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Introduction

All general laws are imprecise and all precise
laws are banal.

It’s much better to have a complicated
Hamiltonian with a simple domain than a
simple Hamiltonian in a complicated domain.

I’ll leave a small hole in the proof, but a Ƨnite
one. For those of you not following the course
about logic, it means that it can be Ƨlled with a
countable amount of steps.

If I say 1 − 1 < 2, that’s true, but not really
optimal.

Gʎʆʓʈʆʗʑʔ Bʊʓʊʙʙʎʓ

Living in a natural world means we are surrounded by things that are
there regardless of our presence. We call these things “nature”. Amarked
difference between humans and animals is whether we accept this “na-
ture” as it is. Many animals build their homes by altering “nature”, but no
species knows which laws make it possible for the home not to fall apart.
Humans are different. If I went to physics, it was because the “how” was
far more interesting than any other question. Someone may object why
I didn’t became an engineer then. ƞere are two reasons for that. ƞe
Ƨrst is the one that I gave to my wife one of the Ƨrst time I met her. ƞat
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Introduction

happened when I was a freshman in physics, hence the slang:

Because, you see, every time a law of nature is conƧrmed by
experiments, I feel like the harmony of the universe is pre-
served. And this is, you know, cool.

I was probably referring to general relativity, a theory criticized by
many, if not most, physicists back then, proven to be correct by exper-
iments. Years later, a dear friend of mine, described the second reason
much better than I could possibly do, so the next words are his

In the modern world, the beauty and essence of physics tend
to be assigned to the endeavor of Ƨnding a single, simplest,
and unifying principle describing the root of everything we
can observe around us.г

With such apremise, the reader shouldbe surprised this thesis is about
biophysics, a lesser “physics” when compared to string theory and cos-
mology, where the above principles are feltmore strongly. To understand
why that is, we need a detour. We’ll havemany throughout the thesis, but
like every other tour, the intention is to have a good time while we’re at
it.

ƞe everyday operations taking place in our body strikingly resemble
the activity of a public library. Without much thinking we read books so
full with words that, when aligned on a single line of text, would easily
cover the distance between our home and our workplace. But instead
of jogging while reading, people were smart enough to condense text in
lines, lines in pages, pages in books and books in library shelves.

Books remain thus widely accessible and easily readable while being
compact. But what part of our organism has a similar behaviour? It turns
out that DNA, the molecule contained in the nucleus of each human cell
and carrying our genetic information, is also stored in an extremely com-
pact fashion. I am shorter (but thicker!) than the total DNA contained
in every one of my cells. No wonder then that nature had to Ƨnd a clever

гƞis is probably the line that separates physicists fromengineers: the single, simplest
and unifying principle.
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Introduction

way to compact DNA so that it Ƨts inside our cells’ nuclei (which are ap-
proximately one millionth of a meter wide). And things are more com-
plicated than with written words, because DNA is a semi-ƪexible, nega-
tively charged polymer, so it does not like to be bent, twisted or packed
together.

A Ƨrst hint of universality, the unifying principle, is already there. Poly-
mers are ubiquitous around us: DNA, proteins, cellulose, PVC and many
more. While theyhave themost disparate usages, their behavior is univer-
sally described by simple laws (see section 1.1). For example the entropy
makes a polymer behave like a spring, even though the two objects have
nothing else in common.

A second hint will come only later (in section 1.2): most of the shapes
thatDNAwill be assumed tohave arederivedby looking at themotionof a
pendulum. ƞis fascinating analogy was Ƨrst noted byGustav Kirchhoff in
1859. ƞe German physicist was not thinking at polymers though, but at
elastic lines, or elastica. To understand the elastica we can usemechanical
equilibrium, variational calculus and elliptic integrals. Moreover, besides
the pendulum, it is analogous to a sheet holding a volume of water and
the surface of a capillary [38].

Studying DNA then is not as narrow as it may seems. DNA as a poly-
mer, or as an elastica, means that we can re-use centuries old results to
study a relative newcomer in physics textbooks, without losing any gen-
erality. Andwithout knowing, or liking, anything about biology or chem-
istry.д

But let me present in more details what the thesis tries to accomplish.
With the aimof better understanding the compaction andde-compaction
ofDNAwewill Ƨrst, in chapter 1, introduce the reader to the basic physics
behindDNA.ƞen, in chapter 2 we present the driving forces in the equi-
librium of the chromatin Ƨber. ƞe chromatin Ƨber is a cylinder that re-
duces the space needed to store the genetic code. However, since we still
need to access the genetic code “trapped” in the chromatin, we will look
at how to (transiently) unwrap DNA from the nucleosomes, chromatin’s
core constituents, in chapter 3. Last, but not least, we will look at the
effects of torque and tension on naked DNA, in chapter 4.

дI can hear the sighs of relief from here.
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Cʍʆʕʙʊʗ1

In which we lay the foundations
for the rest of the thesis

ƞis is the course of Mathematical Physics,
where physical problems are treated in a
mathematical way, thus rigorous. ƞis could
cause pleasure or pain, depending on
individual inclinations.

Fʗʆʓʈʊʘʈʔ Fʆʘʘʻ

DNA is one of those objects that, in recent times, has become a buz-
zword, i.e. a word used outside its original contest oƫen in an inaccurate
manner and inappropriately.

To clean every bit of confusion out: plainly said, DNA, or deoxyri-
bonucleic acid, is a molecule carrying the necessary information to pro-
duce proteins. Proteins, in turn, are the fundamental bricks that consti-
tutes our body, alongwith water and, if your partner happens to be amar-
velous cook, fats (alas!).

Since proteins come in a great variety, the quantity of DNA contained
in our body shouldn’t surprise anyone. With the help of four so-called
nucleotides (bp), adenine (A), guanine (G), cytosine (C) and thymine (T),
or ATCG, which are always paired together into base pairs (A with G and
C with T) forming a double helix, DNA stores the genetic information.
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1. Foundations

Toproduce all the proteins present in our body, the base pairs are read
in groups of three, giving 64 possible combinations. ƞese sequences
are then translated into 20 amino acids, proteins building blocks; for the
mathematically more inclined reader, we note that the function translat-
ing between ATCG tuples and amino acids is surjective but not injective.

ƞere is also another occasion when the genetic code is read from
DNA, cell replication: the daughter cell needs to be identical to themother
cell. While replicating thus, the whole DNA molecule has to be read and
a new copy is assembled in place! If that does not seem remarkable, think
at the numbers involved: a two meters long molecule is being read and a
copy, also two meters long at the end, is created in a portion of the cell
whose diameter is about 5millionth of a meter.

If you are still unimpressed (at this point it’s safe to assume that you’re
a mathematician), this is the moment to tell you that DNA is negatively
charged and does not like to be bent, since it is

1.1 A semiflexible polymer?
When I Ƨrst heard physicists were studying DNA I immediately thought
at how experimentalists were having fun in their labs, trying to manipu-
late our genetic code to make us live forever. I could not imagine how
wrong I was: not only experimentalists were not having fun nor trying to
live forever, haunted by immortal in-laws, but none other than theoret-
ical physicists were busy day and night to catch the secrets of that small
molecule, so simple in its components, but so complicated when in ac-
tion. A DNAmolecule behaves in fact as a polymer [23].

A polymer is an object composed of thousands (or more) of identi-
cal or similar units, called monomers. ƞe monomers are connected to
each other through ƪexible bonds. ƞe thousand of monomers implies
that a huge number of conƧgurations are possible, each with approxi-
mately the same energy, regardless of the speciƧc kind of bond. ƞe num-
ber of conƧgurations hints at a dominance of the entropy in the polymer
behavior. ƞis, together with the independence from the speciƧc kind
of bond, means that any reasonable model can describe the polymer on
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1.1. A semiflexible polymer?

a1

a2

a
N

R

Figure 1.1: A drunk wanderer in a Dutch wood, i.e. a wood of equally
spaced and perfectly equal trees. Without an external force, there is a
high probability that the wanderer will walk randomly in the wood.

length scales much larger than the monomers’ dimensions. ƞe simplest
model to describe a polymer is

The random walk, or the drunk wanderer

Wedescribe the polymer as a sequence of monomers following a random
walk (RW) on a periodic square lattice. ƞe situation is analogous to a
drunk wanderer in a Dutch wood, as depicted in Ƨgure 1.1. Its end-to-
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1. Foundations

end vector is

𝐑 =
ே

෍
௜ୀଵ

𝐚௜ = 𝑏
ே

෍
௜ୀଵ

𝑎̂௜ (1.1)

where 𝑁 is the number of bonds of length 𝑏 and 𝑎̂௜ is their direction, in
this case either (±1, 0) or (0, ±1). ƞe randomness of the walk implies

⟨𝐑⟩ = 0

⟨𝐑ଶ⟩ = 𝑏ଶ ൾ
ே

෍
௜,௝ୀଵ

𝑎̂௜ ⋅ 𝑎̂௝ං = 𝑏ଶ൮ൾ
ே

෍
௜ୀଵ

𝑎̂ଶ௜ ං + ൾ
ே

෍
௜ஷ௝

𝑎̂௜ ⋅ 𝑎̂௝ං൲

= 𝑏ଶ ൾ
ே

෍
௜ୀଵ

𝑎̂ଶ௜ ං = 𝑏ଶ𝑁.

(1.2)

At Ƨrst, we would think that applying a force 𝑓 would change the end-to-
end vector to 𝐑 = 𝑏𝑁 ̂𝑓, i.e. a completely stretched polymer. However,
thinking at the drunkard analogy, it seems difficult that all his missteps
would disappear if we try to enforce a direction on him. Some detours
will still be present, even though with a different result than before. If
C2H5OH is the reason behind the drunkard resistance to force, entropy is
behind the polymer behavior.

To prove it, consider the probability for a RW to have an end-to-end
vector equal to 𝐑 = (𝑥, 𝑦, 𝑧)். If we denote the total number of RW’s by
𝑀 ≥ 1, the probability is given by how many RW’s end at 𝐑, divided by
𝑀. By the central limit theorem, stating that a sufficiently large number
of independent random variables is properly approximated by a Gaussian
distribution, the probability can be written as

𝑝(𝐑) ≃ const. 𝑁ିଵ/ଶ𝑒ି
ೣమ

మ⟨ೣమ⟩𝑁ିଵ/ଶ𝑒ି
೤మ

మ⟨೤మ⟩𝑁ିଵ/ଶ𝑒ି
೥మ

మ⟨೥మ⟩

= const. 𝑁ିଷ/ଶ𝑒ି యೃమ
మ್మಿ , (1.3)
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1.1. A semiflexible polymer?

where we used ⟨𝑥ଶ⟩ = ⟨𝑦ଶ⟩ = ⟨𝑧ଶ⟩ = 𝑏ଶ𝑁/3. ƞe entropy is then given
by the Boltzmann relation 𝑆(𝐑) = 𝑘஻ ln 𝑝(𝐑)𝑀, from which the free en-
ergy follows:

𝑆(𝐑) = 𝑆଴ −
3𝑘஻
2𝑏ଶ𝑁𝑅

ଶ

𝐹(𝐑) = 𝐸 − 𝑇𝑆(𝐑) = 𝐹଴ +
3𝑘஻𝑇
2𝑏ଶ𝑁𝑅

ଶ. (1.4)

ƞe free energy of a RWhas the same form ofHooke’s law, i.e. it describes
the small deformation of an elastic spring. For example applying a force
in the 𝑥̂-direction gives the end-to-end distance along 𝑥̂ through

𝑓 = d𝐹(𝐑)
d𝑥 = 3𝑘஻𝑇

𝑏ଶ𝑁 𝑥 = 𝐾(𝑇)𝑥 (1.5)

⟹

𝑥 = 𝑓𝑏ଶ𝑁
3𝑘஻𝑇

(1.6)

where𝐾(𝑇) is the temperature-dependent entropic spring constant of the
chain.

Equation (1.5) might seems artiƧcial since it gives results for 𝑥 > 𝑁𝑏
(the maximum extension the polymer reaches before breaking) and for
values of 𝑥 not belonging to the lattice. Moreover requiring a drunkard
to wander on a grid is quite ambitious. To solve these limitations we con-
sider the Ƭeely jointed chain, i.e. a chain with completely ƪexible joints.
Formally the chain is deƧned by {𝐑௜}, 𝑖 ∈ 1, … , 𝑁, 𝐑௜ = 𝑏𝑅̂௜ with 𝑅̂௜ a
random vector on the unit sphere (if we are considering a three dimen-
sional chain). In this case ⟨𝐑⟩ = 0 and ⟨𝐑ଶ⟩ = 𝑏ଶ𝑁 as in equation (1.2)
hinting at a universal behaviour for polymers. Applying a force 𝑓 along
the 𝑧̂-direction gives the Hamiltonian

𝐻 = −
ே

෍
௜ୀଵ

𝑏𝑓 cos 𝜗௜ (1.7)

where 𝜗௜ is the angle between 𝐑௜ and 𝑧̂.
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1. Foundations

ƞe partition function 𝑍 follows

𝑍 = න
ଶగ

଴
d𝜑ଵ…d𝜑ேන

గ

଴
d𝜗ଵ sin 𝜗ଵ…d𝜗ே sin 𝜗ே𝑒ିఉு

= (2𝜋)ேන
ଵ

ିଵ
d cos 𝜗ଵ…d cos 𝜗ே𝑒ఉ௕௙∑೔ ୡ୭ୱణ೔

= ቆ 4𝜋
𝛽𝑏𝑓ቇ

ே

sinhே 𝛽𝑏𝑓.

(1.8)

ƞe equivalent of equation (1.6) then is

⟨𝑧⟩ = ൾ෍
௜
𝑏 cos 𝜗௜ං =

1
𝛽 ቆ1𝑍

𝜕𝑍
𝜕𝑓ቇ =

1
𝛽
𝜕
𝜕𝑓 ln 𝑍

= 𝑏𝑁 ቆcoth 𝛽𝑏𝑓 − 1
𝛽𝑏𝑓ቇ ≃ ൝

௕మே
ଷ௞ಳ்𝑓 for 𝛽𝑏𝑓 ≪ 1
𝑏𝑁− ே

ఉ௙ for 𝛽𝑏𝑓 ≫ 1.

ƞeparadoxes of equation (1.6) are now gone, as ⟨𝑧⟩ < 𝑏𝑁, even for large
forces, and continuous values of 𝑧 are now possible as the polymer is not
restricted by a lattice.

Another interesting case is the freely rotating chainmodel, deƧned by
{𝐑௜} where each 𝐑௜ forms a Ƨxed angle 𝜗 with 𝐑௜ିଵ, as depicted in Ƨg-
ure 1.2, i.e. a vector should lie on the surface of a cone centered on the
previous vector. ƞis requirement implies

⟨𝐑௜ ⋅ 𝐑௜ାଵ⟩ = 𝑏ଶ cos 𝜗,

i.e. the vector will, on average, be exactly in the centrum of the cone,
whose height is 𝑏 cos 𝜗. For more consecutive vectors, by induction we
have

⟨𝐑௜ ⋅ 𝐑௜ାଶ⟩ = 𝑏ଶ cosଶ 𝜗;

⟨𝐑௜ ⋅ 𝐑௜ା௝⟩ = 𝑏ଶ cos௝ 𝜗. (1.9)
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1.1. A semiflexible polymer?

Figure 1.2: A section of the freely rotating chain. Each 𝐑 lies on the sur-
face of its own cone.

ƞis is enough to compute the equivalent of equation (1.2)

⟨𝐑ଶ⟩ =
ே

෍
௜,௞ୀଵ

⟨𝐑௜𝐑௞⟩ =
ே

෍
௜ୀଵ

ேି௜

෍
௝ୀି௜ାଵ

⟨𝐑௜𝐑௜ା௝⟩

≈
ே

෍
௜ୀଵ

ஶ

෍
௝ୀିஶ

⟨𝐑௜𝐑௜ା௝⟩ = 𝑏ଶ
ே

෍
௜
ቌ1 + 2

ஶ

෍
௝ୀଵ

cos௝ 𝜗ቍ

= 𝑏ଶ𝑁ቌ−1 + 2
ஶ

෍
௝ୀ଴

cos௝ 𝜗ቍ = 1 + cos 𝜗
1 − cos 𝜗𝑏

ଶ𝑁 ≡ 𝑏ଶୣ୤୤𝑁.

ƞe approximation used is acceptable because, thanks to equation (1.9),
the correlation decays exponentially for large 𝑗’s. Comparing the mean-
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1. Foundations

squared end-to-end distance of the threemodels presentedwe see a com-
mon scaling behaviour, i.e. ⟨𝐑ଶ⟩ ∼ 𝑁 (with a pre-factor depending on
the details of the model). As promised in the introduction, the knowl-
edge of the speciƧc polymers’ chemistry is not needed to understand it
behaviour: its mean-squared end-to-end distance always scales with𝑁.

What about DNA?

Up to now we treated monomers as points, without volume. Real poly-
mers, however, have a Ƨnite volume. ƞis Ƨniteness forbids the pres-
ence of two monomers at the same place (at the same time). ƞis is an
effect of the excluded volume interactions. As a consequence the mean-
squared end-to-end distance increases changing from ඥ⟨𝐑ଶ⟩ ∼ 𝑁ଵ/ଶ to
ඥ⟨𝐑ଶ⟩ ∼ 𝑁ଷ/ହ.

To derive the new scaling behaviour a variation to the RW model is
used, the self-avoiding walk (SAW). While similar to a RW, a SAW is
more difficult to solve, because the excluded volume interactions are long
ranged: pieces of the polymer separated by many monomers could still
overlap in a RW, and therefore need to be kept apart in a SAW.

