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Abstract
Purpose Despite efforts to treat uncertainty due to methodo-
logical choices in life cycle assessment (LCA) such as stan-
dardization, one-at-a-time (OAT) sensitivity analysis, and an-
alytical and statistical methods, no method exists that propa-
gate this source of uncertainty for all relevant processes simul-
taneously with data uncertainty through LCA. This study aims
to develop, implement, and test such a method, for the partic-
ular example of the choice of partitioning methods for alloca-
tion in LCA, to be used in LCA calculations and software.
Methods Monte Carlo simulations were used jointly with the
CMLCA software for propagating into distributions of LCA
results, uncertainty due to the choice of allocation method
together with uncertainty of unit process data. In this study,
a methodological preference is assigned to each partitioning
method, applicable to multi-functional processes in the sys-
tem. The allocation methods are sampled per process accord-
ing to these preferences. A case study on rapeseed oil focusing

on three greenhouse gas (GHG) emissions and their global
warming impacts is presented to illustrate the method devel-
oped. The results of the developed method are compared with
those for the same case similarly quantifying uncertainty of
unit process data but accompanied by separate scenarios for
the different partitioning choices.
Results and discussion The median of the inventory flows
(emissions) for separate scenarios varies due to the
partitioning choices and unit process data uncertainties.
Inventory variations are reflected in the global warming re-
sults. Results for the approach of this study vary with the
methodological preference assigned to the different allocation
methods per multi-functional process and with the continuous
distribution of unit process data. The method proved feasible
and implementable. However, absolute uncertainties only fur-
ther increased. Therefore, it should be further researched to
reflect relative uncertainties, more relevant for comparative
LCAs.
Conclusions Propagation of uncertainties due to the choice of
partitioning methods and to unit process data into LCA results
is enabled by the proposedmethod, while capturing variability
due to both sources. It is a practical proposal to tackle unre-
solved debates about partitioning choices increasing robust-
ness and transparency of LCA results. Assigning a methodo-
logical preference to each allocation method of multi-
functional processes in the system enables pseudo-statistical
propagation of uncertainty due to allocation. Involving stake-
holders in determining these methodological preferences al-
lows for participatory approaches. Eventually, this method
could be expanded to also cover other ways of dealing with
allocation and to other methodological choices in LCA.
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1 Introduction

Methodological choices are unavoidable in all phases of life
cycle assessment (LCA) and are a source of uncertainty
(Björklund 2002). Methodological choices in LCA refer,
among others, to choices about system boundaries (Tillman
et al. 1994), functional units, characterization factors
(Huijbregts 1998), and methods to solve multi-functionality
of processes (allocation methods). The latter is one of the most
debated topics in the field of LCA (Weidema 2000; Pelletier
et al. 2014; Ardente and Cellura 2012). According to the
International Standardization Organization (ISO) 14044
guidelines, the choice of allocation method involves a step-
wise procedure (ISO 2006): (1a) avoid allocation by dividing
multi-functional unit processes; (1b) avoid allocation by
expanding the system; (2) divide the system (partitioning)
using physical relations between products; or (3) divide the
system (partitioning) by other relations of products. The ap-
plication of this procedure to solve multi-functionality consti-
tutes a source of variability in LCA results of many product
systems (Ayer et al. 2007; Weidema and Schmidt 2010; van
der Harst and Potting 2014; Luo et al. 2009; Svanes et al.
2011; Guinée and Heijungs 2007) and may pose problems in
different decision-making situations (Wardenaar et al. 2012).
Hence, the importance of this specific methodological choice
in LCA is evident.

The ISO procedure aimed to create consensus and stan-
dardization (Björklund 2002) thus increasing the inter-
comparability of LCAs dealing with the same topics.
Despite the fact that ISO guidelines are widely applied by
practitioners, the consensus reached in practice has been
limited (Pelletier et al. 2014; Weidema 2014). Besides fol-
lowing standards and guidelines, LCA practitioners may opt
to show the influence of different allocation methods on
LCA results through sensitivity analysis. If more than one
allocation method is applicable to a multi-functional process,
one-at-a-time (OAT) local sensitivity analysis is mostly per-
formed. The influence of the choice of allocation method on
the LCA results is investigated by adopting different sets or
combinations of allocation methods in scenarios (Björklund
2002). This approach is very common when partitioning
methods are used to solve multi-functionality (Ayer et al.
2007; Weidema and Schmidt 2010; van der Harst and
Potting 2014; Luo et al. 2009; Svanes et al. 2011; Guinée
and Heijungs 2007).

