
MNRAS 000, 1–14 (2018) Preprint 5 July 2019 Compiled using MNRAS LATEX style file v3.0

Screening maps of the local Universe I – Methodology

Shi Shao1?, Baojiu Li1, Marius Cautun1,2, Huiyuan Wang3 and Jie Wang4,5

1Institute for Computational Cosmology, Department of Physics, Durham University, South Road Durham DH1 3LE, UK
2 Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands
3Key Laboratory for Research in Galaxies & Cosmology, Department of Astronomy, University of Science & Technology of China, Hefei, Anhui 230026, China
4Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, China
5University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China

5 July 2019

ABSTRACT
We introduce the LOCal Universe Screening Test Suite (LOCUSTS) project, an effort to cre-
ate ‘screening maps’ in the nearby Universe to identify regions in our neighbourhood which
are screened, i.e., regions where deviations from General Relativity (GR) are suppressed, in
various modified gravity (MG) models. In these models, deviations from the GR force law
are often stronger for smaller astrophysical objects, making them ideal test beds of gravity in
the local Universe. However, the actual behaviour of the modified gravity force also depends
on the environment of the objects, and to make accurate predictions one has to take the latter
into account. This can be done approximately using luminous objects in the local Universe
as tracers of the underlying dark matter field. Here, we propose a new approach that takes
advantage of state-of-the-art Bayesian reconstruction of the mass distribution in the Universe,
which allows us to solve the modified gravity equations and predict the screening effect more
accurately. This is the first of a series of works, in which we present our methodology and
some qualitative results of screening for a specific MG model, f(R) gravity. Applications to
test models using observations and extensions to other classes of models will be studied in
future works. The screening maps of this work can be found at this link†.
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1 INTRODUCTION

In recent years, modified gravity (MG) theories (Clifton et al. 2012;
Joyce et al. 2015; Koyama 2016, 2018) have been an active field of
research in theoretical, observational and computational cosmol-
ogy. One of the primary motivations for studying such models is to
find alternative models to explain the accelerated cosmic expansion
(Riess et al. 1998; Perlmutter et al. 1999), that avoid the theoretical
difficulties in the standard Λ-cold-dark-matter (ΛCDM) paradigm.
Other motivations for MG theories include attempts to find a more
complete theory of gravity than General Relativity (GR) and to de-
velop new ways to test the accuracy of GR; the latter is of particular
interest since cosmological observations have entered the precision
era, and started to allow accurate tests of gravity on length and en-
ergy scales vastly different from where GR has been conventionally
validated (e.g., Will 2014).

Being a long-range force, gravity acts on all length scales from
sub-atomic to cosmological. Therefore, a deviation from GR’s pre-
scription can in principle be measured on all these scales. Hence,
although many of the MG models are originally proposed to tackle
a cosmological problem, they can be tested in a huge array of envi-
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ronments or regimes, from laboratory experiments (see Brax et al.
2018, for a recent review), to Solar system and astrophysical ob-
jects (see Sakstein 2018, for a recent review), and to observations at
cosmological distances (see Koyama 2016; Heymans & Zhao 2018;
Cataneo & Rapetti 2018; Cai 2018, for some recent reviews).

The requirement that any new theory of gravity must preserve
the success of GR on small length scales has important implications
on both theories and observations. Theoretically, one is confined to
viable MG models, i.e., those that behave sufficiently closely to GR
in environments such as the Solar System. One way to achieve this
is through a screening mechanism (e.g., Khoury 2010), by which
modifications to the GR force law are suppressed in places of deep
gravitational potential or in regions characterised by large gradi-
ents and/or by large Laplacians of the potential (like in the Solar
system). Observationally, this implies that viable MG models must
pass local tests of gravity by design, and thus we may need to turn to
astrophysical and cosmological probes for complementary and po-
tentially more stringent tests. The latter has been possible because
cosmology concerns typically environments with shallow gravita-
tional potentials or small values of its derivatives, where order unity
deviations from GR can occur. MG theories are characterised by a
variety of screening mechanisms, which means that a given probe
could have very different constraining power for different models.
Therefore, it is sensible to explore a wide range of potential cos-
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mological and astrophysical probes. For example, for the popular
f(R) gravity model, in which the deviation from GR is controlled
by a model parameter fR0 (see more details below), the strongest
constraints on fR0 from cosmology suggest |fR0| . 10−6 (e.g.,
He et al. 2018; Leo et al. 2019), while the astrophysical constraints
are claimed to be stronger (e.g., Jain et al. 2013b; Sakstein et al.
2014).

Even if one is interested in astrophysical constraints, it is often
not sufficient to focus only on individual astrophysical objects. This
is because, as we have mentioned above, the deviation from GR in
many MG models is dependent on not just the astrophysical objects
themselves but also the properties of their environments. A dwarf
galaxy, for example, can be unscreened (i.e., it experiences a mod-
ified gravitational force) if placed in a low-density environment for
a specific f(R) model, but the same galaxy may well be screened
(i.e., the deviation from GR is efficiently suppressed) if moved to
dense environments such as close to a large galaxy cluster. In other
words, screening is a nonlinear phenomenon, and the behaviour of
(modified) gravity on small scales can not be cleanly disentangled
from its behaviour on much larger scales. As a result, the precise
knowledge of the total matter distribution in a large region (the en-
vironment) is necessary to accurately predict how a modified grav-
ity model would affect the observational properties of an astrophys-
ical object. Not knowing the former could introduce a uncontrolled
systematical uncertainty to astrophysical tests of gravity.

