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ABSTRACT

We report Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO(3-2) emission in a sample of seven
Seyfert/LINER galaxies at the unprecedented spatial resolution of 0′′.1 = 4-9 pc. Our aim is to explore the close environment of
active galactic nuclei (AGN), and the dynamical structures leading to their fueling, through the morphology and kinematics of the gas
inside the sphere of influence of the black hole. The selected galaxies host low-luminosity AGN and have a wide range of activity
types (Seyferts 1 to 2, LINERs), and barred or ringed morphologies. The observed maps reveal the existence of circumnuclear disk
structures, defined by their morphology and decoupled kinematics, in most of the sample. We call these structures molecular tori,
even though they often appear as disks without holes in the center. They have varying orientations along the line of sight, unaligned
with the host galaxy orientation. The radius of the tori ranges from 6 to 27 pc, and their mass from 0.7 × 107 to 3.9 × 107 M�. The
most edge-on orientations of the torus correspond to obscured Seyferts. In only one case (NGC 1365), the AGN is centered on the
central gas hole of the torus. On a larger scale, the gas is always piled up in a few resonant rings 100 pc in scale that play the role of
a reservoir to fuel the nucleus. In some cases, a trailing spiral is observed inside the ring, providing evidence for feeding processes.
More frequently, the torus and the AGN are slightly off-centered with respect to the bar-resonant ring position, implying that the black
hole is wandering by a few 10 pc amplitude around the center of mass of the galaxy. Our spatial resolution allows us to measure gas
velocities inside the sphere of influence of the central black holes. By fitting the observations with different simulated cubes, varying
the torus inclination and the black hole mass, it is possible to estimate the mass of the central black hole, which is in general difficult
for such late-type galaxies, with only a pseudo-bulge. In some cases, AGN feedback is revealed through a molecular outflow, which
will be studied in detail in a subsequent article.

Key words. Galaxies: active — Galaxies: Individual: NGC — Galaxies: ISM — Galaxies: kinematics and dynamics — Galaxies:
nuclei — Galaxies: spiral

1. Introduction

The growth of supermassive black holes in galaxies produces
phenomenon of active galactic nuclei (AGN), one of the bright-
est and most energetic events in the Universe. In recent years,
the subsequent appearance of AGN feedback has been widely
established through the existence of fast outflows of ionized and
atomic gas (e.g., Veilleux et al. 2005; Tombesi et al. 2010; Fiore
et al. 2017). In parallel, observations of the molecular compo-
nent of the circumnuclear environment have brought a great deal
of progress in the question of how AGN are fueled in galaxies

? Based on observations carried out with ALMA in cycles 3 and 4.

(e.g., García-Burillo et al. 2005; Combes et al. 2013, 2014), and
how the energy generated by the AGN can in turn regulate its gas
accretion through molecular outflows (e.g., Feruglio et al. 2010;
Aalto et al. 2012; Cicone et al. 2014; García-Burillo et al. 2014).
This has important implications for the co-evolution of galax-
ies and black holes which is observed through the now well-
established MBH-σ relation (e.g., Gültekin et al. 2009).

Active galactic nuclei are observed in two categories, type
1 with broad-line regions (BLR) and type 2 with only narrow-
line regions (NLR). Lines are broad only very close to the black
hole, in the accretion disk, while they are narrow farther out in
the NLR of ∼0.1-1 kpc size. The original unification paradigm
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proposes that the BLR in type 2 is obscured by a dusty molecular
torus, along the line of sight of the observer (e.g., Antonucci &
Miller 1985; Urry & Padovani 1995). However, since this early
work many observations have shown that inclination and obscu-
ration are not the only parameters distinguishing types 1 and 2;
some of these types are intrinsically different and/or nuclear star-
bursts are confusing the picture (e.g., Imanishi & Wada 2004;
Hatziminaoglou et al. 2009). A strong challenge of the unifica-
tion paradigm also comes from AGN changing look from type 1
to type 2 and vice versa, without evidence of variable obscura-
tion (e.g., LaMassa et al. 2015; McElroy et al. 2016).

The expected torus is so small (3-30 pc in size) that it was
not possible to resolve it until recently, where CO(6-5) emission
was detected for the first time with ALMA, as well as continuum
and dense gas tracers, in a 10 pc-diameter torus in the Seyfert 2
NGC 1068 (García-Burillo et al. 2016; Gallimore et al. 2016;
Imanishi et al. 2016, 2018). Dusty tori have also been seen in the
near or mid-infrared (e.g., Asmus et al. 2011; Gratadour et al.
2015), although sometimes the dust emission is seen in the polar
direction instead (Asmus et al. 2016).

García-Burillo et al. (2016) have obtained a high-resolution
map in CO(6-5) with ALMA towards the center of NGC 1068:
there is a circumnuclear disk (CND) ∼300 pc in size, which is
also detected in dust continuum. The AGN is offset with respect
to the center of this disk. Around the AGN, a peak of CO emis-
sion is detected. This is identified as the molecular torus sur-
rounding the AGN. The dust emission coincides spatially with
the molecular torus. Two components were revealed, a dust torus
∼7 pc in diameter, oriented along PA = 142◦, aligned with the
H2O maser disk (Greenhill et al. 1996) and some polar emission
that extends 10 pc to the SW. The CO(6-5) torus is a bit larger in
size (diameter ∼ 10 pc) than the dust torus, and it appears tilted,
with a PA = 112◦ with respect to the dust torus and accretion
disk. The extent of the torus depends slightly on its tracer; it is
somewhat larger with low-J CO emission (García-Burillo et al.
2018) or in dense gas tracers (Imanishi et al. 2018). There is
no CO counterpart for the polar emission. The molecular torus
reveals strong non-circular motions and a large degree of turbu-
lence. It also appears more face-on at larger radii, being probably
warped. The perturbations in the morphology and kinematics of
the torus can be interpreted in terms of the Papaloizou & Pringle
(1984) instability (PPI), predicted in particular for the dynamical
evolution of AGN tori.

The discovery of such a perturbed and turbulent torus was
a surprise. Is it due to continuous accretion from the CND onto
the torus, triggering tilt, warp, and PPI instabilities, and finally
leading to the AGN fueling? How does the molecular outflow
detected farther away (García-Burillo et al. 2014) arise from
the torus? Are perturbed and turbulent tori the norm in AGN-
dominated galaxies?

In the present paper, we describe our effort to gather more
information on possible molecular tori in nearby Seyfert galax-
ies. We have observed with high spatial resolution seven barred
galaxies with active nuclei in order to explore both the AGN fu-
eling and the feedback processes, and also to characterize the
molecular content inside the central kpc at 4-9 pc resolution. In
many cases the gas kinematics allows us to refine the determi-
nation of the central black hole mass. Section 2 presents the
galaxy sample, and Section 3 the details of the ALMA obser-
vations. The results are then described in Section 4 with first a
brief discussion of the main features discovered, whether there
is a molecular torus, the determination of its properties, and then
the estimation of black hole masses. Section 5 summarizes and
discusses our findings.

Fig. 1. Red HST images (F814W) for the seven sample galaxies in the
same FOV = 18 ′′ as obtained with ALMA in Band 7. The axis labels
correspond to arcsec, with north up and east to the left.

2. The sample

In addition to NGC 1433 and 1566 (Combes et al. 2013, 2014),
we selected the five nearby southern AGN galaxies for which we
previously gathered CO(3-2) observations at 0.14” resolution.
They span more than a factor of 100 in AGN power (X-ray and
radio luminosities), a factor of 10 in star formation rate (SFR),
and a wide range of galaxy inner morphology (with or without
double bars). This sample has been selected to provide a wide
range of gas inflow rate, AGN feeding rate, and therefore test
the various possible phases of evolution for the molecular tori.
The galaxies were also selected to be sufficiently nearby to al-
low ALMA, with its exquisite spatial resolution, to resolve the
torus if present. All galaxies have single-dish millimeter data
with the SEST (see references in Table 1), and we have ob-
tained ALMA cycle 0 or 3 intermediate resolution data, in ad-
dition to the present high-resolution ALMA cycle 3-4 CO maps.
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Some of the targets have also been observed by previous au-
thors with ALMA at lower resolution of 50-100 pc (e.g., for
NGC 613 and NGC 1808 Miyamoto et al. 2017; Salak et al.
2016, 2017). We used these observations in the archive when
available. Our targets have high-resolution Hubble Space Tele-
scope (HST) images, and are found in the IRAS Bright Galaxy
Sample (Sanders et al. 2003). Most of these galaxies have been
searched for H2O masers (tracing the accretion disk) with a 2/7
detection rate (Zhang et al. 2012; Surcis et al. 2009) and for star-
forming (“active”) inner rings by Comeron (2013). In addition,
we have proprietary SINFONI IFU observations of all galaxies,
so that we can compare warm H2 morphology, ionized gas dis-
tributions, and kinematics with the cold molecular counterparts.
We summarize the galaxy properties in Table 1, and the nuclear
morphologies in Figure 1.

3. Observations

To explore and characterize molecular tori in nearby Seyferts, we
targeted the CO(3-2) line. For this transition, the J is low enough
that it is still a tracer of density and mass more than excitation;
it also has a relatively high flux and affords a high spatial resolu-
tion. It appears as the best compromise between spatial resolu-
tion, sensitivity, and field of view. To estimate H2 column densi-
ties and masses, we use in Sect. 4.3 the usual ratios applicable to
active galaxy centers. The detailed study by Papadopoulos et al.
(2012) has shown that the excitation ratios begin to depart from
common ones at J = 5 and beyond, and mainly for starbursts.

