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The drug discovery process 

In the last decades, the field of drug discovery and development has advanced 

tremendously. Improvements in synthetic chemistry, DNA sequencing, protein 

crystallography, high-throughput screening and computational drug design, among 

others, have contributed to a faster and more efficient drug discovery process.1 Despite 

these efforts, it still takes 10-12 years for a drug candidate to reach the market and less 

than 10% of the drugs that enter clinical trials actually make it to the patient.2,3 

Drug development is a time- and resource-consuming process and consists of 

multiple stages (Figure 1.1).4 The search for a new drug usually starts at the discovery and 

validation of a (protein) target that contributes to the pathogenesis or progression of a 

disease.5 After this, an assay that reports on the functional activity of the target protein has 

to be set up. The process of hit identification is then initiated, which aims to identify 

molecules that modulate the target’s function, e.g. its catalytic activity in case of an enzyme. 

Nowadays, hit identification usually involves high-throughput screening campaigns in 

which large libraries of small molecules are screened against the target of interest in an 

automated setup.6 Identified ‘hit compounds’ typically have low affinity, insufficient 

functional efficacy, and/or a poor selectivity profile and should be optimized in a hit-to-

lead optimization program.7 The most promising candidate, the ‘lead compound’, then 

enters the stage of lead optimization, where its pharmacokinetic and pharmacodynamic 

properties and toxicological profile are assessed, usually in multiple animal models. If a 

compound successfully passes this stage, it can enter clinical trials. At this point, it is first 

tested in healthy human subjects to investigate the drug’s pharmacokinetic and safety 

profile. Next, the drug is administered to a small group of patients to evaluate its 

efficacious dose. The final phase of clinical trials aims to assess efficacy and safety of the 

compound on a larger patient group. If the experimental drug passes these stages and is 

approved by authorities, it can enter the market.1 

 

 

Figure 1.1 – Overview of the different stages of drug discovery and development. Estimated duration is indicated 

for each stage.3,5 
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Chemical tools for target discovery and validation 

The discovery and development of most new drugs starts with the target discovery. 

Nowadays, novel targets are generally identified using genetic methods, such as RNA 

interference (RNAi) or CRISPR/Cas9-based library screens that abrogate the expression of 

proteins, in combination with a functional assay that reports on a disease-relevant 

phenotypic response.8,9 The identification of novel therapeutic targets can be a challenging 

endeavor in itself and greatly depends on the predictive value of the employed phenotypic 

assay.10,11 Genetic knockdown or knockout of a target does not always match the effects 

of its acute pharmacological modulation.12 Long-term genetic disruption may have 

different effects on cellular physiology in comparison to acute and dynamic modulation 

by small molecules. In addition, genetic models may be hampered by potential 

compensatory mechanisms that obscure the role of the target protein.13 

It is thus essential to validate that pharmacological modulation (e.g. inhibition) of 

the target leads to the desired phenotype, a process which is collectively referred to as 

target validation.14 Target validation heavily relies on the availability of suitable chemical 

tools to study engagement of the compound to the intended biological target, and the 

ability to connect these molecular interactions with proximal biomarkers or phenotypic 

effects.15,16 These chemical tools, or ‘probes’, can guide in selecting the best compound 

from a panel of drug candidates and can help to determine the dose required for complete 

target occupancy without inducing off-target effects.17,18 Depending on their application, 

probes can be diverse in chemical structure and characteristics, and include radioligands19, 

fluorescent or biotinylated small molecules20, positron emission tomography (PET) 

tracers21, photoaffinity-based probes22, and activity-based probes.23,24 

Structurally, chemical probes typically consist of a binding element with affinity 

for the intended target, a reactive group that covalently links the probe to the target, and 

a reporter moiety that enables visualization (e.g. fluorescent group) or identification (e.g. 

biotin) of the probe-bound targets (Figure 1.2A).25 A covalent mode of action renders these 

probes exceptionally useful for target engagement and target validation studies, since they 

can irreversibly react with one or multiple target proteins in a complex proteome 

mixture.26,27 Fluorescent reporter groups can be used for visualization of these probe-

bound targets using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) followed by in-gel fluorescence scanning. On the other hand, biotinylated probes 

allow streptavidin-based enrichment of probe-bound targets, followed by tryptic digestion 

and liquid chromatography coupled to mass spectrometry (LC-MS) analysis of target 

peptides.16 Generally, the large size of a reporter group is a limiting factor, since it reduces 

probe solubility and cell-permeability. This limitation can be addressed by the use of ‘two-

step probes’, which typically possess bioorthogonal ligation handles that enable 

conjugation of reporter groups in a later experimental stage.28–30 Including an inhibitor 
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pre-incubation step allows a competitive experimental setup to profile a compound’s 

proteome-wide target engagement (Figure 1.2B). 

