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ABSTRACT
We compare the measurements of the bispectrum and the estimate of its covariance
obtained from a set of different methods for the efficient generation of approximate
dark matter halo catalogs to the same quantities obtained from full N-body simula-
tions. To this purpose we employ a large set of three-hundred realisations of the same
cosmology for each method, run with matching initial conditions in order to reduce
the contribution of cosmic variance to the comparison. In addition, we compare how
the error on cosmological parameters such as linear and nonlinear bias parameters
depends on the approximate method used for the determination of the bispectrum
variance. As general result, most methods provide errors within 10% of the errors es-
timated from N-body simulations. Exceptions are those methods requiring calibration
of the clustering amplitude but restrict this to two-point statistics. Finally we test
how our results are affected by being limited to a few hundreds measurements from
N-body simulation, and therefore to the bispectrum variance, by comparing with a
larger set of several thousands realisations performed with one approximate method.

Key words: cosmological simulations – galaxies clustering – error estimation – large-
scale structure of Universe.
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1 INTRODUCTION

This is the last of a series of three papers exploring the
problem of covariance estimation for large-scale structure
observables based on dark matter halo catalogs obtained
from approximate methods. The importance of a large-set
of galaxy catalogs both for purposes of covariance estima-
tion as well as for the testing of the analysis pipeline has
become evident over the last decade when such tools have
been routinely employed in the exploitation of several ma-
jor galaxy surveys (see, e.g. Manera et al. 2013; de la Torre
et al. 2013; Koda et al. 2016; Kitaura et al. 2016; Avila et al.
2017).

In this context, it is crucial to ensure that mock cat-
alogs correctly reproduce the statistical properties of the
galaxy distribution. Such properties are characterised not
only by the two-point correlation function, but are quan-
tified as well in terms of higher-order correlators like the
3-point and 4-point correlation functions, since the large-
scale distributions of both matter and galaxies are highly
non-Gaussian random fields.

A correct non-Gaussian component in mock galaxy cat-
alogs has essentially two important implications. In the first
place, we expect the trispectrum, i.e. the 4-point correlation
function in Fourier space, to contribute non-negligibly to the
covariance of two-point statistics. This is perhaps more evi-
dent in the case of the power spectrum, already in terms of
the direct correlation between band power that we measure
even in the ideal case of periodic box simulations (see, e.g.
Meiksin & White 1999; Scoccimarro et al. 1999b; Takahashi
et al. 2009; Ngan et al. 2012; Blot et al. 2015). In addition,
finite-volume effects such as beat-coupling/super-sample co-
variance (Hamilton et al. 2006; Rimes & Hamilton 2006; Se-
fusatti et al. 2006; Takada & Hu 2013) and local average
of the density field (de Putter et al. 2012) can be described
as consequences of the interplay between the survey win-
dow function and both the galaxy bispectrum and trispec-
trum. In the second place higher-order correlation functions,
and particularly the galaxy 3PCF and the bispectrum are
emerging as relevant observables in their own right, capable
of complementing the more standard analysis of 2PCF and
power spectrum (Gaztañaga et al. 2009; Slepian et al. 2017;
Gil-Maŕın et al. 2015a,b, 2017; Pearson & Samushia 2017).

Both these aspects provide strong motivations for en-
suring that not only higher-order correlations are properly
reproduced in mock catalogs but also their own covariance
properties are recovered with sufficient accuracy. In this
work we focus, in particular, on the bispectrum of the halo
distribution. This is the lowest order non-Gaussian statis-
tic characterising the three-dimensional nature of the large-
scale structure. It has also the practical advantage of re-
quiring relatively small numerical resources for its estima-
tion on large sets of catalogs, at least with respect to the 3-
point correlation function in real space. On the other hand,
a correct prediction of the halo bispectrum does not ensure
that higher-order correlators such as the halo trispectrum
are similarly accurately reproduced. For instance, a mat-
ter distribution realised at second order in Lagrangian Per-
turbation Theory (LPT, the basis for several approximate
methods) is characterised by a bispectrum fully reproducing
the expected prediction at tree-level in Eulerian PT valid at
large scales but that is not the case for the matter trispec-

trum since the scheme only partially reproduces the third
order Eulerian nonlinear correction (Scoccimarro 1998).

With this caveat in mind, in this paper we focus on the
direct comparison of the halo bispectrum and its covariance,
along with a comparison of the errors on the recovered halo
bias parameters from a simple likelihood analysis adopting
different estimates of the bispectrum variance. Clearly our
sets of 300 halo catalogs from N-body simulations and the
various approximate methods do not allow a proper compar-
ison at the covariance level, since a reliable estimate of the
covariance matrix requires thousands of such realisations.
Nevertheless we explore the implications of such limitation
taking advantage of a much larger set of 10,000 runs, used
for the first time in (Colavincenzo et al. 2017), of one of the
approximate methods.

Two companion papers focus on similar comparisons for
the 2-point correlation function (Lippich et al. 2018) and for
the power spectrum (Blot et al. 2018): we will refer to them,
respectively, as Paper I and Paper II throughout this work.

This paper is organised as follows. In section 2 we
present the approximate methods considered in this work
and how they address the proper prediction of the non-
Gaussian properties of the halo distribution. In section 3
we describe the measurements of the halo bispectrum and
its covariance for each set of catalogs which are then com-
pared in section 4. In section 5 we extend the comparison to
the errors on cosmological parameters while in section 6 we
present a few tests to quantify possible systematics due to
the limited number of catalogs at our disposal. Finally, we
present our conclusions in section 7.

2 THE CATALOGS

For a detailed description of the different approximate meth-
ods compared in this, as well as the two companion papers,
we refer the reader to section 3 of Paper I, while for a more
general examination of the state-of-the-art in the field we
refer to the review in Monaco (2016). For a quick reference
we reproduce in Table 2 the Table 1 of Paper II, providing
a brief summary of the codes considered. Here we briefly
discuss the main characteristics of the catalogs and the im-
plications for accurate bispectrum predictions.

For all runs we consider a box of size L = 1500h−1 Mpc
and a cosmology defined by the best-fitting parameters of
the analysis in Sánchez et al. (2013). The N-body runs em-
ploy a number of particles of 10003 leading to a particle
mass mp = 2.67× 1011 h−1 M�. In addition to the 100 runs
mentioned in Grieb et al. (2016), for this work we consider
additional simulations for a total of 300 runs.

