
Draft version June 14, 2019
Typeset using LATEX twocolumn style in AASTeX62

Statistical stellar mass corrections for high-z galaxies observed with JWST broad-band filters due to template

degeneracies

L. Bisigello,1, 2 K. I. Caputi,1, 3 L. Colina,4, 3 P. G. Pérez-González,5, 4 A. Koekemoer,6 O. Le Fèvre,7
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ABSTRACT

Stellar masses in future James Webb Space Telescope (JWST ) deep blank-fields will be mainly

derived fitting the spectral energy distribution with theoretical galaxy templates. We investigate the

uncertainties and biases of the stellar masses derived by using the LePhare code for spectral energy

distribution fitting and the Yggdrasil theoretical templates. We consider a sample of mock galaxies at

z=7-10 with mock JWST observations with S/NF150W > 10. Our goal is to provide a list of statistical

stellar mass corrections to include on the stellar mass derivation for different output galaxy properties

and JWST filter combinations to correct for template degeneracies. Median statistical stellar mass

corrections vary from -0.83 dex to 0.87 dex, while 25% (75%) quartiles range from -0.83 dex (-0.67 dex)

to 0.51 dex (0.88 dex), depending on filter combinations and galaxy models. The most challenging

cases are galaxies with nebular emission lines, especially the ones that are wrongly identified as galaxies

without, relative dust-free galaxies and galaxies with small metallicities (i.e. Z= 1/50Z�). The stellar

mass estimation of galaxies correctly identified without emission lines is generally fine, except at

z=10 when considering only the 8 NIRCam bands, which make the MIRI bands very valuable. We

have tested our stellar mass corrections using the public JAGUAR galaxy catalogue, deriving that

the average discrepancy in the recovered stellar mass distribution decreases by 20-50% at z>7 after

the correction. We found that without the stellar-mass corrections the number of low-mass galaxies

(M∗ < 107M�) is overestimated, which can potentially lead to systematic errors in the calculation of

the galaxy stellar mass function faint-end slope at high z.

Keywords: galaxies: high-redshift; galaxies: photometry; galaxies: stellar mass

1. INTRODUCTION

The stellar mass is one of the most fundamental prop-

erty of galaxies, as it has a central role in galaxy evolu-

tion (Peng et al. 2010). Its importance is evident from

the numerous relations that are present between galaxy

stellar mass and other galaxy properties, such as star

formation rate (e.g. Brinchmann et al. 2004; Noeske et

al. 2007; Rodighiero et al. 2011; Whitaker et al. 2014;

Tasca et al. 2015; Bisigello et al. 2018; Boogaard et al.

2018) and metallicity (e.g. Tremonti et al. 2004; Erb et

al. 2006; Maiolino et al. 2008; Maier et al. 2015).

By fitting the spectral energy distribution (SED) of

galaxies derived from broad-band photometry with the-

oretical or empirical templates, it is possible to derive a

broad set of galaxy properties, among which there is also

the stellar mass. This is a powerful technique, because

it allows for deriving properties of galaxies up to high

redshift, thanks to the possibility to obtain broad-band

photometry for large samples of faint galaxies. Compar-

atively, with spectroscopy it is possible to have a more

reliable estimate of some of these galaxy properties, but

spectroscopic observations require more integration time
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than photometry and are usually possible only for rela-

tively bright galaxies.

It has been shown in previous works that, once the

redshift of a galaxy is well known, the stellar mass is

one of the most robust parameters derived from the SED

fitting (e.g. Caputi et al. 2015). However, precise stel-

lar masses are particularly difficult to estimate in some

situations. Indeed, galaxies on-going strong episodes of

star-formation are dominated by a young stellar pop-

ulation and the stellar mass derivation is strongly af-

fected by uncertainties in the age estimation. In addi-

tion, these young and star-forming galaxies may have

numerous nebular emission lines with high equivalent

widths that contaminate the broad-band observations

and affect the derived stellar mass (e.g. Stark et al. 2013;

Santini et al. 2015; Caputi et al. 2017). These nebular

emission lines are generally visible as a flux excess in

some bands, but in some extreme cases, they are so nu-

merous to boost the flux of contiguous bands and mimic

a higher continuum. This results in a degeneracy be-

tween young galaxies with numerous emission lines and

more massive, older galaxies (Bisigello et al. 2017).

In addition, observations at rest-frame near-ultraviolet

(UV) are affected by dust-extinction and the mass-to-

light ratio at these wavelengths is sensitive to small

differences in the stellar population age. Therefore, it

is necessary to have observations at wavelengths longer

than 4000 Å to have a good estimate of the stellar

mass. This means that at very high-z it is necessary

to observe at near-infrared wavelengths to have a good

stellar mass estimation and this will be indeed possible

in the next future with the James Webb Space Telescope

(JWST 1,Gardner et al. 2009).

JWST is among the most promising facilities of the

next years. It has a 6.5-meter primary mirror and four

instruments on board observing at near- and mid-IR

wavelengths (0.6-28 µm) with imaging, spectroscopic

and coronographic modes. In particular, the Near In-

frared Camera (NIRCam; Rieke et al. 2005) is an imag-

ing camera covering from 0.6 to 5 µm with different

broad, intermediate and narrow-band filters. On the

other hand, the complementary Mid Infrared Instru-

ment (MIRI; Rieke et al. 2015; Wright et al. 2015) has

nine broad-band filters that cover between 5 and 28 µm.

These two imaging cameras will be the main instruments

used to carry out deep blank-field imaging surveys with

JWST to detect high-z galaxies.

The properties of galaxies observed in these deep

blank-field imaging surveys will be mainly derived us-

1 http://www.jwst.nasa.gov

ing SED fitting. In Bisigello et al. 2016, 2017 (hereafter

B16 and B17, respectively) we created and analyzed a

sample of mock galaxies at z=7-10 to study how differ-

ent galaxy properties will be derived using SED fitting

and different NIRCam and MIRI broad-band filter com-

binations. In particular, in B17, we show that stellar

masses may be particularly difficult to estimate for spe-

cific filter combination and particular galaxy templates,

i.e. galaxies with numerous nebular emission lines and

galaxies at z=10, in particular if mid-IR observations

are not available. The aim of this paper is to derive and

analyze the stellar mass offset for each specific galaxy

template and for different JWST broad-band filter com-

bination, to compensate for template degeneracies or

lack of wavelength coverage. These corrections will be

extremely useful to statistically correct the stellar mass

of large sample of high-z galaxies that will be observed

using different combination of JWST broad-band filters

in the next future to study, for example, the stellar mass

function at z>7.