Another approach to treat the choice between methods to
solve multi-functionality is based onmathematical arguments.
To provide a solution for the system of linear equations of an
LCA (Heijungs and Suh 2002), the use of the least-squares
technique has been investigated (Marvuglia et al. 2010; Cruze
et al. 2014). In this sense, particularly Cruze et al. (2014) favor
avoiding allocation over partitioning regardless of the princi-
ple arguing that, Bsince the number of solutions to choose

from is infinite, even consensus… would not necessarily lend
validity to an LCA study.^

More recently, the study by Hanes et al. (2015) devel-
oped an analytical approach dealing with the choice of
allocation method: the Comprehensive Allocation
Investigation Strategy (CAIS). This approach considers
all possible combinations of partitioning methods in a
comparative LCA; therefore, it systematically explores
the allocation space of various systems. CAIS helps de-
termine whether comparisons between various systems
are robust as far as the allocation space is concerned.

In a similar line of research, Jung et al. (2013) developed a
method for integrating uncertainty of allocation factors in
matrix-based LCA calculations and propagating it to LCA
results using an analytical approach (i.e., first-order approxi-
mations). This method considers the allocation factors them-
selves as uncertain input parameters that have a variation and
therefore lead to variability in the LCA outputs. It is thus not a
method for choosing between allocation methods.

Besides the analytical method of Hanes et al. (2015), there
is the statistical approach of Andrianandraina et al. (2015).
They apply local and global sensitivity analyses to
determine the influence of uncertainty in unit process data
and methodological and modeling parameters to the total
uncertainty in LCA results. Technical, environmental, and
methodological parameters are treated as variables, and
using a detailed LCA model for the foreground system, they
calculate scenarios dependent on the values of these
parameters. Particularly, the partitioning method is treated as
a qualitative methodological parameter with a uniform
discrete distribution and two possible values that correspond
to economic and mass partitioning. Moreover, of the available
literature, only Andrianandraina et al. (2015) treat variability
of LCA results due to unit process data uncertainty as well as
due to the choice of allocation method.

Despite the cited references for addressing the uncer-
tainty or variability introduced by the choice of allocation
method, no method has yet been developed to simulta-
neously propagate uncertainty in unit process data and
the sensitivity due to the choice of allocation methods of
more than one process to LCA results, without requiring a
detailed, parameterized foreground model and with the
potential to be applied to other methodological choices.
In this study, we develop such a method to be used in
LCA calculations and software. Data uncertainty and sen-
sitivity due to methodological choices together determine
the total range of LCA results for a specific system. Only
propagating their influence simultaneously will provide
the full total range of results. As we strive toward circular
economies, multi-functional processes will be encoun-
tered more often in LCA systems, increasing the impor-
tance of this simultaneous approach, the development of
which is the aim of this article.
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2 Methods

For the development of the method of this article, it is first
important to place the method of this study in the space of
methods that have a similar purpose (see Table 1). For each
reviewed method, Table 1 also lists allocation methods con-
sidered, the result after applying each approach, and the
sources of variability accounted for. The most sophisticated
methods include uncertainty in unit process data, choice un-
certainty, and other sources of uncertainty, leading to results
that account for these sources of variability.

In this study, for propagation of the uncertainty of unit
process data, we use Monte Carlo simulations as propagation
method. Within this sampling-based approach, we now in-
clude the discrete choice of allocation method as another ele-
ment. Of course, uncertainty of process data and uncertainty
of allocation method are distinct. There is a wide natural var-
iability for process data, and a probability distribution proper-
ly reflects this, so that a sampling method is appropriate. For
the discrete choice of allocation method, this is different.
There is no natural variability. Nevertheless, we treat it in a
similar way, because the effect is similar: In a given situation,
we are not sure of the precise process data and we are not sure
of the precise choice of allocation method. Therefore, com-
bining the uncertainty of data and the spectrum of choices in

one probabilistic setup is defendable. Notice that the usual
terms that are appropriate for data uncertainty (uncertainty,
probability, statistical, etc.) are not entirely suitable for de-
scribing choices. We will therefore in some cases avoid using
such words, in other cases add a qualifier (like in Bpseudo-
statistical^), and in some cases just use them, tacitly acknowl-
edging the changed usage. A short reflection around the—
admittedly debatable—terminology used in this study will
be provided at the end of the Sect. 4.

The application of this pseudo-statistical method poses an
additional question: Is our method a local or global sensitivity
analysis or rather an example of an uncertainty analysis? We
argue that our method is closer to the realm of uncertainty
analysis because the way we treat unit process data uncertain-
ty is an example of a true uncertainty analysis propagating
input uncertainties into output uncertainties (Fig. 1b).
Moreover, contrary to common OAT practice (Fig. 1c), the
choice of allocation method is also propagated using Monte
Carlo simulations. The latter is clearly beyond an OAT sensi-
tivity analysis and also constitutes the main reason why we
consider this study to be more closely related to uncertainty
analysis than to OAT sensitivity or scenario analysis. The aim
of our method is to simultaneously propagate data and choice
uncertainty to LCA results for all relevant processes of a prod-
uct system (Fig. 1d).