The observations were carried out with the ALMA telescope
in cycles 3 and 4, with 36 to 40 antennas, during the years
2016 and 2017. The corresponding ALMA projects ID were
#2015.1.00404.S and #2016.1.00296.S, both with PI F. Combes.
In cycle 3, five galaxies (NGC 613, NGC 1326, NGC 1365,
NGC 1672, and NGC 1808) were observed simultaneously in
CO(3-2), HCO+(4-3), HCN(4-3), and continuum, with Band 7.
The compact configuration (TC, baselines 15 to 630m) and ex-
tended (TE, baselines 15 to 1400m) combined to give a syn-
thesized beam of 0′′.14 (∼ 15 pc), and an rms sensitivity of
1mJy/beam in 10km/s channels (80 µJy/beam in the continuum).
The total integration time, including calibration and overheads,
was 1 h per source. This choice of correlator configuration, se-
lected to simultaneously observe three lines, provided a velocity
range of 1600 km/s for each line. However, the various lines are
not centered, and in particular a compromise had to be made for
the CO(3-2) and HCN(4-3). These two lines are sampled with
only 200 km/s on one side and 1400 km/s on the other. This is ad-
equate for nearly face-on galaxies, but prevents seeing outflows
on one side. The bandwidth was 1800 MHz for the continuum
bands.

In cycle 4, the seven galaxies were observed at higher spatial
resolution, ∼ 0′′.07 or 4 to 9 pc (depending on the various dis-
tances), to search for molecular tori. For the frequency tuning we
chose to observe the CO(3-2) and the HCO+(4-3) lines, and the
continuum in Band 7. The HCN(4-3) transition was not observed
in order to avoid a restricted velocity range in the expected
broader spectral lines towards the nuclei. The observations were
done in several blocks, a compact configuration (TM2, baselines
19 to 500 m ) and extended (TM1, baselines 19 to 3100 m), with
a total duration of two hours per galaxy. When combining two
or more of these configurations, all calibrated observations with
all baselines were included to obtain the UV-tables in CASA or
GILDAS. The sensitivity reached was between 0.6 and 0.8mJy

in 10 km/s channels. A summary of all configurations observed
is given in Table 2.

The observations were all centered on the nuclei, with a
single pointing covering a field of view (FOV) of 18′′. For
NGC 1365, due to the large size of the galaxy and nuclear ring
and the strength of CO emission, we performed a rectangular 13-
point mosaic, ensuring a FOV of 45 × 36′′, aligned on the ma-
jor axis. The galaxies were observed in dual polarization mode
with 1.875 GHz total bandwidth per baseband, and a channel
spacing of 0.488 MHz corresponding to ∼0.8 km/s, after Han-
ning smoothing. The spectra were then smoothed to 11.7 MHz
(10.2 km/s) to build channel maps.

The total integration time provided an rms of 30 µJy/beam
in the continuum, and ∼0.6 mJy/beam in the line channel maps
(corresponding to ∼1.2K at the obtained spatial resolution). The
flux calibration was done with nearby quasars, which are regu-
larly monitored at ALMA, and resulted in 10% accuracy.

The data were calibrated, imaged, and cleaned with the
CASA software (versions 4.5.3 to 4.7.2; McMullin et al. 2007)
and the analysis was then finalized with the GILDAS software
(Guilloteau & Lucas 2000). The final cubes at high resolution
are at the maximum 1800x1800 pixels with 0′′.01 per pixel in
the plane of the sky, and have 60 channels of 10 km/s width.
The maps were made with Briggs weighting and a robustness
parameter of 0.5, i.e., a trade-off between uniform and natural
weighting. The data were cleaned using a mask made from the
integrated CO(3-2) map. The continuum was subtracted from all
line maps.

The final maps were corrected for primary beam attenuation.
Very little CO(3-2) emission was detected outside the full width
half power (FWHP) primary beam. Because of missing short
spacings, the interferometer plays the role of a high-frequency
filter, insensitive to smooth and extended emission; the scales
that might be filtered out are those larger than ∼3′′ in each chan-
nel map. Since the velocity gradients are high in galaxy nu-
clei, this does not affect the line measurements too much; in-
deed, the size in each velocity channel is not expected to be ex-
tended. However, the missing-flux problem might affect contin-
uum maps. Low-level negative sidelobes adjacent to bright emis-
sion were observed.

The exact values of missing flux amount will be detailed in
forthcoming papers. We estimated the total CO(3-2) line flux for
the two galaxies previously observed in cycle 0 (with the most
compact configuration) to give an order of magnitude (see Table
3). The difference between the cycle 0 observations with beams
of 0′′.5 and the combination TM1+TM2 shows that we are miss-
ing ∼ 25% of the total flux, on large angular scales. This will
affect only slightly the masses estimated for the tori since they
are not extended, except for NGC 1566. In future papers, all con-
figurations will be combined to minimize flux losses.

4. Results

Figures 2 to 5 display the CO(3-2) flux distribution (moment 0)
together with the velocity field (moment 1) of the seven targets;
they demonstrate the wide variety of morphologies encountered.
There are both resonant rings and spiral arms, and six galax-
ies host a molecular torus, either nearly face-on or more edge-
on. We define a torus by the smallest decoupled circumnuclear
structure in the CO(3-2) line, and from its morphology and kine-
matics. The morphology decoupling means that a nuclear disk or
ring is clearly detached from the outside spiral structure or outer
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Table 1. Characteristics of the sample

Name Type D SFR log(LX) log(L1.4GHz) S(CO)21 Bar Double RA Dec
Mpc M�/yr erg/s W/Hz Jy km/s PA(◦) bar? ICRS ICRS

N613 Sy- SB(rs)bc 17.2 5.3∗ 41.2 21.8 1200a 127 122 01:34:18.189 -29:25:06.59
N1326 LINER- SB0(r) 14.9 1.1 39.9 20.9 200b 30 90 03:23:56.416 -36:27:52.68
N1365 Sy 1.8- SB(s)b 17.8 17. 41.8 22.3 2300c 92 46 03:33:36.368 -36:08:25.51
N1433 Sy 2- SB(r)ab 9.7 0.5 39.2 20.0 360a 95 32 03:42:01.49 -47:13:20.2
N1566 Sy 1.5- SAB(s)bc 7.2 0.8 40.5 21.3 540a 5 No 04:20:00.395 -54:56:16.61
N1672 Sy 2- SB(s)b 11.4 3.1 38.4 19.9 1140a 97 No 04:45:42.496 -59:14:49.91
N1808 Sy 2- SAB(s)a 9.3 4.7 39.8 21.7 4500d 139 158 05:07:42.329 -37:30:45.85

– D are the median values of z-independent distances from NED (Steer et al. 2017);
– SFR are derived from infrared luminosities (NED);
– ∗ NGC 613 has an H2O maser;
– LX is from 2-10keV INTEGRAL, Rosat, and/or Chandra archives;
– The CO(2-1) integrated fluxes are from single-dish measurements (SEST, beam 22′′) from [a] Bajaja et al. (1995), [b] Garcia-
Barreto et al. (1991), [c] Sandqvist (1999), [d] Aalto et al. (1994);
– PA of bars are from Jungwiert et al. (1997) for NGC 613 and 1433, from Garcia-Barreto et al. (1991) for NGC 1326, Lindblad
(1999) for NGC 1365, Agüero et al. (2004) for NGC 1566, Jenkins et al. (2011) for NGC 1672, and Dahlem et al. (1994) for
NGC 1808;
– The RA-Dec positions are the new adopted centers for each galaxy, derived from the detected continuum point sources in the
present work, with an error bar of ∼ 0.1′′(Sec. 4.1).

Table 2. Configuration of the observations and resulting spatial resolu-
tion (with robustness parameter of 0.5, see Sect. 3)

Galaxy Cycle 3, TC & TE Cycle 4, TM2 & TM1
N 613 0.41x0.35 & 0.15x0.13′′ 0.33x0.30 & .092x.064′′
N1326 0.35x0.26 & 0.16x0.14′′ 0.36x0.29 & .086x.058′′
N1365 0.33x0.24 & 0.15x0.14′′ 0.35x0.28 & .087x.060′′
N1433 0.56x0.42′′a 0.37x0.30 & .067x.059′′
N1566 0.64x0.43′′a 0.35x0.29 & .061x.045′′
N1672 0.35x0.19 & 0.16x0.12′′ 0.41x0.29 & .096x.064′′
N1808 0.36x0.24 & 0.14x0.11′′ 0.30x0.29 & .082x.064′′

– a Obtained in cycle 0 (Combes et al. 2013, 2014);
– TC and TM2 are compact configurations, TE and TM1 are
extended.

Table 3. Estimation of the missing CO(3-2) flux in the FOV of 18′′for
the two galaxies observed in cycle 0

Galaxy Cycle 0 TM2+TM1 TM1
NGC 1433 234 174 161
NGC 1566 596 402 364
– All integrated fluxes are in Jy km/s

rings, and the corresponding kinematic displays a strong veloc-
ity gradient compared to the outside structure. In some cases the
kinematic major axis of the inner torus is not aligned with the
kinematic major axis of the outside structure (e.g., NGC 613,
NGC 1566, NGC 1672 and NGC 1808). The HCO+(4-3) line,
when clearly detected, supports this definition (see Fig. 7). The
dust continuum may also trace this circumnuclear structure, but
it is weaker and tends to be less extended radially. Also, the
central point source, coming in general from synchrotron AGN
emission, perturbs its morphology. We emphasize that the radial
extent of the torus may depend on the tracer considered, as al-
ready found in NGC 1068 (García-Burillo et al. 2016, 2018).
Most of the time there are departures from symmetry, and the
central torus is slightly offset from the barycenter of the 1 kpc-
structure. In two cases (NGC 613 and NGC 1566) there is a clear

trailing spiral inside the inner Lindblad resonance (ILR) ring, a
“smoking gun” signature for ongoing fueling of the central black
hole. The main morphological and kinematical features are de-
scribed for each galaxy below.

