A Hyper Suprime-Cam view of the CMASS galaxy sample

Alessandro Sonnenfeld* (Leiden Observatory), Wenting Wang (Kavli IPMU), Neta Bahcall (Princeton)

The size evolution of early-type galaxies

- The size of quiescent galaxies increases by a factor of a few between z=2 and z=0, at fixed M_{*}
- Massive (M_{*} > 10¹¹) galaxies grow mostly by mergers
- Minor mergers increase size more efficiently than major mergers (build up extended stellar envelope)

Newman et al. (2012)

 Merger rate is difficult to constrain observationally (merger timescale is uncertain)

The halo mass - stellar mass - size relation

- Merger rate is set by the dark matter halo
- If ratio between minor/major merger rate varies with halo mass, by z=0 there should be a correlation between size and halo mass at fixed M_{*}
- We can measure halo mass with weak gravitational lensing

Naive approach: make a bin in stellar mass, split it in two according to size, compare the stacked weak lensing signal in the two bins

A Bayesian hierarchical approach to galaxy-galaxy lensing

Alessandro Sonnenfeld^{1★} and Alexie Leauthaud^{1,2}

- ¹Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- ²Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
 - Sample of objects drawn from the same population. Each object described by a set of parameters. Example: stellar mass, halo mass, half-light radius
 - Individual object parameters are drawn from a distribution, which in turn is described by population parameters (the hyper-parameters). Example: average halo mass, halo mass-stellar mass correlation, halo mass-size correlation, scatter in halo mass.
 - We infer the hyper-parameters and the individual parameters simultaneously, given the data (weak lensing and stellar mass and size measurements).
 - Advantages: very flexible, especially in many dimensions, accurate (observational errors are all forward-modeled)
 - Cost: need to assume a model (e.g. NFW density profile for dark matter halo)

Bayesian hierarchical inference

Hyper Suprime-Cam Survey

- ~1,000 square degrees
- Depth ~26 mag (i-band)
- Typical seeing 0.7"

An HSC view of the CMASS galaxy sample. Halo mass as a function of stellar mass, size and Sérsic index.

Alessandro Sonnenfeld1,2*, Wenting Wang2, and Neta Bahcal13

- Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands e-mail: sonnenfeld@strw.leidenuniv.nl
- ² Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544, USA
- 10,000 massive galaxies (M* > 10^11) from BOSS CMASS sample (median redshift z~0.55)
- Stellar masses and sizes from HSC grizy photometry
- HSC weak lensing shape measurements on 140 square degrees
- Bayesian hierarchical inference of halo mass-stellar mass-size-Sersic index relation

Dependence on size and Sérsic index

$$\log M_h \sim \mathcal{N}(\mu_{h,0} + \beta_h(\log M_* - 11.4) + \nu_h(\log n - \mu_n(M_*)) + \xi_h(\log R_e - \mu_R(M_*, n)), \sigma_h)$$

Summary

- HSC Weak lensing measurements rule out strong correlations between halo mass and galaxy size (or Sérsic index) at fixed stellar mass.
- Implications for size evolution of massive quiescent galaxies: ratio between major and minor mergers is a weak function of halo mass.

Correlation?

Potential for future studies

- Stellar pop. age
- Velocity dispersion
- AGN activity
- X-ray emission (e-Rosita)

- Halo mass
- Halo concentration
- Halo shape (flattening)
- Halo density profile