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1 Abstract

The determination of the appropriate local-field factor for quantifying the re-
sponse of a molecule to an external electric field is of major importance in optical
spectroscopy. Although numerous studies have dealt with the evolution of the
optical properties of emitters as a function of their environment, the choice of
the model used to quantify local fields is still ambiguous, and sometimes even ar-
bitrary. In this paper, we review the Onsager–Böttcher model, which introduces
the polarizability of the probe molecule as the determinant parameter for the
local field factor, and we establish a simple conceptual framework encompass-
ing all commonly used models. Finally, a discussion of published experimental
research illustrates the potential of the measurement of local electric fields in
dense dielectric media, as well as the subtleties involved in their interpretation.

2 Introduction

When molecules and other small structures are subjected to an externally ap-
plied electric field, they experience local fields that differ from the measurable
macroscopic ones in non-trivial manners. This effect can be taken into account
quantitatively by so-called local-field corrections, which are required to relate
the optical response of the molecule to its properties as observed in vacuum or
a different medium. A particularly important domain of applications of local-
field corrections is optical spectroscopy [1, 2], given that the optical properties
of emitters strongly depend on their dielectric environment. This exquisite
sensitivity is, at the same time, a promising opportunity and a significant chal-
lenge for applications like designing photonic materials [2–4] or using emitters
as nanoprobes [5–9]. In all such endeavors, a precise understanding of the local
field acting on the optically active entities is of primary importance.
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In this paper, we develop a simplified electrostatic description based on
Böttcher’s treatment of a point dipole in an empty spherical cavity in a linear
and isotropic dielectric medium, which establishes a unifying conceptual frame-
work for understanding the relationship between the commonly used local-field
models. We furthermore discuss extensions of the simple model, covering special
cases such as non-spherical molecules and inhomogeneous or absorbing media,
and we briefly review complementary approaches based on microscopic models
and quantum-mechanical treatments in the light of their applications in opti-
cal experiments. We then connect the theoretical descriptions to experimental
studies involving different types of nano-objects, which serves both as an il-
lustration of the discussed models and as a demonstration of the potential of
single-emitter spectroscopy in dielectric media.

3 The Onsager–Böttcher treatment of a dipole
in a cavity

The evaluation of local-field corrections is a complex and long-standing problem,
which in general requires a careful consideration of the vectorial nature of the
field and of its inhomogeneous distribution at molecular scales [10]. A simplified
macroscopic model commonly used to calculate local-field corrections considers
the molecule of interest as a static point-dipole situated at the center of a
spherical cavity that is immersed in a continuous, homogeneous surrounding
medium. This concept was first introduced by Bell in 1931 to describe molecules
in liquid media [11]. Such an electrostatic model can also be applied to optical
fields, provided the cavity diameter is much smaller than the wavelength of
light (which is usually the case for molecules and nanoparticles), meaning that
retardation effects can be neglected.

Upon application of a macroscopic field along the z-axis (see Fig. 1), polar-
ization charges are induced on the surface of the spherical cavity. These charges
create an additional field, which contributes to the polarization of the dipole.
In return, the point dipole itself polarizes the solvent outside the cavity, thereby
further modifying the polarization charges. This coupled problem cannot eas-
ily be solved by linear superposition arguments and must be addressed in a
self-consistent manner.

We thus consider a point dipole at the center of a spherical cavity with radius
R, surrounded by a linear and isotropic medium with relative dielectric constant
ϵ. Given that the dielectric is isotropic, all vectors will be directed along the
applied field and we write their algebraic values only. The Onsager-Böttcher
treatment holds for static dipoles and polarizabilities. We focus here on its
implication in optical and spectroscopic experiments, and therefore consider
only the polarizability, which is the relevant parameter in experiments. (The
case of a permanent static dipole component of the host molecule will briefly be
addressed later.) The dipole moment µ of the central point dipole is related to
its polarizability χ by

µ = χEloc , (1)

where Eloc is the local field experienced by the dipole, resulting from all external
charges. This consideration includes the far-away charges polarizing the medium
(symbolized as capacitor plates in Fig. 1) and the polarization charges at the
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boundary of the cavity, which have to be adjusted such that a self-consistent
description of all polarization effects is achieved. Furthermore, the polarizability
of the solute may change due to electrostatic and specific interactions with the
medium molecules, which affect electronic transition energies and transition
dipole matrix elements. A refined local-field correction should therefore also
take theses changes of polarizability into account in a self-consistent way. For
the sake of pedagogical clarity, however, we will neglect these higher-order terms
in the following discussion, which amounts to assuming the polarizabilities of
the solute and solvent molecules to be constant and equal to the corresponding
vacuum values.