4.1. Continuum emission and AGN position

All galaxies were observed with their phase center coinciding
with the position given in NED. However, we now have a high
spatial resolution, and when the nucleus has a strong continuum
point source, it is possible to refine the position of the central
black hole, expected to be the source of strong radio emission. A
central continuum point source has been detected in all galax-
ies, except in NGC 1433 where we had a tentative detection
in our previous work (Combes et al. 2013), but were not able
to subsequently confirm it. We adopt, however, the same previ-
ously determined position for the center, which corresponds to
the center of the inner nuclear ring. For all others, the center
position adopted is the pixel of maximum continuum emission,
determined with an error equal to the TM1 beam indicated in
Table 2, typically 0.1′′. These positions are displayed in Table
1, and in the following are considered to coincide with the ac-
tual AGN nucleus. These positions are now better determined
than the optical nuclei defined by the maximum brightness in
the HST images of Fig. 1, which have an astrometry accurate
to within ≤1′′. Our adopted positions also coincide most of the
time with the maximum velocity dispersion in the CO(3-2) line
(except for NGC 1365 and NGC 1566).

There is also the possibility that some continuum emission
from the unresolved central source is coming from the inner
torus around the AGN. Most galaxies in the sample are low-
luminosity AGN in which the dust emission close to the nucleus
is expected to emerge between 10 and 300µm (Casey 2012). We
expect that the continuum point source at 0.8mm is dominated
by synchrotron emission (Prieto et al. 2010). Around the unre-
solved continuum sources, figures 2 to 5 show that we detect
extended emission which might be dominated by dust emission
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Fig. 2. Top: CO(3-2) moment 0 and 1 of galaxy NGC 613 (left and middle, TE+TM1). The right panel is a zoom-in of the CO(3-2) contours (of
the TM1 observations at high resolution) superposed on a color scale of the continuum emission in Band 7. The three panels have been centered on
the central continuum source, and the labels are the offset in arcseconds from the phase center. For the two first panels the beam size is indicated
at the bottom left. In the third panel is shown the ellipse (in red) used to define the molecular tori in Section 4.3. The contours are from 25σ to
1600σ, and follow each other by factor 2 multiplication. The scale bar in the right panel is 20 pc long. The color scale in the middle panel is in
km/s. Bottom: Same, but for galaxy NGC 1326. The contours are from 3σ to 96σ, and follow each other by factor 2 multiplication.

from the inner tori; however, these tori are better traced by the
CO line emission.

4.2. Molecular gas distribution and morphology

NGC 613 shows an incomplete ring with high-density contrast,
as seen in our large-scale map of CO(3-2) (Fig. 2), and emission
from a clear trailing two-arm spiral structure in the circumnu-
clear disk (CND). This galaxy has a typical ILR nuclear ring, of
radius 3.5 arcsec (or 300 pc), just inside the two characteristic
leading dust lanes of the bar, which are tangent to the ring. In-
side the ring, there is a central molecular component, or CND
of radius ∼ 1′′= 83 pc. Water masers have been detected in the
nucleus (Kondratko et al. 2006). Miyamoto et al. (2017) have
mapped the ring in CO(1-0) and CO(3-2) with ALMA at 0′′.7
and 0′′.4, respectively, and found a clumpy ring, globally regu-
lar, but with spots of active and efficient star formation. ALMA
finds a continuum jet at 95 GHz with a PA=20◦ (Miyamoto et al.
2017), which corresponds to the 4.9 GHz and 14.9 GHz jets
(Hummel & Jorsater 1992), close to the minor axis of the ring.
At 350 GHz, the central continuum source remains unresolved

at our resolution of 0′′.09. The negative slope found for the flux
over frequency α ∼ 0.6 is compatible with synchrotron emission,
with a small fraction of free-free.

The ring reveals two breaks into two winding spiral arms to
the north and south. The bar has a position angle PA=130◦ and is
delineated on its leading sides by two dust lanes: one runs from
the SW of the nucleus to the east side of the bar (PA=130◦), and
the other from the NE of the nucleus to the west side of the bar
(PA=-50◦) (see Fig.1). The spiral arms are the beginning of these
characteristic dust lanes along the bar: they are the contact points
between the tangent lanes and the ring.

Dense gas (> 106 cm−3) is detected in various lines of HCN,
HCO+, CS, and SiO at the edges of the jets (Miyamoto et al.
2017). We find that at high resolution with HCO+(4-3) (Fig. 7)
the dense molecular gas is very concentrated towards the nu-
cleus, with skewed kinematics, suggesting an outflow along the
jets; this will be described in a future paper (Audibert et al.
2018). A first look at it can be seen in Fig. 14, where both the
velocity field and velocity dispersion are perturbed. The outflow
has already been suggested by the high-velocity dispersion of
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Fig. 3. Top: Same as fig 2 for NGC 1365 (from the center of the mosaic; the size of the beam has been multiplied by 1.5 to become visible in the
first panel) – the contours are from 4σ to 256σ, and follow each other by factor 2 multiplication – and Bottom: for NGC 1433 (in the latter case,
TM2+TM1 in all 3 panels). The continuum emission (color plot in the right panel) maximizes at 0.2 mJy (i.e., only slightly above 3σ) and was
not detected in the TM1 configuration alone (detection only when combining TM1+TM2). The CO(3-2) line contours are from 3σ to 192σ, and
follow each other by factor 2 multiplication.

the [FeII] line along the radio jet (Falcón-Barroso et al. 2014;
Davies et al. 2017).

A coherent chronology of star formation possibly driven by
the gas motions in the ring was sought by Böker et al. (2008)
with SINFONI images in Brγ, HeI, and [FeII] (spectral reso-
lution R=2000, and without adaptive optics). They identified
clumps along the ring, color-coded according to the different
star formation phases. These authors searched for a coherent
chronology of star formation, starting from the dust lanes, fuel-
ing gas into the ring. At least in the southern part of the ring the
expected sequence of star formation was indeed observed: the
hottest stars were found near the contact point (defined above
between the dust lane and the ring), and then fewer hot stars
were found along the ring. The star formation scenario is not
the random one, where new stars light up like a popcorn model.
If gas is inflowing from the bar dust lanes into the ring, as ex-
pected from gravity torques (García-Burillo et al. 2005), there
must also be an inflow in the CND due to the nuclear trailing spi-
ral, as already observed and interpreted for NGC 1566 (Combes
et al. 2014). The detailed nature of the gas flows in NGC 613
will be studied in a future work. Inside the nuclear spiral struc-

ture, there is a very dense and compact (radius ∼ 14 pc) rotating
component, which might be interpreted as the molecular torus.
The torus is also distinguished by a kinematic decoupling, with a
major axis PA=0◦, (better seen in HCO+(4-3)), while the outside
axis is PA=105◦. The excitation of the ionized gas in the torus is
dominated by shocks (Davies et al. 2017).

NGC 1326 is a lenticular barred galaxy with a contrasted
ring at ILR, of radius 5.7′′= 410 pc. Garcia-Barreto et al. (1991)
detected radio continuum in the ring at 20, 6, and 2cm with the
VLA at ∼ 3” resolution, and also a molecular mass of 2.7 108 M�
from CO emission with the SEST-15m telescope. There is no ev-
idence of a strong central continuum point source at centimeter
wavelengths. At 350 GHz, we detect a weak continuum source,
coinciding with the maximum of the CO(3-2) emission (Fig. 2).
About 83% of the Hα emission of the galaxy is coming from this
nuclear ring (Crocker et al. 1996). There are no conspicuous dust
lanes along the bar, and the ring is not interrupted by spiral struc-
ture at their contact. The ring in CO and also in Hα is oriented at
PA=90◦ roughly perpendicular to the bar (PA=20◦), suggesting
either that the gas is on x2 orbits, or that it forms a decoupled
nuclear ring, with a pattern speed higher than that of the primary
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Fig. 4. Top: Same as Fig. 2, but for NGC 1566 (in this case TM2+TM1 instead of TE+TM1 in the first two panels). The contours are from 5σ to
160σ, and follow each other by factor 2 multiplication. Bottom: Same, but for NGC 1672. The contours are from 3σ to 192σ, and follow each
other by factor 2 multiplication.

Fig. 5. Same as Fig. 2, but for NGC 1808. The contours are from 3σ to 384σ, and follow each other by factor 2 multiplication. The color scale in
the middle panel is in km/s.

bar. In any case, this means that the primary bar pattern speed
is slow enough to allow the presence of two ILRs. When the
rotation curve of the galaxy (Garcia-Barreto et al. 1991; Storchi-

Bergmann et al. 1996) is considered, the ring corresponds to the
inner ILR.
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The HST image in Hα (Buta et al. 2000) reveals a marked
asymmetry of the ring, which we do not see in CO(3-2) with
ALMA. While the 14”-diameter (1kpc) ring overlaps very well
in Hα and CO(3-2) emissions, it is depleted on its west side only
in Hα. This must therefore be due to strong dust extinction in
the west side. The ring is made of hundreds compact sources,
which could be star clusters, and also some diffuse emission,
tightly wrapped and spiral in character. This spiral structure is
seen in our CO(3-2) high-resolution map as well. Stellar popu-
lations were studied from U,B,V, I colors and Hα-filter images
by Buta et al. (2000). The age range of the stellar population in
the ring is 10-200 Myr and the derived star formation rate is 1
M�/yr (Buta et al. 2000). Inside the nuclear ring, the CO emis-
sion reveals a central CND, of radius ∼ 0.3′′= 21 pc. This central
structure appears slightly more inclined on the sky than the main
galaxy, and is likely a tilted torus.