Although DNA is a real polymer, for the length scales considered in
this thesis we can safely ignore excluded volume effects. In fact DNA is
half way in between a completely ƪexible polymer, for which we expect
strong excluded volume effects, and a stiff rod, difficult to bend and for
which excluded volume is only relevant over very long distances. Such
a polymer is called a semi-ƫexible polymer and is studied with the worm-
like chain framework (WLC).гƞeWLCmodel candescribe semi-ƪexible
polymers and, using a coarse grained approximation, also long strands of
DNA where the particular sequence of base pairs (bp) is ignored.

To see what is the threshold between the ƪexible and the stiff regimes
for a DNA molecule, we consider the energy needed to bend it. Within
the WLC model, the curvature 𝜅(𝑠) is used to quantify the bending en-
ergy. Here 0 ≤ 𝑠 ≤ 𝐿 is the arc length of the polymer with countour

гƞe framework was Ƨrst introduced in 1949 by Kratky and Porod [32].
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1.1. A semiflexible polymer?

length 𝐿. More speciƧcally

𝐸௣ =
𝐴
2 න

௅

଴
𝜅ଶ(𝑠)d𝑠 (1.10)

where 𝐴 is the bending modulus whose value (≈ 50 nm 𝑘஻𝑇) is experi-
mentally determined by measuring the energy needed to deform a por-
tion of DNA from the straight state to another state, with a well deƧned
𝜅(𝑠) (easy when 𝜅(𝑠) is constant). ƞe curvature 𝜅(𝑠) that minimizes the
energy is given, through the Euler-Lagrangian equations, by 𝜅̇(𝑠) = 0 i.e.
𝜅(𝑠) = 𝑚/𝐿,𝑚 constant; the resulting energy is 𝐸௣ = 𝐴𝑚ଶ/2𝐿; includ-
ing thermal ƪuctuations the equipartition theorem yields ⟨𝐸⟩ = 𝑘஻𝑇/2
so that ⟨𝑚ଶ⟩ = 𝐿𝑘஻𝑇/𝐴. Considering the orientation of the polymer be-
tween 𝑠 and 𝑠 + 𝑙 we can write

⟨𝐭(𝑠) ⋅ 𝐭(𝑠 + 𝑙)⟩ = ⟨cos 𝜅(𝑠)𝑙⟩ = ⟨cos𝑚ଶ⟩ ≈ 1 − 1
2⟨𝑚

ଶ⟩

= 1 − 𝑙
2
𝑘஻𝑇
𝐴

where 𝐭(𝑠) represent the tangent of the polymer at 𝑠. With the same rea-
soning between 𝑠 and 𝑠 + 2𝑙 using the independence of the bending be-
tween 𝑠 and 𝑠 + 𝑙, and between 𝑠 + 𝑙 and 𝑠 + 2𝑙

⟨𝐭(𝑠) ⋅ 𝐭(𝑠 + 2𝑙)⟩ = ⟨cos(2𝜅𝑙)⟩
= ⟨cos 𝜅𝑙⟩ଶ − ⟨sin 𝜅𝑙⟩ଶ

= (1 − 𝑙
2
𝑘஻𝑇
𝐴 )ଶ − 0.

By induction when 𝑛𝑙 = 𝐿 and 𝑛 → ∞we can write

⟨𝐭(𝑠) ⋅ 𝐭(𝑠 + 𝐿)⟩ = lim
௡→ஶ

ቆ1 − 𝐿
𝑛
𝑘஻𝑇
2𝐴 ቇ

௡

= 𝑒ି௅/ଶ௟೛
(1.11)

where 𝑙௣ ≡ 𝐴/𝑘஻𝑇 is the bending persistence length. ƞe interpretation of
𝑙௣ using equation (1.11) is that points 𝑙௣ apart along the chain have uncor-
related orientation. Equation (1.11) gives the mean-squared end-to-end
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1. Foundations

distance of a DNAmoleculeд

⟨𝐑ଶ⟩ = ൽቆන
௅

଴
𝐭(𝑠)d𝑠ቇ

ଶ

ඁ = න
௅

଴
d𝑠න

௅

଴
d𝑠ᇱ⟨𝐭(𝑠) ⋅ 𝐭(𝑠ᇱ)⟩

= න
௅

଴
d𝑠න

௅

଴
d𝑠ᇱ𝑒ି|௦ି௦ᇲ|/௟೛ = 2න

௅

଴
d𝑠න

௦

଴
d𝑠ᇱ𝑒ି(௦ି௦ᇲ)/௟೛ =

= 2𝑙ଶ௣ ቆ
𝐿
𝑙௣
+ 𝑒ି௅/௟೛ − 1ቇ (1.12)

≈ ൝𝐿
ଶ for 𝐿 ≪ 𝑙௣
2𝑙௣𝐿 for 𝐿 ≫ 𝑙௣.

(1.13)

When 𝐿 ≪ 𝑙௣ the polymer behaves as a stiff rod, where no bending takes
place, while when 𝐿 ≫ 𝑙௣ we recover the ideal chain result, ⟨𝐑ଶ⟩ ∼ 𝑁. We
can thus describe DNA at larger length scales as a randomwalk with step
size equal to 𝑙௣ ≈ 50nm (at room temperature).

Obviously at some point the excluded volume interactions will play
a role, but the disproportion between length and diameter of the DNA
molecule make the use of the RW justiƧed up to 𝐿 ≤ 5𝜇m. For further
details we invite the reader to buy a copy of the book about biophysics
authored by my supervisor.

Besides 𝑙௣, DNA has another persistence length, the torsional persis-
tence length, 𝑙௧ = 𝐶/𝑘஻𝑇 ≈ 100nm. Usually 𝐶 is called the torsional
modulus. As the origin of 𝑙௣ lies in the bending resistance, the origin of
𝑙௧ lies in the resistance to twist that DNA opposes when its twist deviates
from the natural valueе of 2𝜋/10 bp. ƞe total energy then results in

𝐻଴ =
1
2 න

௅

଴
d𝑠 ൥𝐴𝜅ଶ(𝑠) + 𝐶 ቆd𝜂d𝑠ቇ

ଶ

൩ . (1.14)

We stress that the twist d𝜂/d𝑠 in equation (1.14) is the twist exceeding
the natural twist.

дWe switch here silently to three dimensions. One can show that in this case the
persistence length is twice as short than in two dimensions, because the chain can bend
in two independent directions.

еWe use the word “natural value” because DNA is naturally twisted when relaxed.
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1.2. The Euler angles

Figure 1.3: An example of a ribbon.

Twist is easier to understand when we visualize DNA as a ribbon: the
centerline of DNA, 𝐫(𝑠), represents the axis of the ribbon, and with one
of the two strands, represented by 𝐫ଵ(𝑠), we completely determine the
ribbon geometry, see Ƨgure 1.3. ƞe two vectors are enough to compute
the curvature and the twist, and therefore the energy of the DNA chain.

1.2 The Euler angles
Starting from 𝐫(𝑠)we can conveniently represent DNA through theEuler
angles. Consider 𝐭(𝑠) = 𝐫̇(𝑠)/|𝐫̇(𝑠)|, 𝐧(𝑠), pointing towards 𝐫ଵ(𝑠), and
𝐦(𝑠) = 𝐧(𝑠) × 𝐭(𝑠). ƞe three vectors, 𝐭, 𝐧 and𝐦, are, respectively, the
tangent, normal and binormal of 𝐫(𝑠). ƞey form a coordinate system
that moves along the chain (hence the 𝑠 dependency).

Once the three vector at 𝑠 = 0 are speciƧed, 𝐭଴, 𝐧଴ and 𝐦଴, we can
deƧne three angles, 𝜑(𝑠), 𝜗(𝑠) and 𝜓(𝑠) such that 𝐭(𝑠), 𝐧(𝑠) and 𝐦(𝑠)
are given by a rotation of 𝜑(𝑠) around 𝐭଴ followed by a rotation of 𝜗(𝑠)
about the new 𝑛̂-axis, and Ƨnished by a rotation of𝜓(𝑠) about the new 𝑡̂-
axis. In other words in terms of the rotation matrices the transformation
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1. Foundations

matrix is⁴

𝑂(𝑠) = 𝑂𝐭ೞ(𝜓௦)𝑂𝐧ೞ(𝜗௦)𝑂𝐭బ(𝜑௦) (1.15)

where 𝑂௜(𝛼) represents a rotation of 𝛼 radians about the ̂𝑖-axis. ƞese
three angles are called the Euler angles. ƞrough them the vector 𝐭௦ can
be expressed as

𝐭௦ = (sin 𝜗௦ cos𝜑௦, sin 𝜗௦ sin𝜑௦, cos 𝜗௦)் (1.16)

and the Hamiltonian in equation (1.14) takes the form

𝐻଴ =
1
2 න

௅

଴
d𝑠 ൣ𝐴 𝐭ଶ௦ + 𝐶 (𝐮௦ × 𝐮̇௦ ⋅ 𝐭௦)ଶ൧

= 1
2 න

௅

଴
d𝑠 ቂ𝐴 ቀ𝜑̇௦

ଶ sinଶ 𝜗௦ + ̇𝜗௦
ଶቁ + 𝐶 ൫𝜑̇௦ cos 𝜗௦ + 𝜓̇௦൯

ଶቃ .
(1.17)

We deƧne here Δ𝜓௦ = 𝐮௦ × 𝐮̇௦ ⋅ 𝐭௦ related to the twist of the polymer by

𝑇𝑤 = න
௅

଴
d𝑠Δ𝜓௦

2𝜋 . (1.18)

Adding a force 𝐹 along the 𝑧̂-axis changes equation (1.17) to

𝐻 = 𝐻଴ − 𝐹න
௅

଴
d𝑠 cos 𝜗௦. (1.19)

Equation (1.19) is similar to the Hamiltonian of a symmetric spinning
top with a Ƨxed point on a gravitational Ƨeld. ƞe analogy is so powerful
that it is called, aƫer its inventor, theKirchhoffkinetic analogy. A complete
classiƧcation of its solutions exists (see [51]).

In the Kirchhoff analogy 𝜗௦ is the precession, 𝜑௦ the nutation and 𝜓௦
the rotation of the top.

Weoutline how to solve the system in the planar case (𝜑̇௦ = 0). When
𝜑̇௦ = 0 the Hamiltonian is

𝐻௣ =
1
2𝐴න

௅

଴
d𝑠𝜗̇ଶ௦ − 𝐹න

௅

଴
d𝑠 cos 𝜗௦ +

𝐶
2 න

௅

଴
𝜓̇ଶ
௦ . (1.20)

⁴From now on we use 𝜑௦ to indicate 𝜑(𝑠) (and similarly with other symbols, when
the notation does not create confusion).
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1.2. The Euler angles

ƞe angle 𝜓௦ has a trivial solution. Instead 𝜗௦ has, as Lagrangian,

ℒ = 𝐴
2 𝜗̇

ଶ
௦ + 𝐹 cos 𝜗௦ (1.21)

that can be interpreted as the Lagrangian of a pendulum. Depending on
the total energy the pendulum could be revolving or oscillating. ƞe La-
grangian remains as in equation (1.21), but the interpretation of the pa-
rameters changes. DeƧning 𝜗 = 0 to be the pendulum at rest and 𝜗 = 𝜋
the upside-down pendulum, the boundary condition 𝜗଴ = 0 yields

ℒ = 𝑀𝑙ଶ 𝜗̇
ଶ
௦
2 +𝑀𝑔𝑙 cos 𝜗௦. (1.22)

Figure 1.4: ƞe revolving pendu-
lum with the relevant boundary
conditions.

Figure 1.5: ƞe oscillating pen-
dulum with the relevant bound-
ary conditions. Here 𝛾 is half the
pendulum’s period.

If the total energy of the system 𝐸୲୭୲ is bigger than 𝐸୫ୟ୶ = 2𝑀𝑔𝑙 (the
maximum potential energy of an oscillating pendulum) then the pendu-
lum is revolving, otherwise it will oscillate. ƞe Lagrangian eq. (1.22)
gives

𝜗̈௦ = −𝑔𝑙 sin 𝜗௦ (1.23)

that can be rewritten as

ቆ𝜗̇௦2 ቇ
ଶ

= 𝑔
𝑙 ቆ𝑚 − sin 𝜗௦2 ቇ (1.24)
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where𝑚 is an integration constant. Multiplying by 2𝑙ଶ𝑀 gives the kinetic
energy on the LHS. When 𝜗 = 0 the total energy is purely kinetic and
equation 1.24 gives

𝐸୲୭୲ = 2𝑔𝑙𝑚𝑀
= 𝑚𝐸୫ୟ୶
⟶

𝑚 = 𝐸୲୭୲
𝐸୫ୟ୶

= ൝> 1 for 𝐸୲୭୲ > 𝐸୫ୟ୶ (revolving)
∈]0, 1[ for 𝐸୲୭୲ < 𝐸୫ୟ୶ (oscillating).

(1.25)

ƞis elegantly links𝑚 with the energy of the system, allowing for an im-
mediate physical interpretation of the equations. From eq. (1.24), calling
𝑔/𝑙 ≡ 𝜆ିଶ, we get

ቆ𝜗̇௦2 ቇ = √𝑚𝜆ିଵඨ1 −
1
𝑚 sin 𝜗௦2

dణೞ
ଶ

ට1− ଵ
௠ sinଶ ణೞ

ଶ

= d𝑠√𝑚𝜆 . (1.26)

To proceed we Ƨrst make a distinction for the boundary condition in the
two different cases. When the pendulum is revolving the conditions are
illustrated in Ƨgure 1.4 while the oscillating one is depicted in Ƨgure 1.5.
In the Ƨrst case integrating from 𝑠 = 0 to 𝑠 gives

න
ഛೞ
మ

଴

dణ
ଶ

ට1− ଵ
௠ sinଶ ణೞ

ଶ

= √𝑚
𝜆 𝑠.

ƞe integral results in the elliptic function F, whose inverse function is am,
so that

Fቆ 𝜗௦2 ቤ
1
𝑚ቇ = √𝑚

𝜆 𝑠 (1.27)

→
𝜗௦
2 = amቆ √𝑚𝜆 𝑠ቤ 1𝑚ቇ .
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1.2. The Euler angles

Using the Jacobi elliptic function sn deƧned as sn(𝑥|𝑦) ≡ sin(am(𝑥|𝑦)),
the well known identity cos 𝑥 = 1 − 2 sinଶ 𝑥/2 yields

cos 𝜗௦ = 1 − 2 snଶ ቆ √𝑚𝜆 𝑠ቤ 1
√𝑚

ቇ . (1.28)

ƞis is the solution for the revolving pendulum. Note that eq (1.27) gives
the 𝑠̄ at which 𝜗௦̄ = 𝜋 (upside-down pendulum) as a function of𝑚

𝑠̄ = Kቆ 1𝑚ቇ 1
√𝑚

𝜆.

When the pendulum is oscillating, starting from eq. (1.26) we Ƨnd

cos 𝜗௦ = 1 − 2𝑚 snଶ ൬ 𝑠𝜆ฬ𝑚൰ (1.29)

where we used the equality sn(√𝑚𝑥|𝑚ିଵ) = √𝑚 sn(𝑥|𝑚).
When the tangent vector is deƧned as in eq. (1.16), with 𝜑௦ = 0, its

path will be given by 𝑥௦ = ∫ sin 𝜗௦d𝑠, 𝑧௦ = ∫ cos 𝜗௦d𝑠. In Ƨgure 1.6 we
plot the resulting shapes for different values of𝑚. ƞe boundary between
the two cases,𝑚 = 1, is the homoclinic loop, which has ends alignedwith
the 𝑧̂-axis (i.e. in the force direction) and is described by

cos 𝜗௦ = 1 − 2 sechଶ 𝑠𝜆 . (1.30)

An interesting aspect of paths with ends aligned with the 𝑧̂-axis is that
they are, not without some efforts [51], also solvable in the non-planar
case, i.e. 𝜑௦ ≠ 0. ƞe solution, for 𝑡 ∈ [0, 1], is

cos 𝜗௦ = 1 − 2𝑡ଶ sechଶ 𝑠𝑡𝜆 (1.31)

𝜑௦ = arctan ቆ 𝑡
√1 − 𝑡ଶ

tanh 𝑠𝑡𝜆 ቇ +
ඥ1 − 𝑡ଶ 𝑠𝜆 . (1.32)

Ignoring the 𝐶-term, irrelevant now (but it will be included later), the
elastic and potential energy contributions follows from eq. (1.19) adding

19



1. Foundations

Figure 1.6: ƞe various orbits obtained through integration of eqs. (1.28–
1.30). ƞe plot for different𝑚 are not in scale.

up to

𝐸୪୭୭୮ = 2𝐹𝐿୪୭୭୮ (1.33)

𝐿୪୭୭୮ = න
ାஶ

ିஶ
d𝑠(1 − cos 𝜗) = 4𝜆𝑡 (1.34)

where 𝐿୪୭୭୮ is the length lost to the loop when compared to the straight
chain. Fuller’s equation, eq. (1.39) below gives the writhe of the path us-
ing the 𝑧̂-axis as reference

𝑊𝑟୪୭୭୮(𝑡) =
2
𝜋 arcsin 𝑡. (1.35)
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1.3. Twist and shout

1.3 Twist and shout
Tospeak aboutwrithe,weneed toƧrst address twistmore carefully. Twist
added or removed is only relevant when a polymer cannot relax the in-
serted turns, as in the case ofDNAheldwith amagnetic or opticalwrench.
ƞis is a typical experimental setupused to study thepolymer torsional re-
sponse. ƞe bead is attached to one end of the DNA, while the other end
is anchored to a surface. As the bead is turned, the polymer is over- or
under-twisted. In this case the Hamiltonian of equation (1.19) becomes

𝐻ఛ = 𝐻− 2𝜋𝑛𝜏ி (1.36)

where 𝑛 is the number of turns inserted by the beads and 𝜏ி is the torque
in thedirectionof the force and acts here as aLagrangemultiplier (number
of turns clamp).

