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Abstract. When a posterior peaks in unexpected regions of parameter space, new physics
has either been discovered, or a bias has not been identified yet. To tell these two cases
apart is of paramount importance. We therefore present a method to indicate and mitigate
unrecognized biases: Our method runs any pipeline with possibly unknown biases on both
simulations and real data. It computes the coverage probability of posteriors, which measures
whether posterior volume is a faithful representation of probability or not. If found to be
necessary, the posterior is then corrected. This is a non-parametric debiasing procedure
which complies with objective Bayesian inference.

We use the method to debias inference with approximate covariance matrices and red-
shift uncertainties. We demonstrate why approximate covariance matrices bias physical con-
straints, and how this bias can be mitigated. We show that for a Euclid-like survey, if a
traditional likelihood exists, then 25 end-to-end simulations suffice to guarantee that the
figure of merit deteriorates maximally by 22 percent, or by 10 percent for 225 simulations.
Thus, even a pessimistic analysis of Euclid-like data will still constitute an 25-fold increase
in precision on the dark energy parameters in comparison to the state of the art (2018) set
by KiDS and DES. We provide a public code of our method.
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ical parameters from LSS
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1 Introduction: unrecognized biases or new physics?

The hardest mistakes to correct for, are those which remained unnoticed, or for which no
solution exists yet. Contemporary cosmology actively tackles biases from covariance ma-
trices [1–4], likelihoods [5, 6], lacking spectroscopic data for redshifts [7, 8], and [9] lists a
comprehensive review of many more difficulties in leading weak lensing [10] data analyses.

Known and unknown biases propagate into cosmological parameter constraints, where
they cause shifts of the posterior. In the absence of any biases, a posterior peaking in
unexpected regions of parameter space must however be interpreted as a sign of new physics,
and it is therefore of utmost importance to tell unrecognized biases and new physics apart.
Furthermore, this distinction needs to be convincing beyond the boundaries of cosmology,
i.e. also be convincing for neighbouring fields such as particle physics.

We therefore here provide a method which safeguards cosmological parameter con-
straints against recognized or unrecognized biases.

Based on a joint analysis of simulations and the real data with a likelihood, the method
leads to unbiased credibility contours for the physical parameters. The method is non-
Bayesian (but compatible with Bayesian inference) and therefore applies also when there is
no error model available, which a Bayesian mitigation method would require. The thus gained
credibility contours have a precise mathematical meaning, namely that of correct ‘coverage
probability’ (defined in section 2). Coverage probabilities of Bayesian posteriors objectively
measure differences between frequentist and Bayesian parameter constraints. They thereby
measure how much the inferred physics depends on our assumptions when analyzing the
data, rather than on information contained in the data. Accordingly, reporting the coverage
also measures how much (frequentist) particle physicists, and (Bayesian) cosmologists could
maximally disagree, given the same data set.
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We develop our method in section 2. The method is general, but was developed to
address currently outstanding problems of cosmic shear. For example, [1, 2] derive the to-
date only known completely bias-free likelihood for estimated covariance matrices. In [11], it
was then shown that extra-correlations exist between weak lensing data points, which cannot
be captured by any covariance matrix, but affect the inference. In [5], these extra-correlations
were studied in detail, showing that the actual weak lensing likelihood must be skewed, and
that this skewness translates into parameter biases up to 10 percent of the standard deviation,
depending on how the weak lensing data are binned in angular ranges and redshift bins.

A recurrent theme in these analyses was that weak lensing does not easily [12] lend itself
to simulations, due to reacting to cosmic structures on the scale of galaxy groups, and due to
these structures falling already into the strongly non-linear regime of structure formation. We
therefore here seek to minimize the number of simulations, thereby trading for high accuracy
of the few simulations, and nonetheless gaining faithful parameter constraints from a joint
analysis of data and simulations with a likelihood.

Section 3.4 mitigates parameter biases from approximate likelihoods, where our example
uses approximate covariance matrices. Section 3.5 studies photometric redshift uncertaintites
and shows that redshift uncertaintites alone (without biased redshifts) can be neglected in
current weak lensing surveys. Section 4 shows that 25 end-to-end simulations of a Euclid-like
[13] survey, in conjunction with an independent likelihood for this survey, suffice to guarantee
that the figure of merit deviates maximally by 22 percent from its optimum. For 225 end-
to-end simulations, the figure of merit can be guaranteed to deteriorate by maximally 10
percent. As a result, it can be taken essentially for granted that the upcoming Euclid-like
surveys will lead to an 25-fold increase in our knowledge of the dark energy equations of state
parameters [14] w0 and wa.

2 Mitigating unrecognized biases: method and examples

To avoid that unrecognized biases feign new physics, we establish a method that takes as
input any existing data analysis pipeline. The method runs the pipeline on simulations and
real data alike, and then computes and corrects the coverage probability. We describe why
this procedure debiases parameter constraints.

2.1 What do posteriors really measure?

Biases in an inference cause that a posterior, or likelihood, exclude the true parameters
too often, for example because the posterior is shifted or too narrow. The notion of ‘too
often’, is made mathematically precise by coverage probabilities. The coverage probability
of a posterior credibility contour is the fraction of times that this contour includes the true
parameters, under repetitions of the experiment. The default expectation of most scientists
is that the 68 percent credibility contour (as an example) contains the true parameters
68 percent of the time. In reality, however, the 68 percent posterior credibility contour is
constructed such that it contains 68 percent of the posterior volume. Most scientists expect
that posterior volume measures (Kolmogorov) probability, but this is not necessarily so. We
refer to this expectation by speaking of ‘correct coverage’ for short [15, 16].