Fortunately, observations of the local Universe have now be-
come good enough for us to ‘reconstruct’ the relevant environmen-
tal properties needed to understand the screening. The first attempt
of making use of such vital information was by Cabre et al. (2012),
who estimated at the position of each observed galaxy the Newto-
nian potential, Φenv, – which determines the screening efficiency
for f(R) gravity – from all other neighbouring galaxies:

Φenv =
∑ GMi

ri
. (1)

A similar but more sophisticated approach was taken by Desmond
et al. (2018a), who considered also∇Φenv and∇2Φenv, which are
quantities controlling the efficiency of other screening mechanisms
than the chameleon mechanism exploited by f(R) gravity. More
effort was also devoted to obtaining the underlying mass distribu-
tion. In Cabre et al. (2012) only the galaxies detected by the Sloan
Digital Sky Survey (SDSS) were utilised to reconstruct Φenv, while
Desmond et al. (2018a) also included the contributions from (i) in-
visible dark matter haloes – haloes which do not host a galaxy –
by using a simulation calibration, and (ii) the underlying total mat-
ter field (not necessarily in resolved haloes) at z = 0, as obtained
by a Bayesian density reconstruction technique (Lavaux & Jasche
2016). The results of the works are 3D maps of the local Universe,
which contain values of Φenv,∇Φenv and∇2Φenv: these are called
screening maps as these quantities determine the screening proper-
ties of the leading MG models as a function of location.

In this paper we introduce a new approach to obtain screening
maps. Our approach also makes use of the reconstructed total mat-
ter field from the observed galaxy catalogues in the local Universe.
However, instead of using this density field to calculate quantities
such as Φ and ∇Φ, we directly use that to solve for the dynamical
fields which are responsible for the modification of gravity (and for
screening). The main motivation is that, while the above quantities
qualitatively determine the efficiency of screening, the quantitative
calculation is much more involving: as an example, in Vainshtein-
type models it is not ∇2Φ, but ∇2φ and ∇i∇jφ∇i∇jφ, where
φ is a scalar field propagating the modified gravity force, that de-

termines the screening, and this is further complicated by the com-
plex cosmic web. This approach, dubbed LOCal Universe Screening
TEST Suite, or LOCUSTS, solves φ using the reconstructed density
field by employing routines of the MG numerical simulation code
ECOSMOG (Li et al. 2012, 2013a,b). This therefore requires the MG
model to be clearly specified, and the study will be on a model-by-
model basis. On the other hand, because there is only one observed
local Universe, the underlying model of gravity – whichever it is –
must reproduce the observationally-inferred matter density field. In
particular, simulations of different gravity models should produce
this same matter density field at z ∼ 0, perhaps starting from dif-
ferent initial conditions. As a result, we only need to run one single
ΛCDM simulation and output the matter field at various snapshots,
and then the modified gravity routine in ECOSMOG can be used to
calculate the screening properties of the model in these snapshots.
This is much faster than full MG cosmological simulations, so that
we can easily repeat the calculation for hundreds or even thousands
(therefore the name LOCUSTS) of MG models that densely sample
the model and parameter space. Another possibility enabled by this
approach is the study of the time evolution of the screening map,
which can be obtained by running the MG solver in ECOSMOG on
several close output snapshots and then doing a finite difference.

In this paper we describe the methodology of the LOCUSTS

simulations, and show the screening maps and some other physical
quantities to demonstrate how it works. We do these using a specific
MG model – chameleon f(R) gravity – as an example, leaving the
application of the method in astrophysical tests and extensions of
it to include larger coverage of the local Universe and of more MG
models into future works.

The layout of this paper is as follows. Section 2 briefly reviews
the chameleon f(R) gravity theory and the simulations used in this
work. Section 3 presents our results, including visualisations of the
simulated haloes and scalar field compared with the observed distri-
butions of galaxies and galaxy groups, some simple statistics of the
behaviour of the fifth force, and detailed properties of the COMA
cluster. Finally, we conclude with a short summary and discussion
in Section 4.

2 METHODS AND SIMULATIONS

2.1 Constrained simulations of the local Universe

We make use of a constrained-realisation N-body simulation (la-
belled as CS) performed as part of the ELUCID project (Wang et al.
2014, 2016). The goal of the project is to reproduce the evolution
history of our Local Universe by using the reconstructed initial den-
sity field from the observed galaxy catalogue. Here, we briefly sum-
marise the reconstruction method as follows. First, a halo-based
group catalogue is constructed from the SDSS DR7 galaxy cata-
logue with their positions and velocities having been corrected to
“real space”. Then, a present-day density field is built according to
the obtained halo catalogue. Finally, using the Hamiltonian Markov
Chain Monte Carlos (HMC) algorithm with particle mesh dynam-
ics, the initial condition is reconstructed from the present-day den-
sity field. For a more detailed description, we refer the reader to
Wang et al. (2016). The method can effectively trace the z = 0
massive haloes (∼>1013.5 M�) back to their initial condition, such
that the reconstructed initial condition of our Local Universe can
be used to study the evolution history of individual galaxy clusters
and other cosmic web environments (see Fig. 3).