Ignoring the natural twist of DNA (2𝜋/10 bp) we interpret 𝑛 as the
linking number. ƞe linking number indicates how two closed, oriented
curves are linked with each other. Abbreviated with 𝐿𝑘, it is an integer
normally fairly easy to compute for two curves that lie in the same plane,
except when crossing. Take in fact the curves 𝐴 and 𝐵 and examine the
pointswhere they cross eachother. For every crossing, use the right-hand
rule with your right foreƧnger alignedwith the direction of the curve that
passes above and your long Ƨnger aligned with the direction of the other.
If your thumb, stretched in a natural position, points up, then assign to
that crossing a+1, otherwise−1. DeƧne 𝑛ା as the sum of all+1’s and 𝑛ି
as the sum of all −1’s. ƞen 𝐿𝑘 = 𝑛ା + 𝑛ି. Since a picture goes a long
way, in Ƨgure 1.7 an examplewith two simple curves is depicted. Another
way to compute the linking number, especially useful when the curves do
not live on the same plane, is to use the Gauss integrals of the two closed
curves, i.e.

𝐿𝑘 = 1
4𝜋 ර

஺
ර
஻

𝐚̇(𝑠) × 𝐛̇(𝑡) ⋅ (𝐚(𝑠) − 𝐛(𝑡))
ห𝐚(𝑠) − 𝐛(𝑡)หଷ

d𝑠d𝑡. (1.37)

Since a DNA molecule can be interpreted as a ribbon, we take the two
curves 𝐫 and 𝐫ଵ (see Ƨgure 1.3) that deƧne the ribbon, and compute the
linkingnumber througheq (1.37). However, the energyof a polymerdoes
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not depend on 𝐿𝑘, but on its twist 𝑇𝑤 (see eq. (1.14)), experimentally dif-
Ƨcult to measure. Luckily White [70] found a relation, now going by its
name, that relates twist and linking number with the writhe𝑊𝑟

𝐿𝑘 = 𝑇𝑤 +𝑊𝑟. (1.38)

For closed curveswe can compute𝑊𝑟 through equation (1.37) in the limit
𝐛 → 𝐚. However equation (1.38) is of little help to compute the energy,
even if 𝐿𝑘 is experimentally controlled. In fact to compute 𝑇𝑤 (and thus
the energy), we still have to use the cumbersome equation (1.37) for𝑊𝑟.⁵

An alternativemethod is to calculate thewritheof a curvewith respect
to another, by using a relation provided by Fuller [25]:

𝑊𝑟஻ −𝑊𝑟஺ =
1
2𝜋 න

𝐭஺ × 𝐭஻ ⋅ ୢ
ୢ௦(𝐭஺ + 𝐭஻)

1 + 𝐭஺ ⋅ 𝐭஻
d𝑠. (1.39)

Here 𝐭஺,஻(𝑠) is the unit tangent vector for 𝐴, 𝐵. Both curves share the
same parameter 𝑠, one is deformable into the other in a continuous way
and the two tangents are never anti-parallel⁶. If they are antiparallel, the
denominator of equation (1.39) diverges and the integral gives the correct
answer mod 2.

Applying eq. (1.39) to “open” DNA molecules requires attention, as
the formula can only be applied when the curves are closed. However
Starostin [64] showed how to “close” the polymer by connecting its ends,
aligned with an axis at inƧnity, by using a geodesic on the tangent sphere.
A commonway tomake use of equation (1.39) then is by taking 𝐭஺ ∥ 𝐹 ∥ 𝑧̂
(i.e.𝑊𝑟஺ = 0) and 𝐭஻ = 𝐭; since the “closing” is the same, we only need
equation (1.39) when 𝐭஺ ≠ 𝐭஻.

ƞe fact that the curves are open explains why we identiƧed 𝐿𝑘with 𝑛
above. For a closed ribbon 𝐿𝑘 is Ƨxed and deforming it only changes𝑊𝑟
and𝑇𝑤, leaving 𝐿𝑘 unaffected. Howeverwhen the ribbon (polymer in our
case) is “open”, if we insert 𝑛 turns inside it, 𝑇𝑤 and/or𝑊𝑟 will increase,
making 𝐿𝑘 equal to 𝑛 (if it was 0 when 𝑛 = 0).

⁵To clarify: equation (1.37) can be solved in the limit 𝐛 → 𝐚, but the process is long
and error prone.

⁶More precisely they should be homotopic as non-intersecting space curves and the
tangent of the homotopy should never be anti-parallel to one of the end curves.
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Figure 1.7: An example of
two curves with 𝐿𝑘 = −4.

(A) (B)
Figure 1.8: An example where Fuller
equation can be fruitfully applied.

To further clarify these concepts, we can apply equation (1.39) to Ƨg-
ure 1.8: while curve A has zero writhe, curve B has some. ƞe com-
mon part of the two curves will not contribute to the integral of equa-
tion (1.39), since the cross product vanishes when 𝐭஺ = 𝐭஻. We restrict
thus the integral where 𝐭஻ differs from 𝐭஺. In the case of Figure 1.8 the two
tangent vectors are

𝐭஺ = (0, 0, 1)்

𝐭஻ =
𝜕
𝜕𝑠𝐫஻ =

𝜕
𝜕𝑠𝑟(sin 𝜋𝑠, − cos 𝜋𝑠, 𝜋𝑠 tan 𝛼)் . (1.40)

Renormalizing 𝐭஻ equation (1.39) gives

𝑊𝑟஻ −𝑊𝑟஺ = −𝑠∗(1 − sin 𝛼) (1.41)

where 𝑠∗ is the number of helical turns (𝑠∗ = 1 indicates one full turn,
𝑠∗ = 2 indicates two full turns, etc.).

We now rewrite equation (1.36) using equation (1.38)

𝐻ఛ = 𝐻− 2𝜋(𝑇𝑤 +𝑊𝑟)𝜏ி . (1.42)

Here 𝑊𝑟 does not depend on Δ𝜓௦: therefore using the Euler-Lagrange
equations for Δ𝜓௦ through equation (1.18), we Ƨnd that the twist rate is
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Figure 1.9: How proteins that enforce an angle on a polymer binds to
DNA.ƞe situation is analogous to the experiments performed in [18].

constant and equal to Δ𝜓௦ = Δ𝜓 = 2𝜋𝑇𝑤/𝐿. ƞis makes the torsional
energy equal to

𝐸் =
𝐶
2 න

௅

଴
ቆ2𝜋𝑇𝑤𝐿 ቇ

ଶ

d𝑠 = 2𝜋ଶ𝐶
𝐿 𝑇𝑤ଶ = 2𝜋ଶ𝐶

𝐿 (𝑛 −𝑊𝑟)ଶ (1.43)

1.4 DNA binding proteins.
An interesting application of the various path that DNA assumes in Ƨg-
ure 1.6 is the following: suppose we have a DNA molecule held with a
force 𝐹, with 𝑛௣ proteins bound to it. Each protein enforces a kink with a
certain angle 𝛼 on the DNA, as in Ƨgure 1.9. If we know the difference Δ𝐿
between the contour length of the molecule and its end-to-end distance
when it has 𝑛௣ proteins bound, we can estimate 𝑛௣ through

Δ𝑧𝑛௣ = Δ𝐿 (1.44)

whereΔ𝑧 is the length lost per protein in the force direction. ƞeproblem
is interesting because knowing how 𝑛௣ changes with the force is a fun-
damental step to understand the binding behavior of these proteins [18].
Calling 𝑙 the contour lengthof theDNAbetween consecutive proteins, we
use eq. (1.29) to Ƨnd a Δ𝑧௘ to be used in eq. (1.44). ƞe resulting length
lost per protein is

Δ𝑧௘ = 𝑙 − න
௦̄ା௟

௦̄
cos 𝜗(𝑠, 𝜆,𝑚)d𝑠 (1.45)
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for 𝑠̄ and𝑚 found through

cos 𝜗(𝑠̄ + 𝑙, 𝜆,𝑚) = cos 𝜗(𝑠̄, 𝜆,𝑚) = cos 𝛼 (1.46)

and cos 𝜗 given by eq. (1.29). ƞis approach means that we are “cutting”
the paths in Ƨgure 1.6 at the points where they are orientated in the 𝛼 di-
rection. If 𝑙, however, is large enough, the DNA between two proteins
will be approximately straight, and we can use the simpler eq. (1.30) in-
stead of eq. (1.29). In that case the length lost per protein is

Δ𝑧௛ = 2න
ஶ

௦̄
(1 − cos 𝜗௛(𝑠, 𝜆)) d𝑠. (1.47)

with cos 𝜗௛ given by eq. (1.30) and 𝑠̄ given by

cos 𝜗௛(𝑠̄, 𝜆) = cos 𝛼. (1.48)

ƞe relative difference between the two Δ’s, Δ𝑧௛ and Δ𝑧௘ turns out to be
lower than 20%, and thus acceptable, as long as 𝑙 > 𝜆. Using these ideas
in ref. [18], the numbers of bound crenarchaeal chromatin proteins Cren7
and Sul7 (for which the kink angles are known from molecular dynamics
simulation) were determined.

1.5 Buckling
When dealing with a water hose⁷ one source of continuous stress is the
coiling of the hose around itself. Pulling on it will hopefully uncoil it, but
eventually the hose will coil again.

A similar coiling happens with a DNAmolecule: when twisted, a cer-
tain torquewill be reached, causing the coiling of themolecule. ƞepoint
when a straight molecule becomes energetically unstable is the bifurca-
tion point. Its value can be determined as follows. ƞeHamiltonian of the

⁷For the Dutch readers: a water hose is a ƪexible tube utilized for watering plants;
widely used in countries where it does not rain every other day, it is practically unknown
in the Netherlands.
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system can be written as (see eqs. (1.17, 1.18, 1.19, 1.42)):

𝐻 =න
௅

଴
d𝑠 ቈ𝐴2 𝐭̇

ଶ
௦ +

𝐶
2Δ𝜓

ଶ
௦ − 𝐅 ⋅ 𝐭௦቉

− 2𝜋 ቆ𝑊𝑟(𝐭௦) + න
௅

଴
d𝑠Δ𝜓௦

2𝜋 ቇ 𝜏ி . (1.49)

If we choose 𝐅 ∥ 𝑥̂ and

𝐭௦ = (cos𝜑௦ cos 𝜗௦, sin 𝜑௦ cos 𝜗௦, sin 𝜗௦)் (1.50)

then eq. (1.49) changes to

𝐻 =12 න
௅

଴
d𝑠 ൣ𝐴 ൫𝜑̇ଶ

௦ cosଶ+𝜗̇௦൯ + 𝐶Δ𝜓ଶ
௦ ൧

− න
௅

଴
d𝑠𝐹 cos𝜑௦ cos 𝜗௦

− 2𝜋 ቆ𝑊𝑟(𝐭௦) + න
௅

଴
d𝑠Δ𝜓2𝜋 ቇ 𝜏ி

with

𝑊𝑟(𝐭௦) =
1
2𝜋 නd𝑠𝜗̇௦ sin𝜑௦ + 𝜑̇௦ cos𝜑௦ sin 𝜗௦ cos 𝜗௦

1 + cos𝜑௦ cos 𝜗௦
(1.51)

the writhe computed with Fuller’s equation (1.39) using 𝑥̂ as reference
axis. Since the twist rate, Δ𝜓௦, is constant in the number of turns clamp
case (see section 1.3) we can drop the Δ𝜓௦-term in eq. (1.51) when ana-
lyzing ƪuctuations d𝜑, d𝜗 on top of the straight solution 𝜑 = 0, 𝜗 = 0
(i.e. (1, 0, 0)்).

ƞe energetic contributions of ƪuctuations d𝜑, d𝜗 ≪ 1 sums up to

d𝐸 = න
௅

଴
𝑋்𝑇̂𝑋d𝑠 (1.52)

𝑋் = (d𝜑௦, d𝜗௦) (1.53)

𝑇̂ = 1
2 ቆ

−𝐴 ୢమ
ୢ௦మ + 𝐹 𝜏ி ୢ

ୢ௦
𝜏ி ୢ

ୢ௦ −𝐴 ୢమ
ୢ௦మ + 𝐹 ቇ . (1.54)
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1.6. Nucleosomes

Fourier-modes with wave-number 𝑘௠ = ඥ𝜏ଶி/2𝐴ଶ − 𝐹/𝐴 minimize the
determinant of 𝑇̂:

(det 𝑇̂)|௞೘ = 𝜏ி
4𝐴ଶ ቆ𝐴𝐹 −

𝜏ଶி
4 ቇ . (1.55)

For 𝜏ୡ୰୧୲ = 2√𝐴𝐹 the determinant changes sign, and the straight rod so-
lution becomes unstable. At this point, where 𝑛 = 𝑛ୡ୰୧୲ = 𝜏ୡ୰୧୲𝐿/2𝜋𝐶 =
√𝐴𝐹 𝐿/𝜋𝐶, the ground state, for an inƧnite long chain with tangents at
inƧnity aligned with the force 𝐹, shiƫs from the straight rod to a homo-
clinic solution (see section 1.2). As said above, we call this point the bifur-
cation point. ƞis point is independent from the force direction or from
the particular parametrization of 𝐭௦. In fact, in chapter 4 we will use this
results even though the force will be in the 𝑧̂-axis, with 𝐭௦ parametrized as
in eq. (1.16).

1.6 Nucleosomes
ƞe nucleosome core particle (NCP) (Ƨg. 1.10) is composed by 147 bp of
DNAwrapped≈ 1.7 turns along a leƫ-handed superhelicalwrappingpath
of 4.75 nm radius around an octamer of histone proteins. Each octamer
consists of four pairs of H2A, H2B, H3 and H4, called the four core his-
tones. ƞe shape of the NCP is similar to a wedge, i.e. a cylinder with the
two surfaces not parallel. ƞe diameter of the octamer is approximately
𝑎 = 7.5 nm, with an average height of 𝑏 = 6 nm. Since the radius of
the nucleosome is so small, the bending energy required for wrapping
is extremely high. However 14 binding sites at the octamer surface pro-
vide electrostatic interaction and hydrogen bonding with the DNA, mak-
ing the NCP stable with a net negative energy per binding site of about
∼ 1.5 ÷ 2𝑘஻𝑇. Indicating with 𝑠∗ the number of wrapped turns of DNA
around the NCP, the net adsorption energy density results in

d𝐸ୟୢୱ
d𝑠 = ൞

𝜀 − 𝜀௕ if |𝑠∗| ≤ 1
𝜀 − 𝜀௕ − 𝜀ୣ୪ if 1.67 ≥ |𝑠∗| > 1
−𝜀௕ − 𝜀ୣ୪ if |𝑠∗| > 1.67;

(1.56)
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1. Foundations

(a) Top view (b) Side view

Figure 1.10: ƞe geometry of the nucleosome [39].

Here 𝜀 is the pure adsorption energy density whereas 𝜀௕ accounts for the
DNA bending cost and 𝜀ୣ୪ for the electrical repulsion between the two
wrapped turns. ƞese quantities are estimated to be 𝜀 = 1.51𝑘஻𝑇/nm,
𝜀௕ = 0.75𝑘஻𝑇/nm and 𝜀ୣ୪ = 0.2𝑘஻𝑇/nm [46].

For every DNAmolecule in our cells, many nucleosomes are present,
forming a beads-on-a-string like structure (the nucleosomes representing
the beads). On average nucleosome are separated by 10−70 bp of linker
DNA. Summing the length of the linker DNAwith the length of the DNA
wrapped around the nucleosome gives the repeat length⁸ which can vary
from cell to cell (and from species to species).

To Ƨt inside the cell, the nucleosomes sequence fold into a Ƨber (see
Ƨgure 1.11a). ƞis partially explains how a negatively charged polymer of
twometers of contour length can Ƨt inside the cells’ nuclei: the positively
charged octamer offset the charge on the DNA, and the hydrogen bonds
help offsetting the bending energy required to compact the molecule.

⁸ƞe relation between repeat and linker length is straightforward: repeat length =
147 bp+ linker length.
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1.6. Nucleosomes

(a) A picture of the
chromatin Ƨberwith di-
ameter 𝐷. ƞe DNA
around each octamer is
omitted.

(b) ƞe nucleosome-footprint running
through the nucleosomes centers, hence
the 𝜋(𝐷 − 𝐴) dimension, obtained by
rolling out the cylinder of Ƨgure 1.11a on a
plane.

Figure 1.11: ƞe geometry of the chromatin Ƨber.

However many questions remain open. ƞis structure, with diam-
eter approximately equal to 𝐷 = 30 nm, is commonly called the chro-
matin ƨber. Its constituents, NCP’s and DNA, are known at atomic reso-
lution but the Ƨber itself remains poorly understood, despite more than
three decades of experiments. A wide range of models was put forward
to explain the experiments that can be divided in roughly two classes:
solenoid [22] and crossed-linker [74, 3]models. ƞe former class assumes
that consecutive nucleosomes along the DNA stack on top of each other,
while in the latter the nucleosomes sit on opposite sides of the Ƨber. Nei-
ther class predicts, however, the optimal Ƨber conformation and the ge-
ometry of the Ƨber, i.e. its diameter, is Ƨxed ad hoc. ƞe resulting insight is
then rather limited due to the huge number of possible conƧgurations and
hardly any experiments to distinguish between them. Since the ground-
breaking study of the Rhodes groups [55] there is, however, more to ex-
plain than a single diameter. In these experiments regular Ƨbers were re-
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Figure 1.12: A side
view of the nucleo-
some, showing the
precise meaning of 𝛼.
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Figure 1.13: ƞe diameters of the chromatin
Ƨber as presented in [55].

constituted by placing about 50 nucleosomes equally spaced onto a piece
of DNA. To space the nucleosomes the group used a positioning sequence,
i.e. a certain combination of ATCG. ƞe sequence used is called the 601
positioning sequence and the NCP have a higher affinity with it, meaning
that they are most likely to bind there than in other places. If the 601 se-
quences are equally spaced then there is a high probability that also the
nucleosomes will be equally spaced.