Coverage probabilities superficially sound like a frequentist concept, but so-called objec-
tive Bayesian analyses [17] achieve the correct coverage probabilities as well [18, 19], due to
their explicit construction of priors. Objective Bayesian analyses thus implement the correct
noise propagation through mathematical derivations, with the result that posterior volume
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indeed measures probability. In contrast, the correct coverage is not automatically achieved
by so-called subjective Bayesian analyses [20, 21]. These regard priors as subject to choice,
or use hyper-parameters, approximate likelihoods [5, 11], or idealized parametric models,
with the result that the total Bayesian flow of information is not representative of nature,
although mathematically self-consistent [15, 19].

In total, it cannot be taken for granted that posterior volume measures probability as
expected, but such potential discrepancies can be reported by quoting coverage probabilities.
This is of direct relevance to tensions between experiments.

2.2 Algorithm to measure the coverage probability of posteriors

Any unrecognised or unintended systematic will affect the coverage. Hence, measuring the
coverage can detect hidden biases, even if the source of the biases is unknown. Correcting
the coverage is then a model-independent solution for mitigating unrecognized biases. We
measure and correct the coverage probability with the following algorithm.

A set of fiducial parameters θ0 is chosen for N simulations of artificial data sets xi,
with i ∈ [1, N ]. These simulations imitate the real data xo. We denote posterior densities by
curly capital P, and associated probabilities, that are scalar rather than densities, by roman
P .

A state-of-the-art likelihood is then run on all simulations and also on the real data.
This results in N posteriors P(θ|xi) from simulations, and the posterior P(θ|xo) of the real
data. For each of these N + 1 posteriors, 120 credibility contours (or more) are computed.
We provide a public code1, where 100 of these contours are equidistant between zero and
99.9 percent posterior credibility. Twenty further contours are equidistant between 95.25 and
99.75 percent credibility. These finely spaced contours enable a reliable coverage correction in
the outer tails of a posterior. If the data analysis pipeline contains biases, then the contours
resulting from it will not cover correctly.

We denote by α fractions of the posterior volume, and accordingly α ∈ [0, 1]. We
consider posterior contours that contain a fraction α of the posterior volume and which are
isocontours of the posterior. They thus cut the posterior in a certain height below its peak.
For each data set i, the posterior will be slightly differently shaped, and the height of the αth
contour thus changes with i. We therefore denote this height as roman P iα, where i ∈ [0, N ]
identifies the data set, and α ∈ [0, 1] identifies the fraction of posterior volume that the
contour contains.

Each of the posteriors will take a different (scalar) value at the fiducial parameters of
the simulation. We denote this value as roman P (θ0|xi), where the subscript zero indicates
that this is the posterior probability assigned to the fiducial parameters.

The αth credibility contour then contains the true parameters if the posterior value at
the fiducial parameters is larger than the posterior height of the contour:

P (θ0|xi) ≥ P iα ⇒ αth contour contains θ0. (2.1)

We measure this for all contours, for all posteriors. The coverage probability, Cα, is then the
probability p that the α-posterior credibility region contains (‘covers’) the true parameter
values

Cα = p(θ0 inside αth contour). (2.2)
1Public at github.com/elenasellentin/Mitigate_Unrecognized_Biases
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Figure 1: Standard deviation of the coverage estimator Ĉα, as a function of the contour
level α. The grey points indicate the numerically estimated standard deviations of a coverage
measured from N simulations, and the blue solid line indicates the prediction for the standard
deviation from a binomial distribution.

The default expectation would be that Cα = α, meaning that posterior volume measures
probability under repetition of the experiment. In contrast, if biases occurred in the analysis,
then a credibility contour further out in the posterior will achieve coverage Cα.

For example, the allegedly 95 percent credibility contour of the biased analysis might
be found to contain the true parameters only 90 percent of the times. Then it is in reality
the 90 percent contour, until the bias is found and corrected. If the bias cannot be found,
a mitigation is to discard the biased contours and instead adopt the contours of correct
coverage. The new contours will then include the true parameters with the right fraction of
times – despite the bias being unknown.

The coverage of equation 2.2 can be estimated from N simulations, and we denote its
estimator by Ĉα. This estimator simply counts how often the true parameters fall inside
the α-contour. If they do not fall inside the contour, they fall automatically outside, and
this either-or process indicates that the estimator Ĉα must (by definition) follow a binomial
distribution with success rate α and N trials. The mean and standard deviation of the
binomial distribution then give the mean and standard deviation σ of our coverage estimator

〈Ĉα〉 = Cα, σ =
√
α(1− α)√

N
. (2.3)

Figure 1 shows that the binomial distribution models the noise in the estimated coverage
correctly: for the innermost contours, where α is low, and for the outermost contours, the
standard deviation is the smallest.

If credibility contours cover correctly, then Cα = α, and the standard deviations will in
the following be adopted as error bars.
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Figure 2: Examples of unrecognized biases corrected via coverage measurements. Dashed
contours: the correct, bias-free analysis for comparison. Yellow: biased analysis per panel
(left: no bias, middle: bias introduced by an approximate covariance matrix, right: bias in-
troduced by an unintentionally informative prior). Blue dot: the true parameters, note how
the yellow posterior in the right is so biased that it excludes this point. Blue contours: cov-
erage corrected analysis, the true parameter point is now included with the right probability,
even if the bias cannot be found.

We provide three simple examples of coverage correction in section 2.3, before we apply
the method to cosmological analyses in section 3.

2.3 Examples

Figure 2 illustrates three examples of mitigating unrecognized biases via coverage correction.
The real data vector contains 100 data points, drawn from a Gaussian distribution with unit
variance. The first fifty data points have mean µ0 = 1, the remaining data points have
µ1 = 0. The parameters to be inferred are p0 = µ̂0 and p1 = µ̂1. We simulate 1000 artificial
data vectors, by drawing from the same Gaussian. A bias is then introduced in the analysis,
the coverage is measured and corrected, resulting in increased contour size.

Example 1, in the left panel of figure 2 is bias free: the data are analyzed with the correct
Gaussian likelihood and a flat unbounded prior, which produces automatically the correct
coverage for linear parameters, such as µ1, µ2. Example 2, in the middle panel, analyzes the
data with a biased inverse covariance matrix. The correct inverse covariance would have been
C−1 = I, the identity matrix, but the off-diagonal elements were changed to C−1

ij = 1e−2.
Section 3 will detail why biased covariance matrices shift posteriors, here we only illustrate
that our method is able to correct for this, without needing to know the origin of the error.