We work on the halo catalogs obtained from the N-
body identified with a standard Friends-of-friends (FoF) al-
gorithm. FoF halos were then subject to the unbinding pro-
cedure provided by the Subfind algorithm (Springel et al.
2001) from snapshots at z = 1. We consider two sam-
ples characterised by a minimal mass of Mmin = 42mp =
1.12 × 1013 h−1 M� (Sample 1) and Mmin = 100mp =
2.67× 1013 h−1 M� (Sample 2). The corresponding number
densities are of 2.13 × 10−4 and 5.44 × 10−5, respectively.
For Sample 2 the power spectrum signal is dominated by
shot-noise for scales k & 0.15hMpc−1, while for Sample 1
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Method Algorithm Computational Requirements Reference

Minerva N-body CPU Time: 4500 hours Grieb et al. (2016)
Gadget-2 Memory allocation: 660 Gb https://wwwmpa.mpa-garching.mpg.de/

Halos : SubFind gadget/

ICE-COLA Predictive CPU Time: 33 hours Izard et al. (2016)

2LPT + PM solver Memory allocation: 340 Gb Modified version of:
Halos : FoF(0.2) https://github.com/junkoda/cola halo

Pinocchio Predictive CPU Time: 6.4 hours Monaco et al. (2013); Munari et al. (2017)
3LPT + ellipsoidal collapse Memory allocation: 265 Gb https://github.com/pigimonaco/Pinocchio

Halos : ellipsoidal collapse

PeakPatch Predictive CPU Time: 1.72 hours∗ Bond & Myers (1996a,b,c)

2LPT + ellipsoidal collapse Memory allocation: 75 Gb∗ Not public
Halos : Spherical patches

over initial overdensities

Halogen Calibrated CPU Time: 0.6 hours Avila et al. (2015).

2LPT + biasing scheme Memory allocation: 44 Gb https://github.com/savila/halogen

Halos : exponential bias Input: n̄, 2-pt correlation function
halo masses and velocity field

Patchy Calibrated CPU Time: 0.2 hours Kitaura et al. (2014)
ALPT + biasing scheme Memory allocation: 15 Gb Not Public

Halos : non-linear, stochastic Input: n̄, halo masses and

and scale-dependent bias environment

Lognormal Calibrated CPU Time: 0.1 hours Agrawal et al. (2017)

Lognormal density field Memory allocation: 5.6 Gb https://bitbucket.org/komatsu5147/
Halos : Poisson sampled points Input: n̄, 2-pt correlation function lognormal galaxies

Gaussian Theoretical CPU Time: n/a Scoccimarro et al. (1998) for the bispectrum
Gaussian density field Memory allocation: n/a

Halos : n/a Input: P (k) and n̄

Table 1. Name of the methods, type of algorithm, halo definition, computing requirements and references for the compared methods.
All computing times are given in cpu-hours per run and memory requirements are per run, not including the generation of the initial

conditions. The computational resources for halo finding in the N-body and ICE-COLA mocks are included in the requirements. The

computing time refers to runs down to redshift 1 except for the N-body where we report the time down to redshift 0 (we estimate an
overhead of ∼50% between z = 0 and z = 1. Since every code was run in a different machine the computing times reported here are
only indicative. We include the information needed for calibration/prediction of the covariance where relevant. Mocks marked with “∗”

require an higher resolution run in order to resolve the lower mass halos of our Sample 1 and therefore more computational resources
than quoted here.

the shot-noise contribution is always below the signal but
still not negligible.

We produced a set of 300 realisations with each of the
approximate methods considered, imposing the same initial
conditions as the N-body runs in order to reduce any dif-
ference due to cosmic variance. The definition of the two
samples in the catalogs obtained by the approximate meth-
ods depends on the specific algorithm.

We can distinguish between three different classes of al-
gorithms: predictive methods (ICE-COLA, Pinocchio and
PeakPatch) that aim at identifying the Lagrangian patches
that collapse into halos and do not need to be recali-
brated against a simulation (in particular, ICE-COLA is
a PM solver, so it is expected to be more accurate at a
higher computational cost); calibrated methods (Halogen
and Patchy) that populate a large-scale density field with
halos using a bias model, and need to be recalibrated to
match a sample in number density and clustering amplitude;
analytical methods. These last include the Gaussian predic-
tion for the bispectrum covariance based on the measured

power spectrum, and the Lognormal method, predicting the
halo distribution from some assumption on the density field
PDF. In particular, the Lognormal realisations do not share
the same initial conditions as the N-body runs. Therefore,
we employ for this method, the covariance estimated from
1,000 realisation in order to beat down sample variance.

Notice that also for the predictive methods the mini-
mal mass for each sample is set by requiring the same abun-
dance as the N-body samples. A comparison that assumes
directly the same mass thresholds as the N-body samples
is discussed in appendix A. All other methods assume such
density matching by default. For the PeakPatch compari-
son, only the larger mass sample is available.

All methods, with the exception of Lognormal, employ
Lagrangian PT at second order (or higher) to determine
the large-scale matter density field. We expect therefore, as
mentioned before, that at least at large scales where the
characteristic LPT suppression of power is still negligible,
the measured halo bispectrum presents qualitatively the ex-
pected dependence on the shape of the triangular configu-
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rations. Any difference with the full N-body results at large
scales will likely arise from the specific way each method im-
plements the relation between 2LPT-displaced matter par-
ticles and its definition of halos or particle groups. The case
of Lognormal is different since it is based on a nonlinear
transformation of the Gaussian matter density qualitatively
reproducing the nonlinear density probability distribution
function (Coles & Jones 1991), but with no guarantee to
properly reproduce the proper dependence on configuration
of higher-order correlation functions, starting from the mat-
ter bispectrum.