The paper is structured as follows. In section 2 we

describe the analyzed sample of mock galaxies, the pho-

tometry extraction in the pertinent NIRCam and MIRI

bands and the stellar mass derivation. We present our

stellar mass corrections for different JWST broad-band

filter combinations in section 3. In addition, we analyze

the stellar mass correction respect to other galaxy prop-

erties, such as redshift, age, color excess, metallicity and

star formation history (SFH). In section 4 we give prac-

tical information on how to include the derived stellar

mass correction on future studies and in section 5 we ap-

ply and test the derived corrections to a galaxy sample.

Finally, in section 6 we summarize our main findings

and conclusions. Throughout this paper, we consider

a cosmology with H0 =70 km s−1 Mpc−1, ΩM = 0.27,

ΩΛ = 0.73 and a Kroupa (2002) initial mass function

(IMF). All magnitudes refer to the AB system (Oke &

Gunn 1983).

2. SAMPLE

2.1. Sample selection

Our study is based on a sample of 750 simulated

galaxies at z=7-10, presented in B16 and derived from

the Yggdrasill population synthesis code (Zackrisson et

al. 2011), which is specifically built to describe high-

z galaxies. These templates have solar and sub-solar

metallicities, step function star formation histories, color

excess between 0 and 0.25 mag considering a Calzetti

et al. (2000) reddening law. We apply the same dust

attenuation for continuum and nebular emission lines,

however,considering different dust extinction values for

emission lines and continuum may vary some of the tem-
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plate degeneracies but does not create any systematic

shift in the statistical stellar mass correction. Ages are

between 0.01 and 0.6 Gyr and consistent with the age

of the Universe at z=7 to 10 and we consider a Kroupa

(2002) IMF. Nebular continuum and emission lines are

already incorporated in the Ygdrasill templates when

the galaxy is star-forming and the covering factor is not

zero. We consider two different covering factors, cor-

responding to galaxies without nebular emission lines,

fcov =0, and with the maximum contribution from the

nebular lines, fcov =1. These values correspond to a Ly-

man continuum escape fraction of 1 and 0, respectively,

as fesc = 1−fcov.

2.2. Mock JWST photometry

For all 750 templates we have mock observations for

the 8 NIRCam broad bands and the two MIRI broad-

bands F560W and F770W, as explained in detailed in

B16. These mock observations are obtained convolv-

ing each template with the corresponding JWST filter.

All simulated galaxies are normalized at 29 AB mag at

1.5 µm, which corresponds to the pivot wavelength of

the F150W NIRCam band. The signal-to-noise values

of 10 and 20 are considered for the F150W band and

the same integration time is assumed for all the other

NIRCam bands. For the MIRI bands, we consider the

same signal-to-noise of the F150W NIRCam band, but

for a magnitude brighter, i.e. 28 AB mag. This has been

done to take into account different sensitivities between

the NIRCam and MIRI bands, due to different detector

technologies. We consider only a S/N≥10, because for

more than 99% of the simulated galaxies at z=7-10 with

signal-to-noise of 10 the photometric redshift is well re-

covered, i.e. |zphot − zfiducial|/(1 + zfiducial) 60.15, al-

ready using only 8 NIRCam bands. Therefore, errors

in the stellar masses are only due to degeneracies be-

tween templates and not to a drastically incorrect red-

shift estimation. For each simulated galaxy, we have

100 mock observations in the considered NIRCam and

MIRI bands, derived randomizing each flux inside the

error bars, for a total sample of 75000 mock observa-

tions. The results presented in this paper are valid also

for galaxies with stellar masses different from the ana-

lyzed ones, i.e. corresponding to 29 AB mag at 1.5 µm,

as long as the S/N>10 and the SED shapes are the same.

In general, it is necessary to consider with caution the

application of these results on stellar masses derived by

using templates with extremely different prescriptions

for nebular emission lines, star-formation histories or

the general SED shape. In addition, it is necessary to

take into account that the stellar mass offset analysed

in this work are due only to template degeneracies and

are therefore non-exhaustive as, for example, additional

errors are expected due to differences between idealize

theoretical templates and real galaxy SEDs.

2.3. Galaxy properties derivation

The redshift and stellar mass recovery for these sim-

ulated galaxies have been derived and analyzed in B16

and B17, respectively. In particular, galaxy properties

have been obtained for different combination of JWST

broad-band observations:

• 8 NIRCam broad bands

• 8 NIRCam broad bands and 2 MIRI bands

(F560W and F770W)

• 8 NIRCam broad bands and MIRI F560W only

• 8 NIRCam broad bands and MIRI F770W only

For all these different filter combinations, we derive the

stellar mass and the photometric redshift using the pub-

lic code LePhare (Arnouts et al. 1999; Ilbert et al. 2006)

and considering a large set of possible output templates,

including the ones used to derive the mock observations.

In particular, we consider a wide range of color excess,

i.e. from 0 to 1 mag with a step 0.05 mag, redshifts from

0 to 11, ages from 0.01 Gyr up to 5 Gyr and consistent

with age of the Universe. We also include Bruzual &

Charlot (2003) templates with exponentially declining

star formation histories with the same values for red-

shift, age and color excess of the Yggdrasill templates

and with emission lines. However, almost all galaxies

are best fitted by Yggdrasill and the very few excep-

tions result on extremely large redshift errors, i.e. out-

put z<2. We include two covering factors, 0 and 1, but

only when the star-formation is on-going, as this pa-

rameter does not influence the SED when the galaxy is

not star-forming. For more details on the set of tem-

plate parameters used to derive the stellar mass and the

procedure to estimate it we refer to B17.

In this paper, we present the stellar mass correction

for galaxies corresponding to each combination of output

properties. We limit our analyses only to mock galax-

ies with a combination of output parameters that are

present among the input ones, but that are not necessar-

ily the correct one.The stellar mass correction for galax-

ies with output parameter values not present among the

input ones would be overestimated, because the out-

put galaxy model is always different from the input one

by construction and, therefore, the stellar mass is never

correct. We divide color excess and redshifts in bins of

∆(E(B−V )) =0.1 mag and ∆z =1 centered around the

values present among the mock observations.
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Overall we remove from the sample galaxies with out-

put redshifts below 6.5 and above 10.5, which corre-

spond to <1.2% and <2.3% with all band combinations.