Figure 3 plots the measured coverage probabilities of example 2. Due to the hidden
bias, the contours are systematically to small, resulting in the seen undercoverage of figure 3.

Finally, example 3 corrects the effects of an unintentionally informative prior π, given
by

π(p0, p1) = G(p0|µ = 1.45, σ2 = 0.1)G(p1|µ = 1.35, σ2 = 0.1), (2.4)

where G is the Gaussian distribution. The prior is so informative that the biased posterior
excludes the true parameters (blue point). After coverage correction, the true parameters are
again included. Plotted contours lie at 68, 90 and 95 percent posterior volume (before cover-
age correction, yellow), and at 68, 90 and 95 percent coverage probability (after correction,
blue).
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Figure 3: Measured coverage probabilities of example 2, the middle panel of figure 2, where
the bias is due to an approximate covariance matrix. Horizontal axis: the credibility contours,
computed as percent of (biased) posterior volume, where the posterior is too narrow. The
vertical axis shows the coverage probabilities of the contours, this is the probability that a
given contour includes the true parameter values. The diagonal line is a bias-free analysis,
where posterior volume reflects probability. However, due to the bias of example 2, all
contours contain the true parameters systematically fewer times than expected (they are too
narrow). For example, the 60% credibility contour contains 60% of posterior volume (yellow
cut), but it contains the true parameter point only 48% of the times. After measuring the
coverage, this can be corrected: the blue cut shows that the (biased) 72% posterior volume
contour contains the true parameters 60% of the time. The (biased) 72% volume contour
is thus the (unbiased) 60% confidence contour. The unknown bias is thus mitigated by
relabelling the contours.

2.4 Blind spots of the method

The method detects discrepancies between simulations and the assumptions of a data analysis
pipeline. It then corrects for these discrepancies when analyzing the real data. Consequently,
it cannot correct for systematic effects which are omitted in both simulations and the analysis
pipeline. For example, if neither a likelihood, nor the simulations include a survey mask,
then the method cannot correct for imperfections in survey mask handling. Likewise, if the
simulations implement precisely the same assumptions as the analysis pipeline, then a self-
confirming situation is created, which the method also cannot detect. If the posterior then
peaks nonetheless in unexpected regions, then the real data obey other physical or statistical
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laws than the ones simulated.
If the simulations lack in accuracy, then our method suffers from the same difficulties as

any simulation-based inference technique. We shall however find in section 4 that our method
requires by many orders of magnitude the fewest number of simulations [2, 3]. This arises
due to the the joint analysis with a likelihood, which already contains statistical information
which simulations would otherwise need to provide.

3 Applications to cosmology

In this section we apply coverage calibration to cosmic shear (weak lensing) analyses [7, 8, 10],
where approximate covariance matrices and redshift uncertaintites often introduce biases of
unknown magnitude and of unknown parametric form.

3.1 Why approximate covariance matrices shift posteriors
Approximate covariance matrices are today used in weak lensing [7, 8], but also supernova
analyses adapt their covariance matrices to achieve a desired goodness of fit [22, 23]. One
often encountered preconception is that such approximate covariance matrices only affect the
width of posterior contours, but not where a posterior peaks. We therefore explain why the
opposite is true: We show that using an approximate covariance matrix is mathematically
the same as fitting to a biased data set, and systematic parameter shifts will ensue.

Consider a Gaussian likelihood, as is currently standard in cosmology

G(x,µ,C) = 1√
(2π)p|C|

exp
(
−1

2(x− µ)>C−1(x− µ)
)
, (3.1)

where, x is a p-dimensional data vector and the superscript > denotes transposition. The
mean µ(θ) is a function of the parameters θ to be inferred, and the covariance matrix is
C. Parameters are then estimated by sampling the posterior, which is the likelihood times a
prior.

To isolate the effect of approximate covariance matrices, we assume unbounded flat pri-
ors, and that the data x contain no systematic effects. Such sound data are then nonetheless
effectively transformed into a biased data set, if an approximate covariance matrix is used in
the analysis. This can be seen as follows.

Let the correct covariance matrix be Cc and let CB be an approximation of it. Both are
symmetric positive-definite matrices.

If an analysis uses the correct covariance matrix, the best fit lies where

χ2
c = (x− µc)>C−1

c (x− µc), (3.2)

is minimal. Equation 3.2 describes that the parameters of the model µ will adjust to minimize
the distance to the data x. The best-fitting parameters are then θc for which µc = µ(θc).
During minimization, statistical compatibility between the mean and the data is measured
in units of the inverse covariance matrix. If we exchange the covariance matrix, this distance
measure changes. In the units of the new covariance matrix, another µ(θ) will then be closest
to the data x. Consequently, the parameters θ will adapt, in order to produce this new mean
as well as possible.

We now relate the two matrices via the function

C−1
B = B>C−1

c B, (3.3)
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where a bias occurs if B 6= I. The left- and right-multiplication by B is convenient, but not
a specialization. We could equally have written

C−1
B = C−1

c + ∆, (3.4)

where ∆ is the matrix of additive inaccuracies. Since C−1
c is a symmetric matrix, ∆ is also

by construction symmetric. The matrix B is then guaranteed to exist, since for symmetric
matrices A any congruent matrix B>AB is again symmetric for all B, and equations 3.3
and 3.4 are both valid ways of describing the systematic uncertainties in a covariance matrix.
The corresponding additive uncertainty is then

∆ = B>C−1
c B− C−1

c . (3.5)

Since C−1
c is unknown, cosmology is forced to use C−1

B for the likelihood. The thus
gained χ2-squared surface is then minimized where

χ2
B = (x− µB)>(B>C−1

c B)(x− µB), (3.6)

is minimized. This occurs at a new mean µB = µ(θB), and the parameters θB will differ
from θc.