These considerations have been already illustrated by
the results of the code-comparison project of Chuang et al.
(2015b). This work comprises a comparison of both the 3-
Point Correlation Function and the bispectrum of halos of
minimal mass of 1013 h−1 M�, very similar to one of the two
samples considered in our work, but evaluated at the lower
redshift z ' 0.55. Each measurement was performed for a
relatively small set of configurations, covering, in the bis-
pectrum case, the range of scales 0.1 ≤ (k/ hMpc−1) ≤ 0.3.
The codes ICE-COLA, EZmock (Chuang et al. 2015a) and
Patchy (the last two requiring calibration of the halo power
spectrum) reproduced the N-body results with an accuracy
of 10-15%, Pinocchio at the 20-25% level, while Halogen
and PThalos (Scoccimarro & Sheth 2002; Manera et al.
2013) at the 40-50%. All these methods correctly recovered
the overall shape dependence. On the other hand, the Log-
normal method failed to do so, despite the predicted bis-
pectrum showed a comparable, overall magnitude (see also
White et al. 2014). It should be noted that in some cases,
as e.g. Pinocchio, the codes employed in this work cor-
respond to an updated version w.r.t. those considered by
Chuang et al. (2015b).

We notice that, in the present work, we will go beyond
the results of Chuang et al. (2015b), extending the test of
the approximate methods to the comparison of the recovered
bispectrum variance.

3 MEASUREMENTS

For each sample we estimate the Fourier-space density on a
grid of 256 of linear size employing the 4th-order interpo-
lation algorithm and the interlacing technique implemented
in the PowerI41 code described in Sefusatti et al. (2016).

The bispectrum estimator is given by

B̂tot(k1, k2, k2) ≡
k3
f

VB(k1, k2, k3)

∫
k1

d3q1

∫
k2

d3q2

∫
k3

d3q3

× δD(q123) δq1 δq2 δq3 (1)

where the integrations are taken on shells of size ∆k centered
on ki and where

VB(k1, k2, k2) ≡
∫
k1

d3q1

∫
k2

d3q2

∫
k3

d3q3 δD(q123)

' 8π2 k1k2k3∆k3 (2)

is a normalisation factor counting the number of fundamen-
tal triangles (those defined by the vectors q1, q2 and q3 on

1 https://github.com/sefusatti/PowerI4

the discrete Fourier density grid) in a given triangle bin (de-
fined instead by the triplet k1, k2 and k3 plus the size ∆k
for all sides). Its implementation is based on the algorithm
described in Scoccimarro (2015).

The measured bispectrum will be affected by shot-noise.
Under the assumption of Poisson shot-noise, we correct the
measurement B̂ as follows (Matarrese et al. 1997)

B(k1, k2, k3) = B̂tot −
1

(2π)3n̄
[P (k1) + P (k2) + P (k3)]

− 1

(2π)6n̄2
, (3)

where n̄ is the halo density of each individual catalog and
P (k) is the halo power spectrum, in turn corrected for shot-
noise.

We consider all triangular configurations defined by dis-
crete wavenumbers multiples of ∆k = 3kf with kf ≡ 2π/L
being the fundamental frequency of the box, up to a maxi-
mum value of 0.38hMpc−1, although we will limit our anal-
ysis to scales defined by ki ≤ 0.2hMpc−1, where we conser-
vatively expect analytical predictions in perturbation theory
to accurately describe the galaxy bispectrum. These choices
lead to a total number of triangle bins of 508.

Given the estimator above, the Gaussian prediction for
the variance is given by (Scoccimarro 2000),

∆B2(k1, k2, k3) ≡ 〈(B̂2 − 〈B̂〉2)〉

' sB
k3
f

VB
Ptot(k1)Ptot(k2)Ptot(k3) , (4)

with sB = 6, 2, 1 for equilateral, isosceles and scalene tri-
angles respectively and where Ptot(k) = P (k) + 1/[(2π)3n̄]
includes the Poisson shot-noise contribution due to the halo
density n̄. We will compare our measurements to this theo-
retical prediction for the variance. For such comparison we
will employ the measured mean value of Ph,tot(k) and the
exact number of fundamental triangles VB(k1, k2, k3) as pro-
vided by the code, which is slightly different, for certain tri-
angular shapes, from the approximate value on the second
line of eq. (2).

Theoretical predictions are computed for “effective” val-
ues of the wavenumbers defined, for a given configuration of
sides k1, k2 and k3 by

k̃1,23 ≡
1

VB

∫
k1

d3q1 q1

∫
k2

d3q2

∫
k3

d3q3 δD(q123) , (5)

and similarly for the other two values. Differences with
respect to evaluations at the center of each k-bin are
marginally relevant and only so for the largest scales.

4 BISPECTRUM AND BISPECTRUM
VARIANCE COMPARISON

In this section we compare the measurements of the halo bis-
pectrum for the two halo samples both in real and redshift
space. Since one of the aims of this work is testing how ac-
curately the non-Gaussian properties of the large-scale halo
distribution are recovered, it is relevant to look at the lowest
order non-Gaussian statistic also in real space, while the bis-
pectrum as a direct observable motivates all redshift-space
tests.

We compare as well the variance estimated from the 300

MNRAS 000, 000–000 (2018)
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Figure 1. Average bispectrum (left column) and its variance (right column) for all triangle configurations obtained from the 300
realisations for the first mass sample in real space. The top panels show the results for the Minerva (black dots), while all other panels
show the ratio between the estimate from an approximate method and the N-body one. In the last panel of the right column the grey

dots show the ratio between the Gaussian prediction for the bispectrum variance, eq. (4), and the variance obtained from the N-body.

The horizontal shaded area represents a 20% error. The vertical lines mark the triangle configurations where k1 (the maximum of the
triplet) is changing, so that all the points in between such lines correspond to all triangles with the same value for k1 and all possible

values of k2 and k3. Since we assume k1 ≥ k2 ≥ k3, the value of k1 corresponds also to the maximum side of the triangle. Mocks for
PeakPatch are not provided in the first sample so its bispectrum is missing in this case.

runs and the covariance among different triangles. Clearly,
300 realisations are not enough to provide a proper esti-
mate of the covariance among 508 triplets. The comparison
is then aiming at verifying that the same statistical fluctua-
tions appear across the estimates from different approximate
methods, taking advantage of the shared initial conditions.