Varying the distance between the 601 sequences the Rhodes group
studied repeat lengths from 187 to 237 bp in steps of 10 bp. ƞe experi-
mental Ƨndings were surprising (Ƨgure 1.13): for the three shorter repeat
lengths, Ƨbers with 33 nm diameter were reported. Even more remark-
ably, for the larger three repeats thick Ƨbers, with a non-canonical 44 nm
diameter, were observed. ƞese Ƨndings point toward a discrete set of
optimal nucleosome conƧgurations that act as the main driving force for
Ƨber formation. ƞis leads to twoquestions: (i)which principle underlies
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1.6. Nucleosomes

that discrete set of optimal nucleosome arrangements? (ii)Why does the
rather stiffDNAdouble helix not affect the Ƨber diameterwhen the repeat
length is varied over a range of at least 20 bp for the 33 and 44 nm wide
Ƨbers respectively? ƞese two questions remain unanswered by the Ƨber
model proposed in [55] and by models built upon it, like reference [73],
where the Ƨber diameters are set ad hoc. In particular question (ii) re-
mains unanswered by the two-angle models that predict Ƨber diameters
that depend linearly on the DNA linker length (see for example refer-
ences [74, 60, 37, 31, 15]).

A recent paper [14] gives a possible answer to (i). ƞe authors start
by assuming that nucleosomes pack densely inside the chromatin Ƨber,
stacked on top of each other in a structure similar to Ƨgure 1.11. Each
nucleosome belongs to a ribbon that follows an helical path with radius
𝑅 = (𝐷 − 𝑎)/2 and pitch angle±𝛾.

In principle the nucleosomes could also stack side by side (rotating
the nucleosomes footprints of Ƨgure 1.11b by 90∘) as suggested in [55].
However NCP’s are know to spontaneously stack face to face [19] as a
consequenceof the short-range attractive interactionbetween their faces.

A dense footprint packing implies that the area of the cylinder onto
which the nucleosomes pack is equal to the total area of the footprints,
i.e.

𝜎𝑏𝑎 = 𝜋(𝐷 − 𝑎) (1.57)

where 𝜎 is the nucleosome line density (NLD). ƞe linear relation be-
tween the Ƨber diameter and 𝜎 can be experimentally veriƧed since 𝜎 is
a measurable quantity. In Ƨgure 1.14 we see how data from [55] Ƨt equa-
tion (1.57).

ƞepitch angle 𝛾 is related to the Ƨber diameter by requiring the num-
ber of ribbons to precisely cover the periphery of the Ƨber

𝜋(𝐷 − 𝑎) = 𝑎𝑁୰୧ୠ/ cos 𝛾. (1.58)

Without entering into the details, provided by [14], taking the three di-
mensional packing into account, the wedge angle 𝛼 (see Ƨgure 1.12) is
related to the pitch angle 𝛾 by
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Figure 1.14: A comparison between the experimental data in [55] and
equation (1.57).

𝛼 ≈ 2𝑏
𝐷 − 𝑎 (1 − cosଶ 𝛾) . (1.59)

Another conditions on the possible Ƨber structure stems from the linker
DNA.Denoting𝑁ୱ୲ୣ୮ the distance across ribbons between connected nu-
cleosomes, the necessary and sufficient condition for a regular backbone
winding (BW) — deƧned by (𝑁୰୧ୠ, 𝑁ୱ୲ୣ୮)— is the existence of two inte-
gers 𝑛 and 𝑘 such that

𝑘𝑁ୱ୲ୣ୮ − 𝑛𝑁୰୧ୠ = 1, 0 ≤ 𝑛 ≤ 𝑘 ≤ 𝑁୰୧ୠ. (1.60)

ƞe condition ensures that, aƫer 𝑘 steps and 𝑛 turns, neighboring rib-
bons are connected so that every ribbon is visited by the backbone. For
example, the BW (𝑁୰୧ୠ, 1) has consecutive nucleosomes in neighboring
ribbons, and it obeys equation (1.60) for every𝑁୰୧ୠ. Figure 1.16, instead,
represents BW (5, 1). As noted in [14] this approach covers all major
models for the Ƨber structure [28, 74, 72, 75, 41, 12, 60] i.e. the solenoid
(BW (1, 1) [22]), crossed-linker and interdigitatedmodels, includingnew
possibilities not considered previously.
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Figure 1.15: A plot of equation (1.59) and of 𝛼 ≈ 8∘. ƞe intersections
between the straight line and the curves mark the diameters compatible
with the measured value of 𝛼.

Reference [14] provides thus anunifying framework for the chromatin
Ƨber models presented in the past. ƞese models were so successful be-
cause, once they set the diameter of the Ƨber, they could predict their
NLD’s. However equation (1.57) implies a linear relationship between
the diameter of the Ƨber and the NLD meaning that setting the former
implies the latter: therefore those models lose their predictive power in
the dense-packing scenario.

To test the model we could use the connection that equations (1.58)
and (1.59) provide between the wedge angle, 𝛼 ≈ 8∘, a microscopic pa-
rameter independently veriƧed, the number of ribbons of the chromatin,
𝑁୰୧ୠ, and its macroscopic diameter, 𝐷, experimentally accessible. If the
dense-packing assumption is correct, the 33 and 44 nm diameters ob-
served should correspond to the measured 𝛼. ƞis is indeed the case, as
the plot of equation (1.59) in Ƨgure 1.15 shows: of the four possible diam-
eters compatible with 𝛼 ≈ 8∘ (for 𝐷 ≲ 80 nm) two are the one actually
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Figure 1.16: ƞe (5, 1) BW.

measured.

𝑁୰୧ୠ 5 6 7 8

𝐷 33 38 44 52

Table 1.1: Number of of nucleosome stacks,𝑁୰୧ୠ, in dense Ƨbers together
with their diameters in nm. ƞe diameters follow from the geometry of
the nucleosomes that are wedge shaped with a wedge angle of 𝛼 = 8.1∘.

Table 1.1 identiƧes, for each𝑁୰୧ୠ, the diameter that the Ƨber with that
number of ribbons should have to be consistent with the dense packing
assumption and with 𝛼 ≈ 8∘. However there is no information about the
sign of 𝛾, the positive or negative backbonewinding⁹ andwhich𝑁ୱ୲ୣ୮ the
observed Ƨbers have. Moreover the reason for the jump from 33 nm to
44 nm is still unanswered. Chapter 2 will satisfy the curious reader.

⁹ƞe sign of the backbone winding depends on whether, aƫer starting from nucleo-
some 𝑥 and visiting𝑁୰୧ୠ nucleosomes, we end up above or below nucleosome 𝑥. In case
above (below), the backbone winding has positive (negative) helicity.
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Cʍʆʕʙʊʗ2

The chromatin fiber

I’ve made the calculation at home. ƞat
doesn’t imply that the result is correct, but,
merely, that it tends towards being correct.

Gʎʚʘʊʕʕʊ ʉʊMʆʗʈʔ

ƞis chapter is a direct continuation of section 1.6. You really should
read it if you haven’t. ƞere we introduced the concept of dense pack-
ing of nucleosomes and used this concept to explain the results presented
in [55]. ƞe reader should always keep in mind that we assume that the
nucleosomes are densely packed. Low nucleosome line densities (NLD),
as typically observed for natural Ƨbers in vitro [4] and in situ [59] indicate
non-dense Ƨbers and are not considered in our current study.

2.1 Introduction
In this chapter we study the linker DNA more precisely. Previously we
presented the various structures compatiblewith themeasuredwedge an-
gle, but the role of the linker DNA remained unclear. Since bendingDNA
can require tens of 𝑘஻𝑇 of energy, we expect the linker DNA to play a
fundamental role in the chromatin Ƨber formation. Before continuing,
we introduce the linker histones H1/H5. ƞe Ƨrst and last 10bp of every
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2. The chromatin fiber

linker DNA (at the entry and exit point of the nucleosome, see Ƨgure 2.1)
are strongly bound to the globular domain of these histones [66]. ƞe
DNA that can be bent to go from one nucleosome to the consecutive one
is therefore given by the repeat length shortened by the length wrapped
around the nucleosome (147 bp) and the onebound to the linker histones
(20 bp). When considering a repeat length of 207 bp the linker DNA is
therefore only 40 bp. If these 40 bp have to connect nucleosomes in two
consecutive ribbons, for nucleosomes in the same plane, their bending
energy alone would lie in the 50 𝑘஻𝑇 range — even if one does not en-
force a particular DNA entry-exit angle at the nucleosome.

Such energies would clearly overrule the stacking energy, the energy
gain from putting one nucleosome on top of another, that has been esti-
mated from chromatin Ƨber stretching experiments [11], theory [60] and
simulations [42] to be on the order of 3 𝑘஻𝑇.

Figure 2.1: Half nucleosome
with the nucleosomal DNA
(red), the stem (orange), and
the linker histone (green). Here
𝑟௛ = 3.75nm and 𝛽 = 0.33𝜋.

Figure 2.2: A cartoon of the nu-
cleosome from another perspec-
tive. For simplicity, the linker hi-
stone is omitted. x and y are the
distances between the centerline
of the DNA and the dyad axis of
the nucleosome.

Here we demonstrate how to solve this problem. Keeping the dense
nucleosomal packing intact, the nucleosomal stacks can be shiƫed “out-
of-register” in away that reduces the elastic energy per linker to about one
𝑘஻𝑇 without changing the stacking energy. ƞe predictions of our model
— based only on geometrical constraints and DNA elasticity — agree re-
markably well with the experimental data from ref. [55]. Our model ap-
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plies to dense Ƨbers that only form for perfectly spaced nucleosomes but
not for native Ƨbers like in ref. [71]. Also Ƨbers with regularly spaced nu-
cleosomes were excluded if the linker length was too short [58, 56], the
total number of nucleosomes too small [17, 58, 61, 33, 27], or if therewere
no linker histones present [61, 16, 58].

2.2 Results
Since the elastic energy of the DNA is quite sensitive to the distance be-
tween two nucleosome, we discuss in detail the geometry of the nucleo-
some. Figure 2.1 shows a top view of a nucleosome half. ƞe DNA exits
the wrapped part to the leƫ. ƞe linker histone, close to the entry-exit
point, binds the two DNA linkers together forming a stem region [66].
ƞe tip of the stem has a distance 𝑟 = 𝐷/2 − 𝑎 + 𝑧 from the centerline
of the Ƨber. If the centerline of the DNA is shiƫed from the dyad axis of
the nucleosome by an 𝑥- and 𝑦-offset (see Ƨgure 2.2), the distance 𝑑 that
a linker has to span to connect two consecutive nucleosomes is

𝑑(Δ,𝑁୰୧ୠ, 𝑁ୱ୲ୣ୮) = ቊΔᇱଶ + 2𝑟ଶቈ1− cos ቆ2𝜋
𝑁ୱ୲ୣ୮
𝑁୰୧ୠ

+ Δᇱ tan 𝛾
𝑅 − 2𝑥

ᇱ

𝑟 ቇ቉ቋ
భ
మ

(2.1)

with

Δᇱ(𝛾) = Δ + 2𝑦ᇱ sign(Δ) sign(𝛾),
𝑥ᇱ(𝛾) = ඥ(𝑥ଶ + 𝑦ଶ) cos(𝛿 + 𝛾),
𝑦ᇱ(𝛾) = ඥ(𝑥ଶ + 𝑦ଶ) sin(𝛿 + 𝛾).

In these equations Δ is the vertical offset between the two nucleosomes
and 𝛿 = tanିଵ 𝑦/𝑥. Note that 𝛾 and 𝑅 in equation (2.1) depend on 𝑁୰୧ୠ
[14].

ƞe derivation of equation (2.1) is quite simple if we deƧne the cen-
terline of any ribbon to be described by

𝐫(𝑠) = ቈ𝑟 cos ቆ𝑠sin 𝛾𝑅 + 𝜗௜ቇ , 𝑟 sin ቆ𝑠
sin 𝛾
𝑅 + 𝜗௜ቇ 𝑠 cos 𝛾቉ (2.2)
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with𝜗௜ = 𝑖2𝜋𝑁ୱ୲ୣ୮/𝑁୰୧ୠ, 𝑖 = 0,…𝑁୰୧ୠ−1. Note that𝑅 = (𝐷−𝑎)/2 since
the pitch of the ribbon depends on 𝑅 instead of 𝑟. Taking into account
the correction due to the 𝑥-, 𝑦- and 𝑧-offsets as in Ƨgures 2.1–2.2 we Ƨnd
equation (2.1).

(A)

(B)
Figure 2.3: ƞe 5 ribbon Ƨber rolled out in a plane, omitting the wrapped
DNA in the Ƨgure for clarity. A) A constant vertical offset 𝑏 cos 𝛾/𝑁୰୧ୠ
between connected nucleosomes (e.g. 𝐴-𝐵) leads to highly bent linkers.
B) A zig-zag geometry with vertical offsets Δ↑ for 𝐴-𝐵 and Δ↓ for 𝐵-𝐶 can
have nearly straight DNA linkers, except close to the entry/exit points
where we assume denaturation. Note that the Ƨber connectivity does not
change from a) to b) and that the 𝑍-axis indicates here the axis of the Ƨber
and is not related to the 𝑧 in Ƨgure 2.1.

ƞe vertical offset Δ is not a free parameter. Starting from some ar-
bitrary nucleosome aƫer 𝑁୰୧ୠ steps every ribbon has been visited once
and the DNA ends up at the starting ribbon, just one nucleosome above
or below. ƞe sum of all the 𝑁୰୧ୠ offsets between the connected ribbons
must equal ℎ = ±𝑏 cos 𝛾 where 𝑏 = 6 nm is the height of a nucleosome
and ℎ its height projected on the Ƨber axis. ƞe sign of ℎ determines the
helicity of the linker path. We choose the geometry such that a positiveℎ-
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value leads to a positive helicity. ƞe most obvious choice is Δ = ℎ/𝑁୰୧ୠ
for every vertical offset. But, as mentioned above, this would increase
the bending energy too much, making the stacking of nucleosomes too
costly. However, a vertical offset alternating between positive and nega-
tive values (still addingup toℎ aƫer one round) circumvents this problem.
Starting from a Ƨber where the offsets are uniform and the linkers highly
bent, see Ƨgure 2.3A, one can arrive, by shiƫing stacks up and down, at a
conformation where the linkers are almost straight, see Ƨgure 2.3B.

Before computing the energies we assume that a small DNA portion
at the point where it enters/exits the linker histone is denaturated. ƞis
allows the linker DNA to point in any direction and to twist without fur-
ther cost. Obviously the denaturation comes at some cost, typically about
1 − 3𝑘஻𝑇 per base pair [57]. As a few base pairs need to be denatured,
this might cost about 10𝑘஻𝑇 in total. We justify this assumption by the
fact that the resulting elastic energy per linker is substantially reduced,
namely by several tens of 𝑘஻𝑇. We furthermore speculate that the linker
histonemight facilitate the formation of the denaturated region, lowering
its free energy cost. Recent experiments showing how the linker histone
enhances the conformational ƪexibility of theDNAat the entry/exit point
of the nucleosome [62] might support this idea.

Since the DNA freely rotates and twists at the nucleosome entry/exit
points it assumes a planar shape. Its optimal energy is given by Ƨnding the
minimum of

𝐸 = න
௟

଴

𝐴
2 𝜉̇

ଶ(𝑠) (2.3)

where 𝜉(𝑠) represents theEuler angle parametrizing the linkerDNAand 𝑙
is the length of the linkerDNA.ƞedistance between entry and exit point
is given by

𝑥(𝑙) − 𝑥(0) = න
௟

଴
cos 𝜉(𝑠)d𝑠 = 𝑑 (2.4)

with 𝑑 given by equation (2.1). ƞis end-to-end distance clamp can be
incorporated as a Lagrangemultiplier, so that theminimization of the en-
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ergy has to be done with the Lagrangian

𝐿 = 1
2𝐴

̇𝜉ଶ(𝑠) + 𝜇 cos 𝜗(𝑠);

the Euler-Lagrange equations give

𝐴𝜉̈(𝑠) = −𝜇 sin 𝜗(𝑠)
𝐴
2
d
d𝑠(

̇𝜉)ଶ = 𝜇 d
d𝑠 cos 𝜉;

integrating gives (𝑚ଵ is an integration constant)

𝐴
2

̇𝜉ଶ = 𝜇 cos 𝜉 + 𝑚ଵ

= 𝜇 − 2𝜇 sinଶ 𝜉2 + 𝑚ଵ

→

ቆ
̇𝜉
2ቇ

ଶ

= 𝜇
𝐴(𝑚 − sinଶ 𝜉2)

with𝑚 = (1 +𝑚ଵ/𝜇)/2. It is possible to rewrite this as an integral (only
up to 𝑙/2, since the solution is symmetric)

න
ణ(௦/ଶ)/ଶ

క(௟/ଶ)/ଶ

d𝜉/2
ට1− ଵ

௠ sinଶ ణ
ଶ

= ට𝜇𝑚𝐴 ቆ𝑠 − 𝑙
2ቇ . (2.5)

ƞe solution is symmetric, with entry and exit angle opposite but ar-
bitrary and 𝜉(𝑙/2) = 0. Equation (2.5) becomes

Fቆ 𝜉(𝑠)2 ቤ 1𝑚ቇ = ට𝜇𝑚𝐴 ቆ𝑠 − 𝑙
2ቇ

𝜉(𝑠)
2 = amቆට𝜇𝑚𝐴 ቆ𝑠 − 𝑙

2ቇቤ
1
𝑚ቇ

sin 𝜉(𝑠)2 = snቆට𝜇𝑚𝐴 ቆ𝑠 − 𝑙
2ቇቤ

1
𝑚ቇ
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cos 𝜉(𝑠) = 1 − 2 snଶ ቆට𝜇𝑚𝐴 ቆ𝑠 − 𝑙
2ቇቤ

1
𝑚ቇ

cos 𝜉(𝑠) = 1 − 2𝑚 snଶ ቆ 1𝜆 ቆ𝑠 −
𝑙
2ቇቤ𝑚ቇ (2.6)

𝜉(𝑠) = arccos ቆ1 − 2𝑚 snଶ ቆ 1𝜆 ቆ𝑠 −
𝑙
2ቇቤ𝑚ቇቇ (2.7)

with 𝜆 = (𝐴/𝜇)ଵ/ଶ. Here F is the elliptic integral of the Ƨrst kind, am its
inverse and sn = sin am. Equation (2.6) enables us to compute

𝑥(𝑠) = −න
௦

௟/ଶ
cos 𝜉(𝑠)d𝑠 = (𝑠 − 𝑙

2) − 2𝜆 E(am((2𝑠 − 𝑙)/2𝜆|𝑚)|𝑚).