If we conduct a thought experiment where we forget that the new parameters differ, we
see that using a biased covariance matrix is akin to analyzing a biased data set xB with the
correct covariance matrix. To see this, we set µB = µc in our thought experiment. Then, to
yield as good a best fit as when using the correct covariance matrix, we have to demand

B(xB − µc) = (x− µc). (3.7)

This can be solved for xB, and we find

xB = B−1 [x+ µc(B− I)] . (3.8)

This shows that using an incorrect covariance matrix B>C−1
c B to analyze a sound data set is

mathematically equivalent to analyzing the biased data set xB with the correct covariance
matrix. Only if B equals the identity matrix does xB coincide with x.

In cosmology, the data x are of course fixed. The only free variables to compensate
for the bias in the covariance matrix are then the cosmological parameters θ. The incorrect
covariance matrix will consequently force the likelihood to peak at biased parameter values.

In fact, in order for the biased equation 3.6 to reproduce as good a fit as the correct
equation 3.2, the relation

B(x− µB) = x− µc, (3.9)

needs to hold. Solving for the now preferred µB, we find

µB = x− B−1(x− µc). (3.10)

The parameters θ will then attempt to create the mean µB instead of the mean µc. Depending
on the flexibility of the model, the parameters may not fully succeed in this. In total, we see
however that a shift in parameters will ensue, and the direction and magnitude of the shift
depends on the drawn data vector x, and the biasing matrix B, according to equation 3.10.
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3.2 Undetectability in Fisher matrix forecasts

The effect of approximate covariance matrices biasing parameters is invisible in Fisher matrix
forecasts [13, 24], because on average, one has 〈x〉 = µc, and equation 3.10 then predicts
µB = µc. Fisher forecasts will therefore underestimate the total uncertainty. The biasing
effect will only occur when analysing real data, where x is fixed to the realization on the sky.
Equation 3.10 then describes that noise can be incorrectly interpreted as ‘signal’ when the
wrong covariance matrix is employed. In the following section we will present an example of
thus resulting parameter biases.

3.3 Forcing the KiDS-450 data to prefer the Planck cosmology

Concerning how approximate covariance matrices bias physical parameters, we here illustrate
that direction and magnitude of the posterior shift can also be controlled. Additionally, the
goodness of fit can also be kept constant. A reduced-χ2 of order unity is therefore by no
means a good indication that the best-fitting parameters are unbiased.

We illustrate this for the public KiDS-450 data from [7], and force these data to prefer
the Planck cosmology. DES [8] analyses could equally have been used. We underline that
we here force this transition to the Planck best-fitting cosmology. The aim of this study is
dual, namely first to understand which data points are affected, and secondly to understand
which procedures must be put in place in order to prevent such shifts.

We work with the original KiDS-450 data vector of 130 elements, which are the real-
space estimators ξ+ and ξ− [10, 25] in four tomographic redshift bins and their cross-bins.
Our weak lensing setup to compute the theory vector µ(θ) is identical to [7] and our code
has been verified against the code of [7], leading to identical results for the theory vectors,
given identical input parameters. We use CLASS [26, 27], and Halofit [28] for the non-
linear power spectrum. We fix the spectral index ns and the reduced Hubble constant h, to
Planck-motivated values of h = 0.678 and ns = 0.96. Varying the cold dark matter density
Ωm and the normalization of the power spectrum σ8, we find the best-fitting cosmology for
the KiDS-450 data vector when analyzed with the public KiDS-450 covariance matrix to be

Ωm = 0.2, σ8 = 0.838, (3.11)

with a χ2 = 2022. By transforming the covariance matrix, we now force the KiDS-450 data
to prefer the Planck cosmology. This can be repeated for arbitrarily many parameters.

We precompute the cosmological predictions µ(θ) on a grid, and store the results, in
order to make the upcoming analyses of this paper numerically feasible.

We use a Planck best-fitting cosmology with [29]

ns = 0.96, h = 0.678
Ωm = 0.308, σ8 = 0.83.

(3.12)

The original KiDS-450 analysis [7] leads to posterior constraints on σ8 and Ωm which are in
tension with the Planck constraints. The left panel of figure 4 plots the result of subtracting
the KiDS-best fitting cosmology, or the Planck best-fitting cosmology from the KiDS data
vector. Subtracting the Planck best-fitting cosmology leads to multiple sequences of adjacent
data points being systematically below the mean (blue triangles in the negative domain). A

2The high value of this χ2 results from having fixed ns and h to the Planck best-fitting values, rather than
the KiDS best-fitting values.
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Figure 4: Left: The differences x − µ(θ) for the KiDS best-fitting cosmology (blue dots),
and the Planck best-fitting cosmology (triangles). To achieve a translation of the posterior
from the original KiDS best-fit (located at the green star in the right plot) to the Planck
best-fit (located at the purple star in the right plot), a covariance matrix must be constructed
which expects the noise pattern on the left as an indication of ‘strong covariance’. Right: The
posterior with solid contours uses the original KiDS data and the original KiDS covariance
matrix. The posterior in open contours uses the original KiDS data and the newly constructed
covariance matrix. Its deformed shape results from having changed the determinant of the
covariance matrix. The contours lie at 68% and 90% of posterior volume (which is the
standard procedure in cosmology).

Table 1: Data points of KiDS-450 which are most unstable with respect to noise reassess-
ment. The data point identifier ‘#’ counts from 1 and has the KiDS-ordering. The angular
cuts in the corresponding DES data [8] exclude these data points. Together with [11], the
effect now repeatedly occured that data vector truncation influences the physical parameter
constraints, which motivates that blinding strategies should be kept for future analyses.