4.1 Real space

Figures 1 and 2 show, respectively for Sample 1 and Sample
2, in the left column, top panel, the real-space halo bispec-
trum averaged over the 300 N-body simulations. The pan-
els below show the ratio between the same measurements
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Figure 2. Same as figure 1, but for Sample 2.

obtained from all approximate methods and the N-body re-
sults. The right column shows a similar comparison for the
halo bispectrum variance. For this quantity we include an
additional, bottom panel where we plot the comparison be-
tween the Gaussian prediction for the bispectrum variance,
eq. 4, and the N-body estimate. We will keep the color-
coding for each methods consistently throughout this paper.

Each dot represents the bispectrum for a particular
triplet {k1, k2, k3}. These are plotted in an order where
k1 ≥ k2 ≥ k3 with increasing values of each ki for all al-
lowed configurations. In practice, the first configurations are,
in units of the k-bin size ∆k

{1, 1, 1} , {2, 1, 1} , {2, 2, 1} , {2, 2, 2} , {3, 2, 1} , . . .
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The ticks on the abscissa mark the value of k1, the largest
wavenumber in each triplet, and the vertical grey lines de-
note the configurations where k1 changes.

All predictive methods, that is Pinocchio, ICE-COLA
and PeakPatch (this last for Sample 2), reproduce the
N-body measurements within 15% for most of the triangle
configurations, with some small dependence on the triangle
shape. Similar results, among the methods requiring some
form of calibration, are obtained for Patchy, with just some
higher discrepancies at the 20-30% level appearing for Sam-
ple 2 at small scales, mainly for nearly equilateral triangles.
The other calibrated methods fare worse. Halogen shows
differences above 50%, reaching 100% for nearly equilateral
configurations in both samples. The LogNormal approach,
as one can expect, shows the largest discrepancy for all the
scales and all the configurations in both samples.

Similar considerations can be made for the comparison
of the variance. In this case a large component is provided
by the shot-noise contribution, so the ratios to the N-body
results show a less prominent dependence on the triangle
shape. In general, we expect the agreement with N-body to
depend to a large extent, particularly for Sample 2, on the
correct matching of the object density, and more so for those
LPT-based methods that show a lack of power in this regime.
The Gaussian prediction underestimates the N-body result
by 10-20% for the majority of configurations, and reaching
up to 50% for squeezed triangles, i.e. those comprising the
smallest wavenumber.

4.2 Redshift space

Figures 3 and 4, respectively for the Sample 1 and 2, show
the redshift-space bispectrum monopole (left column) and
its variance (right column), with the same conventions as-
sumed for the real-space results in figure 1. The overall re-
sults are by and large very similar to the real-space ones.
Only for the first sample, both Halogen and Patchy show
a better agreement with the N-body results than in real
space. As before Lognormal is the one that shows the largest
disagreement with the N-body results.

Figure 5 shows, for Sample 1, a representative subset of
the off-diagonal elements of the bispectrum covariance ma-
trix in redshift space as estimated by the different methods.
The quantities shown are the cross-correlation coefficients
rij defined as

rij ≡
Cij√
Cii, Cjj

(6)

where

Cij ≡ 〈(B̂(ti)− 〈B̂(ti)〉)(B̂(tj)− 〈B̂(tj)〉)〉 , (7)

is the covariance between the bispectrum configuration ti =
{ki,1, ki,2, ki,3} and the configuration tj = {kj,1, kj,2, kj,3}.

The figure shows the correlation of 6 chosen triangles
ti with two subsets of configurations tj : one at large scale
tj = {1, 1, 1}∆k . . . {6, 4, 3}∆k and one at small scales
tj = {16, 15, 1}∆k . . . {16, 16, 16}∆k, as explicitly denoted
on the abscissa in terms of triplets in units of ∆k.

With the exception of the diagonal cases ti = tj , most
of the features in the rij plots reflect random fluctuations
rather than actual correlations since 300 realisations are not
sufficient to accurately estimate the bispectrum covariance

matrix. A more accurate estimation of the matrix itself, lim-
ited to a single method, is presented in section 6, where we
show how such fluctuations are of the same order of the
expected correlations among triangles sharing, for instance,
one or two sides, and it is therefore impossible to tell them
apart in this figure. Nevertheless, the random noise itself in
the off-diagonal elements of the N-body covariance matrix is
well reproduced by all approximate methods matching the
initial conditions of Minerva (that is, all except the Lognor-
mal case), with just slightly larger discrepancies from the
Halogen estimate.

We obtain very similar results for Sample 2, with larger
discrepancies (roughly by a factor of two) for the Halogen
and Lognormal predictions.

5 COMPARISON OF THE ERRORS ON
COSMOLOGICAL PARAMETERS

In addition to the direct comparison of bispectrum measure-
ments and their estimated covariance, we explore, as done
in Papers I and II, the implications for the determination
of cosmological parameters of the choice of an approximate
method.

In this case we will consider a simpler likelihood anal-
ysis, compared to those assumed for the 2-point correlation
function and the power spectrum in the companion papers.
In the first place, the model for the halo bispectrum, de-
scribed in section 5.1, is a tree-level approximation in PT
and we will only consider its dependence on the linear and
quadratic bias parameters, along with two shot-noise nui-
sance parameters. We only consider the redshift-space bis-
pectrum monopole as the implementation and testing of
loop-corrections to the galaxy bispectrum in redshift space
is well beyond the scope of this work. In the second place,
we will include in the likelihood only the estimate of the
bispectrum variance, since 300 realisations are insufficient
for any solid estimation of the covariance of more than 500
triangular configurations. We will explore quantitatively the
implications of this last approximation in section 6.

We will not consider any study of the cross-correlation
between power spectrum and bispectrum measurements,
leaving that subject for future work.

5.1 Halo bispectrum model

We assume a tree-level model both for the matter bispec-
trum and the halo bispectrum.

The real-space matter bispectrum Bm is therefore given
by (see, e.g. Bernardeau et al. 2002)

Bm(k1, k2, k3) = 2F2(k1,k2)PLm(k1)PLm(k2) + 2 perm. (8)

where F2 is the quadratic PT kernel and PLm(k) is the linear
matter power spectrum.