Finding the general solution for the electrostatic potential V in the geometry
of Fig. 1 is a standard problem of electrostatics, determined by the Laplace
equation for the electric potential, ∆V = 0. Given the rotational symmetry
of the cavity model, the general solution can be expressed in spherical polar
coordinates (with the applied field and dipole parallel to the z-axis) as a sum of
terms composed of a radial function f(r) multiplied with a Legendre polynomial
in cos θ, where θ is the polar angle [12]. For the specific problem considered here,
the derivation of the potential can be simplified by noting that we are only
interested in solutions whose angular dependence corresponds to the potential
of the combination of a uniform field with a dipole field, both of which vary as
cos θ. The radial Poisson equation thus reduces to

d

dr

(
r2

df(r)

dr

)
− 2f(r) = 0 , (2)

which admits two linearly independent solutions, f(r) = r and f(r) = 1/r2,
corresponding to a uniform field and a dipole field, respectively, when combined
with the cos θ term. The most general potentials inside (Vin) and outside (Vout)
the spherical cavity are written as linear combinations of these two solutions:

Vin =

[
a+ b

(
R

r

)3
]
r cos θ (3)

Vout =

[
A+B

(
R

r

)3
]
r cos θ (4)

For the sake of generality, we assume the inside of the sphere to be a dielec-
tric with relative permittivity ϵ1 while the outside medium is a dielectric with
permittivity ϵ2. There are three consistency and boundary conditions that de-
termine the unknown coefficients in Eqs. (3) and (4): First, the continuity condi-
tions at the surface of the sphere (r = R) for the potential and for the normal (ra-
dial) component of the electric displacement vector, Din/out = −ϵ0ϵ1/2∇Vin/out,
which impose

a+ b = A+B

ϵ1(a− 2b) = ϵ2(A− 2B) .
(5)

Second, the boundary conditions at infinity and at the origin,

A = −Em

b = µ
4πϵ0ϵ1R

3 ,
(6)

3



where Em is the incident field applied by the far-away electrodes and therefore
independent of the microscopic details of the sphere; µ is the dipole moment at
the center of the cavity, whose potential is µ cos θ/(4πϵ0ϵ1r

2). Finally, there is
the constitutive equation of the dipole relating its moment to the local electric
field that it experiences, which here is the uniform field created in the cavity
(the dipole does not act on itself):

µ = χEloc = −χa . (7)

Eliminating B, we obtain the local field correction factor, i. e., the ratio of
the local field to the applied far-away macroscopic field, as:

L =
Eloc

Em
=

3ϵ2

ϵ1 + 2ϵ2 − 2
3

ϵ2−ϵ1
ϵ1

χ
ϵ0VI

(8)

where VI = 4
3πR

3 is the volume of the cavity occupied by the molecule; note
that the local field factor depends on the ratio of the dipole polarizability χ
and the inclusion volume VI, i. e., the polarizability density. In the following,
we consider a few special cases, which will elucidate the physical interpretation
of this relation and illustrate the relationship between the various local-field
correction factors used in the literature.

3.1 The empty cavity

The empty-cavity (EC) field correction factor Lec arises in the quantum optical
treatment of dielectric media presented by Glauber and Lewenstein [13]. We
find the same field correction factor when we apply Eq. (8) to an empty spherical
cavity in medium ϵ2 by setting ϵ1 = 1 and χ = 0:

Lec =
3ϵ2

2ϵ2 + 1
(9)

This model is in general recovered when the polarizability density χ/(ϵ0VI) tends
to zero.

3.2 A dielectric sphere in vacuum

We can apply the model to the response of a dielectric sphere in vacuum that
is subjected to a macroscopic electric field Em. The sphere will behave as an
equivalent dipole with a moment M , which, in the formalism of Eq. (4), is given
by M = 4πϵ0R

3B. Putting ϵ2 = 1 (vacuum) and χ = 0 (no additional point-
dipole is present in the sphere, which also implies b = 0), we can solve Eqs. (5)
and (6) for B to obtain:

M = 4πϵ0R
3 ϵ1 − 1

ϵ1 + 2
Em (10)

This well-known relation describes the optical response of an isotropic dielectric
sphere to a uniform field and provides the lowest-order electrostatic approxima-
tion of the equivalent polarizability αe in Mie theory [14]:

αe = 4πϵ0R
3 ϵ1 − 1

ϵ1 + 2
(11)
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3.3 The Lorentz-Lorenz relation

The Lorentz-Lorenz relation is the standard textbook illustration of local-field
effects. The usual derivation of this formula starts by decomposing the di-
electric medium into its constituent dipoles, typically arranged on a cubic lat-
tice, and introducing an imaginary cavity to find the local field at the lattice
points. The local field then turns out to be determined by the surface charges
at the boundary of the cavity, while, somewhat counter-intuitively, the nearest-
neighbor dipoles in the cavity contribute nothing to the field due to accidental
cancellations arising from the cubic lattice symmetry; a full discussion of these
conceptual issues can be found in Ref. [15]. We can treat the same problem in
a straightforward manner by considering a dielectric medium with an embed-
ded sphere of the same dielectric material, which simply means replacing the
polarizable dipole at the center of the cavity in Fig. 1 by the dielectric sphere of
Section 3.2, this time with the identical dielectric constant ϵ2 and the associated

polarizability α′
e = 4πϵ0R

3 ϵ2−1
ϵ2+2 analogous to Eq. (11). We thus find the Lorentz

local-field correction (also known as the virtual cavity model) [16] LL:

LL =
Eloc

Em
=

3ϵ2

1 + 2ϵ2 − 2
ϵ2−1

4πϵ0R
3α′

e

=
ϵ2 + 2

3
(12)

This well-known expression of the local field is equivalent to the Clausius-
Mossotti relation between polarizability and dielectric permittivity: (α/3ϵ0Ω) =
(ϵ2 − 1)/(ϵ2 + 2), where Ω is the volume occupied by each of the constituent
molecules.