The initial condition reconstructed above, which is used in this
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work, features a periodic cubic box with a side length 500h−1Mpc
and 10243 dark matter particles. The mass of each simulation parti-
cle is 8.3×109h−1 M�. The cosmological parameters are adopted
from the best-fit WMAP5 cosmology (Dunkley et al. 2009): Ωm =
0.258,ΩΛ = 0.742, h = 0.72, σ8 = 0.8 and ns = 0.96.

2.2 The theoretical model

In this work we focus on a particular class of modified gravity mod-
els, f(R) gravity, which is an extension to standard GR by replac-
ing the Ricci scalar R in the Einstein-Hilbert action of gravity with
an algebraic function of R:

SEH =

∫
d4x
√
−g 1

16πG
[R+ f(R)] , (2)

whereG is Newton’s constant and g is the determinant of the metric
gµν , with µ, ν = 0, 1, 2, 3.

The modified Einstein equation can be obtained by varying the
action, Eq. (2), with respect to the metric gµν , to obtain

Gµν + fRRµν − gµν
[

1

2
f(R)− 2fR

]
−∇µ∇νfR = 8πGTm

µν ,

(3)
in which Gµν ≡ Rµν − 1

2
gµνR denotes the usual Einstein tensor,

∇µ is the covariant derivative compatible with gµν , 2 ≡ ∇µ∇µ
is the d’Alambertian, and Tm

µν is the energy-momentum tensor for
matter. The quantity fR in this equation is an extra degree of free-
dom (a scalar field) of this model, defined by

fR ≡
df(R)

dR
, (4)

whose equation of motion can be obtained by taking the trace of
Eqn. (3):

2fR =
1

3
[R− fRR+ 2f(R) + 8πGρm] , (5)

where ρm is the density of non-relativistic matter. Therefore, the
scalar field fR satisfies a second-order field equation of motion;
this means that the modified Einstein equation, (3), which con-
tains fourth-order derivatives of gµν , can be rewritten as a standard
second-order Einstein equation with a scalar field.

To investigate the evolution of cosmic structures in the Newto-
nian regime, we derive the perturbation equations in the Newtonian
gauge on a flat Friedmann-Robertson-Walker (FRW) background:

ds2 = (1 + 2Ψ)dt2 − a2(t)(1− 2Φ)δijdx
idxj , (6)

in which Φ = Φ(x, t) and Ψ = Φ(x, t) are the gravitational poten-
tials, which are functions of the physical time t and the comoving
coordinates = {xi}; δij is the 3D spatial metric, and a(t) is the
scale factor, which is normalised to a(t0) = a0 = 1 at the present
day (a subscript 0 denotes the current value of a quantity through-
out this paper, unless otherwise stated). In the quasi-static and weak
field limits, the system of equations, (3) and (5), can be simplified
respectively to:

∇2Φ =
16

3
πGa2δρm +

1

6
a2δR, (7)

∇2fR = −1

3
a2[δR+ 8πGδρm], (8)

in which∇2 denotes the 3D Laplacian operator, and the density and
curvature perturbations are defined respectively as δρm ≡ ρm− ρ̄m

and δR ≡ R(fR)−R̄; an overbar is used to denote the background
value of a quantity. Eq. (7) can be recast in a new form:

∇2Φ = 4πGa2δρm −
1

2
∇2fR. (9)

It can be seen clearly that the second term of the right-hand side of
Eq. (9) represents a modification to the standard Poisson equation,
and we can define Φ ≡ ΦGR− 1

2
fR, where ΦGR is the Newtonian

potential in GR, and − 1
2
fR can be identified as the potential of an

additional force – the so-called fifth force, which is propagated by
the scalar field fR – between matter particles. The fifth force is not
detected in solar system or laboratory tests of gravity (Will 2014),
and these experimental tests place strong constraints on models like
this.

To close Eqs. (7,8), one needs the relationship between fR and
R such that δR can be expressed as a function of the scalar field as
fR: δR (fR). This can be done by specifying the functional form
of f(R), which satisfies the requirement that the resulting fR is a
monotonic function of R. If f(R) is a slowly-varying function of
R, i.e., |fR| � 1, the model has two desirable features:

• the terms involving fR in Eq. (3) can be neglected to a good
approximation, reducing the Einstein equation to

Gµν −
1

2
gµνf(R) ≈ 8πGTµν . (10)

If one further approximates f(R) ≈ −2Λ (recall that f(R) is taken
to be nearly constant), with Λ being the cosmological constant, then
the background expansion history of this model can be made close
to that of ΛCDM. In fact, with suitable choices of f(R) the back-
ground expansion histories in the two models can be made exactly
identical (He & Wang 2014).
• if |fR| � 1, one can have ∇2fR ∼ 0 and consequently from

Eq. (9) we can see that the standard Poisson equation in GR is re-
covered. If this happens at least in high-density regions, it implies
that the fifth force is suppressed in such regions, which can make
the model compatible with current local tests of GR.