Table 1 Approaches to choose among allocation methods and to deal with other sources of uncertainty and variability

Approach to choose
allocation methods

Reference Uncertainty and
variability sources
explicitly included
in the results

Allocation
methods
considered

Resulting allocation method

Data Choice Other

Standard/guideline ISO (2006) – ✓ – All One method per multi-functional unit process
in the system depending on standard hierarchy
and OAT sensitivity when more than one
allocation method apply

Differentiated standard Pelletier et al.
(2014)

– ✓ – All One method per multi-functional unit process in
the system depending on standard hierarchy and
OAT sensitivity when more than one allocation
method apply

Mathematical-based
choice

Cruze et al.
(2014)

– – – All Avoid allocation

One-at-a-time (OAT)
sensitivity analysis/
scenario analysis

Many studies – ✓ – All Set of combinations of allocation methods for all
multi-functional unit processes in the system

Comprehensive
Allocation
Investigation
Strategy (CAIS)

Hanes et al.
(2015)

– ✓ – Partitioning All possible robust allocation combinations using
reformulated matrix algebra

Statistical method Andrianandraina
et al. (2015)

✓ ✓ ✓ Partitioning All possible combinations using detail foreground
LCA model

Pseudo-statistical
method

This study ✓ ✓ – Partitioning for
illustration.
Possibly all

All possible combinations using methodological
preference and Monte Carlo simulations
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Finally, to illustrate the development and implementation
of the method, we use the choice among partitioning methods
as an example of methodological choice in LCA. This means
that methods to avoid allocation will not be considered. In
Sect. 4, the possibilities of broadening up the application of
the method to other ways of dealing with allocation and to
other methodological choices are addressed.

2.1 Implementation of a pseudo-statistical propagation
method for uncertainty due to the choice of partitioning
method

For a multi-functional unit process, one or several
partitioning methods can be applied in order to solve
multi-functionality. Partitioning factors are defined as the
fraction that divides the non-functional economic (i.e., the
input products and the output wastes) and environmental
flows to the functional flows (i.e., the product of interest)
of a multi-functional process (Guinée et al. 2004). For
each multi-functional unit process in the system,
partitioning factors are defined and applied to enable the
calculation of the inventory table. Typically, the sum of all
partitioning factors for each partitioning method is equal
to 1 (Heijungs and Guinée 2007). This is, in very general

terms, the working procedure for partitioning methods
using different physical and non-physical principles such
as mass, energy content, and economic value.

To be able to introduce pseudo-statistical propagation of
the choice of partitioningmethod in an LCA system, the meth-
odological preference (p) (as a percentage) is introduced for
each applicable partitioning method per multi-functional pro-
cess. This parameter corresponds to a discrete methodological
parameter and has been set to a value between 0 and 100 %.
The assignment of a methodological preference is a subjective
choice offering a possibility to more actively account for dif-
ferent views by involved scientists and stakeholders or per-
haps accounting for patterns in the partitioning choices al-
ready made by relevant literature. For instance, if only one
partitioning method is applicable for a multi-functional pro-
cess, then p equals 100 % for that method and process, and if
for example, for another multi-functional process, three
partitioning methods are applicable, then p1, p2, and p3 should
equal a value between 0 and 100 %, all together adding up to
100%. These methodological preferences define the ranges of
methodological preference such that for each range, one
partitioning method takes place. The value of a random num-
ber from a uniform distribution between 0 and a 100 is then
generated and evaluated for the ranges of preference, and in
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Fig. 1 a Schematic representation of a standard LCA using point values
for unit process data as input as well as one allocation method per multi-
functional process; the output corresponds with a point value for an
environmental impact category or inventory flow. b Uncertainty
analysis, using ranges, standard deviation, and distributions of unit
process data instead of point values as inputs together with one
allocation method per multi-functional process to calculate distributions

of outcomes. c Local OAT sensitivity analysis varies a certain percentage
of the inputs (one at a time) to see the influence in the outcomes. d This
study propagates both data and allocation method choice uncertainty to
the outputs. e Global sensitivity analysis starts with an uncertainty
analysis and then calculates how much of the variability of the output is
due to variability of each input
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this way, a partitioning method is determined for each multi-
functional process in the system.

In mathematical terms, every time a multi-functional pro-
cess is encountered in a system, the following action takes
place: A random deviate x is drawn uniformly between 0
and 100, and depending on its value, a certain allocation
choice (partitioning in this case) is implemented.