Moreover, we do not consider galaxies with output color

excess larger that 0.3 mag, that correspond to 1.3% of

the sample when only NIRCam broad-bands are consid-

ered and <0.5% when at least one of the two MIRI band

is included. The full set of galaxy properties considered

in this work is listed in Table 1 and their input distribu-

tions are shown in figure 1. Given these points, the final

samples consist of 71257 (95% of the original catalogue)

galaxies with NIRCam observations, 72897 (97% of the

original catalogue) galaxies with NIRCam and F560W

band observations, 72295 (96% of the original catalogue)

galaxies with NIRCam and F770W band observations,

and 73741 (98% of the original catalogue) galaxies with

observations in the 8 NIRCam and 2 MIRI bands.

The stellar mass of each mock galaxy is obtained by

LePhare by scaling the template considering all bands,

while the input templates are scaled to match a mag-

nitude 29 AB at 1.5 µm. This difference may result on

a bias on the derived stellar mass. Therefore, we ana-

lyze the recovered stellar mass for a subsample of mock

galaxies for which all other galaxy parameters are per-

fectly recovered, i.e. the input template is correctly rec-

ognized. We find that a small bias is present and stellar

masses are, on average, overestimated of ∼5-6%. Here-

after, all the output stellar masses are corrected by this

general bias of -0.025 dex, to remove the dependence on

the used SED fitting code.

2.4. Dependence of the stellar mass corrections on the

chosen input parameters

The stellar mass corrections derived here depend on

the assumed input galaxy population, which is derived

assuming the parameters listed in Table 1 and follow-

ing the distributions shown in Fig. 1. All parameter

combinations have been included, except for templates

with ages longer than the Universe age at the consid-

ered redshift and the lowest metallicity (0.02 Z�) which

is considered only for templates with ages shorter than

0.2 Gyr. The results presented in this paper are affected

by the used parameters in two ways. First, templates

described by different parameters may arise additional

degeneracies that are not taken into account here, there-

fore the stellar mass corrections presented needs to be

considered as not exhaustive. Second, if the input dis-

tribution of each parameter is extremely different, the

overall degeneracies will remain the same, but each prob-

ability may be different.

Under the assumption that nebular emission lines de-

pend on metallicity, dust extinction, covering factor, age

Table 1. Output values of different galaxy prop-
erties considered in this work.

Parameter Values

metallicity Z�,0.4Z�,0.2Z�,0.02Z�
a

SFH type step function

SFH [Gyr] 0.01,0.03,0.1

fcov 0,1b

E(B-V)c 0,0.05,0.1,0.15,0.2,0.25,0.3 d

age [Gyr] 0.01,0.05,0.2,0.4,0.6e

z 6.5,6.55,6.70,...,10.40,10.45,10.5 f

afor this metallicity we consider only ages
t <0.2 Gyr.

b templates of old galaxies with no ongoing star
formation do not change with the covering fac-
tor, so, for these galaxies, we consider only
fcov =0.

c following Calzetti et al. reddening law (Calzetti
et al. 2000)

dResults are showned in bins of ∆(E(B −
V )) =0.1 mag.

ewe consider this age only up to redshift z = 8.

fResults are showned in bins of ∆z = 1.

and SFH, but not on stellar mass, the stellar mass cor-

rections derived in this paper do not depend on the

assumed stellar mass distribution. Indeed, if two tem-

plates well represent some observations, they would rep-

resent equally well the same observations scaled by an

arbitrary factor, as long as the S/N is the same and the

scaling factor is the same for all observations. The abso-

lute stellar mass would change because of the re-scaling,

but the stellar mass correction, which is a relative quan-

tity, would remain the same. For this reason our results

do not depend on any assumption on the input stellar

mass distribution and can be generally applied to any

statistical sample. However, we advise against using the

corrections presented here for samples biased on any of

the other input parameters, i.e. a sample containing

only emission-line galaxies. In case of a biased sample,

the corrections presented here can be anyway considered

to identify possible biases affecting the stellar mass.

3. RESULTS

In this section we present the statistical stellar mass

corrections for the different JWST broad-band filter

combinations. These can be used to statistically correct

the stellar mass estimate for degeneracies arising from

the SED fitting procedure. Statistical stellar mass cor-
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Figure 1. Distribution of each input galaxy parameter used to derive the galaxy sample considered in this work. From upper
left to bottom right: redshift, metallicity, galaxy age (time from the beginning of star formation), colour excess, duration of
the star formation episodes. Each parameter distribution is shown separately for galaxies with fcov =0 (empty histograms) or
fcov =1 (filled histograms)

rections are derived comparing the output stellar mass

with the input one, i.e. log10(M∗
out) − log10(M∗

in). The

median statistical stellar mass corrections are in general

small, as shown in Fig. 2-6, but the quartile ranges are

large, therefore some galaxy models may need signifi-

cant stellar mass corrections. In particular, 25% quar-

tiles range from -0.83 dex to 0.51 dex, while the 75%

quartiles are between -0.51 dex to 0.88 dex.

In the next sections, we analyze how these stellar

mass corrections are related to other output parame-

ters, i.e. covering factor, redshift, age, color excess,

star formation history and metallicity, to understand

for which SED templates the stellar mass estimation

is particularly challenging. All plots refers to mock

galaxies with S/NF150W =10, but results are similar for

S/NF150W =20. We include among the online material

the detail stellar mass offset distribution of both signal-

to-noise values.

3.1. Variation of statistical stellar mass correction

with covering factor

We separate between galaxies with output fcov = 1 or

fcov = 0, i.e. star-forming galaxies with emission lines

or galaxies without emission lines. Among all galaxies

with output fcov = 1, 22% have input fcov = 0 when

considering only NIRCam bands. Among these galax-

ies, 83% (41%) have stellar mass offsets larger than 0.1

dex (0.3 dex) in modulus, with stellar masses that tend

to be underestimated, even up to 10 times. Here, we do

not investigate the equivalent width of the nebular emis-

sion lines, therefore galaxies there are wrongly identified

with fcov = 1 may have very low output value of equiv-

alent widths. On the other hand, even the population

of galaxies correctly identified as galaxies with fcov = 1

shows large stellar mass offsets, but with less frequency,

i.e. 40% (22%) with stellar mass offsets larger than 0.1

dex (0.3 dex) in modulus. The inclusion of the MIRI

bands decreases the percentage of galaxies with input

fcov = 0 to 8% of all galaxies with output fcov = 1.