The halo bias model includes both local and nonlocal
corrections (Baldauf et al. 2012; Chan et al. 2012; Sheth
et al. 2013) so that, at second order, the halo density con-
trast takes the form

δh = b1δ +
b2
2
δ2 + γ2 G2, (9)

where G2 is defined as

G2 ≡ (∇ijΦv)2 − (∇2Φv)2 , (10)

MNRAS 000, 000–000 (2018)
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Figure 3. Average bispectrum (left column) and its variance (right column) for all triangle configurations obtained from the 300
realisations for the first mass sample in redshift space. The top panels show the results for the Minerva (black dots), while all other panels
show the ratio between each a given estimate from an approximate method and the N-body one. In the last panel of the right column

the grey dots show the ratio between the Gaussian prediction for the bispectrum variance, eq. (4), and the variance obtained from the

N-body. The horizontal shaded area represents a 20% error. The vertical lines mark the triangle configurations where k1 (the maximum
of the triplet) is changing. Mocks for PeakPatch are not provided in the first sample so its bispectrum is missing in this case.

with Φv being the velocity potential such that v = ∇Φv.

The full model for the real-space halo bispectrum there-

fore reads

Bh = b31Bm(k1, k2, k3) +

+b2 b
2
1 Σ(k1, k2, k3) +

+2γ2b
2
1K(k1, k2, k3) +

+B
(1)
SNb

2
1

[
PLm(k1) + PLm(k2) + PLm(k3)

]
+B

(2)
SN , (11)
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Figure 4. Same as figure 3, but for Sample 2.

where Σ ≡ PLm(k1)PLm(k2) + 2 cyc and K ≡ (µ2
12 −

1)PLm(k1)PLm(k2) + 2 cyc, µ12 being the cosine of the angle
between k1 and k2. The last two contributions account for
any departure from the expected shot-noise contribution un-
der the Poisson assumption, see eq. (3). For exactly Poisson

shot-noise B
(1)
SN = B

(2)
SN = 0 and we will treat them here as

free parameters with vanishing fiducial value.

Since we will consider the covariance for the redshift-
space bispectrum, the corresponding model will be a slight
modification accounting for the Kaiser effect on the power

MNRAS 000, 000–000 (2018)



10 M. Colavincenzo et al.

Figure 5. Cross-correlation coefficients rij for Sample 2, as defined in eq. (6), for a choice of six triangles ti (one for each row) against
two subsets of configurations at large and small scales (left and right columns, respectively) in redshift space. See text for explanation.
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spectrum and bispectrum monopoles. We will have then

Bs = aB0
[
b31Bm(k1, k2, k3)+

+b2 b
2
1 Σ(k1, k2, k3) +

+2γ2b
2
1K(k1, k2, k3)

]
+

+B
(1)
SN a

2
0 b

2
1

[
PLm(k1) + PLm(k2) + PLm(k3)

]
+B

(2)
SN , (12)

where, following Scoccimarro et al. (1999a); Sefusatti et al.
(2006), we model redshift-space effects on the bispectrum
monopole simply in terms of the factor aB0 = 1+2β/3+β2/9
with β = f/b1, f being the growth rate at z = 1, while
a0 = 1 + 2β/3 + β2/5 is the analogous factor for the power
spectrum monopole, Ps(k) = a0 Ph(k). Such correction are
not having any substantial effects on our results.

The model above will therefore depend on five parame-
ters: the local bias parameters b1, b2, the nonlocal bias pa-
rameter γ2 and two shot noise parameters B

(1)
SN and B

(2)
SN .

We will evaluate all matter correlators for our fiducial cos-
mology, along with the growth rate f , and consider them as
known in our analysis.

We expect this model to accurately fit simulations over
a quite small range of scales, typically for k < 0.07hMpc−1

(see, e.g. Sefusatti et al. 2012; Baldauf et al. 2015; Saito
et al. 2014). However, we assume it to represent a full model
for the halo bispectrum down to 0.2hMpc−1 since we are
merely interested in assessing the relative effect of differ-
ent estimate of the variance on parameter determination.
The value of kmax = 0.2hMpc−1 is, nevertheless, a reason-
able estimate of the reach of analytical models, once loop
corrections are properly included (Baldauf et al. 2015). We
leave a more extensive investigation, including a joint power
spectrum-bispectrum likelihood to future work.

5.2 Likelihood

We assume a Gaussian likelihood for the bispectrum given
by

lnLB = −1

2

∑
ij

δBi [C]−1
ij δBj , (13)

where δB ≡ Bdata − Bmodel while Cij is the bispectrum
covariance matrix with indices i and j denoting individual
triangular configurations ti. The sum runs over all triangu-
lar configurations, i = 1, . . . , Nt, Nt being their total num-
ber corresponding to a chosen value for the smallest scale
included in the analysis and determined by the parameter
kmax. This is given by

Nt =

kmax∑
k1=∆k

k1∑
k2=∆k

k2∑
k3=max(∆k,k1−k2)

1 (14)

where the sums ensures that k1 ≥ k2 ≥ k3 and that all trian-
gle bins include closed fundamental triangles. As mentioned
above, for kmax = 0.2hMpc−1 we obtain Nt = 508.

Similarly to the analyses in Paper I and II, since we are
not interested in evaluating the accuracy of the model we
assume, but only to quantify the relative effect of replacing
the variance estimated from the N-body realisations with
those obtained with the approximate methods, we assume
as “data” the “model” bispectrum evaluated at some fiducial

values for the parameters, that is Bdata = Bmodel(p
∗
α). While

this lead to a vanishing χ2 for the best fit/fiducial values,
it still allows to estimate how the error on the parameters
depends on the bispectrum covariance estimation.

Our choice for the parameters allows to obtain an ana-
lytical dependence of the likelihood function on them, that
does not require a MonteCarlo evaluation. In fact, we can
rewrite the model in eq. (11) as

Bmodel =

5∑
α=1

pα Bα (15)

where {pα} =
{
aB0 b

3
1, a

B
0 b

2
1 b2 , a

B
0 b

2
1, γ2 , a

2
0 b

2
1 B

(1)
SN , B

(2)
SN

}
and {Bα} = {Bm,Σ, 2K,Pm(k1) + Pm(k2) + Pm(k3), 1}.
Adding p0 = −1 and B0 = Bdata we can also write

−δB = Bmodel −Bmeasured =

5∑
α=0

pα Bα (16)

and therefore it is easy to see that we can rewrite the likeli-
hood as

lnLB = −1

2

5∑
α,β

pα pβ Dαβ , (17)

where

Dαβ ≡
Nt∑
i,j=1

Bα(ti)
[
CB
]−1

ij
Bβ(tj) . (18)

In this way the likelihood LB is explicitly written as an ex-
act, multivariate Gaussian distribution in the parameters
pα. Clearly, once the quantities Dαβ are computed, we can
evaluate any marginalisation analytically. We could, in prin-
ciple consider a transformation between these parameters

and the set given by
{
b1, b2, γ2, B

(1)
SN , B

(2)
SN

}
but this would

require an approximation for the likelihood around its max-
imum and, furthermore, it would not add any information
to our goal since any relative variation on the error on the
parameter cube b31, for instance, is of the same order as the
relative variation on the error on b1.