It is remarkable that we obtain the Lorentz-Lorenz relation without having
to introduce any point dipoles – we just replaced the field of a sphere by that
of a point dipole in the region outside the sphere, which is an exact solution
of Maxwell’s equations. No decomposition of the medium into dipoles and
no accidental cancellation of dipole fields are required to obtain this relation.
The Lorentz-Lorenz relation above is thus simply a consistency condition for
representing a homogeneous medium by an isotropic dielectric: If a medium is
homogeneous and isotropic, then the Lorentz-Lorenz condition must be obeyed.

3.4 The Onsager–Böttcher model

As pointed out by Böttcher [17] based on the initial work of Onsager in 1936 [18],
the local-field correction factor depends on the polarizability χ of the molecule
placed in the cavity. We therefore now consider a polarizable point dipole at the
center of an empty cavity in dielectric medium ϵ2. It is instructive to rewrite
the polarizability of the dipole as a variation δ of the equivalent polarizability
α = α′

e of the sphere that was removed when forming the cavity: χ = α + δ.
For positive δ, the dipole in the center of the cavity is more polarizable than the
removed dielectric, which will generally be the case in spectroscopy of solvated
molecules at optical frequencies.

For a homogeneous distribution of the polarizability in the spherical cavity,
one can choose the volume to be that of the host, i.e., VI = Ω, and the polar-
izability will adjust itself accordingly. This consideration can also be extended
to the case of a point-dipole at the center of a spherical cavity, due to the
equivalence of the reaction fields for, respectively, a sphere filled with dielectric
material and a single point dipole inside an empty cavity [17].
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Using the Clausius-Mossotti relation as given in Section 3.3, we find the local
field correction factor LB:

LB =
LL

1− 2
(ϵ2−1)2

9ϵ2

δ
α

(13)

We thus see that the local field correction factor increases when the solute is
more polarizable than the solvent, and we note that Eq. (13) includes the empty
and virtual cavity models for δ = −α and δ = 0, respectively; a graphical
comparison is shown in Fig. 2.

3.5 Choice of model

We now discuss some guidelines for the choice of model depending on the nature
of the dipole inside the cavity. For pure systems constituted of only one kind
of atom, or when the polarizability of the guest is the same as that of the host,
the Lorentz model (virtual cavity) should apply. On the other hand, when
the polarizability of the guest dipole is sufficiently low compared to that of
the host, the reaction field caused by the induced dipole acting on the cavity
can be neglected and the empty cavity model applies. The EC model thus
represents a lower boundary for the local field factor. In the general case of a
guest with arbitrary polarizability, the appropriate local-field factor is given by
the Onsager–Böttcher model, Eq. (13), which, as has been pointed out above,
contains the EC and VC models as special cases. However, Eq. (13) clearly
becomes invalid when δ is too large, as the denominator will vanish. In that
case, the solute-solvent system can become unstable and acquire polarization
spontaneously, upon a ferro-electric phase transition, for example; of course,
the linear approximation ceases to apply in that case [19]. The model described
above thus remains valid only for a polarizability difference δ < 9ϵ2 α/[2(ϵ2−1)2].

3.6 Implications for optical experiments

As can be appreciated directly from Fig. 2, the various local-field factors im-
ply significant differences of an emitter’s sensitivity to a change in the local
refractive index, meaning that the validity of any given model should be easily
verifiable if the same species can be studied in a series of media with sufficiently
distinct refractive indices. Therefore, experiments dealing with local-field effects
most commonly rely on the analysis of absorption spectra or the dynamics of
spontaneous emission (luminescence lifetime) as a function of the surrounding
dielectric medium. Briefly, in spontaneous emission, the emitter couples to the
local field when immersed in a homogeneous medium of dielectric constant ϵ2.
The general expression for the radiative decay rate of an emitter is obtained
from Fermi’s Golden Rule as Γr =

√
ϵ2 Γr,0 [20], where Γr,0 is the radiative de-

cay rate in vacuum. Taking into account local field corrections, the radiative
decay rate is given by Γr =

√
ϵ2 L

2 Γr,0, where L is the applicable local-field
factor [1]. Exploring the relative variation Γr/Γr,0 thus yields information on
the local field experienced by the emitter.

There is, however, a complication as soon as the emission quantum yield
differs significantly from unity. The observed overall fluorescence decay rate
is then given by the sum of the radiative and the non-radiative decay rates,
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Γ = Γr + Γnr, and it is generally assumed that only Γr depends on the local
field according to one of the models outlined above. Consequently, the extent of
the non-radiative contribution has to be known for a quantitative analysis, or
the quantum yield has to be introduced as an additional adjustable parameter.
Furthermore, it may not always be straightforward to rule out changes of Γnr in
different matrices, for example due to a modified geometry of a guest molecule
or due to its potential coupling to dissipative degrees of freedom of the matrix.

In optical spectroscopy, the amplitude of optical fields are usually small
enough so that the linear response approximation applies, which justifies inter-
preting experimental results in the framework of the Onsager-Böttcher model.
However, some optical experiments involve a strong coupling of light with the
medium, giving rise to nonlinear optical effects such as second-harmonic gener-
ation, the Kerr effect or four-wave mixing. Quadratic and higher-order terms
of the local electric field become significant in all these cases, and it is there-
fore crucial to apply field-correction factors that take into account higher-order
polarizabilities (hyperpolarizabilities) in a self-consistent manner [21–23].

3.7 Extended models

We will now discuss models going beyond the framework of a spherical inclusion
cavity, which explicitly take into account deviations from a spherical geometry or
attempt to describe the external field effects at the microscopic level of individual
atomic or molecular dipoles.

