MUSEQUBES CGM SURVEYS: From low-z SFING Galaxies to High-z Ly α Emitters

Sowgat Muzahid

Leiden Observatory The Netherlands

sowgat@strw.leidenuniv.nl

MUSEQuBES Collaboration: Joop Schaye (PI), Lorrie Straka, Marijke Segers, Sean Johnson, Martin Wendt, Raffaella Anna Marino, Sebastiano Cantalupo + MUSE consortium

February 21, 2019

The Circumgalactic Medium

■ CGM: Reservoir of diffuse gas and metals surrounding galaxies

- Extends out to the virial radius and beyond
 - The gas in the CGM is likely to be bound

Inflows and outflows (-poorly understood-) take place in the CGM
The physical/chemical conditions of the CGM are determined by the gas flow processes

CGM STUDY IS CHALLENGING

GGM is too diffuse $(n_{\rm H} \leq 10^{-3} {\rm cm}^{-3})$ to be detected in emission Emission measure, EM $\propto n^2$, whereas optical depth for absorption, $\tau \propto n$

Quasar absorption line spectroscopy is the best means to probe the elusive CGM

Cartoon: QSO-galaxy pair with an impact parameter of ρ (kpc) ρ : projected separation between the QSO and galaxy

MUSEQuBES (High-z): SURVEY DESIGN

MUSEQuBES (High-z)

\square MUSE observations

- 8 MUSE fields (Depths: 2–10 hrs)
- 51 hrs of MUSE GTO observations
- Targeted emission line: $Ly\alpha$ (LAE)

\Box UVES observations

- 8 VLT/UVES quasar spectra
 - $\mathbf{R} \approx 45,000$ &

 ${\rm S/N}\approx$ 70–100 per pixel!

• Targeted absorption lines: HI, CIV, SIIV

The LAE sample

 ≈ 100 LAEs are detected (Muzahid et al., In prep.)

★ First-ever systematic survey of the CGM of Ly α emitters ★ The largest sample for studying the CGM of high-z galaxies (z > 3, $\rho < 300$ kpc)

 \Box Median $z \approx 3.33$, Median $\rho \approx 165$ kpc

Australia-ESO Conf., Sydney

$$\label{eq:Median Flux} \begin{split} & \Box \mbox{ Median Flux} \approx 10^{-17} \mbox{ erg cm}^{-2} \mbox{ s}^{-1} \mbox{ } \Box \mbox{ Median Luminosity} \approx 10^{42} \mbox{ erg s}^{-1} \\ & \Box \mbox{ Median } M_{\rm halo} \sim 10^{10.5} \mbox{M}_{\odot} \mbox{ (Khostovan+18); Median } R_{\rm vir} \sim 25 \mbox{ kpc} \end{split}$$

 \Box Lines are blueshifted by $V_{\text{offset}} > 160 - 210 \text{ km s}^{-1}$

Our analysis is consistent with such an empirical relation

 \blacksquare We use this relation to calibrate the Ly α redshifts

Results: Impact Parameter Dependence

• Both gas and metals are widespread out to $\approx 200 \text{ kpc}$ (> $5R_{\rm vir}$)

• C IV shows a strong impact parameter dependence

 $\begin{array}{l} <\rho_{\rm high}>=214\pm32~{\rm kpc}\\ <\rho_{\rm low}>=115\pm38~{\rm kpc} \end{array}$

Results: (NO) $Ly\alpha$ Flux Dependence

Results: (Strong) Environment Dependence

RESULTS: LBGS VS LAES

 \blacksquare The CGM of LBGs $(M_{\rm halo} \sim 10^{12} {\rm M}_{\odot})$ is more rich in gas (and metal) than the LAEs

Redshift (2.3 vs 3.3) Dependence?

or Mass $(10^{12.0} M_{\odot} \text{ vs } 10^{10.5} M_{\odot})$ Dependence?

Summary:

- ▶ We present the first-ever (and statistical) sample of LAEs for CGM study
- ▶ CGM absorption can be used to calibrate $Ly\alpha$ redshifts
- ▶ Gas and metals are widespread (> $5R_{vir}$) around LAEs

 \blacktriangleright CGM absorption shows strong impact parameter and environmental dependence but does not show any dependence on $f(Ly\alpha)$

▶ LBGs show stronger CGM absorption compared to LAEs, likely due to higher mass

MUSEQUBES (Low-z): SURVEY DESIGN

$\mathbf{MUSEQuBES}~(\mathrm{Low-}\boldsymbol{z})$

\Box MUSE observations

- 16 QSO fields (Depths: 2–10 hrs)
- \bullet 65 hrs of MUSE GTO observations
- Targeted emission lines: $\label{eq:Hamiltonian} {\rm H}\alpha, \; [{\rm O\,{\sc iii}}], \; {\rm H}\beta, \; [{\rm O\,{\sc iii}}]$

\square COS observations

- \bullet 16 HST/COS spectra of QSOs
- **z**_{qso}: 0.5–1.5
- $\mathbf{R} \approx 20,000$; S/N $\approx 10-40$
- Targeted absorption lines: H I, C II, C III, C IV, O VI

MUSEQUBES (LOW-Z): SURVEY DESIGN

$\mathbf{MUSEQuBES} \ (\mathrm{Low-} \boldsymbol{z})$

\Box MUSE observations

- 16 QSO fields (Depths: 2–10 hrs)
- \bullet 65 hrs of MUSE GTO observations
- Targeted emission lines: H α , [O III], H β , [OII]

\square COS observations

- \bullet 16 HST/COS spectra of QSOs
- **z**_{qso}: 0.5–1.5
- $\mathbf{R} \approx 20,000$; S/N $\approx 10-40$
- Targeted absorption lines: HI, CII, CIII, CIV, OVI

\Box Ancillary Data:

HST/ACS (for all): Galaxy morphology VLT/UVES (for some): Absorption kinematics IMACS, LDSS3 (for some): Large FoV – more galaxies

MUSEQUBES (LOW-Z): THE GALAXY SAMPLE

- 338 Galaxies (continuum selected; ≈ 10 times larger than COS-Halos/COS-Dwarf surveys)
- \bullet Impact Parameter, $\rho\approx$ 10–320 kpc
- Median $\rho \approx 150$ kpc (≈ 2 times higher than COS-Halos/COS-Dwarf surveys)

MUSEQUBES (LOW-Z): THE GALAXY SAMPLE

- Wide redshift range: 0.01–0.90 (Median $z_{gal} \approx 0.5$)
- Wide $\log M_*/M_{\odot}$ range: 6.0–11.4 (Median $\log M_*/M_{\odot} \approx 8.8$)
- \bullet Median $\log M_*/M_{\odot}$ is >10 (>5) times lower than COS-Halos (COS-Dwarf) surveys