The suppression of the fifth force in the limit |fR| � 1 is the
result of a suitable choice of f(R); it is a dynamical effect called
the screening mechanism. f(R) gravity is a representative example
of a wider class of models, called the chameleon model (Khoury &
Weltman 2004), in which the suppression (or screening) of the fifth
force works as following: the scalar field fR, which propagates the
fifth force between matter particles, satisfies Eq. (8), which can be
rewritten as

∇2fR +
∂Veff (fR)

∂fR
= 0, (11)

where Veff (fR) is an effective potential of the scalar field, given by

∂Veff (fR)

∂fR
=

1

3
a2[δR (fR) + 8πGδρm]. (12)

The potential Veff characterises the interactions of the scalar field
with itself (the first term on the right side of Eq. (12)) and matter
(the second term). For a choice of f(R) such that Veff (fR) has a
global minimum at fR = fR,min and fR,min → 0 as δρm → ∞,
the fifth force can be suppressed in high-density regions as desired,
therefore evading the stringent local constraints on it. Because the
behaviour of the fifth force is dependent on the environmental den-
sity, the screening mechanism is called the chameleon mechanism.
In regions where |δρm| � 1, on the other hand, the curvature per-
turbation |δR| � 1 and so from Eqs. (7,8) one can derive that

∇2Φ ≈ 16

3
πGδρm =

4

3
∇2ΦGR, (13)

which means that gravity is enhanced by a factor of 1/3 – an effect
that is potentially testable using cosmological observations.

MNRAS 000, 1–14 (2018)
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The actual behaviour of the fifth force in f(R) gravity is more
complicated that the above intuitive picture, and an accurate solu-
tion has to be made by numerically solving Eq. (8) given a matter
configuration. In this context, to solve for fR at a given position we
need its solution in the neighbourhood as the boundary condition –
in other words, to know for certain whether a given cosmological
object, such as a star or galaxy, is screened, we need to solve Eq. (8)
in a large region encompassing this object, and the solution in that
region in turn depends on further nearby regions, and so on. In this
picture, screening of the fifth force for an object can be achieved in
two ways:

• self screening: if the objective is massive enough, it alone can
make |fR| small inside and/or nearby, therefore screening the fifth
force it feels;
• environmental screening: if the object is not massive enough

to self screen, but lives near some much larger objects, then |fR| �
1 can still be satisfied inside and/or near it, causing a suppression
of the fifth force it experiences.

To use astrophysical objects in the local Universe to test the fifth
force, then, we cannot reliably treat those objects as isolated bodies
living on the cosmological background, but have to take into ac-
count their larger-scale environments. For this reason a constrained
realisation simulation as described in Section 2.1, where the matter
distribution mimics that in the real observed local Universe, is ideal
as it offers a way to more realistically model the effect of environ-
ments in the chameleon screening.

In this work we shall set up the general strategy to carry out
constrained realisation simulations in modified gravity models, and
present some first results to show how it works. We leave detailed
analyses of these simulations that lead to constraints on model pa-
rameters to future works. For concreteness, we use the f(R) model
proposed by Hu & Sawicki (HS; 2007) as example. This model is
given by specifying

f(R) = −m2 c1
c2

(−R/m2)n

(−R/m2)n + 1
, (14)

where m2 ≡ 8πGρ̄m0/3 = H2
0 Ωm is a parameter of mass dimen-

sion 2, Ωm the density parameter for non-relativistic matter,H0 the
present-day value of the Hubble expansion rate, and n, c1 and c2
are dimensionless model parameters. The scalar field, Eq. (4), takes
the following form:

fR = −c1
c22

n(−R/m2)n−1

[(−R/m2)n + 1]2
. (15)

To see whether this model can have a background expansion
history close to that of standard ΛCDM, let us consider a ΛCDM
model with Ωm ≈ 0.3 and ΩΛ = 1−Ωm ≈ 0.7, for which we find
|R̄| ≈ 40m2 � m2, and therefore

fR ≈ −n
c1
c22

(
m2

−R

)n+1

. (16)

For n ∼ 1 and c1/c22 . 1, we then have |fR
(
R̄
)
| � 1, which is

the condition by which the background expansion history is close
to ΛCDM, and

f(R) ≈ −m2 c1
c2
≈ −2Λ⇒ c1

c2
= 6

ΩΛ

Ωm
. (17)

Therefore, once we have specified an (approximate) ΛCDM
background history (by which c1/c2 is fixed), the HS f(R) model
then has two free parameters, n and c1/c22. The latter is related to

the present-day value of the background scalaron, fR0,

c1
c22

= − 1

n

[
3

(
1 + 4

ΩΛ

Ωm

)]n+1

fR0 . (18)

The choice of fR0 and n fully determines the model.

2.3 The LOCUSTS simulations

In this subsection we introduce the LOCUSTS simulation suite and
briefly describe the simulation technique used.

The LOCUSTS simulations are a suite of simulations of various
modified gravity models, all starting from an identical initial condi-
tion, which itself is obtained as described in Section 2.1. Therefore,
they are the first attempt to realistically simulate our local Universe
in the context of modified gravity. In particular, one of the primary
objectives of LOCUSTS is to obtain screening maps, namely a map
to show the screening properties at different spatial locations in the
local Universe. As stated in the introduction, such screening maps
can provide vital information for both cosmological and astrophys-
ical tests of gravity.