(2.8)

with E the elliptic integral of the second kind.
ƞe derivative of 𝜉(𝑠) at 𝑠 = 0 should also be 0, since the ends are

free. ƞis gives, using equation (2.6)

𝜉̇(𝑠)ห௦ୀ଴ =
2√𝑚
𝜆 cn((2𝑠 − 𝑙)/2𝜆|𝑚)ห௦ୀ଴

= 2√𝑚
𝜆 cn(𝑙/2𝜆|𝑚) = 0.

ƞerefore, for the periodic properties of cn (cn = cos am)

𝜆 = 𝑙
2K(𝑚)(2𝑛 + 1), 𝑛 ∈ ℕ. (2.9)

Plugging this into Eq. (2.8) yields

𝑥(𝑠) =ቆ𝑠 − 𝑙
2ቇ−

𝑙
K(𝑚)(2𝑛 + 1) Eቆam ቆቆ2𝑠𝑙 − 1ቇ𝐾(𝑚)(2𝑛 + 1)ቤ𝑚ቇቤ𝑚ቇ ;

(2.10)
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2. The chromatin fiber

here K(𝑚) = F(𝜋/2|𝑚). Equation (2.4) gives

𝑥(0) = − 𝑙
2 − 𝑙

K(𝑚)(2𝑛 + 1) E ൫am ൫−𝐾(𝑚)(2𝑛 + 1)ห𝑚൯ห𝑚൯ = 𝑑
2 .

(2.11)

Once the linker length 𝑙 and the distance between entry/exit point 𝑑
are known, choosing the desired 𝑛 (as in eq. (2.9)) we solve Eq. (2.11)
numerically to Ƨnd 𝑚(𝑑, 𝑙). Once found, it can be used to compute the
energy. Plugging infact ̇𝜉 from Eq. (2.7) in Eq. (2.3), taking into account
Eq. (2.9), results in

𝐸(𝑑, 𝑙) = 2න
௟/ଶ

௦

𝐴
2

̇𝜉ଶ(𝑠)d𝑠ห௦ୀ଴

= −ቆ𝐴8K(𝑚)𝑙ଶ 𝑙 E ቆamቆ (2𝑠 − 𝑙)
𝑙 K(𝑚)ቤ𝑚ቇቤ𝑚ቇቇ

௦ୀ଴

− ቆ𝐴8K(𝑚)𝑙ଶ (1 − 𝑚)(𝑙 − 2𝑠) K(𝑚)ቇ
௦ୀ଴

= 8𝐴K(𝑚)
𝑙 ൬E ൬ 𝜋2ฬ𝑚൰ − (1 −𝑚)K(𝑚)൰ (2.12)

where the explicit dependency of𝑚 on 𝑑 and 𝑙 has been omitted for sim-
plicity.

From eq. (2.12) we can calculate the average energy per linker DNA,
𝐸௟({Δ௜}) = ∑ே౨౟ౘ

௜ୀଵ 𝐸(Δ௜ , 𝑙)/𝑁୰୧ୠ. Considering the stacking energy,𝐸ୱ୲ୟୡ୩ ≈
−3𝑘஻𝑇, this leads to the total energy of the Ƨber per nucleosome:

𝐸௟({Δ௜}, 𝑛) = 𝐸௟({Δ௜}) + 𝐸ୱ୲ୟୡ୩
𝑛 − 𝑁୰୧ୠ

𝑛 . (2.13)

Here 𝐸ୱ୲ୟୡ୩ is multiplied by a factor that accounts for a Ƨnite size effect.
For a sufficiently small number 𝑛 of nucleosomes, Ƨbers with less ribbons
might be favored because they have less end nucleosomes. When com-
paring our model to experimental data we account in our calculations for
this Ƨnite size effect.

Assuming that every Ƨber seen in the experiments correspond to the
energetically most favorable geometry, we numerically minimize the to-
tal energy per nucleosome, eq. (2.13), with respect to {Δ௜}, 𝑁୰୧ୠ and𝑁ୱ୲ୣ୮.
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2.2. Results

For each set we have to consider four cases since the ribbons and the link-
ers canbe right- or leƫ-handed, independent fromeachother. For an even
number of ribbons the number of positive vertical offsets is the same as
the number of negative ones. For an odd number of stacks and a positive
(negative) helicity of the linker backbone, the number of positive vertical
offsets exceeds the number of negative offsets by one (minus one). More-
over, for a given set of Δ௜ that minimizes the energy, offsets with the same
sign have equal values.

𝑁୰୧ୠ 5 6 7 8

𝐷 33 38 44 52

Table 2.1: Number of of nucleosome stacks,𝑁୰୧ୠ, in dense Ƨbers together
with their diameters in nm. ƞe diameters follow from the geometry of
the nucleosomes that are wedge shaped with a wedge angle of 𝛽 = 8.1∘.

𝑛 52 61 47 55 66 56
𝑟௟ (bp) 187 197 207 217 227 237

𝐸௟ (𝑘஻𝑇 ) -1 -1.8 -1.4 -1.7 -2 -1.8
Δ↑(𝑛𝑚 ) 2.2 5.9 7.7 11.2 12.6 15.1

Table 2.2: Optimal Ƨbers for given number 𝑛 of nucleosomes and repeat
length 𝑟௟ chosen as in the experiment [55]. ƞe energy 𝐸௟ per linker,
eq. (2.13) with 𝐸ୱ୲ୟୡ୩ = −3𝑘஻𝑇, and the positive vertical offset Δ↑ are
presented for the case (𝑥, 𝑦, 𝑧) = (2.5, 0.5, 0.1) nm.

ƞe dense Ƨbers considered in our minimization are summarized in
table 2.1. We only account for the case𝑁ୱ୲ୣ୮ = 1 since for any𝑁ୱ୲ୣ୮ > 1
one has strong steric interactions between the linkers. Also in the case
𝑁ୱ୲ୣ୮ = 1 overlap between linkers can occur when the vertical offsets
become too large. We consider in our minimization only allowed conƧg-
urations. Having set 𝑁ୱ୲ୣ୮ = 1 we have — for a given helicity of the rib-
bons and of the backbone — only one remaining degree of freedom, the
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2. The chromatin fiber

amount by which the ribbons are shiƫed with respect to each other. ƞe
energies per linker for inƧnite Ƨbers with 𝐸ୱ୲ୟୡ୩ = −3𝑘஻𝑇 and (𝑥, 𝑦, 𝑧) =
(2.5, 0.5, 0.1) nm are displayed in Ƨgure 2.5 in one bp steps between 177
and 237 bp repeat length. We show the energies for all possible numbers
of ribbons. Curves for given 𝑁୰୧ୠ-values are not smooth since the opti-
mal helicity varies with the repeat length, see also Ƨgure 2.4. Note that
for the chosen (𝑥, 𝑦, 𝑧) -values there is no difference in structure between
the inƧnite Ƨbers and the Ƨnite ones from Ƨgure 2.4. ƞe only role of the
stacking energy is to make the energies negative, and therefore the Ƨber
stable. Changing its value produces only a vertical shiƫ in Ƨgure 2.5 (up
to Ƨnite size effects).

D (nm)

rl (bp)

33

44

38

187 197 207 217 227 237

−−

+++

+

Figure 2.4: Fiber diameter as function of repeat length: experi-
mental data [55] in black, our theoretical prediction for (𝑥, 𝑦, 𝑧) =
(2.5, 0.5, 0.1) nm in blue.

ƞe results for the six experimentally studied Ƨbers [55] are presented
in Ƨgure 2.4 along with table 2.2 for (𝑥, 𝑦, 𝑧) = (2.5, 0.5, 0.1) nm. Since
thesemicroscopic values are not known precisely we performed themin-
imization for a range of values (in nm) 0 < 𝑥 < 3.5, 0 < 𝑦 < 2.5 and
0 < 𝑧 < 1. For every set of (𝑥, 𝑦, 𝑧)-values that gives the blue crosses in
Ƨgure 2.4, the length of DNA in contact with the linker histone is about
10 bp (i.e., 20 bp per nucleosome), the length that has been shown to be
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strongly bound to the globular domain of H1 [66]. We assume that H5,
the linker histone used in [55], engages the same length. ƞe helicity of
each Ƨbers can be seen directly from the artwork in Ƨgure 2.4, while the
helicity of the linkers are indicated by+ and− signs.
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Figure 2.5: Energy𝐸௟ per linker, eq. 2.13, as a function of repeat length 𝑟௟
for the four possible 𝑁୰୧ୠ. We assume inƧnitely long Ƨbers with 𝐸ୱ୲ୟୡ୩ =
−3𝑘஻𝑇 and (𝑥, 𝑦, 𝑧) = (2.5, 0.5, 0.1) nm. We note that changes in the he-
licity of the Ƨber manifest themselves in kinks, as for the 7 ribbons struc-
ture at 222 bp (see also Ƨgure 2.4).

ƞe predictions of our model are in agreement with the experiments,
except for 𝑟௟ = 207bp, see Ƨgure 2.4. However, the electronmicrographs
(Ƨgure 1 of [55]) might indicate that Ƨbers with 𝑟௟ = 207bp are thicker
than the Ƨbers with shorter repeat length and thinner than the ones with
larger repeat length. From the Ƨve micrographs per repeat length shown
in that Ƨgure we estimate 𝐷 ≈ 33 nm for 𝑟௟ = 197bp, 𝐷 ≈ 38 nm for
𝑟௟ = 207bp and 𝐷 ≈ 44 nm for 𝑟௟ = 217bp. Moreover, the variations in
the diameters for Ƨbers of the same repeat length are much smaller than
the error bars, see Ƨgure 1. We speculate that the displayed Ƨbers are ex-
amples of very regular and dense Ƨbers for which our theory works best.
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2. The chromatin fiber

ƞe whole ensemble of Ƨbers shows larger variations in diameter, pre-
sumably reƪecting less regular nucleosomal packings, and the average of
the 207 bp repeat is even shiƫed close to 33 nm.

As can be seen from Ƨgure 2.5, formation of dense Ƨbers for 𝑟௟ =
177bp is very expensive andmight be even sterically impossible, depend-
ing on microscopic parameters. In fact, the Rhodes group found in a
new study that 177 bp repeats form non-canonical 30 nm wide Ƨbers (D.
Rhodes, private communication, 2011).

We stress that short Ƨbers, i.e. Ƨbers with a small number of nucleo-
somes, might show different Ƨber geometries than long ones. E.g. the
energies of the 6 and 7 ribbon Ƨbers with 𝑟௟ = 237bp are so close (see
Ƨgure 2.5) that𝑁୰୧ୠ = 6 becomes cheaper already for 𝑛 = 50. Very short
Ƨbers like e.g. 𝑛 = 10 [17] and 𝑛 = 12 [27] seem to prefer 𝑁୰୧ୠ = 2
compromising on perfect packing to have less end nucleosomes.

2.3 Discussion
Wehave presented a chromatin Ƨbermodel that predicts the Ƨber diame-
ter as a function of the linker length. All the parameters that entered our
model, the nucleosomal wedge angle and the DNA elastic modulus, were
extracted fromexperiments thatwere performedon components of chro-
matin Ƨbers, disconnected nucleosomes (so-called nucleosome core par-
ticles) and naked DNA, but not on chromatin Ƨbers themselves. ƞe Ƨrst
assumption of our model, the dense packing of the nucleosomes, leads to
four different possible geometries. ƞis together with a second assump-
tion, namely that the experimental Ƨbers are those with the lowest elastic
energy per linker DNA, are already sufficient to predict the Ƨber diame-
ters seen in the experiment.

To achieve constant Ƨber diameters over an extended range of linker
lengths, the nucleosome stacking energy has to dominate over the elas-
tic energy for linker bending. According to our study, this is achieved
when (I) the DNA is locally denatured close to the entry-exit region. Ex-
treme as it may sound it lowers the elastic energy by several tens of 𝑘஻𝑇
per linker. As thenearest-neighborbasepair free energydepends strongly
on the base pair step, one might ask whether stretches with low cost for
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denaturation are typically found just next to nucleosome positioning se-
quences. Linker histones are indeed known to preferably bind to AT rich
regions [10]; (II) nucleosomes are equally spaced to achieve small en-
ergies through “out-of-register” sliding. If just two neighboring nucleo-
somes are connected by a shorter linker length than the rest, the stacks
belonging to these two nucleosomes will not be able to shiƫ by the opti-
mal amount. In that case either the Ƨber cannot form, or a nucleosome
has to disintegrate to allow the rest of nucleosomes to pack. On similar
groundswe expect that optimal Ƨbers are very stable against thermal ƪuc-
tuations even though for certain linker lengths different Ƨbers have simi-
lar energies. A thermal excitation in the form of a short Ƨber stretch with
non-optimal geometry would be too costly to spontaneously occur as dif-
ferent sliding lengths would cause steric clashes at the boundaries.

ƞe strict requirement of equal spacing of nucleosomes for the forma-
tion of dense Ƨbers might have implications for living cells. Our model
suggests that dense Ƨbers would only form for equally spaced nucleo-
somes. Since linker lengths typically vary along DNA, perfectly dense
Ƨbers, as discussed in this paper, can hardly form. Instead one should ex-
pect less dense and less regular Ƨbers as typically found when chromatin
is isolated from cells, see e.g. [4]. Such less dense Ƨber stretches inter-
digitate with neighboring Ƨbers, making them harder to detect in vivo.
In the dense environment of the cell nucleus they may even disintegrate
into a nucleosomalmelt [40]. Nevertheless there aremechanisms that can
cause an approximately equal spacing of nucleosomes in vivo, namely di-
rectly through mechanical signals in the underlying DNA sequence [30],
or indirectly through statistical ordering in the vicinity of barriers [69, 44,
1]. Furthermore, one might speculate that the action of chromatin re-
modellers like ISWI that are known to repress transcription by forming
equally spaced nucleosomes [26], make use of this phenomenon. Once
they have equally spaced an array of nucleosomes, a dense Ƨber can form
and the corresponding DNA stretch can no longer be accessed.

In the next chapter wewill show how, combining torsion and tension,
we can unwrap DNA from NCP’s.
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Cʍʆʕʙʊʗ3

Unwrapping

If you ask me now, I cannot prove it, but I’m
sure it’s true.

Gʎʚʘʊʕʕʊ ʉʊMʆʗʈʔ

In this chapter we investigate the effect of torque and force on a nucle-
osome. Using the worm-like chain model (WLC) we show how low neg-
ative torques eases the unwrapping of the DNA from the nucleosome. In
some case a combination of high forces andhigh positive torques, surpris-
ingly, favors the unwrapping as well. ƞe theory presented provides an
interesting insight onhow to access the genetic codewith tensions smaller
than what previously thought.

To study the response, we consider amolecule of DNAbound to a sin-
gle nucleosome. However, with due modiƧcations, this applies to more
general DNA spools, widely found in nature, as the Lac1 repressor [67],
DNA gyrase [29] and RNA polymerase [54].

3.1 General model
We consider a nucleosome, with DNA legs at its ends, under tension 𝑓
and torque, see Ƨg. 3.1. In our model the DNA is described as a worm-
like chain being wrapped around a cylinder that represents the histone
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octamer. ƞe wrapped section of the DNA molecule is described by the
space curve 𝐫௡(𝑠) = 𝑟(𝜋𝑠 tan 𝛼, cos 𝜋𝑠, sin 𝜋𝑠) with 𝑟 = 4.3 nm and
𝛼 = −0.085 and thus a pitch of 2𝜋𝑟 tan 𝛼. A nucleosome with 𝑠∗-turns
of DNA adsorbed is describedг by 𝐫௡(𝑠) with 𝑠 ∈ [−𝑠∗, 𝑠∗]. To unwrap
its DNA the nucleosome has to rotate around the 𝑦−axis by an angle 𝛽
(Ƨg. 3.1) resulting in 𝐫௥(𝑠, 𝛽) = 𝑂௬(𝛽)𝐫௡(𝑠) with 𝑂௬ denoting the cor-
responding rotation matrix [36]. To avoid collision between DNA and
nucleosome we impose 𝛽 ∈ [−𝜋 + 𝛼,−𝛼].