# angle (arcmin) ξ± # angle (arcmin) ξ±
66 0.713 ξ+ 92 0.713 ξ+
40 0.713 ξ+ 53 0.713 ξ+
105 0.713 ξ+ 79 0.713 ξ+
1 0.713 ξ+ 14 0.713 ξ+
42 2.956 ξ+ 54 1.452 ξ+
67 1.452 ξ+ 80 1.452 ξ+
106 1.452 ξ+ 107 2.956 ξ+
119 1.452 ξ+ 120 2.956 ξ+
95 6.017 ξ+ 16 2.956 ξ+
28 1.452 ξ+ 41 1.452 ξ+

covariance matrix can be tricked into expecting such a situation: By definition we have that
the covariance between data points xi and xj is

cij = E(xixj)− E(xi)E(xj), (3.13)

where E denotes taking the expectation value. Since this is an expectation value, a covariance
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Figure 5: Left: Relative difference between the KiDS covariance matrix C, and the trans-
formed matrix B−1CB−1. Right: As left, but now for the inverse covariance matrix. Changes
in only a few columns of the precision matrix are sufficient to induce major biases in the
physical parameters.

matrix does not simply describe noise, but is rather extremely prescriptive: a positive covari-
ance between data point xi and xj describes that if data point xi is below the mean, then
data point xj is expected to be below the mean as well. We can hence construct a covariance
matrix that expects the noise pattern of the blue triangles in figure 4 and interprets it as a
strong positive correlation between all data points that are below the mean. The data points
whose noise will thereby be most strongly reassessed are listed in table 1, which illustrates
that it is consistently the estimators ξ+ on the lowest angular scales (mostly 0.71 and 1.45
arcmins) who will show instability with respect to cosmological parameters, when their noise
is reassessed. In this context it is interesting to note that the DES survey [8] excludes ξ+
on such low scales, which will be partially responsible for why DES posteriors are closer to
Planck than KiDS-450 posteriors.

We denote the original KiDS-450 covariance matrix as CKiDS. The minimal χ2 is then
reached for

χ2 = 202 for CKiDS, at θc = (0.2, 0.838, 0.678, 0.96), (3.14)

where the parameter vector is ordered as θ = (Ωm, σ8, h, ns). We now demand that the KiDS
data vector instead produces the Planck cosmology θB = (0.308, 0.83, 0.678, 0.96) as best fit,
and solve for the matrix B from equation 3.10 which enables this.

Since the matrix B has p× p entries, but equation 3.10 only poses p constraints, recon-
structing B is an under-determined system. There will hence be infinitely many solutions for
B, which directly implies that trying to debias an approximate covariance matrix is bound
to fail.

Here, we now pick out one solution, by demanding B to be diagonal, B = diag(b1, b2, ..., bp).
The required diagonal elements to force the KiDS data to prefer the Planck cosmology then
follow to be

bn = (x− µc)n
(x− µB)n

∀n ∈ [1, p]. (3.15)
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Using the original KiDS-450 data vector, and transforming the inverse KiDS covariance
matrix to C−1

KiDS → B>C−1
KiDSB, the Planck cosmology indeed becomes the new best fit

KiDS data, B>C−1
KiDSB : ∆χ2 = 0 at θPlanck. (3.16)

The two posteriors arising from analyzing the KiDS data with the two covariance matrices
are depicted in figure 4. This figure illustrates the successful translation of the posterior,
although data and physical model were not changed. The Planck cosmology now fits the
KiDS data with the same goddness of fit (the same χ2) as the KiDS best-fitting cosmology
fitted the KiDS data before. Also visible is, however, that the new posterior is deformed.
This side effect arises because the determinant of the covariance matrix was changed3.

We compute the relative differences between the original and the transformed covariance
matrices. The matrix of relative differences is given by

Rij = |Cij − C̃ij |
|Cij |

, (3.17)

where i and j are the indices of the matrix elements and C̃ is shorthand for the transformed
matrices. The left panel of figure 5 shows the relative difference matrixRij for the transformed
covariance matrix (B−1)>CKiDSB−1, and the right panel shows the relative difference matrix
Rij of the transformed inverse covariance matrix B>C−1

KiDSB. The difference between the
left and the right panel highlights the unpredictability of the matrix inversion: even if most
columns in CKiDS are drastically changed, these changes can be redistributed during the
inversion, and it is thus important to judge the accuracy of an inverse covariance matrix
directly.

Figure 5 reveals factor 20 changes in certain elements of the inverse covariance ma-
trix. This is to be compared to the DES reanalysis [30] of KiDS-450, where the reanalysis
implemented factor 3 changes in the shape noise contribution to elements of the covariance
matrix, and parameter shifts were found. We therefore conclude that a debiasing procedure
for approximate covariance matrices is indeed needed.

As infinitely many solutions exist to induce a bias such that any arbitrary cosmology
becomes the best-fitting cosmology, a parametric Bayesian treatment will not be able to
debias the inference. In the following section we will hence reverse the workflow, and accept
that any fixed covariance matrix of unknown bias will necessarily be used, and we debias the
thus resulting parameter inference with coverage calibration.

3.4 Debiasing inference with approximate covariance matrices of unknown bias

In this section, we illustrate how to compute unbiased credibility contours for cosmological
parameters, despite using a covariance matrix of unknown but non-zero bias.

A necessary prerequisite for our method are N accurate simulations. Importantly, these
N simulations are not used to compute a covariance matrix, or its inverse – they are used
to debias the inference pipeline which uses the approximate, analytical covariance matrix.
To compute a numerical covariance matrix from simulations, one would require N � p,
where p is the dimension of the data set. To run our debiasing procedure, significantly fewer

3Keeping the determinant constant would impose only one additional constraint, still leading to infinitely
many solutions for B, again leading to the conclusion that a non-parametric method is needed to debias
inference with approximate covariance matrices.
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Figure 6: Left: The original KiDS posterior is depicted in open contours. The dots indicate
how the best-fit scatters around if the KiDS data set is analyzed with differently biased covari-
ance matrices. The entire posteriors shift along with the new best-fit, but the shifted contours
are not shown for reasons of plot overcrowding. The relative biases (r = 0.07, 0.14, 0.36) here
introduced to the covariance matrix are smaller than the changes applied by the DES re-
analysis of KiDS (r = 0.4) [30]. Right: Measured coverages of the biased posteriors. The
more biased the inverse covariance matrix is, the more does the biased posterior undercover
(meaning it is too narrow). The posterior is debiased in figure 7.

simulations are needed, and their number does not scale with the dimension of the data set
either, see equation 2.3 and section 4.