 

Figure 1.2 – Chemical probes as tools to study target engagement and target validation. (A) Chemical probes have 

an irreversible, covalent mode of action and can be used to label one or multiple proteins in a complex proteome 

sample. Fluorescent reporter groups can be used for visualization of probe-bound targets using SDS-PAGE and in-gel 

fluorescence scanning. Biotinylated probes enable streptavidin-based enrichment of probe-bound targets, followed by 

tryptic digestion and LC-MS analysis of target peptides. Two-step probes are versatile tools harboring bioorthogonal 

ligation handles, which enable conjugation to reporter tags in a later experimental stage. (B) Competitive experiment 

to study target engagement of inhibitors using chemical probes. The proteome is pre-incubated with inhibitor and 

subsequently labeled with a chemical probe of choice. Figures are modified from literature.17 

 

A variety of chemical probes has been developed for many protein classes, in 

particular enzymes, including kinases31, phosphatases32, serine hydrolases23,33, 

proteases34,35, and glycosidases.36 On the one hand, non-selective probes that bind to a 

broad spectrum of protein targets can serve as valuable tools for target discovery37,38 or to 

investigate a compound’s selectivity profile using chemical proteomics techniques.23,31,39,40 

On the other hand, selective probes are exceptionally suited for cellular target engagement 

studies41 or for molecular imaging of the protein target.35,42,43 
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Chemical genetics 

The development of a selective chemical probe that specifically targets a particular protein 

can be challenging to achieve due to the off-target activity towards structurally and/or 

functionally related homologs, e.g. other members within the same protein class. Selectivity 

can be improved in an iterative process of design, synthesis, testing, and refining the 

original scaffold, but this is a time-consuming and tedious effort. To overcome such 

limitations, various chemical genetic methods and technologies have been developed that 

allow for selective modulation of specific targets using small molecules (Figure 1.3).  

Chemical genetics combines the specificity of genetics with benefits of acute, 

pharmacological modulation by a small molecule. It generally uses engineered, mutant 

proteins that can accommodate unnatural substrates or modified ligands that do not affect 

other, native proteins in the cellular environment. The most prominent example is the 

‘bump-hole’ technology that has been successfully applied to a wide range of protein 

families, including kinases44, GTPases45, proteases46, phosphatases47, receptors48 and 

various types of transferases.49 This strategy is based on mutagenesis of bulky amino acid 

residues into smaller residues, creating an additional pocket (‘hole’) in the target protein’s 

active site (Figure 1.3A). This engineered, mutant protein can accommodate bulkier ligands 

than its wild-type counterpart, making these ligands mutant-specific.50–52 Since off-targets 

of the original ligand maintain their native active site structure, these proteins are typically 

not targeted by these bulky analogues.53 An alternative to this steric complementation 

approach is the use of charge complementation, where active site residues are mutated to 

induce electronic repulsion to the original ligand while establishing novel electrostatic 

interactions (e.g. hydrogen bonds) with a modified ligand (Figure 1.3B).54  

Although these concepts allow one to selectively modulate a target protein and 

study its function, the lack of a covalent binding mode limits the opportunities for use in 

target engagement studies. Covalent, irreversible ligands can have additional advantages 

over reversible ligands, such as sustained target occupancy, lower susceptibility to 

competition with high intracellular substrate concentrations and a pharmacodynamic 

profile that is dependent on the target’s de novo protein synthesis rate. Most importantly, 

ligands with a covalent binding mode are powerful tools by serving as chemical probes. 

Shokat and co-workers introduced the chemical genetic strategy of ‘covalent 

complementarity’, which involves mutagenesis of active site residues into cysteines (Figure 

