this finite size effect.

Assuming that every fiber seen in the experiments correspond to the

energetically most favorable geometry, we numerically minimize the to-

tal energy per nucleosome, eq. (2.13), with respect to {A;}, Nyip, and Nep,.

(2.13)
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For each set we have to consider four cases since the ribbons and the link-
ers can be right- orleft-handed, independent from each other. Foran even
number of ribbons the number of positive vertical offsets is the same as
the number of negative ones. For an odd number of stacks and a positive
(negative) helicity of the linker backbone, the number of positive vertical
offsets exceeds the number of negative offsets by one (minus one). More-
over, for a given set of A; that minimizes the energy, offsets with the same
sign have equal values.

Ny, 5 6 7 8
D 33 38 44 52

Table 2.1: Number of of nucleosome stacks, N, in dense fibers together
with their diameters in nm. The diameters follow from the geometry of
the nucleosomes that are wedge shaped with a wedge angle of § = 8.1°.

n 52 61 47 55 66 56
r;(bp) 187 197 207 217 227 237

E,(kgT) -1 -18 -14 -17 -2 -18
Af(nm) 22 59 77 112 126 15.1

Table 2.2: Optimal fibers for given number n of nucleosomes and repeat
length r; chosen as in the experiment [55]. The energy E; per linker,
eq. (B.13) with Eg,c = —3kpT, and the positive vertical offset A; are
presented for the case (x,y,z) = (2.5,0.5,0.1) nm.

The dense fibers considered in our minimization are summarized in
table 2.1. We only account for the case N, = 1 since for any Ny, > 1
one has strong steric interactions between the linkers. Also in the case
Ngp = 1 overlap between linkers can occur when the vertical offsets
become too large. We consider in our minimization only allowed config-
urations. Having set N, = 1 we have — for a given helicity of the rib-
bons and of the backbone — only one remaining degree of freedom, the
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2. The chromatin fiber

amount by which the ribbons are shifted with respect to each other. The
energies per linker for infinite fibers with E¢,. = —3kzT and (x,y,2) =
(2.5,0.5,0.1) nm are displayed in figure £.3 in one bp steps between 177
and 237 bp repeat length. We show the energies for all possible numbers
of ribbons. Curves for given N,,-values are not smooth since the opti-
mal helicity varies with the repeat length, see also figure 2.4. Note that
for the chosen (x, y, z) -values there is no difference in structure between
the infinite fibers and the finite ones from figure 2.4. The only role of the
stacking energy is to make the energies negative, and therefore the fiber
stable. Changing its value produces only a vertical shift in figure 2.3 (up

to finite size effects).
384 ) J X ) j
33 % % {

187 197 207 217
Figure 2.4: Fiber diameter as function of repeat length: experi-

mental data [53] in black, our theoretical prediction for (x,y,z) =
(2.5,0.5,0.1) nm in blue.

A D (nm)

- +

44

+ r; (bp)

The results for the six experimentally studied fibers [53] are presented
in figure 2.4 along with table .2 for (x,y,z) = (2.5,0.5,0.1) nm. Since
these microscopic values are not known precisely we performed the min-
imization for a range of values (innm) 0 < x < 3.5,0 < y < 2.5and
0 < z < 1. For every set of (x, y, z)-values that gives the blue crosses in
figure 2.4, the length of DNA in contact with the linker histone is about
10 bp (i.e., 20 bp per nucleosome), the length that has been shown to be
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2.2. Results

strongly bound to the globular domain of H1 [66]. We assume that HS,
the linker histone used in [55], engages the same length. The helicity of
each fibers can be seen directly from the artwork in figure 2.4, while the
helicity of the linkers are indicated by + and — signs.

E,/kgT

177 187 197 207 217 227 237

Figure 2.5: Energy E, per linker, eq. .13, as a function of repeat length 7,
for the four possible N;,. We assume infinitely long fibers with E ¢, =
—3kgT and (x,y,z) = (2.5,0.5,0.1) nm. We note that changes in the he-
licity of the fiber manifest themselves in kinks, as for the 7 ribbons struc-
ture at 222 bp (see also figure 2.4).

The predictions of our model are in agreement with the experiments,
exceptforr; = 207 bp, see figure 2.4. However, the electron micrographs
(figure 1 of [55]) might indicate that fibers with ;, = 207 bp are thicker
than the fibers with shorter repeat length and thinner than the ones with
larger repeat length. From the five micrographs per repeat length shown
in that figure we estimate D = 33 nm for r, = 197bp, D =~ 38 nm for
r; = 207bp and D = 44 nm for r; = 217 bp. Moreover, the variations in
the diameters for fibers of the same repeat length are much smaller than
the error bars, see figure 1. We speculate that the displayed fibers are ex-
amples of very regular and dense fibers for which our theory works best.
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2. The chromatin fiber

The whole ensemble of fibers shows larger variations in diameter, pre-
sumably reflecting less regular nucleosomal packings, and the average of
the 207 bp repeat is even shifted close to 33 nm.

As can be seen from figure 2.3, formation of dense fibers for r; =
177 bp is very expensive and might be even sterically impossible, depend-
ing on microscopic parameters. In fact, the Rhodes group found in a
new study that 177 bp repeats form non-canonical 30 nm wide fibers (D.
Rhodes, private communication, 2011).

We stress that short fibers, i.e. fibers with a small number of nucleo-
somes, might show different fiber geometries than long ones. E.g. the
energies of the 6 and 7 ribbon fibers with r;, = 237bp are so close (see
figure P.3) that N,;, = 6 becomes cheaper already for n = 50. Very short
fibers like e.g. n = 10 [17] and n = 12 [27] seem to prefer N, = 2
compromising on perfect packing to have less end nucleosomes.

2.3 Discussion

We have presented a chromatin fiber model that predicts the fiber diame-
ter as a function of the linker length. All the parameters that entered our
model, the nucleosomal wedge angle and the DNA elastic modulus, were
extracted from experiments that were performed on components of chro-
matin fibers, disconnected nucleosomes (so-called nucleosome core par-
ticles) and naked DNA, but not on chromatin fibers themselves. The first
assumption of our model, the dense packing of the nucleosomes, leads to
four different possible geometries. This together with a second assump-
tion, namely that the experimental fibers are those with the lowest elastic
energy per linker DNA, are already sufficient to predict the fiber diame-
ters seen in the experiment.