Allocationmethod

¼

x ∼ U 0; 100ð Þ
method 1 if x ∈ 0; p1½ �
method 2 if x ∈ p1;p1

� þp2�
method 3 if x ∈ p1 þ p2; p1 þ p2 þ p3�ð
…
method3 if x∈ p1 þ p2 þ p3 þ…þ pn−1; 100�ð

8
>>>>><

>>>>>:

After definition of the parameters introduced above, a
method to propagate uncertainties to the LCA results is select-
ed. For this, several methods exist and have been used in LCA
(Groen et al. 2014; Heijungs and Lenzen 2014). Among the
most widely used ones are sampling methods such as Monte
Carlo (MC) simulations that rely on determining the probabil-
ity distribution of the results by brute computing force pro-
gressively increasing in time (Heijungs and Huijbregts 2004).
Other methods such as Latin hypercube simulation, which
uses a more efficient random sampling, could be used for
propagation too (Groen et al. 2014). However, given the aim
of the paper, we focused on the most widely used and intui-
tively easiest approach: MC.

To propagate the uncertainty due to the choice of
partitioning method using the described parameter definitions,
MC simulations were adopted for the repeated random sam-
pling. The larger the number of runs, themore combinations of
partitioning choices could be taken into account in the results.

In case the same number of partitioning methods applies
for all processes, the total number of partitioning scenarios for
a system with multi-functional processes and several
partitioning methods applicable to each process would be
equal to the total amount of multi-functional processes to the
power of the number of partitioning methods possible. For
instance, Guinée and Heijungs (2007) found 54 Bmulti-
output^ processes linked to passenger car and diesel systems
in the ecoinvent v1.1 database (Swiss Centre For Life Cycle
Inventories 2004). From these, only seven were selected for
the study by means of a contribution analysis. The study
looked at the influence of economic partitioning, physical
partitioning, and the ecoinvent default partitioning on the
LCA results. A full scenario analysis for all partitioning
methods would have implied 543, i.e., 157,464 possible
partitioning scenarios, nonetheless only three were con-
sidered, i.e., the seven selected multi-output processes
using either economic, physical, or ecoinvent v1.1 de-
fault partitioning.

With the method proposed here, the analysis of a system
with a relative large number of multi-functional processes and/
or partitioning methods, such as that of Guinée and Heijungs
(2007), would become computationally feasible, by capturing
most (if not all) possible partitioning scenarios by means of
MC simulations without actually having to define scenarios.

2.2 Case study

The approach described in Sect. 2.1. has been implemented in
the CMLCA software (CML 2014) version beta 5.2 and has
been tested with a simple system: rapeseed oil production in
Northern Europe, as shown in the flow diagram of the system
in Fig. 2. The system is similar to the one implemented by
Wardenaar et al. (2012); however, here it stops at rapeseed at
mill in order to concentrate on the really important novel as-
pect. The focus of the case study is on the only two multi-
functional processes: [P1] rapeseed cultivation and [P3] rape-
seed oil extraction by cold pressing of rapeseed. Process [P1]
produces straw and rapeseed, and process [P3] produces rape-
seed oil and rapeseed cake at mill. Thus, both processes are
multi-functional and require allocation. The functional unit is
1 kg of rapeseed oil at mill, and the system includes the pro-
duction, storage, and transport of the main inputs to the three
foreground processes shown in Fig. 2. The entire background
system is specified using ecoinvent data version 2.2 (Swiss
Centre For Life Cycle Inventories 2007) which is already
allocated. The background system remains constant for all
the scenarios analyzed in this study. Scenarios result from
combinations of the partitioning methods selected for process
[P1] and process [P3], as will be further specified. A detailed
description of the implementation of the system is available in
the Electronic Supplementary Material.

For the two multi-functional processes, two partitioning
methods are identified as applicable. In the case of [P1] (rape-
seed cultivation), 100 % partitioning, i.e., assuming that the
straw is ploughed through the soil, and therefore all flows
should be allocated to the rapeseed is the first option
(Wardenaar et al. 2012b). The second partitioning principle
identified is based on the mass of straw and rapeseed which
is found for the typical production of rapeseed and straw in
Northern Europe in van der Voet et al. (2008), and although in
their study, they use 100 % partitioning, mass is another pos-
sibility for allocation. In the case of [P3] (rapeseed cold press-
ing), partitioning based on energy content and economic
values of co-products could hold and the same partitioning
factors as defined by Wardenaar et al. (2012) are used.
Table 2 shows the partitioning factors per co-product for each
of the partitioning methods and multi-functional processes
described above.

The proposed method is tested by comparing two sets of
LCA results. The first set corresponds to LCA results of the
case study using an OAT sensitivity analysis to study the
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influence of different partitioning methods (i.e., without
choice uncertainty) and process data uncertainty propagated
with MC simulations. The second set corresponds to the LCA
results for the case study using the method implemented in
Sect. 2.1 to propagate the uncertainty due to the choice of
partitioning method while also accounting for process data
uncertainty and both sources of uncertainty propagated with
MC simulations. The former LCA results are referred to as
Ballocation scenarios^ or simply as Bscenarios^ (i.e., exclud-
ing choice uncertainty) and the latter as the results of Bthis
study^ (i.e., including choice uncertainty).