1.3C).55,56 The thiol group of cysteine can function as a nucleophile to covalently react with 

electrophilic ligands.37,57 Although conceptually promising, mutant proteins may suffer 

from distorted protein folding, reduced catalytic activity or otherwise impeded protein 

function.55 Another general limitation of all described chemical genetic strategies remains 

that they rely on overexpression of the mutant protein of interest, which in itself may  
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Figure 1.3 – Chemical genetic approaches to establish selective modulation of specific protein targets by small 

molecules. (A) Steric complementation or ‘bump-hole’ strategy. The target protein is engineered by mutation of a bulky 

amino acid residue in the active site into a smaller residue (‘hole’). A non-selective ligand is modified by incorporation 

of a bulky substituent (‘bump’) to fill the mutant’s pocket. This modified bumped ligand does not target the wild-type 

protein due to steric clash. (B) Charge complementation strategy. The target protein is engineered based on electrostatic 

interactions in the active site, e.g. by modification of hydrogen bonding patterns. A non-selective ligand is modified by 

changing its electronic properties to complement the mutated residue in the engineered protein pocket. This modified 

ligand does not target the wild-type protein due to electrostatic repulsion and/or loss of affinity. (C) Covalent 

complementarity strategy. The target protein is engineered by mutating an active site residue into a nucleophilic residue, 

e.g. cysteine. A non-selective ligand is modified by incorporation of an electrophile that covalently reacts with the 

nucleophilic residue. This modified electrophilic ligand does not target the wild-type protein due to a lack of nearby 

nucleophilic residues. Figures modified from literature.58,59 
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induce artefacts and disturbs normal cellular physiology.60 Further improvements are thus 

required to facilitate the application of chemical genetics-based probes in target 

engagement and target validation studies on endogenously expressed proteins. 

Aim and outline  

The aim of the research described in this thesis is to develop a chemical genetic strategy that 

can be used for target engagement and target validation studies. 

Chapter 2 describes the development of a chemical genetic toolbox for 

visualization of engineered kinases and their target engagement. Using the tyrosine kinase 

FES as exemplary target, various cysteine point mutants are generated and expressed, 

followed by comprehensive biochemical profiling. After identification of a suitable mutant, 

structure-based design is employed to synthesize mutant-specific probes that covalently 

react with the introduced cysteine. Next, the selectivity and covalent mode of action of the 

compounds are characterized in more detail. Cellular target engagement studies are 

performed to investigate the in situ potency. Lastly, broader application of the generated 

tools is examined on a panel of wild-type and cysteine mutant kinases. 

Chapter 3 applies the tools developed in chapter 2 to investigate the role of FES 

activity in myeloid differentiation. The use of CRISPR/Cas9 gene editing allows the 

visualization of an endogenous mutant FES kinase in a relevant model system. Gel-based 

labeling experiments reveal the cellular target engagement profile of the probe, and 

chemical proteomics is used to study its proteome-wide selectivity. This chapter also 

demonstrates the power of the chemical genetic strategy to dissect on-target from off-

target effects using mutant and wild-type cells, respectively. 

Chapter 4 reports on the application of the chemical genetic tools from chapter 

2 and the generated mutant cell line from chapter 3 to study the role of FES activity in 

neutrophil phagocytosis. A flow cytometry assay is used to measure phagocytic uptake of 

fluorescent E. coli by neutrophils, which reveals that FES plays a role in this process. Guided 

by a substrate profiling experiment, a novel FES substrate is identified and validated in situ. 

Phospho-specific immunoblot experiments are used to gain insight in the underlying 

molecular mechanism, which results in a model proposing a novel role of FES in neutrophil 

phagocytosis. 

Chapter 5 extends the chemical genetic strategy described in chapter 2 to 

diacylglycerol lipase α (DAGLα), an enzyme belonging to the family of serine hydrolases. 

This chapter describes the first steps towards a strategy to subtype-selectively inhibit 

DAGLα without affecting its structurally related homolog DAGLβ. To this end, DAGLα 

cysteine mutants are designed based on a homology model, followed by biochemical 

profiling using activity-based protein profiling (ABPP) and substrate hydrolysis assays. The 

design and synthesis of mutant-selective inhibitors of DAGLα are described, followed by 

characterization of its irreversible, covalent binding mode. Competitive ABPP is used to 
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investigate the ability of the compounds to subtype-selectively target DAGLα in presence 

of DAGLβ. 

Chapter 6 discusses the development and miniaturization of a biochemical 

activity assay for monoacylglycerol lipase (MAGL), a serine hydrolase that is currently 

considered as a therapeutic target for various diseases. Currently, nearly all MAGL 

inhibitors have an irreversible mode of action and the number of reversible compounds is 

limited. To identify novel reversible MAGL inhibitors, the assay was used in a high-

throughput screening campaign on 233,820 unique compounds. Hit validation using 

orthogonal ABPP experiments results in a qualified list of hit compounds that constitute 

starting points for the development of novel, reversible MAGL inhibitors as well as chemical 

probes for use in chemical genetic strategies.  

Chapter 7 provides a summary of the work described in this thesis and discusses 

future directions.  
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