NGC 1365 is a strongly barred spiral galaxy with the charac-
teristic dust lanes delineating the bar, which are particularly con-
trasted and curved. As an archetypal barred galaxy, it has been
extensively observed (e.g., Lindblad 1999). While the Seyfert
1.8 nucleus is obvious in optical and X-rays (Nardini et al. 2015),
it is hardly seen in radio. Stevens et al. (1999) discuss a marginal
radio jet, the center of which corresponds to the central X-ray
position.

The main part of the radio emission at centimeter wave-
lengths is the nuclear ring, with hot spots corresponding to star
formation. Sakamoto et al. (2007) have mapped in CO(2-1) and
isotopes a mosaic with SMA at 2′′resolution, that shows clearly a
2 kpc-extent oval ring, connected to the leading dust lanes, char-
acteristics of the bar morphology. The AGN has only a small
contribution (∼5%) to the central infrared emission, which is
dominated by star formation (Alonso-Herrero et al. 2012).

At 350 GHz, we detect a central continuum point source, as
can be seen in Figure 3. Our large-scale CO(3-2) map reveals the
contrasted nuclear ring of radius ∼ 9′′= 770 pc. Inside this ring,
which corresponds to the ILR of the bar, we detect a more com-
pact molecular component, a CND with a ring shape, of radius
0′′.3 = 26 pc. This rotating ring just encircles the central contin-
uum source, and might be interpreted as the molecular torus.

Lena et al. (2016) have recently presented optical integral
field spectroscopy for the inner 6′′. They find evidence for a fan-
shaped blueshifted outflow in [NII] and Hα kinematics, corre-
sponding to the outflow in a cone seen with the [OIII] emission
lines, extending at more than 1 kpc from the center along the
minor axis (Hjelm & Lindblad 1996; Venturi et al. 2017). From
gravity torques, it was possible to show that the gas is inflow-
ing to the center, driven by the bar, on a timescale of 300 Myr
(Tabatabaei et al. 2013). We will discuss in a future paper the
possibility of an outflow in the molecular component (Audibert
et al. 2018).

NGC 1433 is a strongly barred spiral galaxy, nicknamed the
“Lord of Rings” because of the presence of clear nuclear, inner,
and outer rings at the bar resonances (Buta & Combes 1996).
Our previous cycle 0 ALMA observations in Band 7, with 0′′.5
resolution, have revealed that inside the nuclear ring at ∼ 400 pc,
there is also an inner nuclear ring at ∼ 200 pc, corresponding to
the inner ILR (Combes et al. 2013). These observations revealed
also a mild molecular outflow along the minor axis, of 7 M�/yr,
the smallest molecular outflow ever observed in the Local Uni-
verse. It is possible that the outflow in a previous more powerful
phase has destroyed a potential torus. The tentative continuum
point source near the center is not confirmed, and there is no
evidence of any molecular torus.

The only small velocity gradient in the center corresponds to
the outflow along the minor axis. This is supported by the co-
incidence of the optical and near-infrared emission in the cen-
ter, showing no extinction (Smajić et al. 2014). The CO(3-2)
emission has a very filamentary structure at small scale, as can
be seen in Figure 3. The nuclear ring is the site of a starburst
(Sánchez-Blázquez et al. 2011), and the gas is transiently stalled
there though gravity torques (Smajić et al. 2014).

NGC 1566 is an intermediate barred spiral galaxy, possess-
ing nuclear, inner and outer rings at resonances (Agüero et al.
2004). The broad lines detected in the nucleus, and the observed
variability are typical of a Seyfert 1 (Alloin et al. 1985). It ap-
pears that this low-luminosity AGN appears has been increasing
its activity over the last few hundred years; the line excitation
is much higher in the BLR than along the NLR cone (Baribaud
et al. 1992; Reunanen et al. 2002; Smajić et al. 2015).

Our previous cycle 0 ALMA observations have shown that
the molecular gas followed a trailing spiral inside the nuclear
ring, fueling the central black hole. The gravity torques due to
the bar on the gas change sign at each resonance, and also change
sign as the winding of spirals change from trailing to leading
(Buta & Combes 1996). When the spiral is leading inside the
ring located at the inner Lindblad resonance, the torques are pos-
itive and the gas inside the ring is driven back to the ring. Instead,
when the spiral is trailing, the torques are negative, the gas loses
angular momentum, and is driven towards the nucleus. The sense
of winding of the spiral must be due to the gravitational influence
of the black hole itself (Combes et al. 2014; Smajić et al. 2015).
The image at high resolution confirms the trailing spiral struc-
ture in the nuclear disk (figure 4). The nucleus is also the site
of young star formation, and of a consequent velocity dispersion
drop, also called σ-drop (da Silva et al. 2017; Emsellem et al.
2001).

Inside the inner spiral fueling the nucleus, there is a ringed
structure of 0.7′′= 24 pc radius, kinematically decoupled, which
can be considered a molecular torus. As can be seen in Fig. 4,
the torus kinematic major axis is vertical (PA=0◦), while the rest
of the disk has a kinematic major axis PA=60◦.

NGC 1672 is a strongly barred Seyfert 2 galaxy, with a high
star-forming activity in its center. The AGN activity is therefore
hard to find through line diagnostics (Storchi-Bergmann et al.
1996; Kewley et al. 2000). Brandt et al. (1996) with ROSAT find
a diffuse X-ray nuclear source, rather soft, compatible with a su-
perbubble interpretation (i.e., thermal emission from star forma-
tion). The star formation rate implies enough supernovae over a
107 yr period to blow a superbubble, as computed by Mac Low &
McCray (1988), although the X-ray gas pressure and density ap-
pear too high (Brandt et al. 1996). While finding two additional
X-ray sources at the bar extremities, de Naray et al. (2000) con-
clude that the Seyfert 2 activity must be obscured by a Compton-
thick nucleus with a column density of at least 1024 cm−2. The
X-ray emission at the center appears diffuse and dominated by a
starburst nucleus. Jenkins et al. (2011) with the high resolution
of Chandra are the first to find a hard X-ray emission associ-
ated with the nucleus in addition to a ring. This confirms that the
galaxy is actually a low-luminosity AGN, a Seyfert 2.

The circumnuclear ring, of 5′′= 275 pc radius, is conspic-
uous in the radio emission at 3cm from the VLA, and also in
the Spitzer 8µm band, tracing essentially the PAH dust (Jenkins
et al. 2011). Díaz et al. (1999) provide the Hα velocity field in the
central 2kpc: it has a strong velocity gradient, with a mass of 9 ×
108 M� inside 125 pc. The ring is located at the inner ILR, and is
also quite contrasted in the CO(3-2) emission (figure 4). Inside
the ring, some thin filaments join towards a central concentra-
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tion, which looks like a torus of radius 0.5′′=27 pc seen more
inclined than the large-scale disk. A kinematic decoupling helps
to define the torus, with a kinematic major axis of the torus of
PA=90◦, and an outside axis of PA=135◦. The continuum emis-
sion peaks just at the center.

NGC 1808 is a barred starburst containing a Seyfert 2 nu-
cleus. Optically, it is possible to see the dust lanes expelled per-
pendicular to the major axis. There is evidence of large-scale
(1 kpc) outflows, likely due to the starburst, and NGC 1808 has
been classified as a superwind galaxy, similar to M82 (Dahlem
et al. 1990, 1994). The outflow is also seen in HI (Koribalski
et al. 1993). Surprisingly, the outflow is not observed in the
molecular component at the small scales sampled here (Audibert
et al. 2018). The outflow is thus apparently generated at a large
distance from the nucleus (> 300 pc), favoring a starburst-driven
flow over an AGN-driven one.

Star formation is very active through hot spots aligned on a
ring of radius 10′′= 450 pc (Koribalski et al. 1996). Inside this
ring, also contrasted in CO (Salak et al. 2016), there is a circum-
nuclear disk or ring of radius 200 pc. Within this circumnuclear
disk it is possible to see a trailing spiral in the CO (figure 5),
which is even more contrasted in the dense gas tracers: HCO+(4-
3), CS. The continuum is a point source inside the nuclear spiral,
and may also correspond to a torus of radius 0.13′′= 6 pc. The
previous ALMA observations by Salak et al. (2017) have shown
the nuclear ring, and from the two contact points of the charac-
teristic dust-lanes, two starting spiral arms. With a beam of 2′′.6
= 100 pc, Salak et al. (2017) had insufficient spatial resolution
to see the trailing spiral inside the nuclear ring. They call the nu-
clear ring a torus even if this component does not obscure the
AGN. In the following, we will define the torus as the smaller
compact structure of radius 6 pc inside the nuclear spiral. The
kinematic major axis of the torus is PA=100◦, misaligned with
the outside axis of PA=140◦.

Busch et al. (2017) have published a near-infrared IFU spec-
troscopy of the inner 600 pc with SINFONI in seeing-limited
mode and R=1500-4000 spectral resolution. They determine an
indicative black hole mass of 107 M�. The age of the stars on
the ring is homogeneous and younger than 10 Myr. They find
shocked H2 warm gas near the nucleus, with non-circular mo-
tions. Although there is much gas streaming inside a radius of 1”
= 45 pc, there is no strong sign of nuclear activity.