To achieve constant fiber diameters over an extended range of linker
lengths, the nucleosome stacking energy has to dominate over the elas-
tic energy for linker bending. According to our study, this is achieved
when (I) the DNA is locally denatured close to the entry-exit region. Ex-
treme as it may sound it lowers the elastic energy by several tens of kzT
perlinker. Asthe nearest-neighbor base pair free energy depends strongly
on the base pair step, one might ask whether stretches with low cost for
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denaturation are typically found just next to nucleosome positioning se-
quences. Linker histones are indeed known to preferably bind to AT rich
regions [[I0]; (II) nucleosomes are equally spaced to achieve small en-
ergies through “out-of-register” sliding. If just two neighboring nucleo-
somes are connected by a shorter linker length than the rest, the stacks
belonging to these two nucleosomes will not be able to shift by the opti-
mal amount. In that case either the fiber cannot form, or a nucleosome
has to disintegrate to allow the rest of nucleosomes to pack. On similar
grounds we expect that optimal fibers are very stable against thermal fluc-
tuations even though for certain linker lengths different fibers have simi-
lar energies. A thermal excitation in the form of a short fiber stretch with
non-optimal geometry would be too costly to spontaneously occur as dif-
ferent sliding lengths would cause steric clashes at the boundaries.

The strict requirement of equal spacing of nucleosomes for the forma-
tion of dense fibers might have implications for living cells. Our model
suggests that dense fibers would only form for equally spaced nucleo-
somes. Since linker lengths typically vary along DNA, perfectly dense
fibers, as discussed in this paper, can hardly form. Instead one should ex-
pect less dense and less regular fibers as typically found when chromatin
is isolated from cells, see e.g. [4]. Such less dense fiber stretches inter-
digitate with neighboring fibers, making them harder to detect in vivo.
In the dense environment of the cell nucleus they may even disintegrate
into a nucleosomal melt [#0]. Nevertheless there are mechanisms that can
cause an approximately equal spacing of nucleosomes in vivo, namely di-
rectly through mechanical signals in the underlying DNA sequence [30],
or indirectly through statistical ordering in the vicinity of barriers [69, #4,
1]. Furthermore, one might speculate that the action of chromatin re-
modellers like ISWT that are known to repress transcription by forming
equally spaced nucleosomes [2€], make use of this phenomenon. Once
they have equally spaced an array of nucleosomes, a dense fiber can form
and the corresponding DNA stretch can no longer be accessed.

In the next chapter we will show how, combining torsion and tension,
we can unwrap DNA from NCP’s.

47






CHAPTER 3

Unwrapping

If you ask me now, I cannot prove it, but I'm
sure it’s true.
GIUSEPPE DE MARCO

In this chapter we investigate the effect of torque and force on a nucle-
osome. Using the worm-like chain model (WLC) we show how low neg-
ative torques eases the unwrapping of the DNA from the nucleosome. In
some case a combination of high forces and high positive torques, surpris-
ingly, favors the unwrapping as well. The theory presented provides an
interesting insight on how to access the genetic code with tensions smaller
than what previously thought.

To study the response, we consider a molecule of DNA bound to a sin-
gle nucleosome. However, with due modifications, this applies to more
general DNA spools, widely found in nature, as the Lacl repressor [67],
DNA gyrase [29] and RNA polymerase [54].

3.1 General model

We consider a nucleosome, with DNA legs at its ends, under tension f
and torque, see fig. B.1. In our model the DNA is described as a worm-
like chain being wrapped around a cylinder that represents the histone
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3. Unwrapping

octamer. The wrapped section of the DNA molecule is described by the
space curve I, (s) = r(mstana,cosms,sinms) with r = 4.3 nm and
a = —0.085 and thus a pitch of 2mr tan @. A nucleosome with s*-turns
of DNA adsorbed is described] by r,,(s) with s € [—s*,s*]. To unwrap
its DNA the nucleosome has to rotate around the y—axis by an angle 8
(fig. B.1) resulting in r,.(s, B) = 0,(B)r,(s) with 0, denoting the cor-
responding rotation matrix [36]. To avoid collision between DNA and
nucleosome we impose § € [—7 + a, —a].

In the torsion-less case the shape of the planar DNA, where its ends
are aligned with the force, has been worked out in [36] using the Kirch-
hoff kinetic analogy [51]. Adding torsion causes the DNA legs to bend
out-of-plane. Since a non planar homoclinic loop is only favored when
the inserted number of turns is between —1 and 1, and since most of the
non-planarity is contained within the wrapped part of the DNA (see the
section at the end of this chapter), we simplify our analysis by describing
the legs by the planar homoclinic orbit with the tangent vector

t;(s) = 0,(6)(0,sin 8(s),cos B(s))

with cos 6(s) = 1 — 2 sech®(s/A); here A = \/A/f with A being related
to the DNA persistence length [, = A/kpT ~ 50nm. From —s, to +5,
we replace this curve with the wrapped nucleosomal DNA (see fig. B.1)).
The §-rotation of the DNA legs ensures continuity at the insertion point,
without affecting the energy. In addition continuity requires

0 =1t,(So) + tn(=5") (3.1)

therefore

A toi
So(s*, B) = " arcsech % (3.2)

1+ cosa cosms* cos f — sina sinf§
tmin = 2 '

'Not counting an eventual translation, irrelevant for the energy.
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andt = 1. Ineq. (B.7) t represent the homoclinic parameter, which quan-
tifies how “planar” the legs are. In this work we assume the legs to be per-
fectly planar (t = 1). This approximation is good for several reasons: first
of all the domain of arcsech limits t to [t,;,, 1]. When s* # 0,1, 2, the
p that minimizes the energy leads to t,;, = 1. On the other hand, when
s* = 0,1, 2, the contribution by the legs to the energy is almost 0, since
S is very high (see eq. (B.7)). In principle eq. (B.I) determines § as well,
but the parameter is not relevant for our analysis.