In practice, with the exception of the tests presented in
section 6, we will only compare estimates of the bispectrum
variance from the 300 runs sets for the various methods, so
that we evaluate effectively

Dαβ '
Nt∑
i=1

Bα(ti)Bβ(tj)

∆B2(ti)
, (19)

∆B2(ti) representing the variance for the triangular config-
uration ti.

5.3 Parameters constraints comparison

Figure 6 shows the ratio between the marginalised error on
each parameter pα obtained from the variance estimated
with a given approximate method and the same marginalised
error on the same parameter obtained from the variance
estimated from the Minerva N-body set. Such ratio is shown
as a function of the maximum wavenumber kmax assumed
for the likelihood evaluation that defines as well the total
number of configurations Nt according to eq. (14). The left
column corresponds to Sample 1 while the right column to

MNRAS 000, 000–000 (2018)
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Figure 6. Marginalized errors for the bias parameters in using the bispectrum monopole in redshift space for the two samples (first
and second column) compared with the error obtained from N-body estimate of the variance. See text for explanation.
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Figure 7. 2-σ contour plots for the parameters combinations pα (see text) from the bispectrum monopole in redshift space for Sample 2.
The constraints assume kmax=0.2hMpc−1. Notice that the N-body (black) results are plotted on top so that a few curves, corresponding

to methods very closely reproducing the N-body, ones are not easily visible.

Sample 2. The grey shaded area represent a 10% discrepancy
between error estimates.

In addition to the errors on individual parameters we
consider, as in the companion papers, the volume of the, in
our case, 5-dimensional ellipsoid corresponding to the com-
bined errors on all parameters defined as

Vol =
√

detD−1
αβ , (20)

where D−1
αβ represents the parameters covariance matrix.

The ratio of this quantity estimated from the approximate
methods and from the N-body runs is shown in the two
top panels of figure 6 for the two samples. In this case, the
shaded area corresponds to a discrepancy of 50%, reflecting
the target 10% for individual parameters.

These results reflect those shown in the comparison of
the variance. Unsurprisingly the methods that overestimate
the variance lead to an overestimate of the error on each
parameter, in a similar fashion across all parameters. As al-
ready shown in the previous figures, the predictive methods,
along with Patchy, appear to be more accurate, with ICE-
COLA, in particular, the one providing more consistent re-
sults for both samples. All such methods show discrepancies
of less than 10% w.r.t. the N-body case. The behaviour of
Halogen is also quite good in the low-mass sample but
the difference with N-body becomes larger than 10% in the
second sample once small scales are included. LogNormal
shows the largest difference, with reasonable results only for
the very large scales. The Gaussian prediction provides an
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Figure 8. Ratio between the bispectrum (top) and its variance

(bottom) as measured in 300 realisations of Pinocchio to the

same quantities estimated from 10,000 realisations in real space.
Both assume Sample 1.

overestimate of the errors at large scales and an underesti-
mate at small scales, particularly in the case of the parame-
ters more directly related to bias, probably due to a missing
non-Gaussian component.

Finally, figure 7 as an example, shows the 2-σ contour
plots for the parameters combinations pα in redshift space.
Similar results are obtained for Sample 1. One can notice,
in particular, that no method provides a variance estimate
that affects the degeneracies between parameters in any spe-
cific way. Such effect might be more relevant when the full
covariance is taken into account. We will comment on this
in the next section.

6 TESTS WITH A LARGE SET OF
REALISATIONS

The number of 300 realisations, despite being quite a large
number for many applications, is still rather small when it
comes to estimate the covariance of hundreds or thousands
of bispectrum configurations. For this reason we limited our
likelihood comparison to its dependence on the bispectrum
variance alone.

In this section we test the robustness of some of our
conclusions taking advantage of a much larger sets of 10,000
Pinocchio catalogs characterised by the same configuration
and cosmology as the 300 so far considered.

In figure 8 we show the ratios of the real-space bispec-
trum and its variance obtained from 300 realisations and the
same quantities obtained from the 10,000 runs for Sample 1.
The scatter on the bispectrum due to the limited number of
runs is of the order of a few percent, while for the variance
is of the order of 10%, with no particular dependence on

shape. Essentially identical results can be shown for Sample
2.

Figure 9 shows, again for Sample 1, with dashed curves
the cross-correlation coefficients defined as

rij,full ≡
Cij√

Cij,fullCjj,full
(21)

where Cij,full represents the covariance between triangles
ti and tj estimated from the 10,000 runs, while the Cij in
the numerator represents the covariance from only 300 re-
alisations. The continuous curves denotes instead the cross-
correlation coefficients estimated completely from the 10,000
runs. It is interesting to notice how the noise characterising
the first estimates is of the order of the true off-diagonal cor-
relations from the less noisy estimate, present, as expected,
between configurations sharing one or two wavenumbers,
e.g. ti = {2, 2, 2} and tj = {16, 15, 2}.