In the torsion-less case the shape of the planar DNA, where its ends
are aligned with the force, has been worked out in [36] using the Kirch-
hoff kinetic analogy [51]. Adding torsion causes the DNA legs to bend
out-of-plane. Since a non planar homoclinic loop is only favored when
the inserted number of turns is between−1 and 1, and since most of the
non-planarity is contained within the wrapped part of the DNA (see the
section at the end of this chapter), we simplify our analysis by describing
the legs by the planar homoclinic orbit with the tangent vector

𝐭௟(𝑠) = 𝑂௭(𝛿)(0, sin 𝜃(𝑠), cos 𝜃(𝑠))

with cos 𝜃(𝑠) = 1 − 2 sechଶ(𝑠/𝜆); here 𝜆 = ඥ𝐴/𝑓 with 𝐴 being related
to the DNA persistence length 𝑙௣ = 𝐴/𝑘஻𝑇 ≈ 50nm. From −𝑠଴ to +𝑠଴
we replace this curve with the wrapped nucleosomal DNA (see Ƨg. 3.1).
ƞe 𝛿-rotation of the DNA legs ensures continuity at the insertion point,
without affecting the energy. In addition continuity requires

0 = 𝐭௟(𝑠଴) + 𝑡௡(−𝑠∗) (3.1)

therefore

𝑠଴(𝑠∗, 𝛽) =
𝜆
𝑡 arcsech

𝑡୫୧୬
𝑡 (3.2)

𝑡୫୧୬ = ඨ1 + cos 𝛼 cos 𝜋𝑠∗ cos 𝛽 − sin 𝛼 sin 𝛽
2 .

гNot counting an eventual translation, irrelevant for the energy.

50



3.1. General model

and 𝑡 = 1. In eq. (3.2) 𝑡 represent the homoclinic parameter, which quan-
tiƧes how “planar” the legs are. In this work we assume the legs to be per-
fectly planar (𝑡 = 1). ƞis approximation is good for several reasons: Ƨrst
of all the domain of arcsech limits 𝑡 to [𝑡୫୧୬, 1]. When 𝑠∗ ≉ 0, 1, 2, the
𝛽 that minimizes the energy leads to 𝑡୫୧୬ ≈ 1. On the other hand, when
𝑠∗ ≈ 0, 1, 2, the contribution by the legs to the energy is almost 0, since
𝑠଴ is very high (see eq. (3.7)). In principle eq. (3.1) determines 𝛿 as well,
but the parameter is not relevant for our analysis.

As convention we assume that the point ∓𝑠∗ of the adsorbed DNA is
attached to the point ±𝑠଴ of its free counterpart so that the path of the
DNA is described by

𝐫(𝑠, 𝑠∗, 𝛽) = ൞
∫ 𝐭௟(𝑠, 𝛿ଵ)d𝑠 if 𝑠 ∈ [−𝐿௟(𝑠∗, 𝛽), −𝑠଴]
∫ 𝐭௟(𝑠, 𝛿ଶ)d𝑠 if 𝑠 ∈ [+𝑠଴, +𝐿௟(𝑠∗, 𝛽)]
𝐫௡(𝑠, 𝛽) if 𝑠 ∈ [−𝑠∗, 𝑠∗].

(3.3)

In the integrals one of the integration boundaries is the length 𝐿௟(𝑠∗, 𝛽) =
(𝐿 + 2𝑠଴ − 𝐿௡(𝑠∗))/2, where 𝐿௡(𝑠∗) = 2𝜋𝑟𝑠∗ sec 𝛼 is the length of the
DNA adsorbed by the nucleosome. ƞe two angles 𝛿ଵ, 𝛿ଶ are important
to ensure continuity at the boundary between legs and nucleosome, but
otherwise they do not inƪuence the energy. ƞerefore we drop the 𝛿 ar-
gument of 𝐭௟ from now on. Once 𝑠∗ and 𝛽 are known, the energy of the
system can be computed from 𝐭௟(𝑠଴) and 𝐫௥(𝑠, 𝛽). ƞe resulting structure
is depicted in Ƨg. 3.1.
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3. Unwrapping

Figure 3.1: ƞe nucleosome under tension and torque. In our model the
histone octamer is represented by a cylinder. A part of theDNAmolecule
is wrapped around it (in an orange hue), the rest forms the legs (in a blue
hue).

3.2 Writhe
To compute the writhe of the molecule, we use eq. (1.39) with respect to
the−𝑧̂-axis:

𝑊𝑟ୈ୒୅ =
1
2𝜋 න

ି௅/ଶ

ି௦బ

−𝑧̂ × 𝐭௟(𝑠)
1 + (−𝑧̂) ⋅ 𝐭௟

⋅ d𝐭௟(𝑠)d𝑠 d𝑠

+ 1
2𝜋 න

௦బ

௅/ଶ

−𝑧̂ × 𝐭௟(𝑠)
1 + (−𝑧̂) ⋅ 𝐭௟

⋅ d𝐭௟(𝑠)d𝑠 d𝑠

+ 1
2𝜋 න

௦

଴

−𝑧̂ × 𝐭௥(𝑠, 𝛽)
1 + (−𝑧̂) ⋅ 𝐭௥

⋅ d𝐭௥(𝑠, 𝛽)d𝑠 d𝑠. (3.4)

ƞe Ƨrst two integrals give no contribution, while the third gives

𝑊𝑟(𝑠∗, 𝛽) = 𝑊𝑟௜(𝑠∗, 𝛽) −𝑊𝑟௜(−𝑠∗, 𝛽); (3.5)

𝑊𝑟௜(𝑠, 𝛽) =
arctanቀcos ఈିఉ

ଶ csc ఈାఉ
ଶ tan గ௦

ଶ ቁ
𝜋

− 1
2𝑠 sin 𝛼 − 𝑛ୱ୭୪(𝑠, 𝛼). (3.6)

ƞe function 𝑛ୱ୭୪ eliminates the (here of Ƨnite-size) discontinuities of the
trigonometric function and it is −1 for 𝑠 ∈ [−3,−1], 0 for 𝑠 ∈ [−1, 1]
and 1 for 𝑠 ∈ [1, 3] etc. Note that eq. (3.6) deviates from eq. (1.41), com-
puted using the axis of the helix (that here rotates with 𝛽). ƞe different
behavior of the writhe is presented in Ƨg. 3.2.
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Figure 3.2: A comparison between the local writhe, i.e. using the helix
axis in eq. 3.4, and the writhe for the 𝛽 that minimized the energy, 𝛽୫୧୬.
For reference also 𝜋 + 𝛽୫୧୬ is plotted.

In eq. (3.4) we use −𝑧̂ instead of 𝑧̂ to avoid a vanishing denominator
for some values of𝛽 < 0. As required for the use of Fuller’s relation, there
is a homotopy between the straight 𝑧̂−axis and any of the states (partially
or fullywrappednucleosomeplus rotated legs) consideredhere. ƞecon-
tinuity of the homotopy follows from the fact that the chain continuously
changes from 𝑠∗ = 0 (i.e. the 𝑧̂−axis) to any subsequent state.

3.3 Energy
ƞetotal energy of aDNAchain of length 𝐿with 𝑠∗ bound turns inside the
nucleosome is the sumof the bending, potential, adsorption and torsional
energy:

𝐸௧(𝑠∗, 𝛽) = 2 × 𝐴
2 න

௅೗(௦∗ ,ఉ)

௦బ
𝐭̇ଶ௟ (𝑠)d𝑠

+ 𝑓Δ𝑧(𝑠∗, 𝛽) − 2න
௦∗

଴

d𝐸ୟୢୱ(𝑠)
d𝑠 d𝑠

+ 2𝜋ଶ𝐶
𝐿 − 𝐿௡(𝑠∗)

(𝑛 −𝑊𝑟(𝑠∗, 𝛽))ଶ. (3.7)
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3. Unwrapping

(𝐼𝐼) (𝐼) (𝑁) (P)
Figure 3.3: Schematic representation of the various stages of nucleosome
unwrapping. ƞe roman numerals indicate how many turns are approx-
imately wrapped (𝑁 stands for 0, 𝑃 stands for plectoneme). In order to
show the effect of torque, the DNA double helix is here represented as a
ribbon that is untwisted in the torsion-less case.

Here

Δ𝑧(𝑠∗, 𝛽) = 𝐿௡(𝑠∗) + (𝐫௥(−𝑠∗, 𝛽) − 𝐫௥(𝑠∗, 𝛽)) ⋅ 𝑧̂

+ 2 × න
௅೗(௦∗ ,ఉ)

௦బ
(1 − 𝐭௟(𝑠) ⋅ 𝑧̂) d𝑠 (3.8)

is the shortening of the DNA end-to-end distance in the 𝑧̂-direction due
to the bending of the legs and the wrapping around the octamer. ƞe
adsorption energy is given, with the relevant details, by eq. (1.56) and in
the last termof eq. 3.7 the quantity𝐶 is related to the torsional persistence
length 𝑙௧ via 𝑙௧ = 𝐶/𝑘஻𝑇; we assume here 𝑙௧ = 100nm [24].

To Ƨnd the optimal conƧguration for given values of 𝑓 and 𝑛 the en-
ergy, eq. 3.7, needs to be minimized with respect to 𝑠∗ and 𝛽. Since we
neglect in our theory entropic contributions our results are only reliable
for large enough forces, 𝑓 ≳ 0.5 pN [65].
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3.4. Plectoneme

3.4 Plectoneme
ƞeunwrapping of the nucleosome is eased formoderate positive torques
or, as shown later, for high negative torques. However, depending on the
force theDNA can also form a structure called plectoneme (see Ƨg. 3.3(P))
that adsorbs approximately all the linking number inserted in the system
(see [24] and chapter 4). Wedonot expect nucleosomeunwrapping in the
presence of a plectoneme as the plectoneme can adsorb torsional stress
more efficiently once formed. To estimate the parameter rangewhere the
plectoneme occurs, we give here the energy of a DNAmolecule of length
𝐿 that contains a plectoneme of length 𝑝 ≥ 0 with radius 𝑅 and angle 𝛾
(Ƨg. 3.3(P)):

𝐸(𝑝) = 2𝜋ଶ𝐶
𝐿 (𝑛 − d𝑊𝑝)ଶ + (𝑓 + d𝐸௕)𝑝. (3.9)

Here d𝑊 = cos 𝛾 sin 𝛾 sign 𝑛/2𝜋𝑅 and d𝐸௕ = 𝐴 cosସ 𝛾/(2𝑅ଶ) are, re-
spectively, the writhe density and the bending energy density of the plec-
toneme (see chapter 4).

As speciƧed in chapter 4, in eq. 3.9 we ignore the energetic contri-
bution of the end loop assuming that the nucleosome sits at the end of
the plectoneme (Ƨg. 3.3(P)). In principle a plectoneme could also appear
somewhere else. However the high bending energy of an end loopmakes
it highly improbable.

By minimizing eq. 3.9 for 𝑝 one Ƨnds that a plectoneme is expected,
i.e. 𝑝 > 0, for all values of 𝑛 such that

𝑛 ∉ ቈ−(𝑓 + d𝐸௕)𝐿
4𝜋ଶ𝐶d𝑊 +𝑊𝑟(2), (𝑓 + d𝐸௕)𝐿

4𝜋ଶ𝐶d𝑊 ቉ . (3.10)

Here 𝑊𝑟(2) = −2.14 is the writhe for 2 fully wrapped turns that for
𝑠∗ = 2 is independent of𝛽 (see Ƨg. 3.2). With this termwe account for the
writhe absorbed by the nucleosome that has around two fully wrapped
turns for 𝑛 > 0 and not too large forces. Following chapter 4 we use
𝛾 ≈ 1 and 𝑅 ≈ 1.8 nmwhen the salt concentration is about 150mM.We
stress thatwhen the plectoneme forms, it forms on top of the state the sys-
tem had before the formation. E.g.: if the system has approximately two
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3. Unwrapping

turns wrapped, when we, for example, decrease 𝑛 so that it is outside the
interval describe by eq. (3.10), then a plectonemewill formwith at its end
a nucleosomewrapped twice. In this sense Ƨg. 3.3(P) is only indicative of
what really happens.

3.5 Twist defects
Apart from the plectoneme, twist defects [35, 45] can inƪuence the nu-
cleosome stability. A twist defects is present in a nucleosome when one
DNA base pair is added or removed between two consecutive nucleo-
some binding sites, resulting in a local under- or overtwisting of theDNA.
We can write an equation similar to eq. 3.9 for the twist defects if we re-
place 𝑝 → 𝑚Δ𝑙, d𝑊 → 𝑘 sign 𝑛/Δ𝑙, d𝐸௕ → d𝐸ௗ/Δ𝑙 and 𝑓 → 𝑓 sign 𝑛.
𝑚 is an integer between 0 and 13 denoting the number of defects. Δ𝑙 =
0.34 nm and 𝑘 = 1/10 are, respectively, the length and twist lost or
gained by a defect. Finally d𝐸ௗ = 9𝑘஻𝑇 is the energetic cost of a de-
fect [35]. Since𝑚 ≤ 13 the shiƫ in turns will be up to 1.3; a quick com-
putation reveals that the 13 defects formbefore a plectonemeoccurs. ƞis
changes the boundaries where the plectoneme forms, namely we need to
subtract 1.3 from the leƫ side of eq. 3.10.

ƞe 1.3 turns per nucleosome are found in experiments where chro-
matin Ƨbers are put under positive torsional stress [2]. It was suggested
that this can be explained by a chiral transition of the nucleosome. Unfor-
tunately a comparison of our model to these experiments is not possible
as it involves amultinucleosome geometry and forceswhere thermal ƪuc-
tuations cannot be neglected. It would be crucial to perform single nucle-
osome experiments to seewhether the observed strong asymmetry in the
response to positive and negative torsion is still present which favors the
picture of a chiral transition.

3.6 Results
In Ƨg. 3.4a we present the optimal nucleosome conƧgurations for a wide
range of forces and 𝑛/𝐿-values of a DNA molecule with 𝐿 = 3500 nm
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3.6. Results

(a) Diagram of state showing the conƧg-
urations with the lowest energy for 𝐿 =
3500 nm in the 𝑓-𝑛/𝐿-plane. ƞe grey
dashed-dotted line represents the writhe
of the nucleosome when the legs are free
to release torsional stress.
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(b) ƞe energy landscape near 𝑠∗ = 0
for 𝑓 = 10 pN, 𝑛 = 0. ƞe minimum
of energy is very close to the 𝑠∗ = 0 case
whichmakes it easy for the nuclesome to
“evaporate.”

Figure 3.4: Various results from the computations.

length. ƞis diagram of states is nearly identical for all experimentally
reasonable values of 𝐿, say for all 𝐿 > 500 nm. We Ƨnd Ƨve different
states, four of which are depicted in Ƨg. 3.3 ((II) fully wrapped, (I) one
turn wrapped, (N) unwrapped and (P) fully wrapped plus plectoneme).
In addition,we indicatewith (N’) almost unwrapped conƧgurations. ƞat
state is, however, not stable against thermal ƪuctuations as the globalmin-
imum is only tenths of𝑘஻𝑇 away from the totally unwrapped state. A typi-
cal example is shown inƧg. 3.4b. We therefore expect that thenucleosome
typically falls apart once it has unwrapped its last turn.

ƞe negative writhe of the wrapping path makes the nucleosome un-
wrapping highly asymmetric since the factor (𝑛 −𝑊𝑟(𝑠∗, 𝛽))ଶ in the tor-
sional energy, eq. 3.7, favors wrapping, 𝑠∗ > 0, for 𝑛 < 0 and unwrap-
ping, 𝑠∗ = 0, for 𝑛 > 0. For large enough negative values of 𝑛, how-
ever, the nucleosome unwraps to havemore twistable DNA available, see
Ƨg. 3.4a. ƞe factor 1/(𝐿 − 𝐿௡) in the twist energy dominates then the
behavior. In the diagram of states, Ƨg. 3.4a, we indicate also by a dashed-
dotted line the torsion-less casewhere the unboundDNA is free to rotate.
ƞis situation has been studied in Ref. [36].
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3. Unwrapping

So far we have only determined the optimal conƧgurations via energy
minimization. Of special experimental importance is, however, also to
know the energy barrier between different states, especially at common
boundaries in the diagram of states, Ƨg. 3.4a. Choosing experimental pa-
rameters such that one has two minima between a large barrier, one can
observe the hopping dynamics between them. ƞis has been indeed ob-
served in the torsionless case where a fast hopping between states (II)
and (I) was observed at a certain force valuemanifesting itself in a change
of the end-to-end extension [43, 33]. ƞe boundaries and corresponding
barriers between (II) and (I) and between (I) and (N’/N) are shown in
Ƨg. 3.5. Note that the system under torsion provides a much wider range
of parameters where one can observe hopping as compared to the tor-
sionless case. Especially for a wide range of forces we predict two values
of 𝑛/𝐿 where hopping should be observed. It might be challenging to
observe the branch with the transitions at the more negative 𝑛/𝐿-values
as these transition are associated with much higher barrier values (see
Ƨg. 3.5).