The scenario results are calculated for four scenarios de-
fined by the combinations of two multi-functional processes
in the systemwith two applicable partitioningmethods in each
process. To include unit process data uncertainty, the method
of Henriksson et al. (2013) was used to determine the unit
process data distributions where possible despite that there
are other methods available (van der Harst and Potting 2014;
Hong et al. 2010; Imbeault-Tétreault et al. 2013; Heijungs and
Lenzen 2014). Moreover, for propagation, we used MC sim-
ulations with a sample size of 1000 simulations for each of the
four allocation scenarios. Further, as shown in Table 2, the
methodological preference assigned to one partitioning meth-
od per multi-functional process in each scenario corresponds
to 100, because as stated in Sect. 2.1, choosing for one method
corresponds to 100 % preference of that method.

For the calculation of the LCA results of this study, the unit
process data uncertainty and the choice of partitioning are
simultaneously propagated, using MC simulations based on
unit process data distributions (same as in the allocation sce-
narios) and the methodological preference for the choice of
partitioning method as defined in Table 2. A 50 % methodo-
logical preference has been arbitrarily chosen for all applica-
ble partitioning methods in both multi-functional processes in
the case study, but although arbitrary, this preference allows an
equal representation for all the methods enabling one to prop-
agate uncertainty due to the choice of method. A total of 4000
MC simulations are run to create a representative sample to
cover all possible partitioning scenarios. One would expect to
be able to do with fewer simulations in order to have a com-
putational gain compared to the 1000MC simulations for the
four scenarios. However, as the aim of case study is to test the
method, it was decided to have the same amount of runs in
order to increase the chance of covering all partitioning com-
binations. Besides, for a more complex system (with more
than two multi-functional processes), the computational gain
becomes more evident as the chance of reproducing all
partitioning scenarios is low, while the feasibility of capturing

Rapeseed at regional storehouse

Transport

Lorry

Fertilizer

Rapeseed oil at mill

Rapeseed cake at mill

Mill

Electricity

Pesticides Transport Seeds

Building

Straw

Rapeseed at farm

System Boundaries

[P1] Rapeseed Cultivation

[P2] Transport and storage

[P3] Rapeseed Cold Pressing

Fig. 2 System for rapeseed oil production in Northern Europe. Boxes
represent processes; dashed boxes are multi-functional processes

Table 2 Allocation parameter definition as used in the case study

Methodological preference p (%)

Multi-functional process Partitioning method/principle Co-product Partitioning
factor

Scen1 Scen2 Scen3 Scen4 This
study

[P1] Rapeseed
cultivation

100 % partitioning Straw 0 100 0 0 100 50
Rapeseed 1

Mass partitioning Straw 0.43 0 100 100 0 50
Rapeseed 0.57

[P3] Rapeseed
cold pressing

Energy content partitioning Rapeseed oil 0.55 100 100 0 0 50
Rapeseed cake 0.45

Economic value partitioning Rapeseed oil 0.7 0 0 100 100 50
Rapeseed cake 0.3

Scenario in this study is a combination of the partitioning methods selected for process [P1] and process [P3]
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them with the method of this study is higher. These results are
expected to cover the full range of the scenario results without
choice uncertainty.

Finally, as an example of inventory results, only the main
greenhouse gases (GHG), i.e., carbon dioxide (CO2), methane
(CH4), and di-nitrogen monoxide (N2O) will be presented, as
well as the LCIA results for global warming using the IPCC
(2007) global warming potentials for a 100-year time horizon.

3 Results

The median of the life cycle inventory (LCI) results for the
allocation scenarios varies for carbon dioxide emissions from
around 0.7 to 1.2 kg CO2/kg of rapeseed oil, for methane
emissions from around 1.0 to 1.7 g CH4/kg of rapeseed oil,
and for di-nitrogen monoxide emissions from around 1.8 to
4.0 g N2O/kg of rapeseed oil (Fig. 3, left panels). Thus, the
differences between the median values of the scenarios only
follow the choice of allocation methods for the two multi-
functional processes in the case study.

Figure 3 shows the absolute GHG emissions per kilogram
of rapeseed oil at mill for the 1000 MC simulations (left
panels) for each allocation scenario separately including a
statistical propagation of unit process data uncertainty. As ex-
pected, for those allocation scenarios with higher allocation
factors for rapeseed and rapeseed oil (scenarios 1 and 4), the
GHG emissions for the system studied are higher. The range
that results for each of the allocation scenarios is smaller than
the range resulting from all together. This indicates that sce-
nario analysis can be misleading if all possible scenarios are
not taken into account in the results.

Moreover, Fig. 3 shows the absolute GHG emissions per
kilogram of rapeseed oil at mill for the 4000MC simulations
for the method introduced in this study (left panels column
labeled BThis study^). The results cover the full range of the
four possible allocation scenarios but without separating be-
tween different scenarios as is seen in Fig. 3 (left panels,
scenario 1, 2, 3 and 4 vs. This study).