As convention we assume that the point +s* of the adsorbed DNA is
attached to the point *s, of its free counterpart so that the path of the
DNA is described by

[t,(s,6)ds ifs € [-L,(s*, B), —So]
r(s,s%, B) =1 [t,(s,8,)ds ifs € [+s,, +L,(s%, B)] (3.3)
r,(s, ) ifs € [—s",s"].

In the integrals one of the integration boundaries is the length L, (s*, ) =
(L + 2sy — L,(s%))/2, where L,(s*) = 2nrs” seca is the length of the
DNA adsorbed by the nucleosome. The two angles §;, §, are important
to ensure continuity at the boundary between legs and nucleosome, but
otherwise they do not influence the energy. Therefore we drop the § ar-
gument of t; from now on. Once s and f are known, the energy of the
system can be computed from t;(s,) and r,. (s, ). The resulting structure
is depicted in fig. B.1.
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Figure 3.1: The nucleosome under tension and torque. In our model the
histone octamer is represented by a cylinder. A part of the DNA molecule
is wrapped around it (in an orange hue), the rest forms the legs (in a blue
hue).

3.2 Writhe

To compute the writhe of the molecule, we use eq. ([.39) with respect to
the —Z-axis:

1 f/ —2xt(s) du(s)

2n), 1+(n-t ds
1 (5 —Zxt dt

b AL(S) ) 1(s) ds
2m ), 1+ (=2)-t, ds
1 S —Z2 X tr(s;ﬁ) dtr(S,ﬂ)

+ — —~ . ds.
2w Jy 1+ (=2)-t, ds

Wrpna =

(3.4)

The first two integrals give no contribution, while the third gives
Wr(s*,B) = Wri(s", B) — Wri(=s", B); (3.5)

arctan (cos # csc # tan %)

Wri(s,B) = -

—3S sina — ngy (s, @). (3.6)

The function ng, eliminates the (here of finite-size) discontinuities of the
trigonometric function and it is —1 for s € [—3,—1], 0 fors € [—1,1]
and 1 for s € [1, 3] etc. Note that eq. (3.6) deviates from eq. ([.41)), com-
puted using the axis of the helix (that here rotates with ). The different
behavior of the writhe is presented in fig. B.2.
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— Local writhe
— Writhe for Bin
— Tt ﬁmin

0.0 0.5 1.0 1.5 2.0 2.5
s*

Figure 3.2: A comparison between the local writhe, i.e. using the helix
axis in eq. 3.4, and the writhe for the £ that minimized the energy, B in.
For reference also m + S, is plotted.

In eq. (B.4) we use —Z instead of Z to avoid a vanishing denominator
for some values of § < 0. Asrequired for the use of Fuller’s relation, there
is a homotopy between the straight Z—axis and any of the states (partially
or fully wrapped nucleosome plus rotated legs) considered here. The con-
tinuity of the homotopy follows from the fact that the chain continuously
changes from s* = 0 (i.e. the Z—axis) to any subsequent state.

3.3 Energy

The total energy of a DNA chain oflength L with s* bound turns inside the
nucleosome is the sum of the bending, potential, adsorption and torsional
energy:

Lis B
E.(s,B)=2xX Ef t?(s)ds
S dE
+ fAz(s*, B) — 2 f Eaas(5) 4
o ds

2% C

+ m(ﬂ - WT'(S*, ﬁ))z (37)
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(n (D (V) P)

Figure 3.3: Schematic representation of the various stages of nucleosome
unwrapping. The roman numerals indicate how many turns are approx-
imately wrapped (N stands for 0, P stands for plectoneme). In order to
show the effect of torque, the DNA double helix is here represented as a
ribbon that is untwisted in the torsion-less case.

Here

Az(s*,B) = Ly(s™) + (rp(=s", B) —1,(s", B)) - Z

Li(s*B)
+2 X f (1-t(s)-2)ds (3.8)
S

0

is the shortening of the DNA end-to-end distance in the 2-direction due
to the bending of the legs and the wrapping around the octamer. The
adsorption energy is given, with the relevant details, by eq. ([.56) and in
the last term of eq. .7 the quantity C is related to the torsional persistence
length [, via [, = C/kpT; we assume here [, = 100 nm [24].

To find the optimal configuration for given values of f and n the en-
ergy, eq. B.7, needs to be minimized with respect to s* and . Since we
neglect in our theory entropic contributions our results are only reliable
for large enough forces, f = 0.5 pN [63].
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3.4. Plectoneme

3.4 Plectoneme

The unwrapping of the nucleosome is eased for moderate positive torques
or, as shown later, for high negative torques. However, depending on the
force the DNA can also form a structure called plectoneme (see fig. B.3(P))
that adsorbs approximately all the linking number inserted in the system
(see [24] and chapterf]). We do not expect nucleosome unwrappingin the
presence of a plectoneme as the plectoneme can adsorb torsional stress
more efficiently once formed. To estimate the parameter range where the
plectoneme occurs, we give here the energy of a DNA molecule of length
L that contains a plectoneme of length p > 0 with radius R and angle y

(fig. B.3(P)):
2% C
L

E(p) = (n—dWp)* + (f + dE,)p. (3.9)
Here dW = cosy siny signn/2nR and dE, = Acos*y/(2R?) are, re-
spectively, the writhe density and the bending energy density of the plec-
toneme (see chapter ).

As specified in chapter f, in eq. 3.9 we ignore the energetic contri-
bution of the end loop assuming that the nucleosome sits at the end of
the plectoneme (fig. B.3(P)). In principle a plectoneme could also appear
somewhere else. However the high bending energy of an end loop makes
it highly improbable.

By minimizing eq. B.9 for p one finds that a plectoneme is expected,
i.e. p > 0, for all values of n such that

_(f+dEb)L (f +dE,)L

azcaw TV —mcaw (3.10)

ne

Here Wr(2) = —2.14 is the writhe for 2 fully wrapped turns that for
s* = 2isindependent of § (see fig. 3.2). With this term we account for the
writhe absorbed by the nucleosome that has around two fully wrapped
turns for n > 0 and not too large forces. Following chapter fj we use
y = 1and R = 1.8 nm when the salt concentration is about 150 mM. We
stress that when the plectoneme forms, it forms on top of the state the sys-
tem had before the formation. E.g.: if the system has approximately two
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turns wrapped, when we, for example, decrease n so that it is outside the
interval describe by eq. (B.10), then a plectoneme will form with at its end
a nucleosome wrapped twice. In this sense fig. B.3(P) is only indicative of
what really happens.