Appendix: why can we assume the
legs to be planar?
ƞe bending and force contribution of the legs in the 𝑡 = 1 case basically
always smaller than when 𝑡 < 1. ƞis leaves the writhe as the other pos-
sible source of error when excluding the non-planar solutions. However
looking at the contribution of the legs to the torsional energy

𝐸் ∝ (𝑛 −𝑊𝑟௟)ଶ

𝑊𝑟௟ =
2
𝜋 arcsin 𝑡 (3.11)

we see that when 𝑛 ∉ [−1, 1], the energy is minimized by 𝑡 = 1. Con-
sidering the large amount of turns investigated (see Ƨgure 3.4a) we can
safely ignore the non-planarity of the loop. Moreover eq. (3.11) is only
partially true: when the legs are cut at 𝑠଴, which is generally high, at least
for the case (II-I-N) of Ƨgure 3.3, thewrithe contributionwould decrease,
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Figure 3.5: ƞe force at which the minimum of the energy around 𝑠∗ =
2(1) and the one around 𝑠∗ = 1(0) have the same value, and the energy
barrier necessary to cross fromone state to the other, as a function of𝑛/𝐿.
Here 𝐿 = 3500 nm.

reducing even further the region in which a non-planar homoclinic loop
matters.
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Cʍʆʕʙʊʗ4

Plectonemes?

Generally, things obtained without exertion
are not that useful.

Gʎʚʘʊʕʕʊ ʉʊMʆʗʈʔ

In the previous chapter we have mainly investigated the interaction
between DNA molecules and nucleosomes. However also naked DNA
behaves in an interesting fashion. Take, for example, the DNA persis-
tence length, 𝑙௣ ≈ 50nm: it was found by measuring the extension of
the molecule when stretched with different forces.

However when the molecule is also twisted, various theories were
proposed, but a unifying framework to describe the experimental results
was lacking. ƞis is partly due to the important role of thermal ƪuctua-
tions, extensively analyzed for low torques [51], but either leƫ out [5, 49,
8] or partially added by hand for high torques [50].

In section 1.5, the bifurcation point of a straight rod (that is without
writhe, see section 1.3 in the same chapter) was identiƧed. In terms of the
number of inserted turns, the bifurcation point is at 𝑛ୡ୰୧୲ = ඥ𝐴𝑓𝐿௖/𝜋𝐶
where 𝐿௖ is the contour length of the DNA, 𝑓 the force applied to it, and
𝐴 and 𝐶 are related to the bending and torsional persistence lengths (see
subsection 1.1) by 𝐴 = 𝑘஻𝑇𝑙௣, 𝐶 = 𝑘஻𝑇𝑙௧.

Since the DNA molecule is self-avoiding, the cheapest way to pro-
duce writhe is the plectoneme, a stretch of the chain branching off in a
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4. Plectonemes?

Figure 4.1: A plectoneme, alongwith the end loop, closing it, and the rest
of the straight DNA.ƞe path describing the plectoneme is parametrized
by 𝑠, going from 0 to 𝐿௣/2 and from 𝐿௣/2 + 𝐿୪୭୭୮ to 𝐿௣ + 𝐿୪୭୭୮. ƞe gap
is Ƨlled by the end loop.

perpendicular direction from the remaining two tails. ƞe two halves cir-
cle around each other in a helical path like an old fashioned telephone
wire and are connected by an end loop (see Ƨgure 4.1). A system with
a sufficient number of turns 𝑛 inserted has a plectoneme (plus the tails)
as its ground state. ƞis transition typically happens before 𝑛ୡ୰୧୲. Since
themolecule is too small to directly observe plectoneme formation, their
presence is inferred by measuring the DNA end-to-end extension as a
function of 𝑛. ƞese curves are called the turn-extension curves and the
increase in plectoneme length 𝐿௣ is observed as a linear decrease of the
end-to-end extension aƫer the transition.
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4.1 The DNA shape

For the shape of the molecule, as seen in Ƨgure 4.1, we assume that the
tails are given by the homoclinic solutions (eqs. (1.31–1.32)) for 𝑡 > 𝑡௖ ≈
0.80424. We restrict 𝑡 since we “attach” the plectoneme at the non-zero
point of closest approach of the two tails, which exists only when 𝑡 > 𝑡௖.
At the point of closest approach the distance between the two tails can be
approximated by

𝑑ୡ୰୧୲(𝑡) = 2𝜆ቌඨ 1 − 𝑡
0.3799 − 0.00112ቍ . (4.1)

ƞerefore the radius of the plectoneme is given by 𝑅(𝑡) = 𝑑ୡ୰୧୲(𝑡)/2. Its
path, on the other hand, can be parametrized by

𝐫௣ = ൮
(𝑠଴ + 𝑠) sin 𝛼

−𝑅(𝑡)cosቀ(𝑠଴+𝑠) ୡ୭ୱఈோ(௧) ቁ
𝑅(𝑡)sinቀ(𝑠଴+𝑠) ୡ୭ୱఈோ(௧) ቁ

൲ for 𝑠 ∈ [0, 𝐿௣/2]

𝐫௣ = ൮
(𝑠଴ + 𝐿௣ + 𝐿୪୭୭୮ − 𝑠) sin 𝛼

𝑅(𝑡)cosቀ(𝑠଴+𝐿௣+𝐿୪୭୭୮−𝑠)ୡ୭ୱఈோ(௧) ቁ
−𝑅(𝑡)sinቀ(𝑠଴+𝐿௣+𝐿୪୭୭୮−𝑠) ୡ୭ୱఈோ(௧) ቁ

൲ for 𝑠 ∈ [0, 𝐿௣/2],

(4.2)

where 𝛼 is plectoneme angle (see Ƨg. 4.1) and 𝐿௣, 𝐿୪୭୭୮ are the contour
lengths of the plectoneme and of the loop. ƞe starting orientation de-
pends on the homoclinic solution and is set by 𝑠଴, chosen so that the tails
are attached in a continuous fashion to the plectoneme.
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4.2 The writhe
We can Ƨrst calculate the writhe of the plectoneme by using the tangent
of eq (4.2) and the 𝑥̂-axis in eq. (1.39):

𝜔ଵ(𝑠) =
1
2𝜋

cos 𝛼(sin 𝛼 − 1)
𝑅(𝑡) 𝑠 ∈ [0, 𝑙௣/2],

𝜔ଶ(𝑠) =
1
2𝜋

cos 𝛼(sin 𝛼 + 1)
𝑅(𝑡) 𝑠 ∈ [𝑙௣/2 + 𝑙௟ , 𝑙௣ + 𝑙௟].

(4.3)

ƞis expression neglects end loop and tails; by summing 𝜔ଵ and 𝜔ଶ one
arrives at an “average” writhe density

𝜔଴(𝛼, 𝑡) = cos 𝛼 sin 𝛼
2𝜋𝑅(𝑡) . (4.4)

ƞis expression is very convenient, and it was normally taken to be the
writhe density of the plectoneme [49]. However, when we computed the
writhe of the tails in eq. (1.35), the reference axiswas the 𝑧̂-axis, parallel to
the force𝐹, and not the 𝑥̂-axis as in the case of eqs. (4.3). To be consistent
(the non-locality of the writhe forbids, in fact, to use different reference
axes in Fuller formula, eq. (1.39), for different sections of the curve) we
compute thewrithe of the plectonemewith respect to the 𝑧̂-axis, resulting
in

𝜔௕(𝑠) =
1
2𝜋

sin 𝛼 cos 𝛼
𝑅(𝑡) ×

× ቎1− 1
1+cos𝛼cosቀ(𝑠+𝑠଴)ୡ୭ୱఈோ(௧) ቁ

቏ . (4.5)

ƞis expression is annoying as it is 𝑠-dependent. However, while the plec-
toneme grows, the writhe of the end loop changes, as it changes its orien-
tation. ƞis loop is described by a space curve 𝐫଴ = (𝑟௫(𝑢), 𝑟௬(𝑢), 𝑟௭(𝑢)),
𝑢 ∈ [0, 𝐿୪୭୭୮], subject to the conditions, at its boundaries, 𝐫଴(0) = 𝐫௣(0)
and 𝐫଴(𝐿୪୭୭୮) = 𝐫௣(𝐿୪୭୭୮). We also assume (unlike at the boundaries
between tails and plectoneme) that the curve is smooth between plec-
toneme and end loop.
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Increasing the contour length by an amount 2𝑠 causes a rotation of 𝐫଴
by an angle 𝜉(𝑠) = 𝑠 cos 𝛼/𝑅(𝑡) (see eq. (4.2)) about the 𝑥̂-axis, inducing
an 𝑠-dependent change in the writhe of the loop

𝑊𝑟୪୭୭୮ =
1
2𝜋 න

௅ౢ౥౥౦

଴
d𝑢cos 𝜉(𝑠)(𝑡௫(𝑢)𝑡̇௬(𝑢) − 𝑡̇௫(𝑢)𝑡௬(𝑢)

1 − sin 𝜉(𝑠)𝑡௬(𝑢) + cos 𝜉(𝑠)𝑡௭(𝑢)

− 1
2𝜋 න

௅ౢ౥౥౦

଴
d𝑢 sin 𝜉(𝑠)(𝑡௭(𝑢)𝑡̇௫(𝑢) − 𝑡̇௭(𝑢)𝑡௫(𝑢)

1 − sin 𝜉(𝑠)𝑡௬(𝑢) + cos 𝜉(𝑠)𝑡௭(𝑢)
.

(4.6)

A change in the plectoneme contour length induces a differential change
of this writhe equal to

d𝑊𝑟୪୭୭୮
d𝑠 = − cos 𝛼

2𝜋𝑅(𝑡)× (4.7)

൮න
௟೗

଴
d𝑢

𝑡̇௫(𝑢) + sin ቀ𝑠 ୡ୭ୱఈோ(௧) ቁ (𝑡௫(𝑢)𝑡̇௬(𝑢) − 𝑡̇௫(𝑢)𝑡௬(𝑢))

൬1 − sin ቀ𝑠 ୡ୭ୱఈோ(௧) ቁ 𝑡௬(𝑢) + cos ቀ𝑠 ୡ୭ୱఈோ(௧) ቁ 𝑡௭(𝑢)൰
ଶ +

න
௟೗

଴
d𝑢

cos ቀ𝑠 ୡ୭ୱఈோ(௧) ቁ (𝑡௭(𝑢)𝑡̇௫(𝑢) − 𝑡̇௭(𝑢)𝑡௫(𝑢))

൬1 − sin ቀ𝑠 ୡ୭ୱఈோ(௧) ቁ 𝑡௬(𝑢) + cos ቀ𝑠 ୡ୭ୱఈோ(௧) ቁ 𝑡௭(𝑢)൰
ଶ൲

= cos 𝛼
𝜋𝑅(𝑡) ×

𝑡௫(0)
1 − sin ቀ𝑠 ୡ୭ୱఈோ(௧) ቁ 𝑡௬(0) + cos ቀ𝑠 ୡ୭ୱఈோ(௧) ቁ 𝑡௭(0)

,

(4.8)

wherewe used the unimodularity of the tangent vector and its symmetry:
𝑡௫(0) = −𝑡௫(𝐿୪୭୭୮), 𝑡௬,௭(0) = 𝑡௬,௭(𝐿୪୭୭୮). Making use of the boundary
conditions we Ƨnally Ƨnd

d𝑊𝑟୪୭୭୮
d𝑠 = cos 𝛼 sin 𝛼

𝜋𝑅(𝑡) ቆ1 + cos 𝛼 cos ቆ(𝑠଴ + 𝑠)cos 𝛼𝑅(𝑡) ቇቇ
ିଵ

(4.9)

By adding this differential writhe density to the “bare” writhe density of
the plectoneme ((4.5)) (half of it to each strand) we recover the standard
writhe density of a plectoneme (4.4), but now with the added bonus that
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the remaining writhe of the closing loop is independent of the length of
the plectoneme. Since only in the end loop the antipodal points appear
along the homotopy, deƧned by the explicit formation of the plectoneme,
we can state that in this sense the writhe is additive:

𝑊𝑟(𝑡, 𝛼) = 𝑊𝑟୪୭୭୮(𝑡) + 𝐿௣𝜔଴(𝑡, 𝛼), (4.10)

with𝑊𝑟୪୭୭୮ and𝜔 given by (1.35) and (4.4).

4.3 Mechanical and electrostatic
energy

Starting point for the mechanical Hamiltonian of the system is eq. (1.49).
Since the number of turns is experimentally controlled, we can write

𝐻ெ = න
௅೎

଴
d𝑠 ቆ𝐴2 𝐭̇

ଶ
௦ − 𝐟 ⋅ 𝐭௦ቇ + 2𝜋ଶ 𝐶𝐿௖

(𝑛 −𝑊𝑟)ଶ (4.11)

where the writhe𝑊𝑟 is given by eq. (4.10). Using the bending energy of
the homoclinic solution, eq. (1.33), and the plectonemepath eq. (4.2), we
arrive at

𝐸ெ = −𝑓(𝐿௖ − 𝐿௣) + 𝐸୪୭୭୮ + 𝐸଴
ୠୣ୬ୢ + 2𝜋ଶ𝐶𝐿 (𝑛 −𝑊𝑟)ଶ (4.12)

𝐸଴
ୠୣ୬ୢ = 𝐿௣

𝐴
2
cosସ 𝛼
𝑅ଶ(𝑡) . (4.13)

However, since many experiments are performed at low salt concentra-
tion, where the negatively charged DNA is less “screened”, electrostatic
interactions change the energy. First the bending persistence length is
renormalized according to the OSF theory [52, 63]:

𝑙௣ = 𝑙(଴)௣ + 𝜅ିଶ
4𝑄஻

(4.14)
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where 𝜅ିଵ is the Debye screening length and 𝑄஻ the Bjerrum length

𝑄஻ =
𝑞ଶ

4𝜋𝜀଴𝜀௥𝑘஻𝑇
(4.15)

𝜅 = ඥ8𝜋𝑄஻𝑛௦ (4.16)

where 𝑞 is the elementary charge, 𝜀଴ the vacuum permittivity, 𝜀௥ the di-
electric constant and 𝑛௦ the number density of the salt molecules. At
𝑇 = 300K, 𝑄஻ ≈ 0.715nm and 𝜅 = 0.1√𝑐௦, where 𝑐௦ is the salt con-
centration in mM (milliMolar).

In theplectoneme there is another electrostatic effect: the two strands
of DNA repeal each other, resulting in an energetic contribution [68]

𝐸଴
ୣ୪ = 𝐿௣𝜈ଶୣ୤୤

𝑄஻
2 ඨ

𝜋
𝜅𝑅(𝑡)𝑒

ିଶ఑ோ(௧) Z(cot 𝛼) (4.17)

Z(𝑥) = 1 + 0.828𝑥ଶ + 0.868𝑥ସ

if cot 𝛼 < 1, with 𝜈ୣ୤୤ the effective charge density of the centerline of
a charged cylinder source of a Debye-Hückel potential that asymptoti-
cally coincides in the small potential, far Ƨeld, region with the non-linear
Poisson-Boltzmann potential of that cylinder with a given surface charge
(for DNA 2 𝑒/0.34 nm, radius 1 nm).

To compute 𝜈ୣ୤୤ and 𝑅∗ as in Ƨgure 4.2 we follow [53]. ƞe radius 𝑅∗

marks the breaking down of the linearized theory, as there the reduced
potential equals 1 [53]. ƞe energy 𝐸ெ changes therefore to

𝐸଴ = 𝐸ெ + 𝐸଴
ୣ୪ (4.18)

where the superscript indicates that no thermal ƪuctuations are taken into
account up to now and where the persistence length should be taken as
in eq. (4.14).

A plectonemewill formwhen the energy𝐸଴ has a globalminimum for
𝐿௣ > 0. Minimization of the energy shows that this transition point hap-
pens at 𝑛 < 𝑛ୡ୰୧୲. Moreover the angle 𝛼 stabilizes between 𝜋/2, where
𝐸ୠୣ୬ୢ = 0, and 𝜋/4, where 𝑊𝑟 is maximized and thus 𝑛 − 𝑊𝑟 is mini-
mized.
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Figure 4.2: 𝜈ୣ୤୤ and 𝑅∗ as a function of the salt concentration 𝑐௦.

4.4 Fluctuations
ƞe effect of thermal ƪuctuations is difficult to treat and complicated to
analyze. Without entering in the details, wewill explain the origin of each
term, referring the reader to the speciƧc papers for the details.