We again use KiDS-450 as an example. For current weak lensing studies, sufficiently
many or accurate simulations do not yet exist to conduct a coverage measurement. KiDS-
450 posesses 930 simulations for 100 square degree sky patches [31], but spans by itself
approximately 450 square degree. DES uses 18 simulations in [32], where the number of
simulations is now the limiting factor.

To demonstrate our method, we therefore generate 100.0004 Gaussian realizations of
data vectors with the KiDS best-fitting cosmology as mean, and with the public KiDS co-
variance matrix. These shall serve as our simulations replacement.

We then precompute the theory vectors µ(θ) on a grid in the Ωm, σ8-plane, and then
compute the 100.000 posteriors. The posterior per data vector x is

P(θ|x) ∝ L(x|θ)π(θ), (3.18)

where L(x|θ) is the Gaussian likelihood, and π are priors on the parameters. We use top-hat
priors, with

0.09 < Ωm < 0.65, 0.37 < σ8 < 1.1. (3.19)

Finally, the coverage is computed.
The coverage resulting from this analysis pipeline is plotted in the left of figure 6. The

red diagonal line indicates the perfect coverage for an unbiased analysis. Measured coverage
probabilities above the red line indicate conservative credibility contours, which are strictly

4This large number resulted from experimenting with run time constraints. Far fewer are needed in reality,
see section 4 for Euclid requirements.
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Figure 7: KiDS posteriors, with and without propagation of covariance matrix uncertainty.
This plot uses σ = 0.25 which leads to relative changes of r = 0.36 in the covariance matrix.
Given [30], these are realistic values for current covariance matrix uncertainties. Solid con-
tours: original KiDS-450 posterior, without propagating covariance matrix uncertainty. Blue
dotted: Propagating the uncertainty via Bayesian marginalization, here possible since the
toy-model for the bias is known, but impossible in reality where the model is unknown. Pur-
ple open contours: debiasing the credibility contours via coverage calibration. Comparison
of solid grey and purple contours: for r = 0.36, the 68% credibility contour of the debiased
posterior is as large as the 90% posterior credibility contour of the biased posterior (grey).

speaking too wide. Measured coverage probabilities below the red line indicate credibility
contours which are too narrow. The purple data points depict the measured coverage with
error bars. As can be seen, the posterior with the correct covariance matrix undercovers
slightly, meaning it is slightly too narrow. This reflects that the adopted priors are slightly
informative, as is well known in weak lensing [7, 33, 34].

Next, we analyse the 100.000 simulations purposefully with a biased covariance matrix.
We left- and right-multiply the KiDS covariance with a diagonal biasing matrix B, whose
diagonal elements are drawn from a Gaussian distribution

B = diag(b11, b22, ..., bnn), with bii ∼ G(1, σ2). (3.20)

The larger the standard deviation σ, the larger will be the bias in C−1
B = B>C−1B. The

relative difference between original covariance matrix, and biased covariance matrix then
follows from the mean and standard deviations of B>C−1B. Per matrix element, we have on
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average 〈
(C−1

B )ij
〉

= (C−1)ij
〈
biibjj

〉
= (C−1)ij

(3.21)

and using 〈b2
ii〉 = σ2 + 1 ∀i, the variance follows to be

Var[(C−1
B )ij ] =

〈
[(C−1)ij ]2

〉
− (C−1)2

ij

= (C−1)2
ij [σ4 + 2σ2].

(3.22)

According to equation 3.21 the bias vanishes on average, and has according to equation 3.22
a standard deviation of s = C−1

ij

√
σ4 + 2σ2. The relative difference r between biased and

correct covariance matrix is then
r =

√
σ4 + 2σ2, (3.23)

which is independent of matrix indices ij. The relative differences r can be compared to
the literature: for example, the DES reanalysis of the KiDS-450 data [30] implemented 40
percent changes in the covariance matrix elements (see Figure 1 of [30]). Current approximate
covariance matrices in weak lensing are therefore uncertain to approximately a degree of
r ≈ 0.4.

We study such example biases in figure 6, for r = 0.07, r = 0.14 and r = 0.36. Analyzing
the data with such biased covariance matrices causes the posterior to preferentially peak in
the wrong region of parameter space, thereby excluding the true cosmology too often. The left
panel of figure 6 illustrates this effect by showing how the best-fitting cosmologies are shifted.
To each of these new best-fitting cosmologies belongs a new posterior (not plotted) whose
credibility contours are of approximately the same shape as those of the original posterior,
only centered on the new best fits. The blue and pink coverage measurements in the right
panel of figure 6 indicate how quickly the posterior begins to undercover if the biases of such
covariance matrices are not mitigated.

Since the left of figure 6 indicates that for current levels of covariance matrix uncertainty
(r = 0.36) the best fit scatters over nearly the entire undebiased posterior, we conclude that
such uncertainties definitely need to be propagated. We illustrate such a propagation first
for the traditional Bayesian marginalization, and then for coverage correction.

Given our bias model with B, the posterior of cosmological parameters when marginal-
ized over B is given by

P(θ|x) =
ˆ
G
(
µ(θ),x,BTC−1B

)
π(B)dB, (3.24)

where the uncertainty of B is
π(B) =

∏
i

G(1, σ2). (3.25)

The matrix-variate integration dB is element-wise which becomes quickly numerically pro-
hibitive due to the curse of dimensionality. For the 130-dimensional diagonal B used in
equation 3.20, it is still feasible, and we implement it via a Monte-Carlo integration. The
resulting posterior, P(θ|x), is depicted in figure 7 in blue dotted contours, and is wider than
the original KiDS posterior (solid grey contours) due to the marginalization.