3.7.1 Anisotropy of solute and solvent molecules

For most polyatomic molecules, spherical symmetry is not a good approxima-
tion; if such a guest molecule cannot rotate freely due to solute-solvent inter-
actions then an elongated cavity must be used to model local-field effects. A
generalization of Eq. (13) for an ellipsoidal cavity can be found in Ref. [17]:
Dimensionless scale factors a, b, and c are defined such that the principal axes
of the ellipsoid are given by aR, bR and cR, respectively, and a form factor Lµ

(µ = a, b, c) is introduced to quantify the contribution to the screening of the
electric field along each axis. One can then discuss two distinct cases, either
a homogeneous polarizability filling the whole cavity or a point dipole at the
center of the cavity.

In the first case, with the interior of the cavity having a polarizability χc

along the c-axis, the local-field correction factor is found to be [17,24]

LB =
ϵ2

ϵ2 + (1− ϵ2)Lc − 3Lc(1− Lc)
(ϵ2−1)χc

4πϵ0abcR3

, (14)

where the form factor Lc is given by

Lc =
abc

2

∫ ∞

0

ds

(s+ c2)
√

(s+ a2)(s+ b2)(s+ c2)
. (15)

We note that in the case of a spherical cavity, a, b, c = 1, the three form factors
are identical, Lµ = 1/3, and Eq. (13) is recovered; setting χc = 0, on the other
hand, yields the local-field factor for an empty ellipsoidal cavity. As mentioned
earlier, the reaction field of a point dipole at the center of a sphere is identical
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to the field created by a homogeneous sphere with same polarizability. This
equivalence is lost when dealing with ellipsoidal cavities as the resulting reaction
field is non-homogeneous and requires more intricate calculations. Eq. (14)
constitutes the first-order term in the development of the reaction field due to
a dipole at the center. It should furthermore be noted that, due to the reduced
symmetry of an ellipsoidal cavity, the induced dipole moment will not necessarily
be parallel to the external field. The relation (14) thus only holds for an emitter
filling up the entire cavity, such as a molecule with its transition dipole moment
along the long axis, or for an emitter with same polarizability as the cavity.
The absorption properties of quantum-confined elongated structures in which
the absorption dipole is delocalized inside the core can also be understood in
this framework. On the contrary, Eq. (14) ceases to be applicable if there is
empty space in the cavity, as is the case for rare-earth-doped nanoparticles in
an elongated cavity, distorted micelles or droplets around emitters, or holes in
solids with single point dipoles, for instance. In all these situations, Eq. (14) is
valid for point dipoles in the low-polarization limit only.

Guest molecules are often assumed to be incompressible so that their van
der Waals radii can be used directly in Eqs. (13) and (14). However, non-
negligible compression or extension effects do occur in solids and dense liquids.
For instance, a molecule with a fixed polarizability density will experience a
local-field factor that is reduced by a factor of two when an elongated cavity of
axes a, b = 1, c = 3 is considered instead of a spherical one (a, b, c = 1) [24].
In case of ions embedded in solid matrices, distortion effects can even compete
with the influence of the change in refractive index represented by the host
medium [25].

As the medium generally changes the electronic distribution of the probe
molecule in condensed phases, it may be preferable to reason in terms of ef-
fective molecular properties (dipole moments, polarizabilities, etc.) in a given
medium [21], different from their vacuum counterparts, which serve as the star-
ing point for incorporating the effects of external fields. Such effective molecular
properties must also include a static dipole contribution when applicable. One
must thus take care to disentangle the local-field effects from all other phenom-
ena that influence the optical properties of the guest before interpreting the
results with a standard spherical-cavity model, even when comparing media of
identical refractive indices.

Finally, in the most general case when the shape of the cavity is neither
spherical nor ellipsoidal, the field is not uniform and higher-order multipoles
have to be considered to achieve an adequate description [1]. In the derivation
of Eq. (13), we furthermore neglected any local anisotropy or deformability of
the medium. In the more general case of anisotropic permittivity and polariz-
ability, local-field factors can be derived from a tensorial treatment [26]. Similar
considerations apply to the case of a polarizable solute with a permanent dipole
moment, which can be accommodated by replacing the constitutive relation of
Eq. (7) with µ = µ0û+χEloc, where û is a unit vector representing the orienta-
tion of the permanent dipole µ0. In this situation, a reaction field is present even
in the absence of any external field; its effect can be important, especially in
polar solvents, where the solvent molecules fully orient and the static dielectric
constant has to be considered.
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3.7.2 Microscopic models

We will now briefly review models that go beyond the continuum approach
adopted so far, in that they explicitly take into account the microscopic entities
(atoms, ions, molecules) that make up the host matrix instead of treating it
as a homogeneous medium characterized by a macroscopic dielectric constant
ϵ. The constituents of the host can be modeled as classical electric dipoles or
treated as quantum-mechanical systems.

In the framework of classical electrodynamics, one typically calculates the
back-scattered field at the position of the emitter to determine the induced mod-
ification of the radiative relaxation rate Γr [27], which can then be compared to
measured fluorescence decay curves. However, this approach usually overlooks
the local field induced by the dielectric medium in which the emitter is embedded
and considers mainly the modifications of the local density of photon states due
to reflections at boundaries between regions of different ϵ. An Onsager-based
approach has been proposed by Cao et al. [28], and further expanded by Tomaš
in 2003 [29]. This scheme places an oscillating dipole in the center of an empty
spherical cavity and predicts a modification of the spontaneous emission rate
compatible with the empty-cavity local-field correction factor. The agreement
found here is a consequence of an analogy between the transition dipole moment
of an emitter and a polar, non-polarizable dipole moment that is subjected to
its own reaction field. In the latter case one can consider the external dipole
moment µ∗, which generates the dipole field outside of the cavity, and one finds
that, without an externally applied field, the modification of µ∗ corresponds to
the empty-cavity factor of (9), i. e., µ∗/µ = Lec [18]. Transferring this result to
the classical expression for the radiative decay rate in a homogeneous medium
evidently recovers the empty-cavity factor for spontaneous emission.