Among galaxies with output fcov = 0, ∼ 5% have in-

put fcov = 1, when considering only NIRCam bands.

This percentage only slightly changes to 3% when

adding the MIRI broad bands. Independently by the

considered filter combination, the stellar mass for the

majority of these galaxies is overestimated, even up to

10 times in some cases, and more than 90% (60%) of
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them have stellar mass offsets larger than 0.1 dex (0.3

dex) in modulus. This is extremely high compared with

the fraction of galaxies correctly identified as galaxies

without emission lines, for which only 12% (2%) have

stellar mass errors larger than 0.1 dex (0.3 dex) in mod-

ulus, already considering only the 8 NIRCam bands.

Overall, it is evident that the big offsets on the stellar

mass arise from galaxies for which the covering factor,

i.e. the presence of nebular emission lines, is wrongly

recognized. However, even galaxies correctly identified

as galaxies with nebular emission lines may also have

large stellar mass statistical corrections. The inclu-

sion of the MIRI bands generally reduces the fraction

of galaxies wrongly identified as galaxies with nebular

emission lines and, therefore, it reduces the fraction of

galaxies with extreme stellar mass offsets.

3.2. Variation of statistical stellar mass correction

with redshift

In Figure 2 we show the median statistical stellar mass

correction for different redshift bins and filter combina-

tions. We highlight once again, that here we analyze

output redshift values that do not necessarily correspond

to the input ones, as it will happen in real observations.

All redshift bins are centered around the four input red-

shifts, z=7, 8, 9 and 10. We analyze separately galaxies

with different covering factors, i.e. fcov =0 or 1.

Galaxies with output fcov =1 are recognized as star-

forming galaxies with the maximum contribution from

nebular emission lines. They have generally small me-

dian stellar mass offset between 0.036 dex and -0.020

dex, with negative values present at z=10. However,

the distribution of the stellar mass correction is very

broad in some case, in particular at z=7 where the 75%

percentile is between 0.18 and 0.48 mag, depending on

the considered filter. At z=7, extreme stellar mass offset

are due to a overestimation of the age for the youngest

galaxy template. Excluding z=7 templates, the addition

of at least one MIRI band reduces the median, that is

however already small using only the 8 NIRcam broad-

bands, or the dispersion of the stellar mass offset, espe-

cially at z=10.

Galaxies with output fcov =0 are recognized as galax-

ies without emission lines, that could be both star-

forming and quenched galaxies. The median stellar mass

offsets are small, ranging between 0.005 dex and 0.003

dex. The 25% and 75% quartiles are always within

±0.04 dex, i.e. stellar mass offsets below 10%, with a

light dependence with redshift. The larger distribution

is present at z=10, considering only NIRCam bands and

this is due to the fact that no NIRCam bands purely

cover λ > 4000 Å break.

Overall, as mentioned also in B17, stellar masses are,

on average, difficult to estimate for galaxies with nebu-

lar emission lines at all redshifts. Their stellar masses

tend to be overestimated due to an overestimation of the

galaxy age. In addition, stellar masses are challenging

to estimate also for galaxies without nebular emission

lines at z=10 when considering only NIRCam bands.

3.3. Variation of the statistical stellar mass correction

with galaxy age

Figure 3 shows the median statistical stellar mass cor-

rection for different output ages, redshifts and filter com-

binations. Galaxies with tout >0.20 Gyr have stellar

mass corrections within 0.01 dex, i.e. ∼2% error in

the stellar mass estimation, including the 25% and 75%

quartiles and considering all redshifts and JWST broad-

band filter combinations. These templates correspond to

quiescent galaxies, for which stellar masses are generally

correctly estimate. There are no star-forming galaxies

with tout >0.20 Gyr, because stars can form only until

0.1 Gyr in the galaxy models included in this work.

On the other hand, galaxies with ages equal or smaller

than 0.05 Gyr are star-forming galaxies with or with-

out emission lines, depending on the covering factors, or

quiescent galaxies if the template corresponds to a very

short period of star-formation. In particular, galaxies

with nebular emission lines, i.e. star forming galaxies

with fcov =1, have stellar masses that are overestimated

at t=0.05 Gyr, up to 0.5 dex, and generally underes-

timated at t=0.01 Gyr. At z=7, a large difference is

present on the median offset values derived consider-

ing the MIRI/F770W band and both the F560W and

F770W MIRI bands, for galaxies with emission lines and

t=0.05 Gyr. However, the distribution of the statisti-

cal stellar mass corrections of these galaxies is bimodal,

therefore a small difference in the overall distribution is
enough to shift the median of ∼0.4 dex.

Galaxies with fcov =0, have instead good stellar mass

estimation for t=0.01 Gyr, but may have overestimated

stellar masses for t=0.05 Gyr at z>8. However, for a

small fraction of these galaxies that have output fcov=0

but have nebular emission lines in input, the stellar mass

is highly overestimated even up to 1 dex. This generally

results from an underestimation of the duration of the

star-formation and an overestimation of the age.

3.4. Variation of the statistical stellar mass correction

with color excess

In Figure 4 we show the median statistical stellar mass

correction for different output color excess bins, out-

put redshifts and filter combinations. We differentiate

again between galaxies with and without nebular emis-

sion lines. Galaxies without emission lines, that could
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Figure 2. Median statistical stellar mass correction for different output redshift bins and broad-band filter combinations: 8
NIRCam broad bands (blue squares); 8 NIRCam broad bands and MIRI F560W only (red circles); 8 NIRCam broad bands and
MIRI F770W only (yellow triangles); 8 NIRCam broad bands, MIRI F560W and MIRI F770W (purple upside-down triangles).
Galaxies are divided depending on their covering factor: fcov =1 (top) and fcov =0 (bottom). The vertical dotted lines indicate
the edges of considered the redshift bins. Error bars correspond to the 25% and 75% quartiles. Points are slightly offset
horizontally respect from each other for illustrative purposes. The inset plots show a zoom-in on the median absolute values

be quiescent galaxies or templates corresponding to star-

forming systems with fcov =0, have stellar mass cor-

rection quartiles within 0.05 dex, i.e. ∼ 12% error on

the input stellar mass, for all output values of color ex-

cess and redshift. Stellar mass offsets are slightly larger,

with quartiles that are anyway within 0.1 dex, for galax-

ies without nebular emission lines at z=10 and E(B-

V)∼0.05 mag when not including observations with the

F770W MIRI band. At this high redshift, the F770W

MIRI band helps to estimate the dust extinction and

the stellar mass, otherwise the first one is on average

underestimate and the second one is overestimated.