3.5 Twist defects

Apart from the plectoneme, twist defects [35, #5] can influence the nu-
cleosome stability. A twist defects is present in a nucleosome when one
DNA base pair is added or removed between two consecutive nucleo-
some binding sites, resulting in a local under- or overtwisting of the DNA.
We can write an equation similar to eq. 3.9 for the twist defects if we re-
place p » mAl, dW - ksignn/Al, dE, - dE;/Al and f — f signn.
m is an integer between 0 and 13 denoting the number of defects. Al =
0.34nm and k = 1/10 are, respectively, the length and twist lost or
gained by a defect. Finally dE; = 9kgT is the energetic cost of a de-
fect [B5]. Since m < 13 the shift in turns will be up to 1.3; a quick com-
putation reveals that the 13 defects form before a plectoneme occurs. This
changes the boundaries where the plectoneme forms, namely we need to
subtract 1.3 from the left side of eq. B.10.

The 1.3 turns per nucleosome are found in experiments where chro-
matin fibers are put under positive torsional stress [2]. It was suggested
that this can be explained by a chiral transition of the nucleosome. Unfor-
tunately a comparison of our model to these experiments is not possible
asitinvolves a multinucleosome geometry and forces where thermal fluc-
tuations cannot be neglected. It would be crucial to perform single nucle-
osome experiments to see whether the observed strong asymmetry in the
response to positive and negative torsion is still present which favors the
picture of a chiral transition.

3.6 Results

In fig. B.4d we present the optimal nucleosome configurations for a wide
range of forces and n/L-values of a DNA molecule with L = 3500 nm
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Ip

(a) Diagram of state showing the config-
urations with the lowest energy for L =
3500 nm in the f-n/L-plane. The grey
dashed-dotted line represents the writhe
of the nucleosome when the legs are free

0.10

—-0.10 -0.05 0.00 0.05
n/L

E/kyT

0.00 0.08 0.16
P

(b) The energy landscape near s* = 0
for f = 10pN, n = 0. The minimum
of energy is very close to the s* = 0 case
which makes it easy for the nuclesome to
“evaporate.”

to release torsional stress.

Figure 3.4: Various results from the computations.

length. This diagram of states is nearly identical for all experimentally
reasonable values of L, say for all L > 500nm. We find five different
states, four of which are depicted in fig. 3.3 ((ZI) fully wrapped, () one
turn wrapped, (N) unwrapped and (P) fully wrapped plus plectoneme).
In addition, we indicate with (N”) almost unwrapped configurations. That
state is, however, not stable against thermal fluctuations as the global min-
imum is only tenths of kz T away from the totally unwrapped state. A typi-
cal example is shown in fig. 3.4b. We therefore expect that the nucleosome
typically falls apart once it has unwrapped its last turn.

The negative writhe of the wrapping path makes the nucleosome un-
wrapping highly asymmetric since the factor (n — Wr(s*, 8))? in the tor-
sional energy, eq. B.7, favors wrapping, s* > 0, for n < 0 and unwrap-
ping, s* = 0, forn > 0. For large enough negative values of n, how-
ever, the nucleosome unwraps to have more twistable DNA available, see
fig. B.4d. The factor 1/(L — L,,) in the twist energy dominates then the
behavior. In the diagram of states, fig. B.4d, we indicate also by a dashed-
dotted line the torsion-less case where the unbound DNA is free to rotate.
This situation has been studied in Ref. [36].
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3. Unwrapping

So far we have only determined the optimal configurations via energy
minimization. Of special experimental importance is, however, also to
know the energy barrier between different states, especially at common
boundaries in the diagram of states, fig. 5.44. Choosing experimental pa-
rameters such that one has two minima between a large barrier, one can
observe the hopping dynamics between them. This has been indeed ob-
served in the torsionless case where a fast hopping between states (II)
and (I) was observed at a certain force value manifesting itselfin a change
of the end-to-end extension [43, 33]. The boundaries and corresponding
barriers between (II) and (I) and between (I) and (N°/N) are shown in
fig. B.3. Note that the system under torsion provides a much wider range
of parameters where one can observe hopping as compared to the tor-
sionless case. Especially for a wide range of forces we predict two values
of n/L where hopping should be observed. It might be challenging to
observe the branch with the transitions at the more negative n/L-values
as these transition are associated with much higher barrier values (see

fig. B3).

Appendix: why can we assume the
legs to be planar?

The bending and force contribution of the legs in the t = 1 case basically
always smaller than when t < 1. This leaves the writhe as the other pos-
sible source of error when excluding the non-planar solutions. However
looking at the contribution of the legs to the torsional energy

2
Wr, = p arcsint (3.11)

we see that when n € [—1, 1], the energy is minimized by ¢ = 1. Con-
sidering the large amount of turns investigated (see figure 3.4d) we can
safely ignore the non-planarity of the loop. Moreover eq. (3.I1)) is only
partially true: when the legs are cut at s, which is generally high, at least
for the case (II-I-N) of figure 3.3, the writhe contribution would decrease,
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(I - D

___forcein pN
— barrierin kgT

—0.04 —0.02
n/L

(- N/N)

5. — forcein pN

— barrierin kzT

0 —0.06 —0.04 —0.02

n/L
Figure 3.5: The force at which the minimum of the energy around s* =
2 (1) and the one around s* = 1(0) have the same value, and the energy
barrier necessary to cross from one state to the other, as a function of n/L.
Here L = 3500 nm.

reducing even further the region in which a non-planar homoclinic loop
matters.
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CuaprTir 4

Plectonemes?

Generally, things obtained without exertion
are not that useful.
GIUSEPPE DE MARCO

In the previous chapter we have mainly investigated the interaction
between DNA molecules and nucleosomes. However also naked DNA
behaves in an interesting fashion. Take, for example, the DNA persis-
tence length, [, ~ 50nm: it was found by measuring the extension of
the molecule when stretched with different forces.