4.3. Masses of possible tori

In at least six of the seven galaxies, there is evidence of a com-
pact central ring or disk in CO emission, which can be inter-
preted as a molecular torus. These structures can be seen in
CO(3-2) contours overlaid over HST images in Figure 6. Their
kinematics are also displayed with models, starting from Figure
11. For NGC 1433, there is no evidence of a nuclear disk rotat-
ing around the nucleus, although there is a piece of spiral arm
superposed on it. The molecular nuclear disks or tori are clearly
decoupled from the rest of the disks in the kinematics as well.
This is seen in Figures 2 to 5, and also particularly in the dense
gas maps in HCO+(4-3) which will be discussed in future papers.
The example of NGC 613 is displayed in Figure 7. In all galax-
ies, except for NGC 613 and NGC 1808, the size of the torus
is much larger than the beam size (8 – 26 times). For NGC 613
and NGC 1808, the torus is only 4 times the beam, and the size
reported in Table 4 has been deconvolved from the beam.

We have identified in the CO(3-2) data cube these compo-
nents through ellipse-fitting with the adopted center as the con-
tinuum point source identified with the nucleus (at the coordi-

Fig. 6. Red HST images (F814W) for the seven sample galaxies,
zoomed into the central field of 70 pc radius, with the CO(3-2) contours
overlaid. The axis labels are in pc.

nates given in Table 1). The sizes of the tori are illustrated by
red ellipses in Figure 2 and beyond. From the integrated flux
S(CO) dV (Jy km/s) found within the region, the derived molec-
ular mass is obtained through the formula

L′CO(Kkm/s/pc2) = 3.25x107 S (CO)dV
(1 + z)

(
DL

νrest

)2

,

where νrest =345.796 GHz, and DL is the luminosity distance in
Mpc (e.g., Solomon & Vanden Bout 2005). The molecular mass,
including helium, is then derived from

M(H2) = 4.36L′COR13

assuming the standard CO-to-H2 conversion factor of XCO =
2 1020 cm−2(K km/s)−1, applicable to Milky Way-like galax-
ies, and R13 = L’CO1−0/L’CO3−2=2 (e.g., Tacconi et al. 2013). Al-
though this ratio was applied for high-z galaxies, it should also
be appropriate to local galaxy nuclei, where the molecular gas is
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Fig. 7. First moments of the HCO+(4-3) map of NGC 613. The color
scale of the intensity at the bottom is in Jy/beam × km/s, and the velocity
at the top is in km/s. The red ellipse at the top indicates the definition of
the molecular torus. The RA-Dec scale is in arcsec.

dense (e.g., Braine & Combes 1992; Dumke et al. 2001). The ac-
tual excitation of the molecular gas in the tori, close to the AGN,
is yet not well known, and we refer to the above-mentioned pa-
pers, where our data on HCN, HCO+, and CS lines are discussed.

We display in Table 4 the size and molecular masses of the
tori. They vary from 6 to 27 pc and 0.7 to 3.9 x 107 M�. In
NGC 1326, 1672, and 1808, the torus is rather inclined on the
sky plane, and could obscure the nucleus. This is well correlated
with the Sy 2 type. The uncertainties on the torus size are deter-
mined from the extrema of the possible fits, taking into account
both moments zero and one, and are never smaller than the beam
size. The error bars on the integrated flux and other properties
follow from these definitions, assuming a fixed excitation ratio
and CO-to-H2conversion ratio.

To gain insight on the possible H2 column densities of the
torus, we computed the average H2 surface densities over the
central beam on the highest CO(3-2) resolution maps (TM1).
The resulting H2 colum densities are displayed in Table 4 to-
gether with the size of the beam in parsec. These column den-
sities are lower limits on the actual molecular surface densities,
both because of possible dilution in the beam, and also possible
missing flux. Conversely, they might be sometimes an overes-
timation, if the CO(3-2) line becomes partially optically thin,
due to high gas temperature and large turbulent line-width. In ei-
ther case, from these central column densities, we can derive the

molecular mass enclosed in the central beam, Mcent, displayed
in Table 4. For NGC 1365, the central beam is empty, and the
column density was taken from the peak surface density of the
torus. The value of Mcent is in general much lower than the ex-
pected central black hole mass, except in the case of NGC 613.
This does not affect our BH mass estimation, since the gas mass
is taken into account for the gravitational potential.

It is interesting to compare the H2 column densities inferred
from our molecular measurements with the column densities de-
rived from X-ray absorption. While our derived column den-
sity towards NGC 613 nucleus would suggest that it is Compton
thick, Castangia et al. (2013) find NH values from X-ray spectral
fitting that are lower, ∼4 × 1023 cm−2. This may be explained
by a clumpy torus. Nardini et al. (2015) examine NGC 1365
during a Compton-thick state, but NGC 1365 is a well-known
“changing-look” AGN (Matt et al. 2003). In NGC 1566, Kawa-
muro et al. (2013) find a NH column of ∼3 × 1022 cm−2 (with
a 26% covering fraction). For NGC 1672, Jenkins et al. (2011)
find inconclusive evidence for a Compton-thick X-ray source, al-
though there is some evidence for NH ∼2 × 1024 cm−2 in agree-
ment with our finding (de Naray et al. 2000). Jiménez-Bailón
et al. (2005) find NH ∼3 × 1022 cm−2 for the hard nuclear source
in NGC 1808. In summary, our very high-resolution data are not
directly comparable to the X-ray measurements possible up to
now. Our results are lower limits, allowing quite high column
densities in some regions of the torus, but the latter can be quite
clumpy. To be compatible with the X-ray estimations, the cover-
ing or surface filling factor has to be on the order of 0.01-0.1.

When there is a nuclear spiral structure, we have identi-
fied the torus as the nuclear component inside this structure
(NGC 613, 1672, and 1808). It is likely that the torus is re-
plenished in gas through this spiral structure. In that sense, the
torus is the last axisymmetric structure before the nucleus. It is
however difficult to define a typical torus in Seyfert galaxies: ac-
cording to the larger scale dynamics (resonances, nuclear rings,
or spirals), the size of the torus may vary widely. Other tori in
the literature of even more varying sizes have been found: if the
torus in NGC 1068 is comparable (4 pc radius, García-Burillo
et al. (2016), or an extended one in the near-infrared of 27 pc
radius Gratadour et al. (2015)), others are larger, from 30-100 pc
in the OH-megamasers of Mrk 231 (Klöckner et al. 2003), or
smaller (1 pc for Circinus, Tristram et al. (2014), as well as
Seyfert with H2O masers, with molecular transition at a frac-
tion of a pc (Madejski et al. 2000; Herrnstein et al. 2005)). It is
not yet clear whether the obscuring structure must be a thick
doughnut-shaped torus, or could be a warped thin disk (e.g.,
Elitzur & Shlosman 2006). In NGC 3079, the torus has been
identified with clumps elevated from the warped and flared disk,
at 0.5 pc, forming a geometrically thick structure of a few 106

M� (Kondratko et al. 2005).

4.4. Determination of the mass of the black hole

With the obtained ALMA spatial resolution, up to 2 pc for
NGC 1566, we are now reaching the sphere of influence (SoI) of
the black holes in our nearby Seyfert galaxies. The SoI is defined
as the region inside which the gravity of the black hole of mass
MBH dominates the gravitational potential of the host galaxy.
There are two possible expressions for the SoI, one is from Mer-
ritt (2004), when the stellar mass inside the SoI1 M∗(r <SoI1)
is twice MBH , and the second involves the central velocity dis-
persion of the stars σv, i.e., SoI2=GMBH/σ2

v . We display both in
Table 6. In the following, we also consider for the gravitational
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Table 4. Radii, masses, and inclinations of the molecular tori

Galaxy Radius S(CO)dV M(H2)a inc(◦) PA(◦) inc(◦)b Beam logNH2 Mcent off-centering
(pc) Jy km/s 107 M� torus torus gal (pc) (cm−2) 106 M� (pc)

NGC 613 14±3 56±20 3.9±1.4 46±7 0±8 36 6.2 25.3±.001 10. 42.
NGC 1326 21±5 18±2 0.95±0.1 60±5 90±10 53 5.3 23.9±.02 0.3 21.
NGC 1365 26±3 10±3 0.74±0.2 27±10 70±10 63 6.3 23.5±.01 0. 86.
NGC 1433 – – – – – 67 2.9 23.5±0.1 0.04 –
NGC 1566 24±5 72±10 0.88±0.1 12±12 30±10 48 1.7 24.5±.01 0.1 7.
NGC 1672 27±7 80±9 2.5±0.3 66±5 0±10 28 4.0 24.3±.01 0.4 27.
NGC 1808 6±2 46±6 0.94±0.1 64±7 65±8 84 3.1 24.6±.004 0.5 58.

a obtained with the standard CO-to-H2 conversion ratio, and R13 = L’CO1−0/L’CO3−2=2

b from Hyperleda
– NH2 for NGC 1365 is the peak of the torus, but the central beam is empty
– NH2 for NGC 1433 is only that of the central arm
– The errors on NH2 do not include the CO-to-H2 conversion factor

potential and the computation of the black hole mass; the exam-
ple of NGC 1068 is presented here in comparison with the seven
galaxies. Our previous high-resolution ALMA observations of
its molecular torus have also reached the BH SoI (García-Burillo
et al. 2016, 2018).