While the basic idea is general, in this work we focus on the
chameleon f(R) gravity model described in Section 2.2 as explicit
example. In particular, we shall specialise to the case of n = 1, and
run simulations for 20 different values of |fR0|, ranging from 10−7

to 10−6. This parameter range is still compatible with the currently
most stringent constraints on fR0 from cosmological observations
(see, e.g., Cataneo et al. 2015; Liu et al. 2016; Peirone et al. 2017).

The chameleon f(R) simulations used in this work have been
done using the ECOSMOG (Li et al. 2012) code, which is a modi-
fied version of the publicly available N -body and hydrodynamical
simulation code RAMSES (Teyssier 2002). This is a particle-mesh
code employing the adaptive-mesh refinement technique to achieve
high force resolution in dense regions, and parallelised using mes-
sage passing interface. ECOSMOG extends RAMSES by solving the
nonlinear field equations which arise from various modified gravity
models numerically by the multigrid relaxation method. For details
about the implementation in different classes of models, see Li et al.
(2012, 2013a,b) and references therein. We use an optimised ver-
sion of ECOSMOG for the Hu-Sawicki f(R) model, as described in
Bose et al. (2017), which is based on a more efficient algorithm to
solve the f(R) field equation.

Even with the algorithm optimisation from Bose et al. (2017),
running a suite of > O(20) simulations with different f(R) grav-
ity parameters is still computationally expensive for the resolution
and particle number used in LOCUSTS. Fortunately, as explained in
the introduction, the idea behind LOCUSTS does not require us to
run full simulations of modified gravity, but only needs one simu-
lation to z = 0 which provides a mock universe with a underlying
matter density field. This underlying density field must be as close
to the observationally-inferred density field in the local Universe
as possible, and any gravity model should reproduce this same un-
derlying density field. This might be achieved by tuning the initial
conditions of the simulations in different models, but the details are
not our concern here. Apparently, the simplest way to achieve this
is to only run the full simulation (from zini = 80 to z = 0) in the
ΛCDM model, while for the f(R) models we simply run the ECOS-
MOG for a few steps – respectively on the particle snapshots of the
ΛCDM simulation at various redshifts – to calculate the behaviour
of the scalar field and the fifth force at the redshifts of interest to
us. Put in other words, the particle evolution in the LOCUSTS simu-
lations is done using Newtonian gravity, while the evaluation of the
screening map is done using the complete modified gravity solver.

MNRAS 000, 1–14 (2018)
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Figure 1. Comparison of the z = 0 power spectrum between the two con-
strained simulations (labelled as Gadget-2 and RAMSES), which were run
using the GADGET-2 (solid) and the RAMSES (dashed) codes, respectively.
Both simulations have the same initial condition. The bottom panel shows
the residual difference between the two simulations.

As mentioned above, the evolution of particle positions and
the calculation of the scalar field and screening properties are both
performed using ECOSMOG, which is based on the RAMSES code.
As a rough estimate of the level to which we can trust the simulation
density field (i.e., the typical difference between different simula-
tion codes at our resolution), in Fig. 1 we have compared the matter
power spectra at z = 0 predicted by ECOSMOG and the GADGET-2
code (Springel 2005). We can see there is good agreement – within
1% for k < 3 hMpc−1 and 4% for k < 6 hMpc−1. The difference
at small scales (. O(1)hMpc−1) is expected to be much smaller
than the typical uncertainty in the density reconstruction.

As another sanity check, in Fig. 2 we plot the halo mass func-
tion from the ΛCDM simulation at z = 0 (squares) compared with
the Tinker et al. (2008) fitting formula (solid line). The halo cata-
logues in this and other figures of this paper are identified using the
phase-space friends-of-friends halo finder ROCKSTAR (Behroozi
et al. 2013), and the halo massM200 denotes the mass withinR200,
the radius within which the average density is 200 times that of the
critical density of the Universe at the halo redshift, ρcrit(z). The
simulation output agrees well with Tinker et al. (2008) apart from
the high-mass end, and at M200 . 1012h−1 M� (which corre-
spond to haloes with . 100 particles, for which the mass function
becomes incomplete due to the low resolution).

3 RESULTS

This section contains the main results of this work. We start with
some visualisation and general properties of the fifth force through-
out the simulation box, then move on to study statistical properties
of the screening maps and the screening around prominent struc-
tures in the local Universe, such as the Coma cluster and the SDSS
Great Wall.
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Figure 2. The halo mass function of the z = 0 GR simulations. The solid
line shows the Tinker et al. (2008) mass function.

3.1 Visualisation

Fig. 3 is the visual comparison of a slice taken from the SDSS group
catalogue (left panel, in which groups are shown as black dots) with
an extraction of the simulation box that is supposed to represent the
same region (middle and right panes); the middle panel shows the
dark matter density field in the region, while the right panel shows
the corresponding scalar field configuration for fR. Both simulation
results are at z = 0, and for the right panel a particular f(R) model
with |fR0| = 10−6 is shown for illustration purpose.