On the other hand, for galaxies with nebular emission

lines the stellar mass has a larger offset respect to the in-

put stellar mass than for galaxies without emission lines.

In particular, the dispersion of the stellar mass correc-

tion distribution increases with decreasing values of the

output color excess. Moreover, the stellar mass is gener-

ally overestimated at z=7, particularly for galaxies with

E(B-V)<0.1 mag for which the median statistical stellar

mass correction is between 0.16 dex and 0.34 dex. Con-

versely, at z>7 the stellar mass is underestimated for a

not negligible fraction of galaxies with nebular emission

lines, with 25% percentiles that reach also -0.36 dex, i.e.

the stellar mass is underestimated by 56%. At z>8, the

stellar mass correction has a large distribution also for

galaxies with < E(B − V ) >∼0.25 mag, if only 8 NIR-

Cam bands are considered. Galaxies with E(B-V)<0.1

mag for which the stellar mass is underestimated cor-

respond to galaxies with input fcov = 1 (∼ 25%), for

which the age is slightly underestimated as well as the

period of star formation, or galaxies with input fcov = 0

(∼ 75%), for which the color excess and metallicity have

been underestimated while star formation continue for

a longer period than in input.

Overall, stellar masses are generally well recovered for

galaxies with output color excess around 0.2-0.3 mag,

while it is less accurate for galaxies for which the best

SED template is relatively dust-free. This is due to

the age-extinction degeneracy for galaxies with output

fcov =0 and to a more complicated degeneracies, which
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Figure 3. Median statistical stellar mass correction for different output ages and different output redshift bins. From top to
bottom: redshifts z = 7, 8, 9 and 10. Different symbols correspond to different broad-band filter combinations: 8 NIRCam
broad bands (blue squares); 8 NIRCam broad bands and MIRI F560W only (red circles); 8 NIRCam broad bands and MIRI
F770W only (yellow triangles); 8 NIRCam broad bands, MIRI F560W and MIRI F770W (purple upside-down triangles). Filled
symbols indicate galaxies with nebular emission lines, i.e. star forming and with fcov =1, while empty symbols indicate galaxies
without nebular emission lines, i.e. quiescent galaxies or star-forming galaxies with fcov =0. Error bars correspond to the 25%
and 75% quartiles. Points are slightly offset horizontally respect from each other for illustrative purposes. The inset plots show
a zoom-in on the median values.
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involve also the duration of the star-formation and the

metallicity, for galaxies with output fcov =1.

3.5. Variation of the statistical stellar mass correction

with star formation history

Figure 5 shows the stellar mass corrections for differ-

ent output star formation histories, redshifts and broad-

band filter combinations. In this work we consider step

function SFH that last for 0.01, 0.03 and 0.1 Gyr. Galax-

ies without emission lines have both quartiles of the stel-

lar mass correction within 0.05 dex, excluding galaxies

at z=10 and star formation lasting for 0.1 Gyr observed

using only 8 NIRCam bands, for which the 75% quartile

of the stellar mass correction is 0.09 dex.

Galaxies with nebular emission lines have large stellar

mass offset, with 75% quartiles as large as 0.5 dex, par-

ticularly for galaxies with SFH that last 0.1 Gyr at z<10.

Indeed, some of these galaxies are correctly identified as

star-forming galaxies with nebular emission lines, but

the SFH and age are overestimated, with a consequent

underestimation of the line equivalent widths and, there-

fore, overestimation of the stellar mass. On the other

hand, if the galaxy was originally without emission lines

but wrongly identified with fcov =1, the age has been

usually largely underestimated and, as a consequence,

the stellar mass is overestimated because of a large mass-

to-light ratio. If the SFH and age are underestimated

the line equivalent widths is overestimated and the stel-

lar mass, consequently, is underestimated. This is the

case for galaxies with SFH shorter than 0.1 Gyr, for

which the stellar mass tends to be underestimated down

to -0.3 dex, i.e. around half of the input stellar mass,

particularly when observed using only the 8 NIRCam

bands.

3.6. Variation of the stellar mass correction with

metallicity

In Figure 6, we show the stellar mass correction for

different output redshifts, output metallicities and dif-

ferent broad-band filter combinations. The largest scat-

ter in the stellar mass correction is measured for galax-

ies with the lowest metallicity, i.e. 1/50 Z�. Galaxies

without emission lines and with metallicities larger than

Z=0.0004 have extremely small stellar mass corrections,

with both quartiles within 0.025 dex. Instead, at the

lowest considered metallicity, galaxies without emission

line may have stellar mass corrections with 75% quar-

tiles as large as 0.72 dex.

On the other hand, galaxies with nebular emission

lines have large stellar mass corrections at all considered

metallicities. For galaxies with nebular emission lines,

stellar masses may be largely overestimated, with 75%

quartiles as large as 0.66 dex, as well as largely under-

estimated, with 25% quartiles down to -0.44 dex. When

the stellar mass is overestimated both the color excess

and redshift are generally underestimated, while the age

is overestimated. For galaxies with nebular emission

lines the SFH is generally underestimated and, as the

age is overestimated, the equivalent-widths of the neb-

ular emission lines are underestimated and, as a conse-

quence, the stellar mass is overestimated. As expected,

when the stellar mass is underestimated the opposite

situation happens. For clarification, the redshift offset

are generally δz= |zin − zout|/(1 + zin) <0.15, as there

are almost no redshift outliers in the analysed sample.

4. HOW TO APPLY CORRECTIONS TO STELLAR

MASSES BASED ON JWST OBSERVATIONS

In the previous Sections, we have discussed the sta-

tistical stellar mass corrections derived from our mock

galaxy catalogue, by analyzing for which templates the

stellar mass estimation is particularly challenging. In

this section, we give some practice information on how

to include these results on the stellar mass estimation of

galaxies observed with JWST in the near future.