4.4.1. Model of the gravitational potential

To compute the stellar distribution of stars in each of our galax-
ies, we use the S4G 3.6 µm infrared images and their galfit
decomposition in bulge and disk components from Salo et al.
(2015). More precisely, there are in most cases three compo-
nents, including an additional bar component. These components
are determined by their Sersic index, their magnitude, their effec-
tive radius, and the axis ratio. In two galaxies only, there is also
a point-source component corresponding to 7% and 4% of the
total mass respectively for NGC 1365 and NGC 1566. In these
cases, we represented this component by an exponential, with ef-
fective radius equal to the PSF of the 3.6 µm observations, which
has a FWHM of 2.1′′(Salo et al. 2015). All disks are exponen-
tial. As for bars, the adopted distribution is the modified Ferrers
ellipsoids (Ferrers 1877), with a surface density varying as [1-(

r
Rbar

)2
]2, where Rbar is its outer truncation radius. We adopt a

mass-to-light ratio of M/L = 0.5 M� /L� for this 3.6 µm band
(e.g., Sani et al. 2011; McGaugh & Schombert 2014; Lelli et al.
2016). All the adopted mass components for our seven galaxies,
with NGC 1068 added for comparison, are displayed in Table 5.

To have a first estimation of the black hole masses, it is in-
teresting to exploit the well-known MBH-σ relation for classical
bulges (e.g., Tremaine et al. 2002; Marconi & Hunt 2003; Gül-
tekin et al. 2009). We use the hyperleda compilation (Makarov
et al. 2014) for the central velocity dispersion, and also Garcia-
Rissmann et al. (2005) when the data are not present in this data
base. To derive the BH mass, we use the recent MBH-σ relation,

logMBH(M�) = 8.5 ± 0.05 + (4.41 ± 0.29)log
(

σv
200km/s

)
,

compiled by Kormendy & Ho (2013). The resulting masses are
listed in Table 6, together with an indication of the bulge-to-
black hole mass ratio (according to the S4G 3.6 µm bulge de-
composition) and the derived estimation of the SoI radius. The

Table 5. Stellar mass components from S4G 3.6 µm (Salo et al. 2015)

Galaxy Comp. R∗ M∗ Sersic n B/T
(kpc) (1010 M�) M∗

N 613 Bulge 0.47 0.59 0.799 0.13
Disk 3.8 3.4 1.0 4.55
Bar 5.9 0.56

N1326 Bulge 0.43 0.63 1.167 0.32
Disk 2.7 0.99 1.0 1.98
Bar 4.1 0.36

N1365 Bulge 1.1 2.3 0.857 0.25
Disk 8.2 5.0 1.0 8.66
Bar 7.8 1.3

Nucleus 0.25 0.06
N1433 Bulge 0.31 0.20 1.379 0.14

Disk 3.0 1.1 1.0 1.46
Bar 3.7 0.16

N1566 Disk1 1.0 0.36 1.0 0.37
Disk2 4.6 0.27 1.0 0.97
Bar 6.9 0.30

Nucleus 0.1 0.04
N1672 Bulge 0.36 0.54 0.749 0.23

Disk 3.3 1.5 1.0 2.32
Bar 4.0 0.28

N1808 Bulge 0.36 0.81 1.029 0.39
Disk 3.3 0.54 1.0 2.09
Bar 6.8 0.74

N1068 Bulge 0.58 2.4 1.181 0.38
Disk1 0.94 2.3 1.0 6.30
Disk2 7.0 1.6

∗ This is the effective radius Re for a bulge, the scale-length
hr for an exponential disk, and the end radius Rbar for a bar.

M∗ is the sum of all stellar components (bulge, disk, and bar)
in 1010 M�

derived mass models from Table 5, including the BH masses of
Table 6 are displayed in Figure 8. The individual components
from the galfit 3.6 µm models are color-coded, and the verti-
cal axis shows the SMBH versus galaxy mass ratios. From these
values, it is clear that the ALMA observations can sample the
dynamics inside the BH SoI in all galaxies. It can be seen in Fig-
ure 8 that the enclosed stellar mass is not dominant in the regions
sampled by the molecular tori, and the uncertainties on the de-
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Fig. 8. Representation of the enclosed mass as a function of radius, taking into account every component of the galfit 3.6 µm model (Table 5),
with their respective geometry (spherical bulges, and flat disks and bars) for the eight galaxies. The vertical scale is normalized to their black hole
mass, estimated from their central velocity dispersion (Table 6). The total mass is in black, the bulge in red, the disk in green, the bar in blue, and
a possible nucleus in cyan.

Table 6. Central velocity dispersions and derived BH masses

Galaxy σv Ref MBH BH/bul SoI1 SoI2
(km/s) log M� % pc pc

(1) (2) (3) (4) (5) (6) (7)
N 613 122±18 (1) 7.57±.27 0.63 50 11.
N1326 111±14 (1) 7.40±.22 0.39 29 8.8
N1365 141±19 (1) 7.84±.26 0.30 33 15.
N1433 113±3 (2) 7.40±.03 1.25 36 8.8
N1566 98±7 (1) 7.13±.10 0.37 25 6.2
N1672 111±3 (2) 7.40±.03 0.46 33 8.8
N1808 138±9 (1) 7.79±.13 0.76 36 14.
N1068 174±9 (1) 8.23±.13 0.71 50 25.

The references for the central velocity dispersion in the second
column are:
(1) Hyperleda compilation 1

(2) Garcia-Rissmann et al. (2005) (cross-correlation method,
CCM)
The SoI is the radius of the sphere of influence of the black hole,
the value in Col. 6 is from Merritt’s definition, M∗(r<SoI1) = 2
MBH , the value in Col. 7 is SoI2=GMBH/σ2

v .

termination of the stellar masses will not have a large influence
on our modeling.

Many studies have shown that pseudo-bulges and/or barred
galaxies may be offset from the main MBH-σ relation (Sani et al.
2011; Graham et al. 2011; Kormendy & Ho 2013; Ho & Kim
2014). Some of our galaxies may be in this category, and thus
these first BH masses may be overestimated. It is therefore in-
teresting to compare these values with several other BH mass
estimations, such as the spiral pitch angle (Davis et al. 2014), or
the Sersic index (Mutlu-Pakdil et al. 2016). These values are in-
dicated in Table 7, and are indeed about 1-30 times (on average
4 times) below the previous ones.

Table 7. BH masses from literature, and our derived ones

Galaxy log MBH log MBH Ref log MBH log LAGN
M� M� M� erg/s

(1) (2) (3) (4) (5) (6)
N 613 6.87±.27 7.60±.35 (1) 7.57±.15 42.1
N1326 7.47±.17 7.11±.33 (2) 6.81±.2 40.7
N1365 6.05±.39 6.30±.4 (3) 6.60±.3 42.8
N1433 6.61±.37 7.24±.4 (4) – 40.0
N1566 7.11±.32 6.48±.2 (5) 6.83±.3 41.4
N1672 7.08±.9 6.00±.6 (6) 7.70±.1 39.3
N1808 6.74±.35 7.20±.6 (7) – 40.6
N1068 6.93±.37 7.15±.1 (8) 7.17±.2 44.7

Column 2 lists BH masses estimated from the spiral pitch angle
(Davis et al. 2014), except for NGC 1326, from the Sersic index
(Mutlu-Pakdil et al. 2016).
Column 3 is from other estimations:
(1) van den Bosch (2016), (2) Mould et al. (2012), (3) Risaliti
et al. (2009), (4) Smajić et al. (2014), (5) Smajić et al. (2015),
(6) Jenkins et al. (2011), (7) Busch et al. (2017), (8) Gallimore
et al. (2001)
Column 5 displays our best fit estimates from the molecular
gas dynamics. For NGC 1068, the value comes from the H2O
masers (e.g., Lodato & Bertin 2003; Gallimore et al. 2016).
Column 6 is the bolometric AGN luminosity (see Sect. 4.4.3).

From our ALMA data on the six galaxies with well-defined
kinematic tori (the seven galaxies in Table 4, but without
NGC 1433), we can try to derive the CO line kinematics inside
the SoI. We use the position-velocity (PV) diagrams along the
major axis, as employed by the WISDOM project (Onishi et al.
2017; Davis et al. 2017, 2018b) in deriving the supermassive
black hole masses in three early-type galaxies from the molec-
ular gas kinematics. We postpone to future work the modeling
of the full velocity field of each galaxy because most objects are
barred and subject to non-circular motions (S-shape), as seen in
Figs. 2 to 5. As for the black-hole mass determination, we only
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focus on the central part of the PV diagram since the tori are
frequently misaligned and tilted with respect to the main disk
(Fischer et al. 2013). To determine the PA of the possibly decou-
pled tori, we plotted PV diagrams for a wide range of position
angles (the first 36 separated by 10◦, then with a separation of
5◦ around the most probable PA), and selected the largest ve-
locity gradient. Only the cubes with the most extended ALMA
configuration were considered for this analysis (TM1). The anal-
ysis of the PV diagram in NGC 1808 did not allow the con-
struction of an unambiguous mass model; the dynamics in the
center is highly chaotic, probably due to the starburst and asso-
ciated feedback. We therefore analyzed only the five remaining
galaxies (the seven from Table 4, but without NGC 1433 and
NGC 1808), with the methodology described here.

4.4.2. Fitting the PV diagrams, and the moment maps

To be able to predict the gas dynamics in the inner nuclear disk
with more flexibility, and with tilted decoupled dynamics, we
performed numerical simulations of gas particles in a selected
potential. We represent the gaseous disks by Miyamoto-Nagai
disks of particles (Miyamoto & Nagai 1975), with radial scales
and heights corresponding to the observed tori. We used typ-
ically one million particles to ensure sufficient statistics. We
plunge the gas disks into a potential made of the stellar distri-
bution determined by galfit to each galaxy, as described in the
previous section. The potential of the dark matter halo is negli-
gible inside radii of 100 pc. We take into account the gas mass
to build the total gravitational potential. The gas particles are
distributed in circular orbits, in equilibrium with the total po-
tential, with a velocity distribution corresponding to a Toomre
Q-parameter of 1. The ratio between tangential and radial veloc-
ity dispersion was taken from the epicyclic theory (e.g., Toomre
1964). It should be noted that we simulate only axisymmetric
disks. Here we consider bar or spiral perturbations to be sec-
ondary, and will study their effects in future papers.