The polarizability of a fluorescent molecule in transition between the excited
and ground states is, strictly speaking, undefined at optical frequencies, and its
effects on the reaction field are therefore often neglected. One thus represents an
emitter as a rigid permanent dipole, akin to a polar molecule, interacting with
its own scattered field. Cao et al. furthermore showed that quantum-analytical
calculations neglecting the reaction field predict the same spontaneous emission
rate as the classical Onsager-based approach [28]. This manner of treating the
emission process agrees with the simple picture of vacuum fluctuations playing
the role of the externally applied field on an empty cavity in a homogeneous
medium. The comparison of the two descriptions rests on a correspondence re-
lation between the classical dipole moment and the quantum-mechanical tran-
sition dipole moment; it turns out that the well-known correspondence relation-
ship applicable to spontaneous emission in vacuum ensures the compatibility
of the Onsager–Böttcher model with the approach of Cao et al. However, the
physical meaning of this reaction-field-free quantum-mechanical description re-
mains somewhat unclear. In fact, the excited state is more polarizable than
the ground state for most molecules, while it is not necessarily permanently
polarized. The two scenarios are thus able to describe spontaneous emission for
non-polarizable emitters, but further theoretical efforts are needed to extend it
to highly polarizable species.

We note that there is an alternative to interpreting the modification of the
decay rate in terms of a modification of the electromagnetic density of states
(embodied by the spherical cavity) in an inhomogeneous medium: One can in-
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stead consider a modified effective dipole comprised of the solute and a few
layers of guest molecules, which is then immersed in normal medium [24]. De-
pending on the nature and geometry of the system, it may be preferable to use
one or the other picture.

In 1998, De Vries and Lagendijk [30] proposed a fully microscopic model
based on resonant classical light scattering by impurity atoms in dielectric cu-
bic lattices, applied to the dynamics of spontaneous emission; this problem was
treated with a combined transfer matrix and Green’s function approach. Two
years later, Schuurmans and Lagendijk recovered the earlier results from a sim-
pler macroscopic approach [31], based on the Onsager–Böttcher model described
previously. This latter approach considers the total polarizability of the (empty)
cavity that is generated inside the dielectric due to the impurity atom and then
calculates the dipole potential outside the cavity, which is found to correspond
to the polarizability:

αcav = χLecL+ (1− ϵ)LecVI , (16)

where L and Lec are given by Eqs. (8) and (9), respectively. The first term of
Eq. (16) represents the dipolar field induced by the impurity inside the cavity,
and the second one quantifies the response of the cavity to the applied field. The
Schuurmans-Lagendijk approach then uses the optical theorem, which relates
the extinction cross section of the emitter to the re-distributed energy. By
expressing the dynamic polarizability of the cavity formed by the atom, one
can extract the resonance linewidth, or damping rate, taken to be equivalent
to the radiative decay rate Γr of the emitter. At this point, interstitial and
substitutional inclusion are distinguished by Schuurmans and Lagendijk. For
interstitial impurities, the many-particle correlations between the atoms in the
matrix are treated as unchanged by the authors, meaning that the impurity
experiences an electric field according to the virtual cavity (Lorentz) local-field
factor, Eq. (12). A substitutional impurity, on the other hand, which perturbs
the matrix by substituting a lattice site, is considered to be subject to the
empty cavity local-field factor of Eq. (9). The conclusion for fluids is that
the substitutional case should mainly occur, since the emitters often expel the
solvent, while for solids both cases (interstitial or substitutional) can happen.
For gases, finally, the distinction is irrelevant since the development at the first
order of the models is the same.

Crenshaw and Bowden [32] proposed a microscopic model that considers
the interactions between an embedded emitter and the atoms of the dielectric
medium (treated as two-level systems) at the microscopic level to find an ap-
proximated (first-order) solution for the equation of motion of the excited state
of the guest. In this framework one finds a dependency of the local-field factor
on the refractive index of the host that is even weaker than the one of the empty-
cavity model shown in Fig. 2. Furthermore, the Crenshaw–Bowden approach
predicts a different slope at n = 1 for the curve of Γr as a function of n. More
critically, it results in anisotropic refractive indices for perfectly isotropic media,
as pointed out by Berman and Milonni [33]. The latter authors present a refined
model that takes into account magnetic sublevels of the atoms in the environ-
ment, and for which both the virtual-cavity and the empty-cavity description
are consistent for dilute gases (n → 1). These calculations were extended to
second order of a simplified Hamiltonian by Fu and Berman in 2005 [34], who
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find that only the virtual-cavity model is consistent with their refined model. A
theoretical comparison published by Crenshaw in 2008 [35] likewise concluded
that microscopic theory of quantum electrodynamics is in agreement with the
classical approach to local-field correction, i.e., the virtual-cavity model. While
these combined theoretical efforts have undoubtedly advanced the fundamental
understanding of local field correction factors, a significant limitation for their
application to experimental data is that they are applicable to highly dilute
gases only. For a general overview of quantum-chemical solvation models, see
the review by Tomasi et al. [36].