However when the molecule is also twisted, various theories were
proposed, but a unifying framework to describe the experimental results
was lacking. This is partly due to the important role of thermal fluctua-
tions, extensively analyzed for low torques [51]], but either left out [, 49,
8] or partially added by hand for high torques [50].

In section [I.3, the bifurcation point of a straight rod (that is without
writhe, see section [[.3in the same chapter) was identified. In terms of the
number of inserted turns, the bifurcation point is at n..;; = \/ﬁ L./nC
where L. is the contour length of the DNA, f the force applied to it, and
A and C are related to the bending and torsional persistence lengths (see
subsection [[.1) by A = kgTl,, C = kpTl,.

Since the DNA molecule is self-avoiding, the cheapest way to pro-
duce writhe is the plectoneme, a stretch of the chain branching off in a
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4. Plectonemes?

§=Lp/2, Ly/2 + Ligop

np = mRtan

nR sina

Figure 4.1: A plectoneme, along with the end loop, closing it, and the rest
of the straight DNA. The path describing the plectoneme is parametrized
by s, going from 0 to L,,/2 and from L, /2 + Lyyep t0 Ly, + Ligep. The gap
is filled by the end loop.

perpendicular direction from the remaining two tails. The two halves cir-
cle around each other in a helical path like an old fashioned telephone
wire and are connected by an end loop (see figure f.I). A system with
a sufficient number of turns n inserted has a plectoneme (plus the tails)
as its ground state. This transition typically happens before n.;. Since
the molecule is too small to directly observe plectoneme formation, their
presence is inferred by measuring the DNA end-to-end extension as a
function of n. These curves are called the turn-extension curves and the
increase in plectoneme length L, is observed as a linear decrease of the
end-to-end extension after the transition.
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4.1. The DNA shape

4.1 The DNA shape

For the shape of the molecule, as seen in figure f.1, we assume that the
tails are given by the homoclinic solutions (eqs. ([.31-[.32)) for t > t, =
0.80424. We restrict t since we “attach” the plectoneme at the non-zero
point of closest approach of the two tails, which exists only when t > t_.
At the point of closest approach the distance between the two tails can be
approximated by

0.3799

depin(£) = 22 ~0.00112 |. (4.1)

Therefore the radius of the plectoneme is given by R(t) = d.;:(t)/2. Its
path, on the other hand, can be parametrized by

(S +s)sina
r, = —R(t)cos ((50 +s %) for s€[0,L,/2]
R(t)sin ((s0 +5) C}g’(st;‘)

(So+ Ly + Ligop — S) sina

rp = R(t) cos ((50 +Lp +Lloop_5)%) for s € [0, Lp/Z],
—R(t)sin ((s0 + Ly + Ligop — s)%)
(4.2)

where a is plectoneme angle (see fig. f.1) and Ly, Ly, are the contour
lengths of the plectoneme and of the loop. The starting orientation de-
pends on the homoclinic solution and is set by s, chosen so that the tails
are attached in a continuous fashion to the plectoneme.

63



4. Plectonemes?

42 The writhe

We can first calculate the writhe of the plectoneme by using the tangent

of eq (F.2) and the %-axis in eq. ([.39):

1 cosa(sina—1)

w,(s) = o RO s €[0,1,/2],
1 cosa(sina+1) (4.3)
w,(s) = o R(D) sE[lL,/2+ 1,1, +1].

This expression neglects end loop and tails; by summing w, and w, one
arrives at an “average” writhe density

WO (a, ) = cosasina (4.4)
’ 2nR(t) '

This expression is very convenient, and it was normally taken to be the
writhe density of the plectoneme [#9]. However, when we computed the
writhe of the tailsin eq. ([.33), the reference axis was the Z-axis, parallel to
the force F, and not the X-axis as in the case of egs. (#.3). To be consistent
(the non-locality of the writhe forbids, in fact, to use different reference
axes in Fuller formula, eq. ([.39), for different sections of the curve) we
compute the writhe of the plectoneme with respect to the Z-axis, resulting
in

1 sinacosa

(A)b(S) = %WX

1

1+ cosacos ((s + so)%)

X [1— (4.5)

This expression is annoying as it is s-dependent. However, while the plec-
toneme grows, the writhe of the end loop changes, as it changes its orien-
tation. Thisloop is described by a space curvery = (r,(u), 7, (u), r,(w)),
u € [0, Lyoop], subject to the conditions, at its boundaries, ry(0) = r,(0)
and ry(Ligop) = Tp(Lioop). We also assume (unlike at the boundaries
between tails and plectoneme) that the curve is smooth between plec-
toneme and end loop.
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4.2. The writhe

Increasing the contour length by an amount 2s causes a rotation of
by an angle {(s) = s cos a/R(t) (see eq. (f.7))) about the %-axis, inducing
an s-dependent change in the writhe of the loop

1 f 1, 05 S Wy (W) — B Wy (W)

21 ), 1 —siné(s)t, (u) + cos &(s)t, (w)

1 fher L Sin E(s) (t, (Wit (W) — £, (Wi, (w)
27 J, 1= sin&(s)t, (u) + cos E(s)t,(w)’

eroop =

(4.6)

A change in the plectoneme contour length induces a differential change
of this writhe equal to

dWrigep cosa

ds  2nR@) " (47)

le 1, B0 sin (558 (5,00 00 — 008, 0)
u
0 (1 - sin( CI;’(S;) t,(u) + cos ( C;(St;") t (u))

L cosa) (t,(w)i t, (W)t
N cos( ())( (Wt (W) — t, (Wit (w))

0 (1 — sin (s%) t,(u) + cos ( Clg(st;") t (u))
_cosa o t,.(0)
mR() "~ 1 —sin (sc}ggg)tym) + cos( C;gg) t,(0)’

(4.8)

where we used the unimodularity of the tangent vector and its symmetry:
tx(0) = —ty(Lioop)» ty,2(0) = t, ,(Lioop)- Making use of the boundary
conditions we finally find

dWry,op cosasina

~ ) cosa)) ' A
= mRD < + cos a cos <(s0 +5) RO )) (4.9)

By adding this differential writhe density to the “bare” writhe density of
the plectoneme ((f.3)) (half of it to each strand) we recover the standard
writhe density of a plectoneme (f.4), but now with the added bonus that
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4. Plectonemes?

the remaining writhe of the closing loop is independent of the length of
the plectoneme. Since only in the end loop the antipodal points appear
along the homotopy, defined by the explicit formation of the plectoneme,
we can state that in this sense the writhe is additive:

Wr(t, @) = Wriyep(t) + L,0°(t, @), (4.10)

with Wry,,, and w given by ([.33) and (#.4).