We see from Fig 3 that the constrained simulation has suc-
cessfully reproduced the large-scale structures observed from the
SDSS catalogue, noticeably the filamentary patterns on scales of
tens of Megaparsecs and above. In particular, from the dark mat-
ter distribution we can see clearly the SDSS Great Wall found at
X = −230 h−1Mpc and extending in the vertical coordinate from
−100 to 50 h−1Mpc (Gott et al. 2005). The scalar field fR, as
shown in the right panel, behaves as expected from the chameleon
screening mechanism: its value is closer to 0 near clusters and fil-
aments, while approaching the background value fR0 further away
from these structures. In particular, we note that deep inside void
regions the scalar field is nearly uniform, suggesting that the fifth
force, which is the gradient of the scalar field, is weak there1.

To better compare our constrained simulation with the obser-
vational data, we zoom-in on a small region centred on the Great
Wall. The results are shown in Fig. 4, where the upper left panel is
an enlarged view of the matter density field from the central panel
of Fig. 3 using the same colour bar.

Dark matter haloes identified in the constrained simulation are
shown as black open circles in the lower left panel of Fig. 4, where
the radius of each circle is proportional to the mass of the halo it
represents. Overplotted on top are the SDSS galaxy groups which
are shown as red filled circles. We find a very good agreement be-
tween the positions of simulated haloes and those of SDSS groups,

1 However, the fifth force can still be significant near (often small) matter
clumps inside these voids, and we shall return to this point later below.
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Figure 3. A visualisation comparison of the observed local Universe and the one reproduced in our constrained simulation. Left Panel: galaxy group distribution
as observed by SDSS in a slice with thickness of 10 h−1Mpc. Middle Panel: the dark matter distribution as predicted by our cosmological simulation
constrained to reproduce the local Universe. Right Panel: The scalar field in the same region as the middle panel, for the model with |fR0| = 10−6.

although some outliers do exist. This comparison represents a beau-
tiful illustration of how well the constrained simulation reproduces
the large-scale distribution of galaxies.

In the two panels on the right-hand side of Fig. 4 we show the
SDSS groups and galaxies overplotted on screening maps for the
same zoomed-in region. The coloured map in the upper right panel
shows again the scalar field, where we can see more clearly that
the scalar field closely traces matter distribution and is nearly ho-
mogeneous in low-density regions. The blue and red dots represent
SDSS blue and red galaxies respectively in this panel, and the lat-
ter also trace well the simulation matter distribution. This suggests
that we can use the simulated screening map to predict the scalar
field value and fifth force ratio at the positions of the observed ob-
jects. In the lower-right panel we show this for groups (filled circles
whose sizes indicate the masses of the groups they represent) and
red galaxies (dots) – here the colour is used to illustrate the fifth
force ratio at the positions of the groups and galaxies, and we can
see that the objects are more screened in dense regions than in un-
derdense regions.

3.2 Generic behaviours of the fifth force

Before quantifying the fifth force effects, let us present some re-
sults of the general behaviour of the fifth-force-to-standard-gravity
ratio across the whole simulation volume. In Fig. 5, we have shown
this force ratio at the positions of 105 particles randomly selected
from the simulation box, where each dot represents the measured
value at a simulation particle. The different panels are for differ-
ent |fR0| values, starting from the least screened case with 10−6 at
the upper left and ending at the most strongly screened case with
10−7 at the lower right. The colour indicates the frequency that
particles appear with given standard gravity (horizontal axis) and
fifth force (vertical axis) values. Comparing amongst the different
panels and comparing simulation results with analytical linear per-

turbation prediction (red solid line), we observe the following fea-
tures:

• In high-density regions, where the magnitude of the standard
gravity force is large, the fifth force is generally strongly screened,
and the points are well below the red line, which represents the case
that the fifth force has 1/3 of the strength of standard gravity.
• In the regime of intermediate magnitudes of standard gravity,

representative for smaller haloes and filaments, the fifth force ratio
agrees with linear theory prediction well for the weakly screened
models. However, as |fR0| decreases, stronger screening shows up
even in this regime; for example, in the last row, we can see clearly
that the red dots are well below the red solid line.
• In the regime of weak standard gravity, i.e, the left end of each

panel, which is representative of void regions, the fifth force ratio
falls below the red solid line again. This is because the fifth force,
unlike standard Newtonian gravity, is a short-ranged force that de-
cays exponentially beyond the Compton wavelength of the scalar
field. This implies that the standard gravity exerted by particles out-
side the void regions can reach the inner part of these voids, while
the fifth force cannot, leading to a suppressed force ratio between
the latter and the former. This can also be understood through the
observation that in void regions, e.g., Fig. 4, the scalar field is nearly
homogeneous and so the fifth force becomes weak.

Figure 6 is similar to Fig. 5, but instead of the force ratio,
it shows the cosine of the angle θ between the fifth and standard
gravity forces. If linear theory works perfectly, the fifth force is
1/3 of the strength of standard gravity and the directions of the
two are the same. While this is the case for most particles from
the intermediate gravity regime (the red and orange regions), we
can see that for the strong and weak gravity regimes this is not
true. The reason is the same as for the behaviour of the force ratio
shown in Fig. 5, namely in regions of deep Newtonian potential
(and therefore strong standard gravity) the fifth force is suppressed
by the chameleon screening mechanism, while in voids the fifth
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force from matter in surrounding regions suffers from the Yukawa
exponential decay.