The Bayesian marginalization was here only possible since we knew the model which
caused the bias. In a realistic analysis, such a model is not known, and we need to propagate
the bias blindly via coverage calibration.
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Figure 8: Left: Examples of random realizations of noisy redshift distributions, here for the
first tomographic redshift bin from KiDS-450. Right: The coverage is essentially unaffected
by redshift noise, illustrating that redshift noise is in current analyses sub-dominant to cosmic
variance and shape noise.

We therefore compute the posterior

P(θ|x,BTC−1B), (3.26)

of which we know that it must be biased to unknown degree, due to having used the covariance
matrix of unknown bias. The measured coverages in figure 6 reveal that for σ = 0.25(r =
0.36), the credibility contour which contains 68% of the posterior volume, only covers the
true cosmology 42% of the time. In contrast, the contour which contains 92% of the posterior
volume, included the true cosmology 68% of the time. The 92% credibility contour of the
biased posterior is hence only the 68% credibility contour after debiasing. Figure 7 shows
that this coverage calibration complies with the Bayesian marginalization, with the advantage
that it required no parametric model.

3.5 Mitigating redshift uncertainties by coverage calibration

In this section, the aim is to propagate redshift uncertainties in a non-parametric manner,
for the following reasons.

Estimating the redshift z of a galaxy becomes difficult when only photometric flux mea-
surements are available. Tomographic weak lensing analyses assign galaxies to distributions
ni(z), where i denotes the bin, i ∈ [1, r]. If the redshifts have to be determined photometri-
cally, then the estimated galaxy distributions are uncertain and we write n̂i(z). There will
thus exist a probability distribution

P({n̂i(z)}|{ni(z)}), (3.27)

where the curly braces indicate the set of all tomographic bins.
Propagating uncertainty from the n̂i(z) through weak lensing analyses is difficult. Bayesian

analyses would try to establish the precise functional form of P in equation 3.27, and then
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marginalize over it, resulting in the marginal posterior of cosmological parameters θ

P(θ|ξ±) =
ˆ
P
(
θ, ξ±, {n̂i(z)},C

)
P({n̂i(z)}|{ni(z)}) dn1...dnr. (3.28)

This integral is numerically extremely costly5, and has to date not yet been solved. Conse-
quently, the current standard approach is to introduce nuisance parameters instead.

Both KiDS and DES introduce nuisance parameters which shift the centers of redshift
bins [8, 35]. It has however been found [35], that the nuisance parameter originally introduced
for the intrinsic alignment amplitude also fits to redshift uncertainties. This problem occurs
because nuisance parameters fit, i.e. they are part of an inverse problem which enables them
to compensate for unintended systematics. Note also, that the adopted parametric nuisance
model is limited in the sense of not being able to create deformations of n̂i(z) which leave
the central redshifts invariant.

We therefore wish to study the impact of redshift uncertaintites in isolation. Conse-
quently, we replace the nuisance parameters by a forward model of redshift noise. Since the
forward model generates redshift noise only, a confusion with intrinsic alignments is excluded.
We then use coverage calibration to propagate the redshift uncertainties into the cosmological
parameters.

To implement P({n̂i(z)}|{ni(z)}), we use the published redshift uncertainties from
KiDS-450. We use the weighted direct calibration ‘DIR’ setup of KiDS, which matches
spectroscopic galaxy observations and galaxies seen in KiDS. On average, DIR causes ap-
proximately 20% uncertainties in each point, but we use the exact errors per point.

We implement four different forward models for redshift uncertainties. The first model
generates functions n̂i(z) whose shape and mean vary. The second model varies the shape
only, but keeps the central redshift fixed. This generates uncertainties which cannot be
modelled by marginalizing over the mean redshift. For both cases, we use two noise processes:
Poisson realizations and the public Bootstrap realizations from KiDS [7].

Examples of the resulting noisy redshift distributions are shown in the left panel of
figure 8. For each of these, we compute the theoretical prediction for the KiDS-450 data
vector, and analyze it with a Gaussian likelihood, using the public KiDS-covariance matrix.
The right panel of Figure 8 reveals that none of the four noise models caused the posteriors
to undercover – this means that reported problems with redshifts in KiDS-450 must arise
from a bias, or confusion with another systematic effect. Redshift noise in isolation, as here
studied, seems to be subdominant to shape noise and cosmic variance, as included in the
covariance matrix.

4 Forecasts for dark energy constraints with a Euclid-like survey

As the precision of cosmic surveys improves, the relative impact of formerly negligible biases
increases. The upcoming Euclid survey [13], but also its sibling surveys LSST and WFIRST
[36], will study the cosmological standard model, and its constituents. The cosmological
standard model ΛCDM is based on a cosmological constant Λ and cold dark matter (CDM).
In ΛCDM, Λ takes the role of dark energy, and physics beyond the standard model accordingly
often introduces additional parameters, w0 and wa, for extended dark energy phenomenology
[26, 27]. In ΛCDM, these parameters take values w0 = −1, and wa = 0. If the upcoming

5Already figure 8 required a CPU-time of 26 days in parallel on 10 modern Xenon CPUs (100 times as
long as a computation for a single redshift realization).
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Table 2: We list which posterior volume contours can be guaranteed to contain at least
the probability stated, thereby guaranteeing the absence of biases in constraints on the dark
energy parameters w0 and wa. The number of simulations is N . The percent probability that
shall be guaranteed to be contained in a certain contour is listed in the table header. The body
list which posterior volume contour is guaranteed to contain at least this probability, or more.
If infinitely many accurate simulations are run, then posterior volume can be guaranteed to
directly measure probability (first line). For fewer simulations (remaining lines), biases are
possible, such that contours can only be guaranteed to contain a somewhat lower probability
than their encased volume would suggest. As an example, for 225 simulations, a bias is either
found and mitigated, or if no bias is found, then the 92.5% posterior volume contour can be
guaranteed to contain the true parameters at least 90% of the time. Accordingly, if ΛCDM
were excluded by the 92.5% contour, then a new standard model might be considered. The
last column indicates the percentual decrease of the figure of merit, as a function of number
of simulations.