The histograms displayed in Fig. 3 (right panels) show the
distribution of the LCI results for the method of this study and
the allocation scenarios.

For each allocation scenario, there is a peak around the
median of the LCI results, and for the method of this study,
an overlapping distribution is observed. For instance in the
case of CO2 emissions, there are three observable peaks (not
four as the peak of scenarios 1 and 3 overlap) which coin-
cide with the medians of the allocation scenario. This out-
come is also observable in the left panel graphs of Fig. 3, in
the form of more dense clouds of points around certain
values of emissions; however, it is not always so clear in
the whisker plots and this is the main reason for presenting
the same results also in histograms.

Figure 4 (left panel) shows the global warming results for
the same four scenarios and for the method developed in this
study. The contribution of emissions to the global warming
results varies depending on the allocation scenario between 49
and 55 % for CO2, around 2 % for CH4, and between 43 and
49 % for N2O emissions. Moreover, the scenario results now
show less overlap, which is reflected by the histograms that
more clearly show four discernible peaks around the medians
of the allocation scenarios.

4 Discussion

The method presented here to simultaneously propagate un-
certainties in unit process data and due to the choice of
partitioning methods is based on the introduction of the meth-
odological preference of each applicable partitioning method
for all multi-functional processes in a system.

In the case study presented, an equal methodological pref-
erence for all allocation methods applicable to the multi-
functional processes in the systems was used. An equal meth-
odological preference for all methods is of course an arbitrary
choice, which can be made differently and in a more sophis-
ticated way. One way to determine the methodological prefer-
ences of allocation methods could be to involve scientists,
experts, and stakeholders of specific sectors whose preference
for the different allocation methods could be taken as basis for
determining these values. Another way could be to determine
patterns in the allocation choices already made by means of a
meta-analysis (van der Voet et al. 2010) of existing case stud-
ies preferably specific for rapeseed oil.

Moreover, the methodological preference may influence
the case study’s results. We have investigated this influence
by performing two distinct OAT sensitivity analyses. The two
sensitivity analyses are variations of the two most extreme
allocation scenarios, i.e., scenarios 2 and 4, arbitrarily chang-
ing the values of p as shown in Table 3 with the aim of ex-
ploring the effect of this parameter on the results.

Figure 5 illustrates the results of the sensitivity analyses
compared to the equal methodological preference originally
adopted for the case study.

The frequencies of the LCI results concentrate more around
the median of a specific allocation scenario, as it is expected,
once the methodological preference for one allocation method
gets closer to 100 %. Therefore, the values of p affect the
distribution of the results for the approach of this study. In
Fig. 5 (left panels), the range of results for the second sensi-
tivity case reduces compared to the original range of our case
study. But also, the amount of data points beyond the whiskers
(outliers) increase. This could indicate that the LCI data dis-
tributions have long tails that show up in the results only for
seldom MC runs. For the first sensitivity, the total range in-
creases slightly, and this is also an indication that the LCI data
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distributions are more sampled for values on the tails of the
distributions.

As mentioned before, to calculate the uncertainty due to the
choice of allocation method in separate scenarios and not in-
tegrated with the MC-based propagation of unit process data
uncertainty, results have to be calculated for at least four sce-
narios for the simple case study (including only two multi-
functional processes with two possible allocation methods
each) and to run1000 MC simulations for each scenario in
order to propagate LCI data uncertainty to the LCA results.
This is a time consuming and a hardly ever performed work,
and even less for more complex systems. In this context, the
method proposed here accounts in a pseudo-statistical manner
for a representative sample of possible combinations and
shows a representative range of possible results for a system
with its likelihood (i.e., distribution) demanding less time
from the practitioner than a normal setup of an OATsensitivity
analysis but perhaps demanding more time for computation.
The time spent in the case study for separate scenarios is the
same as used by applying the method of this study, if the same

number of MC simulations is adopted. However, we adopted
moreMC simulations for our method in order to ensure that all
possible combinations of both data and allocation methods are
sampled. For this reason, the time demand of our method is
higher.

It can also be argued that this method could be intensive in
terms of computing capacity requirements as it uses MC sim-
ulations as a propagating method. Nevertheless, analytical
methods do not yet exist for propagation of the choice of
allocation methods, and we doubt if this is possible at all.
Relying on increasing computational capacity, we consider
the proposed method as a good alternative to tackle two of
the main sources of uncertainty in LCA in an integrated way.
Possibilities for more efficient statistical propagation methods
(e.g., Latin hypercube sampling) also remain a topic for fur-
ther research.