4.3 Mechanical and electrostatic
energy

Starting point for the mechanical Hamiltonian of the system is eq. ([[.49).
Since the number of turns is experimentally controlled, we can write

L (A, C ,
Hsz ds|=t2—f-t, |+ 2n*— (n— Wr) (4.11)
. 2 L.

where the writhe Wr is given by eq. (#.10). Using the bending energy of
the homoclinic solution, eq. ([[.33), and the plectoneme path eq. (f.2)), we

arrive at

C
Ey=—f(Lc—L,) + Eigop + Edena + ZEZZ (m—wr)> (4.12)

B = L2054 (4.13)

bend — ~p 2 Rz(t) ' .
However, since many experiments are performed at low salt concentra-
tion, where the negatively charged DNA is less “screened”, electrostatic
interactions change the energy. First the bending persistence length is
renormalized according to the OSF theory [52, 63]:

K
L =1+ 10, (4.14)

66



4.3. Mechanical and electrostatic energy

where k™! is the Debye screening length and Q the Bjerrum length

2

_ q
Qs = 4rteye, kg T

K = +/8mQgn, (4.16)

where q is the elementary charge, €, the vacuum permittivity, €, the di-
electric constant and ng the number density of the salt molecules. At
T = 300K, Qg = 0.715nm and k = 0.1,/c,, where ¢ is the salt con-
centration in mM (milliMolar).

In the plectoneme there is another electrostatic effect: the two strands
of DNA repeal each other, resulting in an energetic contribution [6§]

(4.15)

> Us T paer) Z(cota) (4.17)

Egl = LpVeff7 KR(D)

Z(x) = 1 + 0.828x% + 0.868x*

if cota < 1, with v the effective charge density of the centerline of
a charged cylinder source of a Debye-Hiickel potential that asymptoti-
cally coincides in the small potential, far field, region with the non-linear
Poisson-Boltzmann potential of that cylinder with a given surface charge
(for DNA 2 e/0.34 nm, radius 1 nm).

To compute vqi and R™ as in figure f.2 we follow [53]. The radius R*
marks the breaking down of the linearized theory, as there the reduced
potential equals 1 [53]. The energy E ), changes therefore to

E° = E, + EY, (4.18)

where the superscript indicates that no thermal fluctuations are taken into
account up to now and where the persistence length should be taken as
in eq. (F.14).

A plectoneme will form when the energy E° has a global minimum for
L, > 0. Minimization of the energy shows that this transition point hap-
pens at n < ng... Moreover the angle « stabilizes between /2, where
Epena = 0, and /4, where Wr is maximized and thus n — Wr is mini-
mized.
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Figure 4.2: v and R* as a function of the salt concentration c;.

44 Fluctuations

The effect of thermal fluctuations is difficult to treat and complicated to
analyze. Without entering in the details, we will explain the origin of each
term, referring the reader to the specific papers for the details.

The first contribution from thermal fluctuations is the enhancement
of the electrostatic interactions in the plectoneme. There the thermal un-
dulations couple non-linearly with the electrostatic interactions [68]. As
a result the interactions are strongly enhanced. In fact assuming the fluc-
tuations to have a Gaussian distribution we can estimate their effect by
considering one strand of the plectoneme in the mean field potential of
the opposing strand. The undulations in the plectoneme are taken in two
directions, along the radius and the pitch. The radial direction is limited
by the exponent of E, in eq. (F.I7), —2kR(t), while in the pitch direc-
tion the limit is geometrical (see figure ff.1)) so that we will assume that the
standard deviation in that direction is fixed and equal to g, = mR(t) sin a.
Calling o, the standard deviation in the radial direction, the electrostatic
interaction becomes

E, = EQe* 77, (4.19)

The steep potential limits o, to = k~'/2. Here 0, is not present as it
only affects marginally the electrostatic energy [68]. Confining the DNA
in the plectoneme has also an entropic cost. In fact the polymer has a
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4.4. Fluctuations

lower number of configurations as it is restricted in the radial direction
by an harmonic potential, and in the pitch direction by a hard wall po-
tential (represented by the consecutive turn of the strand). Burkhardt [6]
computed the entropic contribution of such a confinement, but only for
the torsion-less case. Recently Emanuel [20] worked out the more diffi-
cult case where torque is present. The result is that two deflection lengths
appear, one for each confinement direction, 4,.,, = (P, af_p)l/ 3. The new
effective deflection length for the plectoneme as a whole is then

B, A2+ 2,03

A=2 4.20
A+ A,)(A7F + 22) (4.20)
which contributes to a confinement free energy equal to
3 -1 -1
E; = §kBT(/1r + ;1)L (4.21)

Moreover fluctuations inside the plectoneme reduce its contour length by
a factor [21]]

P = 1= -0y +4,) (4.22)

that in turn change the bending energy eq. (#.13) and the writhe density
of the plectoneme eq. (#.4) to

Ebend = El())endpgl (4'23)
w(a,t) = o°(a, t)p,. (4.24)

Outside the plectoneme, before the transition point, thermal fluctu-
ations also play a role. In fact, the straight solution J,¢ = 0 incurs in
finite deformation dvJ, dg on top of it. These deformations, in general, al-
ter the writhe of the chain. As a consequence, in a torsionally constrained
setup, the White relation eq. ([.38) implies that the twist in influenced by
fluctuations. In practice the torsional persistence length is rescaled to

C

CkgT
1+ 3237

CA) = (4.25)
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4. Plectonemes?