N
√
N ≥ 68% probability ≥ 90% probability ≥ 95% probability ∆FoM

∞ ∞ 68% volume cont. 90.0% volume cont. 95.0% volume cont. 0%
625 25 70% volume cont. 91.5% volume cont. 96% volume cont. 6%
400 20 71% volume cont. 92.0% volume cont. 96% volume cont. 8%
225 15 72% volume cont. 92.5% volume cont. 96.5% volume cont. 10%
100 10 73% volume cont. 93% volume cont. 97% volume cont. 12%
49 7 75% volume cont. 94% volume cont. 97.5% volume cont. 17%
25 5 77% volume cont. 95% volume cont. 98% volume cont. 22%

Euclid analyses exclude this point with high significance, then ΛCDM is ruled out and a new
standard model is needed – or a bias occurred.

Due to the complexity of the data analysis, the occurrence of an unrecognized bias is of
course possible, but our method is able to tell these biases and new physics apart.

We imagine a Euclid-like survey develops a likelihood, which is as accurate as possible,
and which does not rely on simulations. If the likelihood is very accurate, then our method
will need to correct only minor outstanding biases, resulting in a minor increase of credibility
contours. This likelihood is then to be augmented by few, but very accurate, end-to-end
simulations for ΛCDM. We here forecast the number of simulations needed to guarantee that
ΛCDM is not discarded due to unrecognized biases.

According to [13], Euclid’s prime scientific target is the determination of the dark energy
equation of state parameters w0 and wa to a precision of

σ(w0) = 0.02, σ(wa) = 0.1, (4.1)

where σ is the 1-sigma standard deviation. In a Gaussian approximation, the joint confidence
contours of w0 and wa are elliptical, and the figure of merit (FoM) measures this ellipses area.

ForN simulations, our coverage estimator Ĉα has a standard deviation of σ =
√
α(1− α)/N .

For N simulations, it will thus detect biases which change confidence contours by more than
σ. It cannot detect biases which change the coverage by less than σ, and accordingly

Ĉ low
α = Ĉα − σ, (4.2)

is a conservative lower estimate of the coverage probability, to be interpreted as the ‘most
conservative scenario’ of mitigating all possible biases which could not yet be ruled out. A
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Figure 9: Forecast of conservative credibility contours for the dark energy parameters w0, wa.
Filled inner contour: Euclid’s nominal precision, corresponding to infinitely many simulations
and a bias-free inference. Open contours: conservative contours, ranging from 625 (blue)
to 25 simulations (orange), spaced as in table 2. Right panel: If the Euclid analysis is
augmented by 25 accurate simulations (orange), and no bias needs to be corrected, then its
here shown conservative ≥95% credibility constraints on w0 are still approximately 25 times
more constraining than current KiDS or DES analyses.

credibility contour which reaches coverage Ĉ low
α contains the true parameters at least with

probability α, and likely more.
In figure 9 we forecast such conservative credibility contours for Euclid. The inner

filled contour depicts the 68, 90, and 95 percent credibility contours for Euclid at its nominal
precision. These correspond to a bias-free inference with infinitely many simulations. If fewer
simulations are available, then the conservative contours increase in size, which is depicted
in open contours as a function of N , as given in table 2.

The right panel of figure 9 can be compared to current constraints from DES and KiDS:
both of these surveys measure an equation of state w0, but keeping wa fixed to its fiducial
value. Both surveys currently achieve approximately −2.0 < w0 < −0.4 [7, 8]. Figure 9
therefore indicates that if Euclid’s data can be augmented by 25 simulations, then either
biases can be detected and mitigated, or if no biases are detected but the shown conservative
contours are chosen, then Euclid will still achieve approximately 25 times the precision of
KiDS and DES for w0.

5 Discussion

This paper presented a method to mitigate biases, recognized or unrecognized, even when
a Bayesian solution cannot be conducted. Our method takes any existing data analysis
pipeline as input, and runs it on simulations and the real data alike. It then measures
the coverage probability of credibility contours and corrects for it, if found to be off. This
produces debiased contours as particle physicists (and many cosmologists) expect them to
be: under a repetition of the experiment, the 68 percent confidence contour will contain the
true parameters 68 percent of the time, despite the data being analyzed with an imperfect
pipeline. Our method can also be understood as a sanity check for any cosmological analysis.
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We showed how approximate covariance matrices determine where a likelihood peaks,
and that a reduced-χ2 of order unity does not indicate an unbiased best-fit. To illustrate
both points, we forced the original KiDS-450 data set to peak at the Planck best-fitting
cosmology, with the exact same χ2. We then used our method to show how inferences with
approximate covariance matrices can be debiased.

We also isolated the impact of uncertain redshifts by using a forward model, since an
inverse treatment was found to confuse redshift uncertainties and intrinsic alignments [35].
We found that in isolation, current redshift uncertainties are fully subdominant to shape noise
and cosmic variance in current weak lensing analyses. Our study focuses on uncertaintites
not biases in redshifts.

Finally, we illustrated that a pessimistic analysis of Euclid-like data, will very likely
constrain the dark energy equation of state parameters by a factor of at least 25 better than
current KiDS and DES analyses. This statement assumes that 25 end-to-end simulations of
Euclid-like data can be provided alongside an independent likelihood.

This paper, in conjunction with [11], now found repeatedly that data vector truncation
influences cosmological parameter constraints: the problematic data points always occured
at the extreme of angular ranges. This motivates that blinding strategies should be kept for
all upcoming surveys.

Our method is applicable to many more examples, and the code is hence public at
github.com/elenasellentin/Mitigate_Unrecognized_Biases.
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