Finally, figure 10 shows various comparisons between
the volume error as defined in eq. (20) for the 5 param-
eters combinations pα (in real space) obtained from three
different assumptions for the likelihood functions. In the
first case, the likelihood is defined in terms of the vari-
ance alone determined from 300 realisations, denoted in the
figure as “Var(300)”. This is the case adopted for the re-
sults in section 5. In the second case, the likelihood still
depends only on the variance, now obtained from 10,000
runs, “Var(10,000)”. Finally, in the last case the likelihood
is defined in terms of the full bispectrum covariance, as in
eq. (13), estimated again from 10,000 runs, “Cov(10,000)”.
The comparison is provided in terms of the ratio between
the volumes Vol obtained from the different likelihood. We
notice first that essentially no difference is found between
variance estimates employing 300 or 10,000 runs, at least up
to kmax = 0.2hMpc−1. More significant differences are evi-
dent, instead, between these cases and the likelihood based
on the full covariance estimation. For both mass samples
the difference is always below the 10%. The fact that we en-
counter no dramatic difference is somehow reassuring w.r.t.
our previous results. It is nevertheless evident that as we
move to smaller scales the variance-only likelihood increas-
ingly underestimate the errors, although no more than 10%
at kmax = 0.2hMpc−1.

7 CONCLUSIONS

In this paper, and in its companion Papers I and II, we
have studied the problem of covariance matrix estimation for
large-scale structure observables using dark matter halo cat-
alogs produced with approximate methods. This last paper,
in particular, focuses on the halo bispectrum and its covari-
ance matrix, with the twofold aim of assessing the correct
reproduction of the non-Gaussian properties of the halo dis-
tribution as well as considering the halo/galaxy bispectrum
as a direct observable in its own right.

The measurements are performed on sets of 300 (1000
for LogNormal) catalogs obtained from several different
methods: ICE-COLA, PeakPatch, Pinocchio, Halogen,
Patchy, LogNormal and they are compared with the refer-
ence Minerva suite of 300 N-body simulations. All approxi-
mate catalogs, apart from LogNormal, assume the same ini-
tial conditions of the full N-body simulations, thereby re-
ducing differences due to cosmic variance. Out of each halo
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Figure 9. Cut through the cross-correlation coefficient in real space for all the triangle configurations coefficients estimated from 300
realizations (dashed line) and 10,000 realizations (continuous line) for the first sample. On the x-axis there are the triplets for each
triangle in fundamental frequency unit. The cross-correlation coefficient is normalized to the Minerva variance.

catalog we select two samples characterised by a different
minimal mass in order to gain a better perspective on our
results as a function of mass and shot-noise levels.

The approximate methods can be generically subdi-
vided into predictive methods (ICE-COLA, Pinocchio,
PeakPatch), requiring a single redefinition of the halo mass
to recover the expected halo number density, and methods
(Halogen, Patchy), requiring as well a calibration of the
bias function. It should be noted that, in the case of Halo-
gen, such bias calibration is limited to the 2-Point Corre-
lation Function and to configuration space, with only one
parameter (per mass-bin) controlling the clustering ampli-
tude. In addition, a third type is represented by the Log-

normal method, relying on a non-linear transformation of
the matter density field, in turn calibrated on the halo mass
function and halo bias. In all our analysis (with the excep-
tion of Appendix A) we have changed the limiting mass
for each sample in order to ensure the same abundance for
all catalogs, including those obtained with more predictive
methods.

We have shown that:

(i) the real space bispectrum is reproduced by ICE-
COLA, Pinocchio, Patchy and PeakPatch within 20%
for the most of the triangle configurations while Halogen
and, particularly, Lognormal present larger disagreements,
often beyond 50%;

MNRAS 000, 000–000 (2018)



16 M. Colavincenzo et al.

���� ���� ���� ����

���

���

���

���

���

���� [����
-�]

�
��

/
�
��
�

������ �

��� � ����������

���(���)/���(������)

���(������)/���(������)

���� ���� ���� ����

���

���

���

���

���

���� [����
-�]

�
��

/
�
��
�

������ �

��� � ����������

���(���)/���(������)

Figure 10. Errors volume, as defined in eq. (20) for the bias parameters using the bispectrum variance from 10,000 realizations

(continuous line) and the variance from 300 realizations (dashed and dotted line) compared with the full covariance from 10,000 or 300

realizations. In the first column the results are shown for the first sample, in the second column for the second sample.

(ii) these discrepancies are reflected on the results for the
bispectrum variance, where, however, their systematic na-
ture is less evident since there is no clear dependence on the
triangle shape, probably due to the fact that for most trian-
gles, the variance is dominated by the shot-noise component;
the Gaussian prediction for the variance is generically un-
derestimating the N-body result, particularly for squeezed
triangles;

(iii) similar conclusions can be made for the redshift-
space bispectrum monopole, where, however, Patchy and
Halogen (the latter at least for the small mass sample)
show a better agreement with the N-body simulations;

(iv) the inspection of the cross correlation coefficients il-
lustrates how, due to the matching initial conditions, almost
all methods (except Lognormal by construction) reproduce
the noise present in the N-body estimation, which is dom-
inating the off-diagonal elements of the covariance matrix
estimated from only 300 realisations.

Our analysis was not limited to how accurately the bis-
pectrum and its covariance are recovered, but include a com-
parison of the errors on cosmological parameters, in this case
linear and non-linear bias parameters, derived from each ap-
proximate estimate of the variance of the halo bispectrum in
redshift space. This last step was out of necessity restricted
to the variance as the relatively large set of 300 realisations
is still not sufficient for a robust estimation of the full covari-
ance of the hundreds of triangular configurations considered.

As in the similar analysis performed in the compan-
ion papers, we assumed a model for the bispectrum and
produced a data vector from the evaluation of such model
at some chosen fiducial value for the parameters. This al-
lowed us to focus our attention exclusively on the errors
recovered as a function of the different estimation of the
covariance matrix. Differently from the companion papers,
the model considered based on tree-level perturbation the-
ory, only depends on bias and shot-noise parameters, al-
lowing a much easier evaluation of the likelihood function.
In particular, under these simplified settings we can easily

compute our results as a function of the smallest scale, or
maximum wavenumber kmax, included in the analysis. More
rigorous tests involving additional cosmological parameters,
a more accurate modelling of the redshift-space bispectrum
in the quasi-linear regime and a solid estimate of the full bis-
pectrum covariance matrix (and cross-correlation with the
power spectrum) are clearly well beyond the scope of this
comparison project but will be required in the near future
for the proper exploitation of the galaxy bispectrum as a
relevant observable.