3.7.3 The effect of inhomogeneous and absorbing media

The macroscopic models discussed so far have neglected local inhomogenei-
ties around the dipole, assuming an homogeneous and isotropic surrounding
medium. Deviations to all the models discussed above are expected to arise due
to a grainy nature of the solvent, or more generally due to local inhomogeneities
around the emitter of interest. Thermal fluctuations do occur, in solvents or
solid matrices. Defects in crystals are unavoidable and can furthermore be in-
duced by the very presence of the impurity atom or molecule itself, and likewise
must be accounted for. Typically, defects lead to local changes in the polariz-
ability of the host, which in return modify the local field acting on the impurity.
Just like local inhomogeneities (occurring over distances comparable to the lat-
tice constant a), mesoscopic inhomogeneities (a ≪ d ≪ λ) affect the local field
as well. A commonly used approach to interpret results in disordered heteroge-
neous media involves the calculation of an effective refractive index [2, 15]. As
a consequence, one mesures values that are averaged over different local envi-
ronments when dealing with ensemble measurements. Such average values are
subsequently connected to the effective refractive index of the matrix, but this
procedure may become invalid when dealing with single impurities or individ-
ual nanoparticles. For a single particle close to a mesoscopically heterogeneous
entity, a full calculation of the scattered field is usually needed to account for
local-field corrections, which also includes retardation effects. In general, envi-
ronmental fluctuations always occur due to the mobility of species. Information
at the local level (spatially and temporally) is accessible for measurement times
smaller than typical diffusion times. In solids, this can happen when dealing
with mesoscale entities at room temperature, or at molecular scales at ultra-low
temperature [7, 25, 37–39]. In liquids or gases (with much smaller viscosities),
diffusion is much faster and complicates direct local measurements, such that
either ensemble or time averaging procedures are often unavoidable.

In practice, the distance of influence of the medium on guest molecules is not
infinite. Toptygin [1] defines a typical cut-off distance from a probe dipole over
which the influence of the environment can be neglected, which is crucial for
the use of luminescent particles as nanoprobes of refractive index [6,7,9]. Such
considerations have therefore led to new efforts for extending the definition of
a local effective refractive index to complex soft-matter systems, in which the
exact guest-host geometry is usually not known [5, 9, 39] and can furthermore
change over time.

For absorbing media, corrections to both models of empty-cavity and Lorentz
cavity are needed and the radius of the cavity no longer cancels out in the local-
field correction factor, as derived by Scheel et al. [40, 41].
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3.8 Experimental investigations of local-field effects

We will now review illustrative experiments for the influence of local-field effects
on the spectroscopic properties of different types of host-guest systems and
discuss their interpretation in the spirit of the Onsager–Böttcher model.

3.8.1 Rare earth ions in bulk systems

Rare earth (RE) ions embedded in different hosts have been widely studied,
notably due to their rich electronic structure, which is well understood for the
isolated ions. However, the interpretation of spectroscopic properties of RE
ions in solids has sometimes remained controversial because the influence of
the host matrix tends to affect the optical transitions of the ions considerably.
Experiments were therefore performed in glassy structures [42–44], where the
refractive index can be changed by simply varying the volume fractions of the
glass constituents. Rare-earth ions are known to possess a relatively low polar-
izability in general [42, 45]. Therefore, the empty-cavity model has been found
to mostly apply. In Ref. [44] it was determined that the Dy ion replaces a host
atom and creates a tiny, but actual void in the matrix (substitutional site) of
covalently bound chalcogenide glass, in agreement with the empty-cavity pic-
ture. The same behavior was encountered for Eu3+ ions in a PbO-B2O3 glass
system [42,43]. In this case, the low-polarizability RE ion substitutes a Pb site
with high polarizability, and therefore distorts the matrix. One interesting idea
in Ref. [42] is the use of the polarizability as an adjustable parameter in the
model given by (8), where a very low value was found for χ, further confirming
the applicability of the EC model.

A reinterpretation of experimental results in the framework developed by
Lagendijk and coworkers was carried out notably by Duan et al., [45], including
the cases of a Eu3+-hfa-topo complex [46,47], Ce3+ in different hosts [48], Eu3+

in glass systems [42], and yttrium oxide Y2O3 nanoparticles [37]. It was found
that, contrary to the systems discussed in the beginning of this section, the
virtual-cavity model can be applied to Ce3+ ions dispersed in different hosts.
The proposed explanation for this phenomenon hinges on the fact that Ce3+

ions replace matrix cations with low polarizability as compared to their anionic
counterparts. As the local field is predominantly due to the anions, it was argued
that the low-polarizability Ce3+ ions essentially act as interstitial impurities.

The influence of absorbing media on the local-field factor were first discussed
by Scheel et al. [40,41]. In this case, corrections to both the empty-cavity and the
virtual-cavity model are necessary, and the radius of the cavity no longer cancels
out in the local-field correction factor. As an experimental verification, Kumar
et al. [43] have studied the evolution of the luminescence of Eu3+ ions embedded
in matrices co-doped with Nd3+ ions. Energy transfer occurs between the two
entities, and the matrix must therefore be described using a complex refractive
index. As has been mentioned above, one interesting experimental aspect is
that the radius of the cavity can assume the role of a fit parameter when the
absorption of the matrix is varied. A cavity radius of about 1 nm was thus
found, in very good agreement with the characteristic distance of absorption for
rare earth ions [43].