Another point for discussion is the increased total uncer-
tainties shown in the results of the method of this study, com-
pared to those of the allocation scenarios. LCA studies are
mostly relevant for comparing two or more alternative sys-
tems fulfilling the same functional unit. In the context of com-
parative LCA, relative uncertainties (Henriksson et al. 2015)
play an important role for the application of this method.
Therefore, the pseudo-statistical method becomes particularly
relevant when comparing two or more alternative systems
fulfilling the same functional unit.

Applying the method developed in this study for a compar-
ison of two alternatives (A and B), fulfilling the same func-
tional unit requires dependent MC sampling and comparison
of the inventory and/or characterization results for each run,
for example, by subtracting the results from alternative B from

�Fig. 3 Left panels: LCI results for the main GHG emissions to air of
1000 MC simulations for the four allocation scenarios and 4000 MC
simulations for the method introduced in this study. The red line
represents the median, the lower boundary of the blue box Q1, and the
upper boundary Q3, so the height of the blue box is the interquartile range
(IQR). The range of the whiskers (black horizontal lines) beyond the first
and third quartiles is set to Q1(Q3)–(+) 1.5*IQR. The whiskers extend
from the blue box to show the range of the data. The data points outside of
this range represent the outliers beyond the whiskers and are plotted as
blue crosses. Right panels: histograms with a bin size of 100 based on the
same MC simulations as in the left panels

Fig. 4 Left panel: global warming in kg CO2 equivalents as an example
of an impact category for the case study for 1000 MC simulations for the
four allocation scenarios and 4000 MC simulations for the method

introduced in this study. See the caption of Fig. 3 for an explanation of
the blue boxes, red lines, and crosses. Right panel: histograms with a bin
size of 100 based on the same MC simulations as in the left panels
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the results of alternative A (A−B). In this way, each alterna-
tive builds upon the same sampled parameters for those parts
of the systems that are shared (similar) for both A and B
(Henriksson et al. 2015). Similarly, we here argue that the
same allocation scenarios should be sampled for multi-
functional processes that are shared between the two systems
A and B. In fact, comparing two or more alternative systems
providing the same function could be misguided if different
allocation methods are chosen for each system. The method of
this study can provide comparable relative results simulta-
neously accounting for the same or varying allocation choices
and LCI data uncertainties where pertinent, which would be
more meaningful information than the full absolute range of
uncertainty as shown, for example, in the case study.

One could think that information about the influence of the
allocation choice is disguised as the range of absolute uncer-
tainty only increases. However, a global sensitivity analysis
(Fig. 1e) could reveal back the influence of the choice in the
results. The contribution of uncertainty of the input parameters
to the total uncertainty of the outputs can be identified.
Therefore, one could prioritize the main contributors to the
total uncertainty, and reduction of the overall uncertainty
could be strived for, on the basis of which better data could
be collected and/or consensus on allocation methods to be
applied. This would never be possible with OAT sensitivity
scenarios for allocation methods alone for a full-scale LCA.
Exercises such as a comparative LCA and a global sensitivity
analysis are, however, out of the scope of the present article
and a topic for further research.

The method was presented for the example of dealing with
the choice dilemma in solving multi-functionality by
partitioning. The method could, however, also be applied to
a higher level of choices for solving the multi-functionality
problem. For instance, in the realm of consequential LCA,
various scenarios of substitution or system expansion could
also be assigned a methodological preference. In the realm of
attributional LCA, as explored in the case study, various
partitioning principles can be accounted for. As mentioned

in other studies too, there is not one single way of solving
multi-functionality in LCA (Guinée et al. 2004; Wardenaar
et al. 2012), even when accepting that the solution should
serve the purpose of the LCA (Pelletier et al. 2014).

The method could also be applied to other choices than
only the one related to multi-functionality as long as the
choice can be represented as a discrete choice. Then, a meth-
odological preference can be assigned to each option, and the
uncertainty introduced by the choice can be propagated into
LCA results. For example, in the case study, the 100-year
global warming potential (GWP100) was adopted to calculate
the global warming results. We could also have adopted the
GWP20 or GWP500. Assigning a methodological preference to
the GWP20, GWP100, and GWP500 characterization factors
and using the method developed in this study would lead to
inclusion of the influence of characterization factors simulta-
neously with the choice of allocation method and LCI data
uncertainty, if desired. For this example, the calculation works
correctly as long as the characterization factors for the differ-
ent time horizons lead to the same type of LCA results, i.e., in
kg of CO2 equivalents. On the other hand, if for example
characterization factors for different methods lead to different
type of results such as different type of units and scales, the
method presented here could not be directly applied because
the units could not be comparable among the different
choices. In summary, the method developed in this study is
valid for all discrete choices leading to comparable results.