First, we remind the reader that, under the assump-

tion that emission lines depend on SFH, metallicity, cov-

ering factor, age and dust extinction, but not on stellar

mass, the stellar mass correction can be applied to any

stellar mass and does not depend on the assumed stellar

mass distribution. On the other hand, we advise to use

these corrections directly only for stellar masses derived

using the LePhare code and the SED template consid-

ered in this work. If other codes or templates are used

or small and biased samples are considered, like samples

containing only emission-line galaxies, the stellar mass

corrections can be anyway used as an indication of the

possible degeneracies.

We provide the 25%, 50% and 75% quartiles, mini-

mum and maximum value of the statistical stellar mass

corrections for each combination of output galaxy pa-

rameter for galaxies with fcov =0 (Table 2) and with

fcov =1 (Table 3) separately. We also give the entire stel-

lar mass offset distribution for each specific SED tem-

plate for both S/N=10 and 20 and for the four JWST

broad-band filter combinations considered: 8 NIRCam

broad-bands (Table 4), 8 NIRCam broad-bands and

MIRI/F560W (Table 5), 8 NIRCam broad-bands and

MIRI/F770W (Table 6), and 8 NIRCam broad-bands,

MIRI/F560W and MIRI/F770W (Table 7).

In general, given a sample of galaxies observed using

a specific set of JWST filters, we suggest to derive the

best SED template for each observed galaxy, using the

template utilized in this paper. After obtaining the best



10 Bisigello et al.

Figure 4. Median statistical stellar mass correction for different output color excess bins and different output redshift bins.
From top to bottom: redshifts z = 7, 8, 9 and 10. Different symbols correspond to different broad-band filter combinations: 8
NIRCam broad bands (blue squares); 8 NIRCam broad bands and MIRI F560W only (red circles); 8 NIRCam broad bands and
MIRI F770W only (yellow triangles); 8 NIRCam broad bands, MIRI F560W and MIRI F770W (purple upside-down triangles).
Filled symbols indicate galaxies with nebular emission lines, i.e. star forming and with fcov =1, while empty symbols indicate
galaxies without nebular emission lines, i.e. quiescent galaxies or star-forming galaxies with fcov =0. Error bars correspond to
the 25% and 75% quartiles. Points are slightly offset horizontally respect from each other for illustrative purposes. The inset
plots show a zoom-in on the median values.

SED template, it is possible to consult Tables 2 or 3,

depending on the output covering factor, to derive the

25%, 50% and 75% quartiles of the stellar mass offset,

or to look at Tables 4 to 7, depending on the available

JWST bands, to obtain the full stellar mass offset dis-

tribution. We highlight that the stellar mass offsets pre-

sented in this work need to be considered as statistical

corrections, therefore their application on small samples

or single objects is not recommended. They can be used

on small or biased samples only to identify relatively se-

cure or challenging galaxy templates for which the stellar

mass estimation may be considered relatively secure or

needs a further, more focused investigation.

It is possible to interpolate among stellar mass off-

set distributions with similar output parameter values,

however we suggest to perform this interpolation with

caution, particularly for galaxies with emission lines.

Figures 7 and 8 show some example of linear interpo-

lation between available parameter values. In partic-

ular, in Figure 7, we show the interpolation between

two templates with z=7 and 9, with all other parame-

ters identical, and we compare the result with the cor-
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Figure 5. Median statistical stellar mass correction for different output star formation histories and different output redshift
bins. From top to bottom: redshifts z = 7, 8, 9 and 10. Star formation histories are step functions that last for 0.01, 0.03 and
0.1 Gyr. Different symbols correspond to different broad-band filter combinations: 8 NIRCam broad bands (blue squares); 8
NIRCam broad bands and MIRI F560W only (red circles); 8 NIRCam broad bands and MIRI F770W only (yellow triangles);
8 NIRCam broad bands, MIRI F560W and MIRI F770W (purple upside-down triangles). Filled symbols indicate galaxies with
nebular emission lines, i.e. star forming and with fcov =1, while empty symbols indicate galaxies without nebular emission lines,
i.e. quiescent galaxies or star-forming galaxies with fcov =0. Error bars correspond to the 25% and 75% quartiles. Points are
slightly offset horizontally respect from each other for illustrative purposes.The inset plots show a zoom-in on the median values.

responding template at z=8. In Figure 8, we repeat the

exercise by changing the color excess and, in particular,

by comparing the interpolation between a template with

< E(B − V ) >=0.05 mag and 0.25 mag with the cor-

responding template with <E(B-V)>=0.15 mag. The

interpolated template never coincides perfectly with the

real one, but it may resemble it, particularly for galaxies

without emission lines. Therefore, we suggest to inter-

polate with caution among the parameter values consid-

ered in the work.

5. COMPARISON WITH THE JAGUAR

CATALOGUE

We test our method by applying the statistical stel-

lar mass correction to the NIRCam mock observations

derived as part of the JWST Advanced Deep Extra-

galactic Survey (JADES) using the JAdes extraGalac-

tic Ultradeep Artificial Realizations (JAGUAR) package

(Williams et al. 2018). These mock catalogues are de-

rived by generating a galaxy population that follows em-

pirical functions, such as the observed stellar mass and
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Figure 6. Median statistical stellar mass correction for different output metallicities and different output redshift bins. From
top to bottom: redshifts z = 7, 8, 9 and 10. Different symbols correspond to different broad-band filter combinations: 8 NIRCam
broad bands (blue squares); 8 NIRCam broad bands and MIRI F560W only (red circles); 8 NIRCam broad bands and MIRI
F770W only (yellow triangles); 8 NIRCam broad bands, MIRI F560W and MIRI F770W (purple upside-down triangles). Filled
symbols indicate galaxies with nebular emission lines, i.e. star forming and with fcov =1, while empty symbols indicate galaxies
without nebular emission lines, i.e. quiescent galaxies or star-forming galaxies with fcov =0. Error bars correspond to the 25%
and 75% quartiles. Points are slightly offset horizontally respect from each other for illustrative purposes. The inset plots show
a zoom-in on the median values.
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Table 4. Distribution of the statistical stellar mass corrections ∆(log10(M∗)) = log10(M∗
out/M�)− log10(M∗

in/M�) for different output
galaxy property combinations and using only 8 NIRCam broad-bands. Columns from 8 to 50 show the normalized distribution. The
first row contains the statistical stellar mass corrections intervals considered, from column 8 to 50. A value of -99.9 is present when
there are no galaxies for a combination of output galaxy properties. The complete table is available online.