A further illustration of the importance of cavity shape and microscopic
host-guest interactions is provided by investigations of the local-field effects on
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the lifetime of an Eu(fod)3 complex [49], which show strong deviations from the
predictions of a model with a fixed cavity shape. As pointed out in Ref. [1], this
behavior could in fact be caused by hydrogen bonding of the fluorescent species
with the solvent, which breaks the spherical symmetry of the RE-containing
complex.

3.8.2 Rare-earth doped nanoparticles

For dopant ions in nanoparticles (NPs), optical transitions are localized and
not affected by quantum confinement – contrary to the case of semiconductor
quantum dots discussed later. In most cases, experimental results are in good
agreement with the empty-cavity model [45–47,50–52]. This concordance often
arises from an actual cavity being created in the host matrix (substitutional
case) by the impurity, which has a low polarizability compared to the host
constituents. The first observations of lifetime modification of RE ions dispersed
in nanostructures were in fact interpreted in terms of a change in the local
effective refractive index, taking the volume fraction of the different dielectric
constituents as adjustable parameters [37,45].

More recently, Senden and coworkers performed experiments on the lumines-
cence lifetime of LaPO4 NCs doped with Ce3+ and Tb3+ ions [4]. They adapted
the EC model to a more complex cavity model, where the inner refractive index
is included to account for the variation of lifetime, see Eq. (13), and showed that
this electrostatic model remains valid with less than 5% error for nanocrystal
sizes up to 40 nm.

It has furthermore been reported that, once the NP size drops below a cer-
tain threshold, the lifetime of embedded RE ions starts to depend on the size of
the nanocrystal [25, 52]. This observation raises an important point: Although
the cavity model does not contain any dependence on the absolute NP size, the
local field factor should be influenced by the ratio of the radii of the NP and the
Onsager cavity in which the emitter is situated. To describe the actual modi-
fication of the dopant radiative rate, and to eventually compare it for different
kinds of NPs, one should generalize the derivation of Eq. (13) to a core-shell
system of a nanoparticle containing the Onsager cavity [28, 29]. An increasing
nanoparticle size thus changes the local-field factor, even though the host mate-
rial remains unchanged. Note that this consideration becomes irrelevant when
the impurity has the same polarizability as the NP constituents (Lorentz local
field). The case of NPs thus raises new challenges for the comprehension of local
field effects, where new variables such as the NP material or its size must be
considered.

3.8.3 Single organic chromophores

Similar results as for the case of RE-doped NCs had previously been observed
for fluorescent molecules dissolved in water droplets (size ≈ 2 nm). Using a core-
shell model comprising the surfactant layer, the authors of Refs. [53] and [54]
showed that the empty-cavity model is suitable for describing the evolution of
the local field experienced by Sulforhodamine B and Sulforhodamine 101. This
result is in agreement with the very low increase in the polarizability density
inside the droplet due to the molecules, which typically possess a polarizability
of around 60 Å3, small compared to the volume of the droplets.
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Later, Vallée et al. [24] developed an approach based on the Onsager–
Böttcher model to study the lifetime dynamics of DiD molecules in polymers.
The molecule in this case is surrounded by a fluctuating environment of mono-
mers, as it is immersed in a polymeric matrix. It was shown that the local
field is strongly affected by the local dielectric fluctuations around the emit-
ter. The subsequent calculation of the reaction field due to the molecule in
different matrix configurations provides access to the total modification to the
dipole moment of the molecule and explains the observed variations of lifetime.
Vallée et al. furthermore found that continuum behavior is reached only after
considering a few solvation shells, stressing the importance of near-field dipole
interactions. Note that, as mentioned in Section 3.7.3, the distinction between
the models in this situation is irrelevant, since the surrounding medium is inho-
mogeneous. Nevertheless, the empty-cavity factor could be applied considering
the fluctuations as variations of an effective refractive index experienced by the
chromophore [38].

The local-field factor can furthermore be probed by analyzing the zero-
phonon line (ZPL) of single molecules. At low temperature the width of the
transition is solely limited by the natural lifetime. In Ref. [7], optical spec-
troscopy of single terrylene molecule dispersed in various polymeric matrices
was studied. The authors concluded that the variations of the ZPL width can
be explained by both the EC and VC models, so that further experiments may
be needed to discriminate between these two models.

Finally, Rebane and coworkers [8] used a combination of one- and two-photon
absorption measurements to determine the polarizability and dipole moment of
the Prodan and C153 chromophores. A significant red-shift of the absorption
with increasing dielectric constant of the medium was observed. Based on the
previously described Onsager–Böttcher model, the authors were able to deter-
mine the dipole moments of the excited and ground states, the polarizabilities,
the radius of the cavity, as well as the strength of the reaction field, found to be
of the order 0− 107V cm−1. This analysis illustrates the power of the Onsager–
Böttcher picture for extracting important electronic properties of molecules.

3.8.4 Semiconductor quantum dots

Quantum-confined structures are increasingly popular, owing to the tunability
of optical properties by changing size, geometry, and structure. In such nanos-
tructures, the optical properties are a result of the quantum confinement effect
experienced by the optically generated exciton (electron-hole pair). Quantum
Dots (QDs) are characterized by 3D confinement of the exciton, as compared to
quantum wires (2D) or quantum wells (1D). The situation is thus different from
the case of RE ions doped nanoparticles, since in QDs the crystal structure itself
is an integral part of the emission process, with the exciton delocalized in the
core of the nanocrystal. Only few experiments have investigated the influence of
local field effects in homogeneous, dense dielectric media on quantum confined
structures [9, 55,56], and no definitive conclusion has been reached so far.