Finally, we are interested to check how the force ratio de-
pends on large-scale environment. For this we used the NEXUS+
method (Cautun et al. 2013) to identify the various cosmic web
environments: nodes, filaments, sheets and voids. The nodes cor-
respond to the densest regions, filaments to 1D linear structures,
sheets to 2D wall-like planar densities and voids to underdense re-
gions. These morphological environments have been found by first

using the Delaunay Tessellation Field Estimator (Schaap & van de
Weygaert 2000; Cautun & van de Weygaert 2011) to calculate the
density field on a regular grid with a 1 h−1Mpc grid spacing. Then,
NEXUS+ calculates the eigenvalues, λi with λ1 ≤ λ2 ≤ λ3, of the
Hessian matrix of the smoothed density field, which are used to
classify the web environments. The exact procedure is based on
some rather complex functions of the Hessian eigenvalues, how-
ever the result can be qualitatively understood as: nodes correspond
to regions with λ1 ≈ λ2 ≈ λ3 < 0, filaments to regions with
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λ1 ≈ λ2 < 0 and λ2 � λ3, sheets to λ1 < 0 and λ1 � λ2, and
voids to everything else. For a detailed comparison of the NEXUS+
technique to other web finders, please see Libeskind et al. (2018).

The resulting cosmic web is dominated in terms of volume by
voids, which occupy ∼80% of the volume but contain only ∼15%
of the total mass budget. In terms of mass, the filaments are the
most important environment, containing over half of the mass bud-
get but filling only 6% of the cosmic volume (Cautun et al. 2014).
Most of the massive haloes, with M200 & 5 × 1013h−1 M�, are
found in nodes, while filaments contain the majority of lower mass
haloes with mass M200 & 1011h−1 M� (Ganeshaiah Veena et al.
2018). In contrast, sheets and especially voids correspond to be-
low average densities and are mostly devoid of haloes with masses
above 1012h−1 M�. This means that the majority of bright galax-
ies, that is with stellar masses above 109h−1 M�, are found in ei-
ther the filaments or nodes of the cosmic web (Ganeshaiah Veena
et al. 2019).

Figure 7 shows the same fifth-force-to-standard-gravity ratio
as in Figure 5, but for particles found in voids (upper left), sheets
(upper right), filaments (lower left) and nodes (lower right). To in-
crease the clarity of the plots, we have only shown the results for
|fR0| = 10−6 and neglected pixels which represent particles that
are smaller than 0.2 thousandth of the total particle number. The
overall behaviour is similar to what Figure 5 shows, but there is
also a clear distinction between the various web environments. For
example, the long drop-off tail with small force ratio but strong
standard gravity forces seen in Figure 5 is mainly due to particles
from nodes (high-density environments), while the drop-off from
the analytical line at weak standard gravity forces is dominated by
low-density environments such as voids and sheets, as explained
above.

3.3 The Coma Cluster

The constrained initial condition used in our simulations has a lim-
ited volume, with objects such as the Local Group and Virgo Clus-
ter not included. Therefore, here we select the object corresponding
to the Coma cluster in our simulation volume, to illustrate the be-
haviour of the modified gravity force in massive objects.

Coma is a cluster at a distance of about 100 Mpc from us, with
over 1000 member galaxies and a total mass of ∼ 1015M�. The
dark matter halo we identify from our simulation as the counterpart
of Coma2 is found to have a mass of M200 = 7.7× 1014h−1 M�
and halo radius R200 = 1.5h−1Mpc. As a first visual inspection,
in Figure 8 we show the projected density in a 40×40

(
h−1Mpc

)2
field of view centred around the Coma halo, with a projection depth
of 5h−1Mpc. On top of this, the observed Coma member galaxy
groups are also shown as black open circles. We can see that the
galaxy groups broadly follow the same clustering pattern of high-
density regions in the projected map.

In Figure 9 we show the fifth-force-to-standard-gravity ratio
in the same region as Figure 8, for four different fR0 parameter
values as indicated in the legends of the four panels. As expected,
in the inner regions of the cluster screening is more efficient, due to
the deeper Newtonian potential there. As |fR0| decreases, screen-
ing becomes more efficient; for |fR0| = 10−6, which is the model
with the weakest screening, the fifth force is strongly suppressed
(with force ratio F5th/Fstandard . 0.01) only up to ∼ 2 h−1Mpc
from the cluster; as |fR0| decreases, this screened region (blue or
red in colour) expands outwards, with the nearby filamentary struc-
tures and some smaller haloes scattered around now also featuring
a strongly suppressed fifth force.