<z> Z fcov SFH t <E(B-V)> S/NF150W P(∆(log10(M∗)))

[Z�] [Gyr] [Gyr] [mag]

-1.075 -1.025 -0.975 -0.925 -0.875 ... 0.875 0.925 0.975 1.025 1.075

7 0.2 0 0.01 0.01 0.05 10 0.00 0.00 0.00 0.00 0.00 ... 0.00 0.00 0.00 0.00 0.00

7 0.2 0 0.1 0.05 0.15 10 0.00 0.00 0.00 0.00 0.00 ... 0.00 0.01 0.00 0.00 0.00

7 0.04 1 0.01 0.01 0.25 10 0.07 0.00 0.20 0.00 0.67 ... 0.00 0.00 0.00 0.00 0.00

Table 5. Distribution of the statistical stellar mass corrections ∆(log10(M∗)) = log10(M∗
out/M�)− log10(M∗

in/M�) for different output
galaxy property combinations and using only 8 NIRCam broad-bands and MIRI/F560W. Columns from 8 to 50 show the normalized
distribution. The first row contains the statistical stellar mass correction intervals considered, from column 8 to 50. A value of -99.9
is present when there are no galaxies for a combination of output galaxy properties. The complete table is available online.

<z> Z fcov SFH t <E(B-V)> S/NF150W P(∆(log10(M∗)))

[Z�] [Gyr] [Gyr] [mag]

-1.075 -1.025 -0.975 -0.925 -0.875 ... 0.875 0.925 0.975 1.025 1.075

7 0.2 0 0.01 0.01 0.05 10 0.00 0.00 0.00 0.00 0.00 ... 0.00 0.00 0.00 0.00 0.00

7 0.2 0 0.1 0.01 0.15 10 0.00 0.00 0.00 0.00 0.01 ... 0.00 0.00 0.00 0.00 0.00

7 0.2 0 0.01 0.01 0.25 10 0.01 0.00 0.00 0.00 0.00 ... 0.00 0.00 0.00 0.00 0.00

Table 6. Distribution of the statistical stellar mass corrections ∆(log10(M∗)) = log10(M∗
out/M�)− log10(M∗

in/M�) for different output
galaxy property combinations and using only 8 NIRCam broad-bands and MIRI/F770W. Columns from 8 to 50 show the normalized
distribution. The first row contains the statistical stellar mass correction intervals considered, from column 8 to 50. A value of -99.9
is present when there are no galaxies for a combination of output galaxy properties. The complete table is available online.

<z> Z fcov SFH t <E(B-V)> S/NF150W P(∆(log10(M∗)))

[Z�] [Gyr] [Gyr] [mag]

-1.075 -1.025 -0.975 -0.925 -0.875 ... 0.875 0.925 0.975 1.025 1.075

7 0.2 0 0.01 0.01 0.05 10 0.00 0.00 0.00 0.00 0.00 ... 0.00 0.00 0.00 0.00 0.00

7 0.2 1 0.1 0.05 0.05 10 0.00 0.00 0.00 0.00 0.00 ... 0.00 0.01 0.01 0.00 0.00

7 0.2 0 0.01 0.01 0.25 10 0.01 0.00 0.01 0.00 0.00 ... 0.00 0.00 0.00 0.00 0.00
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Table 7. Distribution of the stellar mass errors ∆(log10(M∗)) = log10(M∗
out/M�)−log10(M∗

in/M�) for different output galaxy property
combinations and using only 8 NIRCam broad-bands, MIRI/F560W and MIRI/F770W. Columns from 8 to 50 show the normalized
distribution. The first row contains the stellar mass error intervals considered, from column 8 to 50. A value of -99.9 is present when
there are no galaxies for a combination of output galaxy properties. The complete table is available online.

<z> Z fcov SFH t <E(B-V)> S/NF150W P(∆(log10(M∗)))

[Z�] [Gyr] [Gyr] [mag]

-1.075 -1.025 -0.975 -0.925 -0.875 ... 0.875 0.925 0.975 1.025 1.075

7 0.2 0 0.01 0.01 0.05 10 0.00 0.00 0.00 0.00 0.00 ... 0.00 0.00 0.00 0.00 0.00

7 0.2 1 0.1 0.05 0.05 10 0.00 0.00 0.00 0.00 0.00 ... 0.00 0.01 0.01 0.00 0.00

7 0.2 0 0.01 0.01 0.25 10 0.01 0.00 0.01 0.00 0.00 ... 0.00 0.00 0.00 0.00 0.00

Figure 7. Example of a distribution of the statistical stellar mass corrections for three SED templates with the same parameter
values, except the redshift. We show the distribution for a template at z=7 (solid black line), z=8 (dashed red line), z=9 (solid
blue line) and for the interpolation between the distribution for the template at z=7 and z=9 (dotted red line). We show two
examples, i.e. for templates with fcov =1 (top) and fcov =0 (bottom).

luminosity functions at different redshifts, and assigning

to each of them a SED template using the BEAGLE tool

(for BayEsian Analysis of GaLaxy sEds; Chevallard &

Charlot 2016). We consider only mock galaxies between

z=6.5 and 10.5 for a total of 23493 objects. We consider

an observational depth of 10 σ at 29 AB mag at 1.5 µm

and we consider only galaxies with S/NF150W ≥10.

We run the code LePhare using the same templates de-

scribed in section 2.3. We then correct the stellar mass

function in the different redshift bins, by considering

the full stellar mass offset distribution associate with the

best template obtained for each object (Table 4). In Fig-

ure 9, we compare the expected stellar mass corrections

and the difference between the original and the recovered

stellar mass of the JAGUAR catalogue, before applying

any correction. The overall magnitudes of the correc-

tions are similar to the stellar mass discrepancies and,

even with a large scatter, they show a positive correla-

tion, showing that the stellar mass correction generally

improves the stellar mass estimation obtained with Le-

Phare and the templates considered in this work. In line

with the detail analysis of the main degeneracies done
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Figure 8. Example of a distribution of the statistical stellar mass corrections for three SED templates with the same parameter
values, except the color excess. We show the distribution for a template with E(B-V)=0.05 mag (solid black line), E(B-V)=0.15
mag (dashed red line), E(B-V)=0.25 mag (solid blue line) and for the interpolation between the distribution for the template
with E(B-V)=0.05 mag and E(B-V)=0.25 mag (dotted red line). We show two examples, i.e. for templates with fcov =1 (top)
and fcov =0 (bottom).

in Sec. 3, we notice that solar metallicity systems tend

to have a correct stellar mass estimation, while the stel-

lar mass estimation is more challenging for objects with

high star-formation-rates that present, indeed, emission

lines and objects with tout <0.2 Gyr.