ƞe Ƨrst contribution from thermal ƪuctuations is the enhancement
of the electrostatic interactions in the plectoneme. ƞere the thermal un-
dulations couple non-linearly with the electrostatic interactions [68]. As
a result the interactions are strongly enhanced. In fact assuming the ƪuc-
tuations to have a Gaussian distribution we can estimate their effect by
considering one strand of the plectoneme in the mean Ƨeld potential of
the opposing strand. ƞe undulations in the plectoneme are taken in two
directions, along the radius and the pitch. ƞe radial direction is limited
by the exponent of 𝐸଴

ୣ୪ in eq. (4.17), −2𝜅𝑅(𝑡), while in the pitch direc-
tion the limit is geometrical (see Ƨgure 4.1) so thatwewill assume that the
standarddeviation in that direction is Ƨxed and equal to𝜎௣ = 𝜋𝑅(𝑡) sin 𝛼.
Calling 𝜎௥ the standard deviation in the radial direction, the electrostatic
interaction becomes

𝐸ୣ୪ = 𝐸଴
ୣ୪𝑒ସ఑

మఙమೝ . (4.19)

ƞe steep potential limits 𝜎௥ to ≈ 𝜅ିଵ/2. Here 𝜎௣ is not present as it
only affects marginally the electrostatic energy [68]. ConƧning the DNA
in the plectoneme has also an entropic cost. In fact the polymer has a
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lower number of conƧgurations as it is restricted in the radial direction
by an harmonic potential, and in the pitch direction by a hard wall po-
tential (represented by the consecutive turn of the strand). Burkhardt [6]
computed the entropic contribution of such a conƧnement, but only for
the torsion-less case. Recently Emanuel [20] worked out the more diffi-
cult case where torque is present. ƞe result is that two deƪection lengths
appear, one for each conƧnement direction, 𝜆௥,௣ = (𝑃௕𝜎ଶ௥,௣)ଵ/ଷ. ƞe new
effective deƪection length for the plectoneme as a whole is then

𝜆̄ = 2𝜆
ଷ
௥𝜆௣ + 𝜆ଶ௥𝜆ଶ௣ + 𝜆௥𝜆ଷ௣
(𝜆௥ + 𝜆௣)(𝜆ଶ௥ + 𝜆ଶ௣)

(4.20)

which contributes to a conƧnement free energy equal to

𝐸஼ =
3
8𝑘஻𝑇(𝜆

ିଵ
௥ + 𝜆ିଵ௣ )𝐿௣. (4.21)

Moreover ƪuctuations inside the plectoneme reduce its contour length by
a factor [21]

𝜌୮୪ = 1 − 𝑘஻𝑇
4𝐴 (𝜆௥ + 𝜆௣) (4.22)

that in turn change the bending energy eq. (4.13) and the writhe density
of the plectoneme eq. (4.4) to

𝐸ୠୣ୬ୢ = 𝐸଴
ୠୣ୬ୢ𝜌ସ୮୪ (4.23)

𝜔(𝛼, 𝑡) = 𝜔଴(𝛼, 𝑡)𝜌୮୪. (4.24)

Outside the plectoneme, before the transition point, thermal ƪuctu-
ations also play a role. In fact, the straight solution 𝜗, 𝜑 = 0 incurs in
Ƨnite deformation d𝜗, d𝜑 on top of it. ƞese deformations, in general, al-
ter the writhe of the chain. As a consequence, in a torsionally constrained
setup, theWhite relation eq. (1.38) implies that the twist in inƪuenced by
ƪuctuations. In practice the torsional persistence length is rescaled to

𝐶(𝜆) = 𝐶
1+ ஼௞ಳ்

ସ஺ఒ௙
(4.25)
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where 𝜆 = ඥ𝐴/𝑓 in this case. When computing the torsional energy we
should use 𝐶(𝜆) instead of 𝐶. However there is no reason the 𝜆 used in
the tails should be reused in the plectoneme. ƞe correct way to do it, in
fact, is to use 𝜆̄ from eq. (4.20) for the torsional energy of the plectoneme.
ƞis results in the torsional energy of the system

𝐸் = 2𝜋ଶ ቆ𝐶(𝜆) 𝑇𝑤ଶ
ఒ

(𝐿௖ − 𝐿௣)
+ 𝐶(𝜆̄)

𝑇𝑤ଶ
ఒ̄

𝐿௣
ቇ (4.26)

where 𝑇𝑤ఒ and 𝑇𝑤ఒ̄ are the twist values in the tails and in the plectoneme.
ƞe linking number density in plectoneme, 𝑇𝑤ఒ̄, and tails, 𝑇𝑤ఒ, do not
need to be the same. Twist relaxation is fast, as is conƧrmed by experi-
ments [9]. Since the twist degree of freedom only couples globally, (by
means of the White’s equation), to the tangential degrees of freedom, we
can integrate out the twist ƪuctuations and simplify the model by equat-
ing the twist free energy densities:

𝐶(𝜆) 𝑇𝑤ଶ
ఒ

(𝐿௖ − 𝐿௣)ଶ
= 𝐶(𝜆̄)

𝑇𝑤ଶ
ఒ̄

𝐿ଶ௣
. (4.27)

Wewill use 𝑇𝑤ఒ/(𝐿௖−𝐿௣) ≡ 𝑡𝑤ఒ as one of theminimization parameters:
𝑇𝑤ఒ̄ ≡ 𝑡𝑤ఒ̄𝐿௣ can be inferred from eq. (4.27). In principle, the end loop
should be treated separately from the tails, with yet another 𝜆. However
the end loop only affects marginally the straight chain entropic contribu-
tion [34], justifying the use of a unique 𝜆 for tails and end loop. ƞerefore
whenwriting𝑇𝑤ఒ and𝑊𝑟୪୭୭୮(𝑡) (see eq. (1.35))we alwaysmean the twist
and the writhe of tails and loop together.

When using 𝑇𝑤ఒ/(𝐿௖ − 𝐿௣) as a minimization parameter, the length
of the plectoneme 𝐿௣ is given throughWhite’s relation eq. (1.38)

𝐿𝑘 = (Writhe+ Twist)୮୪ୣୡ୲୭୬ୣ୫ୣ + (Writhe+ Twist)୲ୟ୧୪ୱ
𝑛 = (𝜔(𝛼, 𝑡) + 𝑡𝑤ఒ̄)𝐿௣ +𝑊𝑟୪୭୭୮ + 𝑡𝑤ఒ(𝐿௖ − 𝐿௣) (4.28)

from which

𝐿௣ =
𝑛 −𝑊𝑟୪୭୭୮ − 𝐿௖𝑡𝑤ఒ
𝜔(𝛼, 𝑡) + 𝑡𝑤ఒ̄ − 𝑡𝑤ఒ

. (4.29)
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ƞermal ƪuctuations in the tails alsomodify, to lowest order, the−𝑓𝐿௖
term in equation (4.12) to

𝐸୲ୟ୧୪ୱ = ቆ−𝑓 + 𝑘஻𝑇
𝜆 − (𝑘஻𝑇)ଶ

4𝐴 ቇ (𝐿௖ − 𝐿௣) (4.30)

and shorten the end-to-end distance by a factor 𝜌୲ୟ୧୪ = 1 − 𝜆𝑘஻𝑇/2𝐴
according to [47].

ƞe total energy is thus

𝐸ୱ୧୬୥୪ୣ = 𝐸஼ + 𝐸் + 𝐸ୣ୪ + 𝐸ୠୣ୬ୢ + 𝐸୪୭୭୮ + 𝐸୲ୟ୧୪ୱ (4.31)

4.5 Multi-plectoneme phase
From a purely mechanical point of view the energy cost of the end loop
and tails is so high that only one plectoneme will form in the system, its
length growing when increasing 𝑛. However the prominent role of ther-
mal ƪuctuations and entropy could increase the contributions of multiple
plectonemes, which act in this case as local minima. We call𝑚 the num-
ber of plectonemes, with total length 𝐿௣, given by equation (4.29) with
𝑊𝑟୪୭୭୮ → 𝑚𝑊𝑟୪୭୭୮. ƞe total energy will be

𝐸(𝑚) = 𝐸஼ + 𝐸் + 𝐸ୣ୪ + 𝐸ୠୣ୬ୢ +𝑚𝐸୪୭୭୮ + 𝐸୲ୟ୧୪ୱ (4.32)

Assuming that 𝐿௣ grows faster than𝑚, we can neglect 𝐸୪୭୭୮ in eq. (4.32).
ƞis has the advantage that the minimization of the total energy with re-
spect to 𝛼, 𝑅(𝑡), 𝜎௥ and 𝑡𝑤ఒ is𝑚-independent. ƞe partition sum is com-
puted with these values. We choose a hardcore repulsion between plec-
tonemes (for simplicity) and a cutoff Λ = 3.4 nm (for structural reasons)
to calculateг the density of states. ƞe resulting partition sum is [21]

𝑍 = 𝑒ିா(଴) + ෍
௠ୀଵ

𝐺௠𝑒ିா(௠) (4.33)

𝐺௠ =
൫𝜌୲ୟ୧୪(𝐿௖ − 𝐿 − 𝑝) − 𝑛𝐿୪୭୭୮൯

௡ 𝐿௡ିଵ௣
𝑛! (𝑛 − 1)! Λ௡Λ௡ିଵ (4.34)

гRemoving thehardcore repulsionor changing the cutoff in a reasonable range affect
the curves below the experimental error.
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(a) 320mM ionic strength.

 

 

(b) 20mM ionic strength.

Figure 4.3: Turns-extension plots comparison between the theory and
experimental data from [5] for a DNA chain with contour length 600 nm.

where the upper limit is chosen so that 𝐿௣ ≥ 0. For long chains the dis-
tribution is strongly peaked around an average ⟨𝑚⟩. ƞere are 2 ways
the extension decreases with increasing linking number, through an in-
crease of plectoneme length and through an increase of the number of
plectonemes. At high salt concentrations the single plectoneme conƧgu-
ration becomes the groundstate at Ƨnite plectoneme length. ƞe jump as
seen in experiments [24, 13] is partly caused by the end loop, partly by the
Ƨnite size plectoneme. ƞe nature of these conƧgurations differs enough
from the former to speak of a multi-plectoneme phase (MP): they affect
the slope and the torque aƫer the transition. To characterize the MP we
introduce the multi-plectoneme parameter

𝜁 ≡ exp ቈ−
𝑊𝑟୪୭୭୮
𝑘஻𝑇

ቆ
𝐸୪୭୭୮
𝑊𝑟୪୭୭୮

− Δ𝑓
𝜔(𝛼, 𝑡)ቇ቉ ቆ

𝑊𝑟୪୭୭୮/𝐿୪୭୭୮
𝜔(𝛼, 𝑡) ቇ

ଶ

(4.35)

Δ𝑓 = 𝐸஼ + 𝐸ୣ୪ + 𝐸ୠୣ୬ୢ
𝐿௣

− 𝐸୲ୟ୧୪ୱ
𝐿௖ − 𝐿௣

(4.36)

For 𝜁 ≪ 1 the experimental turn-extension plots and torques, are well
described by a single plectoneme whereas for 𝜁 ≈ 1, the slope is a result
of an increase of plectonemes with increasing 𝑛. ƞe inset of Fig. 4.4a
shows 𝜁 as a function of salt concentration for different tensions.
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4.6. Comparison to experiments
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Figure 4.4: Howmany plectonemes and do they make a difference?

4.6 Comparison to experiments
ƞe predicted turn-extension plots of the model agree remarkably well
with experiments, see Fig. 4.3. Our model has only two parameters, 𝐴
and 𝐶, both known to some extent from other experiments. ƞe gen-
eral consensus for 𝐴 is from 45 to 50nm 𝑘஻𝑇. For the numerics we took
𝐴 = 50nm 𝑘஻𝑇+ OSF [52] corrections. ƞe value of 𝐶 inƪuences fore-
most the transition point. To Ƨt the measurements its value ranges from
100 to 120 nm 𝑘஻𝑇. Only for a salt concentration of 20 mM, a lower
value of 90 nm 𝑘஻𝑇was needed to get the transition point right. Since the
plectoneme length starts at 0 at the transition, our approximation of not
treating the end loop separately is debatable. Detailed modelling of en-
tropic and electrostatic repulsion within the end loop might improve the
model, for example starting from [7], although in the end the proximity of
the bifurcation point might invalidate a simple perturbation calculation.
For low salt concentrations, older models predict slopes too step [5]. As
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4. Plectonemes?

shown in Fig. 4.4b the MP phase corrects this picture.

(a) 750 nm DNA chain at 150mM
ionic strength. Comparison be-
tween theory and torques directly
measured [24].

(b) 5600 nmDNA chain at 100mM
ionic strength. Comparison be-
tween theory and inferred torques
[48].

Figure 4.5: Predicted versus measured (dashed lines) torque.

In theMPphase the torque of the system is not constant aƫer the tran-
sition. ƞis could explain the difference between torques measured in
optical tweezer experiments [24] and torques calculated using Maxwell
relations in a magnetic tweezer setup [48]. ƞe latter method assumes a
constant torque aƫer the transition. However, in theMPphase our theory
predicts a non-constant torque. In Fig. 4.5bwe showwhat ourmodel pre-
dicts for the data presented in [48]. To facilitate comparisonwith the orig-
inal paper, not the linking number, but the supercoiling density is used,
deƧned as the ratio of the linking number density to the linking density
of the two strands of free DNA. As can be seen in Fig. 4.5b, the assump-
tion of constant torque underestimates the torque difference between the
high and low tension curves. Our model, however, correctly reproduces
the direct torque measurements of [24] (see Ƨgure 4.5a).

A Ƨnal consequence of theMP phase is the change in the dynamics of
plectonemes. Multiple plectonemes can change their length distribution
fast as twist diffusion is fast [9]. ƞismakes a fast diffusion of plectonemes
possible also in the crowded environment of the plasmoid in bacteria or
through a dense chromatin Ƨber in eukaryotes. ƞe implications might
be important, from cellular processes to transcription to segregation.
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Samenvatting

Gimli, het beroemde personage uit Tolkien’s meesterwerk, is zo klein als
de kleinste 10% van de volwassen wereldpopulatie. En toch is de totale
hoeveelheid DNA in een van zijn cellen, wanneer uitgestrekt, langer dan
bijna ieder mens. Dit feit is nog opmerkelijker wanneer we ons realiseren
dat zijn cellen niet groter zijn dan één miljoenste meter.

Wanneer dingen zeer klein worden, wordt de visualisatie van wat er
gebeurt sterk bemoeilijkt. Gelukkig lijkt de verdichting van DNA op de
verdichting die het “spul” datwe vinden in boekenondergaatwanneer het
gedrukt wordt. Namelijk, zonder de stroom van woorden op te breken
in regels, pagina’s, boeken en boekenplanken, zouden we moeten joggen
tijdens het lezen. Hetzelfde principe geldt voor DNA: een mechanisme
is nodig om de genetische informatie op een efficiënte manier (zonder
“joggen” dus) uit het polymeer af te lezen.

Ik schrijf “het lezen van genetische informatie”, want DNA heeƫ nog
meerovereenkomstenmet eenboek: zoals boeken “informatie” bevatten,
bevat DNA de instructies (informatie dus) om eiwitten te produceren.
Dit is mogelijk dankzij de vier letters, ATCG, de voornaamste bouwste-
nen van DNA. De letters worden in drietallen gelezen, wat 64 mogelijke
combinaties oplevert. Elk van die combinaties zijn gekoppeld aan de 20
aminozuren, de bouwblokken van eiwitten.

De verdichting van DNA is echter niet eenvoudig, omdat deze mole-
cuul keten zich gedraagt als een semi-ƪexibel polymeer. Een polymeer
is een molecuul dat bestaat uit duizenden of miljoenen gelijke eenheden,
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de monomeren. In de meeste gevallen kunnen we de algemene eigen-
schappen van een polymeer beschrijven als een willekeurige wandeling
op een vierkant rooster (hoewel polymeren niet twee-dimensionaal zijn),
waarbij het exacte model niet van belang is: het hoge aantal monomeren,
en dus conƧguraties, maakt de details van de interactie tussen opeenvol-
gende monomeren irrelevant. De algemene interactie tussen monome-
ren is veel meer van belang. Bijvoorbeeld wanneer demonomeren elkaar
niet aantrekken en elkaarmogen overlappen, hebbenwe een “ideaal” po-
lymeer. In het geval dat demonomeren elkaar nietmogen overlappen, en
de monomeren elkaar niet aantrekken, spreken we van een “gezwollen”
polymeer, omdat de kwadratische eind-tot-eind afstand groter is dan in
het “ideale geval”. Aan de andere kant van het spectrum vindenwe ineen-
gestorte polymeren, waar demonomeren elkaar aantrekkenwaardoor de
gemiddelde kwadratische eind-tot-eind afstand kleiner wordt. Voor leng-
tes die in dit proefschriƫ beschouwdworden, behandelenwe hetDNAals
een ideaal polymeer, alhoewel de monomeren elkaar niet kunnen over-
lappen. Deze vereenvoudiging is mogelijk omdat het DNA molecuul re-
latief stijf is op een lengte schaal die veel groter dan zijn eigen diameter.
De informatie over de richting van het molecuul gaat verloren na onge-
veer 50 nm, de buigings persistentie lengte. Bovendien bestaat er ook een
torsionele persistentie lengte, ≈ 100 nm; voorbij die lengte raakt de tor-
sionele staat van het molecuul verloren. DNA is ook te vergelijken met
een waterslang. Net zoals DNA verzet een waterslang zich tegen buiging
en torsionele vervorming. Dit is een krachtige analogie, omdat eenwater-
slang niets anders is dan een elastica: zijn 3D pad kan worden beschreven
door een draaiende tol, dankzij de bewegings-analogie van Kirchoff.

Met behulp van deze analogie kunnen we een eenvoudig model bou-
wen om de structuur van de chromatine vezel vast te stellen. De chroma-
tine vezel helpt het DNA te comprimeren, zodat het in de cel past. Deze
vezel bestaat uit nucleosomen en onbedekt DNA. De nucleosomen vor-
men een complex, opgebouwd uit DNA en eiwitten. Gebruik makend
van de Kirchoff analogie kunnen we de energie van onbedekt DNA vast
stellen, en daarmee de structuur van de chromatine vezel. De verdichting
van DNA is echter niet het complete verhaal. Om de genetische code te
lezen is het nodig om het DNA los te wikkelen van de nucleosomen. Dit
kan gedaan worden door het uitoefenen van kracht op de nucleosomen
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of door een combinatie van kracht en torsie. Het is daarom logisch om
aan het eind van dit proefschriƫ te kijken naar het effect van kracht en
torsie op onbedekt DNA. Dit is eerder theoretisch onderzocht, maar de
resultaten kwamen niet altijd overeen met experimentele data, vooral bij
lage zout concentraties. Uiteindelijk blijkt dat het ontstaan van meerdere
plectonemen, een geometrische conƧguratie van het molecuul dat effici-
ënt torsiespanning kan opheffen, de sleutel is om theorie en experiment
op elegante wijze met elkaar in overeenstemming te brengen.
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