Finally, we would like to discuss the terminology used
throughout the article. As explained in the methodology sec-
tion, we believe that this pseudo-statistical method is closer to
the domain of uncertainty analysis, given that not only unit
process data is propagated but also the methodological pref-
erence of allocation methods are propagated too bymeans of a
statistical method (in this case Monte Carlo), to the LCA re-
sults.We are aware though, that for example, Andrianandraina
et al. (2015) account for the propagation of the uncertainty due
to methodological preference of allocation methods to the
LCA results as a way of sensitivity analysis, therefore placing

Table 3 Allocation parameter definition as used in the sensitivity cases

Methodological preference p (%)

Multi-functional
process

Partitioning
method/principle

Co-product Partitioning
factor

This study Sensitivity 1
(variation of scenario 2)

Sensitivity 2
(variation of scenario 4)

[P1] Rapeseed
cultivation

100 % partitioning Straw 0 50 80 20
Rapeseed 1

Mass partitioning Straw 0.43 50 20 80
Rapeseed 0.57

[P3] Rapeseed
cold pressing

Energy content partitioning Rapeseed oil 0.55 50 80 20
Rapeseed cake 0.45

Economic value partitioning Rapeseed oil 0.7 50 20 80
Rapeseed cake 0.3
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Fig. 5 Left panels: LCI results for the main GHG emissions to air of
4000 MC simulations for the method introduced in this study using three
different sets of methodological preferences for the allocation methods as

defined in Table 3. See the caption of Fig. 3 for an explanation of the blue
boxes, red lines, and crosses. Right panels: histograms with a bin size of
100 based on the same MC simulations as in the left panels
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their method in the realm of sensitivity analysis. Independent
of the type of analysis and admitting the debate around the
semantics used to refer to our method, we consider more im-
portant the fact that robustness is added to the results by ex-
plicitly accounting for various sources of variability.

5 Conclusions

Methodological choices are unavoidable in all phases of LCA
and are a source of uncertainty. Among these choices, practi-
tioners typically choose between different methods to solve
multi-functionality, and within partitioning methods, different
choices can be made again. Unresolved debates on these
choices constitute a major source of uncertainty in LCA re-
sults. Ways to deal with this issue include standardization,
OAT sensitivity analysis, and analytical and statistical
methods for uncertainty analysis. Standardization reduces un-
certainty, while OAT sensitivity analysis serve to analyze the
system using specific combinations of allocation methods, in
order to show a range of possible results. The full range of
results given all possible choices for allocation methods and
combinations in a system with several multi-functional unit
processes is only shown by means of statistical and analytical
methods, however. Not showing all (or very many) possible
combinations can be misleading when evaluating the environ-
mental impacts of a production system and when comparing
two or more systems even more. In addition, so far, only one
study showed all combinations of allocation methods, as well
as accounting for unit process data uncertainty.

This study proposed, implemented, and tested a pseudo-
statistical method (not statistical in the strict sense of the word)
to enable the use of Monte Carlo simulations as a statistical
approach to simultaneously propagate uncertainty in unit pro-
cess data and uncertainty due to the choice of partitioning
methods to LCA results. For this purpose, the methodological
preference was introduced and assigned to each partitioning
method for each multi-functional process in a system. The
assignment of a methodological preference involves an arbi-
trary choice offering a possibility to more actively account for
different views by involved scientists, experts, and stake-
holders or patterns frommeta-analysis of existing case studies.

The distribution of LCA results was analyzed for a very
simple case study, with and without the previous approach and
in both cases including LCI data uncertainty.We conclude that
the proposed method enables in a relatively simple way, i.e.,
with a few additional parameters and computational calcula-
tion capacity dependent on the system, the propagation of
uncertainty due to the choice of partitioning methods to solve
multi-functional problems and data uncertainty into LCA re-
sults while not requiring a detailed foreground model for the
foreground system.

It is concluded that this method can be particularly useful
when comparing relative uncertainties of several alternative
systems, as increased absolute uncertainty in the LCA results
does not necessarily lead to more meaningful conclusions.
Moreover, information about the contribution of choice and
data uncertainty to the total uncertainty could be further pro-
vided by, for example, a global sensitivity analysis. However,
these are topics for further research.

In addition, the results of the application of the method
provides a more transparent and robust base for comparative
LCAs than OAT sensitivity analyses or uncertainty analyses
only accounting for uncertainty in unit process data or subsets
of combinations between data and allocation methods. More
sources of uncertainty are explicitly accounted in the results
by making explicit the methodological preference of an allo-
cation method per multi-functional process.

Moreover, exploring the implementation of the proposed
method for higher levels of choices in LCA, such as methods
to solve multi-functionality in a broader sense and other meth-
odological choices in LCA is another topic for further re-
search. We argue that the method will also be valid for these
choices as long as they can be represented as discrete choices
and lead to comparable results. Furthermore, implementation
and testing of the method for more complex systems, i.e.,
higher numbers of multi-functional processes with various
applicable allocation methods, is also required. We believe
that a trade-off between time spend by the practitioner in set-
ting the analysis and calculation time could take place for
more complex systems.
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