Figure 9 illustrates the small-scale rotation curves predicted
by our mass models where the colors correspond to the same
structural components as in Fig. 8. The quality of the potentials
was checked by comparing at larger scales the modeled rotation
curve with previous observations. These rotation curves come
from Hα, HI, or low-resolution CO observations, and do not have
enough spatial resolution to sample the curve below 100 pc, but
give a calibration at 0.2-1 kpc. Within these radii, the dark matter
contribution is negligible. The curves are generally good approx-
imations to those on larger scales, with some scatter which could
come from the effect of non-circular motions. As will be seen be-
low, the influence of the large-scale rotation has limited impact
inside the sphere of influence of the black hole.

To compare the model to observations, we built data cubes
by projecting the model on the sky, with the best fit large-scale
inclinations and position angles (see above), and computing the
line-of-sight velocity distribution. We select the same pixel size
as the observed data cube (around 0.01 arsec according to each
galaxy), and channels of 10 km s−1, and the data were smoothed
to the observed beam (Table 1). The sizes in pixels of the cubes
were between (180, 180, 60) and (360, 360, 60) to best sam-
ple the various tori studied. Because the gas distribution is not
homogeneous, but asymmetric and patchy, and this impacts the
mass-weighted velocity at each observed beam, we normalized
the model cube to the zeroth moment map of the CO observa-
tions, pixel by pixel in this 2D projection. This plays the role of
a multiplicative filter for our homogenous gas disks. This means

that each CO spectrum at each position of the model is normal-
ized to the observed integrated flux at this position.

We tested the methodology on the most regular PV diagram
obtained, that of NGC 1672, as shown in Figure 10. The three
first moments of the model cube can be seen in Figure 11. The
first step is to run, as a comparison, a model with no black-hole,
which is displayed in the left panel of Fig. 10. Then as a first
estimate, the value derived from a standard MBH-σ relation, as
given in Table 6. We explore around this by small increments
in MBH , which will allow us to obtain the best fit, maximizing
the overlap between the contours of the model and the observed
map in the PV diagram, and also fitting the three first moments.
Typically a dozen values are explored for each parameter, which
yield the best fit with error bars displayed in Table 7.

Two parameters were varied: the inclination of the central
molecular disk/torus, and the mass of the black hole. To quantify
the goodness of fit, we computed the least-squares values sum-
ming the difference of all pixels between the observed and model
maps, either at 2D on the PV diagram, or the moment maps, or
at 3D on the cubes. We concentrate on the nuclear part, with 3
104 pixels in 2D or 2 106 pixels in 3D, corresponding to a region
120 pc in diameter, with a resolution of 0.66 pc and 10km/s. The
model and observed maps are normalized to the same total flux
over this region, and the squares difference is weighted by the
observed flux in this pixel. The criterion is then to minimize the
quantity:

∑
pix
w(Fobs − Fmod)2/

∑
pix
wF2

obs, with the weighting func-

tion w = Fobs > 0. The result for NGC 1672 is illustrated in Fig.
12 for the PV diagram and the total cube.

The fit for the PV diagram and also for the 3D-cube tend
to point towards large masses for the black hole. However, these
high masses are not realistic, since they created a central velocity
dispersion that is too large, as can be seen in Fig. 11. The best
fit must therefore be a compromise between the PV diagram and
the velocity dispersion map.

The same fitting procedure has been applied to NGC 613
(Figure 13 and 14, showing in addition the perturbed velocity
field and velocity dispersion due to the outflow), NGC 1326
(Figs. 15 and 16), NGC 1365, where the best compromise was
obtained with the outer disk inclination (Figs. 17 and 18), and
the same for NGC 1566 (Figs. 19 and 20). The morphology was
too complex in NGC 1808 to obtain a satisfying fit, as mentioned
in the previous section, perhaps because of supernovae feedback
molecular flows there.

4.4.3. Summary of results on black hole masses

The black hole masses obtained are between 4 x 106 and 5 x 107

M�, in good agreement with the previous estimations of Tables
6 and 7: they have the tendency to follow the relation obtained
for pseudo-bulge galaxies, determined by Ho & Kim (2014). It
is now fairly well established that classical bulges and ellipti-
cals follow a tighter and shallower MBH-σ relation than galaxies
with pseudo-bulges (Graham et al. e.g., 2011, but see Bennert
et al. 2015). The eight galaxies studied in this paper can all be
considered pseudo-bulges: the Sersic index of their bulges are all
close to 1, and always < 1.4 (Table 5). Also their bulge-to-disk
ratios are all below 0.4, which is the location of pseudo-bulges
(e.g., Fisher & Drory 2008; Gadotti 2009).

With the range of black hole masses found, the correspond-
ing Eddington luminosities LEdd range from 1.3 x 1011 and 1.6
1012 L�, or log (LEdd) in erg/s between 44.7 and 45.8. From
the X-ray luminosities listed in Table 1 and the bolometric cor-
rections computed by Marconi et al. (2004), we estimated the
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Fig. 9. Corresponding rotation curves for the eight galaxies, derived from the mass models in Fig. 8. The contribution of the three or four
components is color-coded as in Fig. 8. The contribution of the black holes is included, with masses derived from the MBH-σ relation (Table 6).

Fig. 10. Position-velocity diagram of the CO(3-2) line in NGC 1672, with a linear color scale (TM1 only). Superposed in red are the contours of
the model without any black hole and torus inclination of 66◦ (left panel), with a black hole as derived from the MBH-σ relation (Table 6) of 2.5 x
107 M� with i= 66◦ (middle panel), and the best fit: a black hole of 5.0 x 107 M�, with i= 66◦ (right panel). The mass model is that based on the
galfit decomposition, and the predicted circular velocity is reproduced in blue lines (Fig 9).

Fig. 11. Left: Three first moments of the model cube for NGC 1672. The RA-Dec offsets are in parsec. The velocity color scales are in km/s. The
cube corresponds to the best PV fit, with a BH mass of 5.0 x 107 M�, and an inclination of 66◦. Right: Three moments for the observations (TM1
only). The RA-Dec offsets are in arcsec with respect to the phase center.

AGN bolometric luminosities for all our galaxies, LAGN (see Ta-
ble 7). The Eddington ratio LAGN /LEdd in our galaxies is there-
fore mostly << 1, namely between ∼0.2 (NGC 1068) and 3 10−7

(NGC 1672).

The positions of the galaxies studied here in the M-σ dia-
gram are displayed in Figure 21, together with the compilation
by van den Bosch (2016). The values measured recently with
CO emission by the WISDOM collaboration are also plotted in
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Fig. 12. Least-squares fitting between the observed and modeled PV di-
agram (black curve) and 3D cube (red curve) as a function of inclination
of the torus (left) and the black hole mass (right). The criterion is de-
fined in Sect. 4.4.2. The curves have been slightly translated vertically
for clarity. If there is a minimum for inclination, there is none for MBH ,
and larger masses are preferred, as for NGC 1672.

blue: they apply to classical bulges with much higher black hole
masses. Galaxies with pseudo-bulges and with lower masses are
harder to determine, and their relation is affected by a larger
scatter. In addition, barred galaxies appear in general below the
standard MBH-σ relation (e.g., Graham et al. 2011), which con-
tributes to the scatter. The scatter in barred galaxies may be due
to a varying velocity dispersion, because the orientation of the
bar is random with respect to the line of nodes. In barred galax-
ies, gas driven into the center by gravity torques may boost a nu-
clear starburst, which produces a σ-drop (Wozniak et al. 2003).
Also, in pseudo-bulge galaxies, the classical bulge is in general
too light, and the black hole mass might be better compared to
the total baryonic mass (Davis et al. 2018a). All eight galaxies
studied in this paper are barred, and their scatter (Figure 21) is
not unexpected. It is, however, crucial to obtain BH masses in
this low-mass end region to better understand the different pro-
cesses for black hole growth, either through mergers (classical
bulges) or secular evolution (pseudo-bulges).

It is interesting to compare the black hole masses derived in
this paper with the previous estimations: in Fig. 21, the green
points are the values derived from the MBH-σ relation of Kor-
mendy & Ho (2013) and displayed in Table 6. These values are
slightly above the MBH-σ relation compiled by van den Bosch
(2016). The turquoise points are the values from Column 2 in Ta-
ble 7, estimated from the spiral pitch angle (Davis et al. 2014),
and the pink points are the values from Column 3 in Table 7
(various references). The red points appear less scattered.

5. Discussion and summary

We have presented our first ALMA results for a sample of 7
active galaxies, all low-luminosity AGN. The high spatial res-
olution allows to enter the sphere of influence of the central
black holes, and to reveal the small-scale circumnuclear molecu-
lar structures that we associate with possible molecular tori. For
6 out of 7 galaxies, we indeed detect a nuclear disk, decoupled
in morphology and dynamics from the main disk. Such a struc-
ture is also detected in an eighth galaxy studied by our group,
NGC 1068 (García-Burillo et al. 2016, 2018).