where A = \/A/f in this case. When computing the torsional energy we
should use C(A) instead of C. However there is no reason the A used in
the tails should be reused in the plectoneme. The correct way to do it, in
fact, is to use A from eq. (f-20) for the torsional energy of the plectoneme.
This results in the torsional energy of the system

w; +C(D) TW%) (4.26)
(Le—Ly) L, '
where Tw; and Twj are the twist values in the tails and in the plectoneme.
The linking number density in plectoneme, Tw;, and tails, Tw,, do not
need to be the same. Twist relaxation is fast, as is confirmed by experi-
ments [J]. Since the twist degree of freedom only couples globally, (by
means of the White’s equation), to the tangential degrees of freedom, we
can integrate out the twist fluctuations and simplify the model by equat-
ing the twist free energy densities:

Ep = 2m? (C(/l)

2

Cc(A) = C(Z)%. (4.27)
14

2
1
(Lc - Lp)z
We willuse Tw, /(L. — L,) = tw;, as one of the minimization parameters:
Tw; = tw,L, can be inferred from eq. (#.27). In principle, the end loop
should be treated separately from the tails, with yet another A. However
the end loop only affects marginally the straight chain entropic contribu-
tion [34], justifying the use of a unique A for tails and end loop. Therefore
when writing Tw; and Wr,,, (t) (see eq. ([.35)) we always mean the twist
and the writhe of tails and loop together.

When using Tw, /(L, — L,) as a minimization parameter, the length
of the plectoneme L, is given through White’s relation eq. ([[.38)

Lk = (Writhe + Twist) pjectoneme + (Writhe + Twist) i1
n = (w(a,t) +twy)L, + Wrigep + twy(Le — L) (4.28)
from which
n— Wrigep — Letwy

L, = . 4.29
P w(a,t) + tw; — tw, (4.29)
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4.5. Multi-plectoneme phase

Thermal fluctuations in the tails also modify, to lowest order, the — f L.
term in equation (F.12) to

. kT _ (D)
tails — <_f + T - 44 )( c p) (4-30)

and shorten the end-to-end distance by a factor p.,;; = 1 — AkzT /24
according to [A7].
The total energy is thus

Esingle = EC + ET + Eel + Ebend + Eloop + Etails (4-31)

4.5 Multi-plectoneme phase

From a purely mechanical point of view the energy cost of the end loop
and tails is so high that only one plectoneme will form in the system, its
length growing when increasing n. However the prominent role of ther-
mal fluctuations and entropy could increase the contributions of multiple
plectonemes, which act in this case as local minima. We call m the num-
ber of plectonemes, with total length L,, given by equation (f.29) with
Wrigop = MWTy4p. The total energy will be

E(m) = EC + ET + Eel + Ebend + mEloop + Etails (4-32)

Assuming that L,, grows faster than m, we can neglect E),,, in eq. ({.32).
This has the advantage that the minimization of the total energy with re-
spect to a, R(t), o, and tw, is m-independent. The partition sum is com-
puted with these values. We choose a hardcore repulsion between plec-
tonemes (for simplicity) and a cutoff A = 3.4 nm (for structural reasons)
to calculate]] the density of states. The resulting partition sum is [21]

Z =eFO 4 Z G,e 5 (4.33)
m=1
norn-1
_ (ptail (Lc —-L- p) - nLloop) Lp

Gm nl (n — 1) AmAP-1

(4.34)

'Removing the hardcore repulsion or changing the cutoffin a reasonable range affect
the curves below the experimental error.
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Figure 4.3: Turns-extension plots comparison between the theory and
experimental data from [5] for a DNA chain with contour length 600 nm.

where the upper limit is chosen so that L,, = 0. For long chains the dis-
tribution is strongly peaked around an average (m). There are 2 ways
the extension decreases with increasing linking number, through an in-
crease of plectoneme length and through an increase of the number of
plectonemes. At high salt concentrations the single plectoneme configu-
ration becomes the groundstate at finite plectoneme length. The jump as
seen in experiments [24, [13] is partly caused by the end loop, partly by the
finite size plectoneme. The nature of these configurations differs enough
from the former to speak of a multi-plectoneme phase (MP): they affect
the slope and the torque after the transition. To characterize the MP we
introduce the multi-plectoneme parameter

2
{ = exp |— eroop Eloop _ Af eroop/Lloop (4.35)
kpT \Wrpop w(a,t) w(a,t)

— EC + Eel + Ebend _ Etails
L, L.—L

Af

(4.36)
14

For { < 1 the experimental turn-extension plots and torques, are well
described by a single plectoneme whereas for { = 1, the slope is a result
of an increase of plectonemes with increasing n. The inset of Fig. .49
shows ( as a function of salt concentration for different tensions.
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Figure 4.4: How many plectonemes and do they make a difference?

4.6 Comparison to experiments

The predicted turn-extension plots of the model agree remarkably well
with experiments, see Fig. f.3. Our model has only two parameters, A
and C, both known to some extent from other experiments. The gen-
eral consensus for A is from 45 to 50nm kzT. For the numerics we took
A = 50nm kzT+ OSF [52] corrections. The value of C influences fore-
most the transition point. To fit the measurements its value ranges from
100 to 120 nm kzT. Only for a salt concentration of 20 mM, a lower
value of 90 nm k5T was needed to get the transition point right. Since the
plectoneme length starts at 0 at the transition, our approximation of not
treating the end loop separately is debatable. Detailed modelling of en-
tropic and electrostatic repulsion within the end loop might improve the
model, for example starting from [[7], although in the end the proximity of
the bifurcation point might invalidate a simple perturbation calculation.
For low salt concentrations, older models predict slopes too step [S]. As
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4. Plectonemes?

shown in Fig. §.4b the MP phase corrects this picture.
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(a) 750 nm DNA chain at 150 mM (b) 5600 nm DNA chain at 100 mM
ionic strength. Comparison be- ionic strength. Comparison be-
tween theory and torques directly tween theory and inferred torques
measured [24]. [A8].

Figure 4.5: Predicted versus measured (dashed lines) torque.