Figure 10 shows the difference between the stellar

mass distribution of the JAGUAR catalogue, the one

derived using LePhare and the Yggdrasil templates con-

sidered in this work before and after applying the statis-

tical errors. Excluding z=7, the mean absolute error on

the stellar mass distributions decreases by 20-50% after

applying the stellar mass corrections derived here. It is

evident that, for this specific case, the main improve-

ment on applying the statistical stellar mass correction

consist on not overestimating the number of extremely

low-stellar mass objects (M∗ < 107M�) that are indeed

expected to be an important fraction of the galaxy pop-

ulation that will be observed with JWST at z>7 (Cev-

erino et al. 2019). This may be an important issue for

future works that aim on recovering the proper value of

the stellar mass function faint-end slope at high-z.

As already mentioned, the corrections derived in this

work are not exhaustive. Indeed, an additional offset be-

tween the original stellar mass and the one derived with

Yggdrasil templates is present and it is due to different

emission-line equivalent width recipes and SFH used in

Yggdrasil and BEAGLE.

Overall, the statistical stellar mass corrections im-

prove the stellar mass distribution derivation obtained

with the Yggdrasil templates, even if the galaxies have

completely different SFH and emission-line recipes.

6. CONCLUSIONS

In a series of papers, of which this is the third, we have

created and analyzed a mock galaxy sample to investi-

gate how different galaxy properties will be derived us-

ing the JWST NIRCam broad-band filters and the two

MIRI filters F560W and F770W for galaxies at redshifts

between 7 and 10. In particular, we consider a mock

galaxy sample with good photometry (S/NF150W >10)

for which the redshift is well recovered and we derive

galaxy properties fitting the broad-band SED, in a simi-

lar way to what will be done for galaxies in future JWST

deep blank-field imaging surveys. Then, we compare the

derived galaxy properties with the input ones to under-

stand biases in the galaxy property estimation.

In this paper, we focus on the stellar mass estimation,

providing a list of statistical stellar mass corrections to

take into account when estimating stellar masses of large

samples of high-z galaxies that will be observed in the
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Figure 9. Comparison between the stellar mass correction
and the difference between the JAGUAR stellar mass and
the stellar mass recovered with LePhare. We color-coded
each correction by its probability (Table 4).

next future with JWST. These corrections can be used

directly when stellar masses are derived using the Le-

Phare code and the SED template considered here and

they can be generally considered as an indication of the

possible template degeneracies affecting the stellar mass

derivation. In particular, we provide the 25%, 50% and

75% quartiles, minimum and maximum value of the stel-

lar mass offsets, together with the full stellar mass offset

distributions, for each combination of output galaxy pa-

rameter and for different JWST broad-band filter com-

binations.

Median stellar mass offsets are generally small, but

the 25% and 75% quartiles for some specific templates

range from -0.83 dex to 0.88 dex, therefore some galaxy

models may need significant stellar mass corrections.

In particular, we notice that:

• galaxies without nebular emission lines, in out-

put, that were originally with emission lines have

overestimated SFH and age. This results in an

overestimation of the stellar mass that is even 10

times the original stellar mass. On the other hand,

galaxies with nebular emission lines, in output,

that were originally without emission lines have

stellar masses that are generally underestimated,

even down to 10 times the original mass.

• the stellar mass of galaxies is more difficult to es-

timate at z=10, when only 8 NIRCam bands are

considered, but also at z=7. The first effect is

due to the fact that no NIRCam bands purely

cover λ > 4000 Å break, therefore MIRI bands

are necessary to trace these wavelengths and im-

prove the stellar mass estimation. The reduced

age-extinction degeneracy is instead one of the rea-

sons why the stellar mass recovery is less difficult

at z>7 than at z=7.

• Stellar masses are well recovered for galaxies with

output color excess between 0.2 and 0.3 mag, i.e.

the maximum value analyzed in this paper, while

the stellar mass estimation is less accurate for rel-

ative dust-free templates.

• For galaxies without emission lines, i.e. quenched

or star-forming galaxies with fcov =0, the stellar

mass is generally well recovered, except for the

lowest metallicity considered, which is 1/50 Z�.

• we apply the statistical stellar mass corrections

presented in this work to the JAGUAR catalogue,

which has been derived using different assump-

tions (Williams et al. 2018). The discrepancies

in the recovered stellar mass distribution decrease

by 20-50% at z>7 when including the stellar mass

corrections. Results highlight the importance of

the considered statistical stellar mass corrections

to properly derive the distribution of the low-mass

galaxy population that otherwise tends to be over-

estimated in number. This is indeed essential for

future works that aim at deriving the faint-end

slope of the high-z stellar mass function.

Overall, the stellar mass estimation is challenging for

young galaxies with nebular emission lines or galaxies

with emission lines that have not been properly iden-

tified. Adding at least one of the two MIRI bands at

shortest wavelengths improve the stellar mass estima-

tion, refining the average estimation or reducing the

worst outliers.

In the future, additional investigations are necessary

to expand this analysis on extremely dusty objects and

galaxies with a not-negligible contribution by active

galactic nuclei.
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Figure 10. Upper panels: Stellar mass distribution in the JAGUAR catalogue (Filled blue) and stellar mass distribution
derived with the Yggddrasil templates before (red line) and after the statistical stellar mass correction (dashed green line).
Bottom panels: offsets between the original JAGUAR stellar mass and the stellar mass derived with the Yggddrasil templates
before (red line) and after the statistical stellar mass correction (dashed green line) and the average values of the absolute number
differences are shown on the right. Shadowed coloured areas shows the statistical uncertainties. Both stellar mass distributions
and offsets are shown for four redshift bins: 6.5≤ z <7.5 (upper left), 7.5≤ z <8.5 (upper right), 8.5≤ z <9.5 (bottom left) and
9.5≤ z <10.5 (bottom right).
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Tuli, M. 2011, ApJ, 740, 13