The parameter error comparison has shown that:

(i) the error on the bias and on the shot-noise param-
eters are reproduced within 10% by all the methods ex-
cept Lognormal and Halogen in the high-mass sample for
kmax > 0.07. This is evident as well in terms of the combined
error volume as defined in eq. (20); for the second sample
Pinocchio, and to a lesser extent Patchy, show an higher
level of disagreement compared with the other predictive
methods;

(ii) the Gaussian prediction tends to underestimate the
error on some parameters for large values of kmax;

(iii) the results provided by the contour plots, for both
mass samples and for different values of kmax (not all shown
in the figures), do not show any relevant discrepancy in
terms of parameter degeneracies, in addition to errors size
present in the fully marginalised results.

To sum up, predictive methods, along with Patchy ap-
pear to be the most accurate in reproducing the N-body
results, but differences are quite overall relatively small. Of
course, our likelihood test has been limited to include the
bispectrum variance, due to the relatively small number of
N-body runs available. For this reason, we included an ad-
ditional test employing 10,000 Pinocchio realisations to
compare, at least for this particular method, the variance
estimated from 300 realisation to the variance and the full
covariance estimated from the whole set. This has shown
that
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(i) the variance estimate is not particularly affected by
the limited number of 300 runs and essentially no difference
is found on the results for the parameters errors;

(ii) the results in terms of the full covariance, instead, do
provide differences on the parameters errors but still within
10%, although they highlight a progressive underestimate
of the errors based on the variance alone beyond kmax '
0.15hMpc−1, where a steady deviation proportional to kmax
is observed.

Clearly, a more realistic investigation of the relevance of a
reliable estimate of the bispectrum covariance matrix re-
quires a proper model for the quasi-linear regime that we
will leave for future work. In addition, we should also ex-
pect that the relatively small difference between the results
obtained from the variance alone and the full covariance
will become more relevant once a realistic window function
is accounted for as beat-coupling/super-sample covariance
effects are expected to provide additional contributions also
to off-diagonal elements. Since such effects depend directly
on the non-Gaussian properties of the galaxy/halo distribu-
tion, we consider the present work only as a first step toward
a more complete assessment of the correct recovery of non-
Gaussianity by approximate methods for mock catalogs.

From the analysis we have presented it appears that
most of the methods we considered are capable to repro-
duce the halo bispectrum, its variance and the errors on
bias parameters based on the variance alone quite accu-
rately. This is particularly true for predictive methods such
as ICE-COLA, Pinocchio and PeakPatch. Similar results
are obtained for Patchy, although the calibration in redshift
space might lead to some larger systematic for the real-space
bispectrum that in turn could have effects not investigated
in this work (e.g. finite-volume effects). For what concern
Halogen, we have already stressed that its calibration is
restricted to the two-point statistic so a lower accuracy on
the bispectrum might be somehow expected. Nevertheless is
worth to point out that the marginalized errors on the pa-
rameters in redshift space, in particular for the first sample,
are certainly comparable with all the other methods except
for Lognormal. This last method, in fact, is the one that
fares worst among those considered. This can be expected
since, as already mentioned, the nonlinear transformation on
the density field that provides a qualitatively reasonable de-
scription of the nonlinear power spectrum, while providing
a non-Gaussian contribution, does not ensure that such con-
tribution, for instance in the case of the bispectrum, presents
the correct functional form and dependence on the triangu-
lar configuration shape.

We notice finally how our tests on the bispectrum have
highlighted differences among the different methods that are
less evident from the similar analysis on two-point statistic
performed in the companion papers I and II. This illustrates
how the bispectrum can be a useful diagnostic for this type
of comparisons, even when we are not directly interested
in the bispectrum as an observable. We expect that possi-
ble direction of investigation along these lines will include
correlators of realistic galaxy distribution and, particularly
for Fourier-space statistics, finite-volume effects, in order to
better assess the interplay between non-Gaussianity, convo-
lution with a window function and realistic shot-noise con-
tributions.
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APPENDIX A: MASS-CUT VS ABUNDANCE
MATCHING

We have seen how predictive methods perform better overall
than methods requiring calibration with a set of N-body sim-
ulations. However, all our results did assume, including pre-
dictive ones, that the halo density matches the one from the
N-body catalogs to mach the halo density from the N-body
catalogs. In this appendix we compare the results presented
so far and those obtained from Pinocchio, ICE-COLA and
PeakPatch when their predictions are taken out-of-the-box
with no abundance matching. Since each method has a dif-
ferent definition of the mass, a constant mass cut will typ-
ically pick up different objects. This is especially true for
PeakPatch halos which are defined as spherical overden-
sities in Lagrangian space and are not meant to reproduce
FoF masses.

Figure A1 shows the ratio of the bispectrum (left col-
umn) and its variance (right column) to the N-body results
(similarly to figures 3 and 4) in redshift space comparing the
case of density matching (full color) assumed so far to the
case where the limiting mass is not changed (faded color).
Both mass samples are shown and we remind the reader that
the PeakPatch catalogs are only available for Sample 2.
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Figure A1. Bispectrum and its variance. Comparison of density matching (full color) to mass-cut (faded color), redshift space.
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Figure A2. Marginalized errors for the bias parameters using the real bispectrum for the two samples (first and second column)

compared with the error obtained using Minerva. Density cuts are displayed with solid lines while dashed lines represent mass cuts. The
gray shaded area represent the 10% error on individual parameters, or 50% on the 5-parameters error volume.
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For the bispectrum the difference between the density
matching and the mass-cut are lower than 10% for Pinoc-
chio and ICE-COLA for both the samples, while Peak-
Patch shows a larger difference, but always smaller than
20%, with density matching performing better as we can
expect. For the variance the differences appear to be larger.
ICE-COLA and Pinocchio present, respectively, differ-
ences of the order of 15 to 25% for the first sample but
smaller in the second sample case. PeakPatch, on the other
hand shows a difference of about 40% for Sample 2.

Finally, figure A2 shows the combined error volume rela-
tive to the N-Body results, as in figure 6, for the two samples,
comparing density matching (continuous lines) to the case
of direct mass-cut (dashed lines). Using the measurements
from the mass-cut case, for both samples, we recover larger
errors, as can be expected from the variance comparison,
with differences of the order of 10% on the individual pa-
rameter error (50% on the 5-parameter volume shown in the
figure) for Pinocchio. An even larger difference is found for
PeakPatch, while discrepancies for ICE-COLA are within
5% for both samples.
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