In the MP phase the torque of the system is not constant after the tran-
sition. This could explain the difference between torques measured in
optical tweezer experiments [24] and torques calculated using Maxwell
relations in a magnetic tweezer setup [#8]. The latter method assumes a
constant torque after the transition. However, in the MP phase our theory
predicts a non-constant torque. In Fig. .55 we show what our model pre-
dicts for the data presented in [#8]. To facilitate comparison with the orig-
inal paper, not the linking number, but the supercoiling density is used,
defined as the ratio of the linking number density to the linking density
of the two strands of free DNA. As can be seen in Fig. {.5H, the assump-
tion of constant torque underestimates the torque difference between the
high and low tension curves. Our model, however, correctly reproduces
the direct torque measurements of [24] (see figure f.5d).

A final consequence of the MP phase is the change in the dynamics of
plectonemes. Multiple plectonemes can change their length distribution
fast as twist diffusion is fast [9]. This makes a fast diffusion of plectonemes
possible also in the crowded environment of the plasmoid in bacteria or
through a dense chromatin fiber in eukaryotes. The implications might
be important, from cellular processes to transcription to segregation.
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Samenvatting

Gimli, het beroemde personage uit Tolkien’s meesterwerk, is zo klein als
de kleinste 10% van de volwassen wereldpopulatie. En toch is de totale
hoeveelheid DNA in een van zijn cellen, wanneer uitgestrekt, langer dan
bijna ieder mens. Dit feit is nog opmerkelijker wanneer we ons realiseren
dat zijn cellen niet groter zijn dan één miljoenste meter.

Wanneer dingen zeer klein worden, wordt de visualisatie van wat er
gebeurt sterk bemoeilijkt. Gelukkig lijkt de verdichting van DNA op de
verdichting die het “spul” dat we vinden in boeken ondergaat wanneer het
gedrukt wordt. Namelijk, zonder de stroom van woorden op te breken
in regels, pagina’s, boeken en boekenplanken, zouden we moeten joggen
tijdens het lezen. Hetzelfde principe geldt voor DNA: een mechanisme
is nodig om de genetische informatie op een efficiénte manier (zonder
“joggen” dus) uit het polymeer af te lezen.

Ik schrijf “het lezen van genetische informatie”, want DNA heeft nog
meer overeenkomsten met een boek: zoals boeken “informatie” bevatten,
bevat DNA de instructies (informatie dus) om eiwitten te produceren.
Dit is mogelijk dankzij de vier letters, ATCG, de voornaamste bouwste-
nen van DNA. De letters worden in drietallen gelezen, wat 64 mogelijke
combinaties oplevert. Elk van die combinaties zijn gekoppeld aan de 20
aminozuren, de bouwblokken van eiwitten.

De verdichting van DNA is echter niet eenvoudig, omdat deze mole-
cuul keten zich gedraagt als een semi-flexibel polymeer. Een polymeer
is een molecuul dat bestaat uit duizenden of miljoenen gelijke eenheden,
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de monomeren. In de meeste gevallen kunnen we de algemene eigen-
schappen van een polymeer beschrijven als een willekeurige wandeling
op een vierkant rooster (hoewel polymeren niet twee-dimensionaal zijn),
waarbij het exacte model niet van belang is: het hoge aantal monomeren,
en dus configuraties, maakt de details van de interactie tussen opeenvol-
gende monomeren irrelevant. De algemene interactie tussen monome-
ren is veel meer van belang. Bijvoorbeeld wanneer de monomeren elkaar
niet aantrekken en elkaar mogen overlappen, hebben we een “ideaal” po-
lymeer. In het geval dat de monomeren elkaar niet mogen overlappen, en
de monomeren elkaar niet aantrekken, spreken we van een “gezwollen”
polymeer, omdat de kwadratische eind-tot-eind afstand groter is dan in
het “ideale geval”. Aan de andere kant van het spectrum vinden we ineen-
gestorte polymeren, waar de monomeren elkaar aantrekken waardoor de
gemiddelde kwadratische eind-tot-eind afstand kleiner wordt. Voor leng-
tes die in dit proefschrift beschouwd worden, behandelen we het DNA als
een ideaal polymeer, alhoewel de monomeren elkaar niet kunnen over-
lappen. Deze vereenvoudiging is mogelijk omdat het DNA molecuul re-
latief stijf is op een lengte schaal die veel groter dan zijn eigen diameter.
De informatie over de richting van het molecuul gaat verloren na onge-
veer 50 nm, de buigings persistentie lengte. Bovendien bestaat er ook een
torsionele persistentie lengte, ® 100 nm; voorbij die lengte raakt de tor-
sionele staat van het molecuul verloren. DNA is ook te vergelijken met
een waterslang. Net zoals DNA verzet een waterslang zich tegen buiging
en torsionele vervorming. Ditis een krachtige analogie, omdat een water-
slang niets anders is dan een elastica: zijn 3D pad kan worden beschreven
door een draaiende tol, dankzij de bewegings-analogie van Kirchoff.

Met behulp van deze analogie kunnen we een eenvoudig model bou-
wen om de structuur van de chromatine vezel vast te stellen. De chroma-
tine vezel helpt het DNA te comprimeren, zodat het in de cel past. Deze
vezel bestaat uit nucleosomen en onbedekt DNA. De nucleosomen vor-
men een complex, opgebouwd uit DNA en eiwitten. Gebruik makend
van de Kirchoff analogie kunnen we de energie van onbedekt DNA vast
stellen, en daarmee de structuur van de chromatine vezel. De verdichting
van DNA is echter niet het complete verhaal. Om de genetische code te
lezen is het nodig om het DNA los te wikkelen van de nucleosomen. Dit
kan gedaan worden door het uitoefenen van kracht op de nucleosomen
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of door een combinatie van kracht en torsie. Het is daarom logisch om
aan het eind van dit proefschrift te kijken naar het effect van kracht en
torsie op onbedekt DNA. Dit is eerder theoretisch onderzocht, maar de
resultaten kwamen niet altijd overeen met experimentele data, vooral bij
lage zout concentraties. Uiteindelijk blijkt dat het ontstaan van meerdere
plectonemen, een geometrische configuratie van het molecuul dat effici-
ént torsiespanning kan opheffen, de sleutel is om theorie en experiment
op elegante wijze met elkaar in overeenstemming te brengen.
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