Finally, Figure 10 shows the density (top panel) and force ra-

2 In what follows we shall refer to both the real Coma cluster and the coun-
terpart dark matter halo from our simulation as ‘Coma’; the context should
make clear what we mean.
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Figure 7. The dependence of the fifth force against standard gravity for DM particles split according to their cosmic web environment. We show results for
void (top-left), sheet (top-right), filament (bottom-left) and node (bottom-right) environments identified using the NEXUS+ method.

tio (right) profiles in the Coma halo. The density profile is obtained
by computing the spherically averaged densities within logarithmic
radial bins from the halo centre found by ROCKSTAR, and we show
the result out to 5h−1Mpc from the halo centre, with the halo ra-
dius R200 indicated by the dashed vertical line. The profile can be
well fitted by the Navarro-Frenk-White (Navarro et al. 1996, NFW)
formula,

ρ(r) =
ρ0

r/Rs (1 + r/Rs)
2 , (19)

in which ρ0 is a characteristic density and Rs the scale radius, and
the best-fit value of Rs is found to be 0.65 h−1Mpc, so that the

halo concentration is

c200 ≡
R200

Rs
= 2.3. (20)

The best-fit NFW profile for this halo is plotted as the black dotted
line. Here, we use the particles within R200 to fit the NFW profile,
and the concentration would be greater if we extend the fitting to
larger radii.

The lower panel of Fig. 10 shows the force ratio profiles in
the same halo for the different |fR0| values, decreasing from top
to bottom. This is obtained similarly as the density profiles, but the
spherical average is now over the force ratio at the positions of all
simulation particles for each radial bin. As is typical for haloes of
this mass, the fifth force is efficiently suppressed inside R200 even
for the model which deviates most from GR (|fR0| = 10−6). An-
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Figure 8. The projected mass density in a region of 40 h−1Mpc × 40 h−1Mpc around the simulated dark matter halo which corresponds to the Coma
Cluster. The projection depth is 10h−1Mpc. The colour-coded map shows the density field, with red and white colours indicating high and low density
regions respectively (see colour bar). The black open circles indicate the observed positions of the Coma cluster and other galaxy groups around it, with sizes
proportional to their estimated mass, M200.

other interesting feature is that the shapes of the force ratio profiles
are similar for all fR0 values, and the only difference is in the am-
plitudes. This is a natural consequence of using the same density
profile for all our fifth force calculation in all models.

4 SUMMARY AND CONCLUSIONS

We have developed a new methodology for testing modified grav-
ity theories using astrophysical probes (Jain et al. 2013a; Sakstein
2018) based on constrained simulations of the local Universe. This
method takes advantage of the recent developments in reconstruct-

ing the density field (and its initial conditions) of the local Universe
(e.g., Wang et al. 2014; Lavaux & Jasche 2016; Sorce et al. 2016;
Carlesi et al. 2016; Wang et al. 2016), which provide a way to real-
istically include the environmental effects that are often important
in quantitatively determining the behaviour of gravity in MG mod-
els. Our method combines the large-scale density field from these
reconstruction schemes with the fully nonlinear numerical solution
to the MG equations achieved through the ECOSMOG code. Assum-
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The figure shows that as |fR0| decreases, ever larger regions around the Coma cluster become screened.

ing that the matter field at the low-z Universe3 behaves similarly in
realistic MG models and ΛCDM, this will make it possible to cre-
ate screening maps for a large number of MG models and parameter
choices at a relatively low cost.

This is the first of a series of papers, where we have presented
the methodology and, as a proof of concept, shown screening maps
and some statistical properties that one can extract. As demon-

3 We have argued that this is a good approximation for most cases, but note
that this approximation is not needed: full simulations with MG are possible
though more time consuming.

strated in Figures 3 and 4, the simulated halo distributions and the
resulting screening maps show good visual agreements with the
distribution of SDSS galaxies and groups, indicating that the method
is capable of telling, for a given MG model, which parts of the lo-
cal Universe and how well they are screened. The force behaviours
displayed in Figures 5, 6 and 7 also agree with expectations based
on the properties of chameleon screening, with smaller |fR0| values
generally corresponding to more strongly suppressed fifth forces. In
particular, Figs. 5 and 7 show that the fifth force is suppressed in not
only high-density regions (where the Newtonian force is strong) but
also in low-density regions. This seemingly counter-intuitive effect
is due to the fact that the Compton wavelength of the scalar field in
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the models is small, such that there are few particles the fifth forces
produced by which could propagate into deep voids (Paillas et al.
2019).

As a specific example, we have analysed in greater detail the
dark matter halo from our simulation box which is the counterpart
to the Coma cluster. Figure 9 shows that for all models considered
here, the central region withinR ∼ 2 h−1Mpc is well screened and
so gravity there should behave like GR. On the other hand, in the
stronger screening cases, where |fR0| → 10−7, the screened region
becomes larger, showing that the presence of a massive body can
screen its smaller neighbours. This can be seen more clearly in the
lower panel of Figure 10, which shows that within the virial radius
the fifth force has never exceeded∼ 0.01% of the Newtonian force
for all models considered.

Screening maps as shown in this paper can be invaluable for

astrophysical tests (e.g., Cabre et al. 2012; Desmond et al. 2018a,b),
and they will enable these tests to become more reliable. However,
the application of these maps in real tests are beyond the scope of
this paper and will be left as future work. Also, one slight limitation
of the current maps is that the Local Group is not included in the
SDSS field, but this is not a practical restriction for our method con-
sidering that constrained realisations that include the Local Group
have now been produced by various groups. One interesting possi-
bility is to use such constrained initial conditions to run very-high-
resolution zoom-in simulations, possibly with baryons, which real-
istically reproduce the basic observational properties of the Milky
Way Galaxy, and use that to quantify the screening inside the Milky
Way and in the Solar system.
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