Recently, Hens et al. [57] have shown that light absorption above the band
gap is well described by standard local-field models, but the quantum confine-
ment effects render difficult the extension to near-bandgap transitions. For
emission, a real-cavity model considering the inner refractive index of the QD
has been proposed [58]. However, this treatment still poses the fundamental
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problem of predicting a non-zero transition probability when the inner refrac-
tive index is zero, which has no physical meaning in case of the QDs: Such an
emitter should be considered as a whole, and no separation between the exciton
and the structure “hosting” it can be justified.

First experiments on lifetime variations of CdSe and CdTe QDs were per-
formed by Wuister and coworkers [56]. They found the Crenshaw–Bowden
model [32] to be most suitable for interpreting their experimental data, although
this model has remained controversial [33], as discussed above. Moreover, the
small overall variation of lifetime within the range of different refractive indices
that could be studied, combined with the unknown exact quantum yield, made
an unambiguous rejection of the empty-cavity model difficult [45].

More recently, Aubret et al. [9] have investigated the local-field effects on
CdSe/ZnS core-shell QDs. Here, the quantum yield in vacuum was used as
the crucial parameter for discriminating between the models. Unambiguously,
the VC model was found to be more adequate than the empty-cavity model, in
disagreement with the above-mentioned experiments.

Finally, while QDs dots are often considered as polar due to the presence of
a strong permanent excitonic dipole moment alone, it has been demonstrated
that they possess a very high excited-state polarizability, typically comparable
to their volume [59–62], such that χ/(ϵ0VI) ≈ 1. These two factors combined
imply that the reaction field cannot be neglected, as is the case in the empty-
cavity model.

4 Conclusion

We have presented an illustrative treatment of local field effects as they apply in
optical spectroscopy of chromophores in dielectric media. A simplified electro-
static model based on Onsager–Böttcher theory served as a unifying framework
to elucidate the fundamental link between the different local-field correction fac-
tors used in the literature. We thus saw that tuning the polarizability difference
δ = χ − α between guest emitters (χ) and the atoms or molecules of the host
matrix (α) mediates a gradual transition from the empty-cavity local field factor
(χ = 0, meaning δ = −α) to the Lorentz cavity (virtual cavity model), which
is applicable when the guest has exactly the same polarizability as the solvent
(δ = 0). Further extrapolating of this trend leads to scenarios in which the
guest molecule has a higher polarizability than the solvent for comparable van
der Waals radii; this situation is the one most commonly encountered in single-
molecule spectroscopy, given that dyes and other optically active molecules are
usually placed in solutions or matrices that interact weakly with visible light
and are therefore as a rule less polarizable than the solute. As the molecular
polarizability χ is in general unknown, it may serve as a parameter to adjust the
measurements of the same solute molecule in a variety of solvents or matrices
with different dielectric permittivities ϵ, provided that the volume occupied by
the molecule is known a priory or can be estimated with sufficient accuracy.

We have furthermore discussed extensions of the simple model applying to
special cases such as non-spherical molecules and inhomogeneous or absorbing
media, as well as complementary approaches based on microscopic models and
quantum-mechanical treatments. We saw that the latter approaches offer a de-
scription at a more fundamental level, but at the cost of being restricted to
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simpler systems such as highly dilute gases. Hybrid models mixing continuous-
media properties like the dielectric constant of the host with microscopic prop-
erties of the guest insertion site may be useful to rationalize a given choice of
model (empty cavity versus virtual cavity) in a number of systems, although it
may be difficult to justify exactly where the boundary between thinking of in-
dividual atoms/molecules and treating the host as a continuous medium should
be established. Finally, we have given an overview of recent experiments whose
interpretation requires dealing with local field corrections, both to illustrate the
models that we discussed as well as to showcase the potential of single-emitter
spectroscopy in dielectric media.

5 Keywords

nano-probes, local-field correction, empty/virtual cavity model, fluorescence
lifetimes in dielectrics

6 TOC

Single molecules and other nano-particles can serve as sensitive probes for con-
densed matter. A potential complication in the interpretation of such experi-
ments is the field-correction factor needed to relate the local field (experienced
by the probe) to its macroscopic counterpart. We review a simple conceptual
framework encompassing all commonly used models for obtaining local-field fac-
tors, and we discuss experimental research that illustrates the potential of the
measurement of local electric fields in dense dielectric media.
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Figure 1: Schematic representation of a dielectric material under the influence
of a macroscopic field Em (drawing not to scale). Individual atoms or molecules
in the medium are modeled as a spherical cavity of radius R containing a single
point dipole µ at its center, induced by the local field Eloc. Fields and potentials
are expressed in polar coordinates centered on the point dipole as indicated,
namely the distance r and the polar angle θ. (The system is invariant with
respect to the azimuthal angle ϕ.)
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Figure 2: The local-field factor LB as given in Eq. (13) for different values of
the polarizability difference δ = χ− α. For δ = −α, one finds the empty cavity
factor, while for δ = 0, the Lorentz factor is recovered. The factor LB is plotted
as a function of the refractive index of the solvent in the optical region, n =

√
ϵ2.
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Figure 3: TOC figure.
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