5.1. Characteristics of the tori

The decoupled molecular tori (Table 4) may correspond to the
required obscuration for type 2 AGN, even if they do not have
the expected inclination for a type 2 classification. They some-
times show a gas hole or depletion in the center (NGC 1365,

NGC 1566, NGC 1672) which make them approach a dough-
nut morphology. Their sizes extend over a wide range, from 6 to
27 pc, but their masses are less scattered from ∼ 1 to 4 107 M�.
There is no relation to the total stellar masses of the galaxies,
which vary from 1 to 9 1010 M� (Table 5). The mass of the gas
in the molecular tori appears slightly anticorrelated to the AGN
strength, as traced by the X-ray luminosity (Table 1), although
with large scatter. More galaxies are needed to build a relation.

5.1.1. Orientation of the tori

One of the striking results emerging of these ALMA observa-
tions is that the gas in the molecular tori is rarely aligned with the
main disk, but present different inclination and position angles.
This decoupling was already observed for instance in NGC 1068
(Gratadour et al. 2015; García-Burillo et al. 2016). Given the
widely different scales, 3-30 pc for the nuclear disks and 1-10kpc
for the main disk, the dynamical timescales are largely different,
from ∼ 1 to 300 Myr. It is then natural that these scales may de-
couple. It is sufficient that the central disk accretes some gas in-
falling with some angle to the plane for it to warp and change its
orientation, averaging its old angular momentum vector with the
tilted one from the newly accreted gas. The accretion could come
either from the kpc scales or from stellar mass loss or feedback
from its own star formation (e.g., Emsellem et al. 2015). Alter-
natively, the tori could be unstable to non-axisymmetric modes
growing on a dynamical timescale (Papaloizou & Pringle 1984).

5.1.2. Asymmetries: offsets and lopsidedness

In addition, the molecular tori display asymmetries and off-
centering. These circumnuclear disks are frequently located in-
side a star-forming ring, coincident with the ILR of the bar, but
are not centered in the ring (for instance NGC 1326). The dis-
tance between the disk center (scale of a few hundred pc) and
the AGN or torus center (which coincide) is displayed in Ta-
ble 4. They are on the order of a few tens of pc, i.e., ∼ 10%
of the scale of the ILR rings. This lopsidedness implies that the
black hole is also wandering with a small amplitude around the
center of mass of the galaxy. Several mechanisms for this off-
centering and implied BH oscillations have been reviewed by
Jog & Combes (2009). The off-centering and wandering, charac-
teristic of a Keplerian potential, may be explained by the eccen-
tric instability proposed by Shu et al. (1990), when the masses
of the central object and the disk are comparable. This mecha-
nism occurs with the exchange of angular momentum between
the central mass and the disk (Woodward et al. 1994). It will be
interesting to establish whether the stellar component also dis-
plays m = 1 instabilities, as the M31 nucleus does, for example
(e.g., Bender et al. 2005). These instabilities may help to fuel the
AGN as predicted by Hopkins et al. (2012).

5.1.3. Cases of the nuclear spirals

In two cases, NGC 613 and NGC 1566, the CO emission has re-
vealed a nuclear spiral, which has the distinction of being trail-
ing, like the large-scale one. Inside the nuclear ring at the ILR of
the bar, a leading spiral is usually expected to develop transiently
and generate positive torques, which drive the inner gas onto the
ring. However, when the gravitational impact of the black hole is
significant, the spiral can then be trailing and the torques nega-
tive, to fuel the nucleus (e.g., Buta & Combes 1996). The special
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Fig. 13. Same as Fig 10 for NGC 613, without any black hole (left panel), with a black hole of 7.4 x 106 M� (middle panel), and the best fit: 3.7
x 107 M�, as derived from the MBH-σ relation (Table 6) (right panel). The inclination of the torus is i= 46◦. The mass model is that based on the
galfit decomposition, and the predicted circular velocity is reproduced in blue lines (Fig 9).

Fig. 14. Same as Fig. 11 for NGC 613 (left is the model, right the observations). The cube corresponds to the best PV fit, with a BH mass of 3.7
x 107 M� and an inclination of 46◦.

Fig. 15. Same as Fig, 10 for NGC 1326, without any black hole, i= 60◦ (left panel); with a black hole of 3 x 107 M� from the MBH-σ relation, i=
60◦ (middle panel); and the best fit: 6.5 x 106 M�, with i= 60◦ (right panel).

Fig. 16. Same as Fig. 11 for NGC 1326 (left is the model, right the observations). The cube corresponds to the best PV fit, with a BH mass of 6.5
x 106 M� and an inclination of 60◦.

Article number, page 16 of 20



F. Combes et al.: Molecular tori

Fig. 17. Same as Fig. 10 for NGC 1365, without any black hole (left panel), with a black hole of 6.9 x 107 M� from the MBH-σ relation (middle
panel), and the best fit: 4 x 106 M� (right panel). The adopted inclination i= 63◦ is from the galaxy to be conservative. Higher BH masss would be
derived with the lower 27◦ inclination estimated for the torus.

Fig. 18. Same as Fig. 11 for NGC 1365 (left is the model, right the observations). The cube corresponds to the best PV fit, with a BH mass of 4 x
106 M� and an inclination of 63◦.

Fig. 19. Same as Fig. 10 for NGC 1566, without any black hole (left panel), with a black hole of 1.35 x 107 M� from the MBH-σ relation (middle
panel), and the best fit: 6.7 x 106 M� (right panel). As for NGC 1365, the adopted inclination i= 48◦ is from the galaxy.

Fig. 20. Same as Fig. 11 for NGC 1566 (left is the model, right the observations). The cube corresponds to the best PV fit, with a BH mass of 6.7
x 106 M� and an inclination of 48◦.
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Fig. 21. Location of our galaxies in the MBH-σ relation, compiled by van den Bosch (2016), represented by the gray points and the fitted line,
of slope 5.35. Our galaxies are in red, while in blue are plotted other values recently obtained from the CO line: NGC 1097 (Onishi et al. 2015),
NGC 1332 (Barth et al. 2016), NGC 3665 (Onishi et al. 2017), NGC 4429 (Davis et al. 2018b), NGC 4526 (Davis et al. 2013), NGC 4697 (Davis
et al. 2017). Previous estimations of the BH masses of our sample galaxies are also plotted in green (Table 6), turquoise and pink (Columns 2 and
3 in Table 7).
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case of NGC 613 will be studied in a forthcoming paper (Audib-
ert et al. 2018).

5.2. Black hole masses

The estimation of the black hole masses from the gas kinematics
suffers from specific uncertainties, discussed in detail by previ-
ous authors (Barth et al. 2016; Onishi et al. 2015, 2017; Davis
et al. 2017, 2018b). They discuss in particular the problem of
edge-on systems, which do not have enough resolution on the
minor axis or spatial resolution, which is barely equal to the ra-
dius of the SoI of the black hole. Our galaxies do not suffer from
either of these problems: the spatial resolution of our ALMA ob-
servations is sufficient to probe the SoI, and therefore the impact
of the stellar potential, and the uncertainties on the stellar mass-
to-light ratio are less important here. However, our BH mass es-
timates still have the uncertainties related to the distance scale,
and the trade-off needed to accommodate both the PV diagram
fits and the observed velocity dispersion maps as discussed be-
low.

All our galaxies are barred, at various strength levels, and
certainly some non-circular motions are present, and must be
included in the uncertainties. A typical S-shaped velocity pat-
tern is seen in the NGC 1672 circumnuclear region (Figure 11).
We postpone to further work the simulation of the non-circular
motions in these barred galaxies, including both small and large
scale.

Another caveat might come from the observed CO velocity
dispersion: we tried to take into account this projected veloc-
ity dispersion when comparing the moment 2 of the data cubes
with the moments of our models. However, the molecular gas
is patchy, and especially inside 50 pc in radius it is likely that
there is an insufficient number of molecular clouds to sample
all the velocity gradients of the inner regions. In the model with
one million particles, we sample almost continuously the veloc-
ity gradient, and this results in a large apparent dispersion along
the line of sight towards the center in the case of a massive black
hole. This apparent dispersion is only due to a beam-smearing
of the velocity gradient along the line of sight. The intrinsic
dispersion of the gas is negligible, between 2 and 10km/s. It is
even more negligible when there is a massive central mass, since
then the value of κ the epicyclic frequency is significantly ele-
vated, and the critical velocity to stabilize the disk in the Toomre
sense is very low. In some cases, even when the velocity gra-
dient is high and can only be obtained with a massive central
component, the observed dispersion is surprisingly low. There
are cases where the molecular gas is depleted or absent in the
center, which is also a factor that supresses the large dispersion.
This has to be taken into account in the minimizing criteria.

Perhaps the most important uncertainty in the black hole
mass determination of these low-mass late-type objects is the de-
coupling of the molecular torus. On the one hand, these nuclear
disks are dense enough to give kinematical information and sub-
sist in the SoI, but their true inclination and position angle might
be quite different from those of the main disks. It thus requires
more 3D data to be able to disentangle both the decoupled mor-
phology and the actual motions around the black hole.

In summary, ALMA at high resolution brings a wealth of
new information on the decoupled molecular tori near the black
holes. In the present paper, we described the properties of the
decoupled molecular tori and estimated the mass of the central
black holes, when possible, as displayed in Fig. 21. In future
work, we will address the fueling efficiency through torque com-

putation, and the feedback efficiency by estimating the gas out-
flows and their energetics in these low-luminosity AGN.
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Smajić, S., Moser, L., Eckart, A., et al. 2014, A&A, 567, A119
Solomon, P. M. & Vanden Bout, P. A. 2005, ARA&A, 43, 677
Steer, I., Madore, B. F., Mazzarella, J. M., et al. 2017, AJ, 153, 37
Stevens, I. R., Forbes, D. A., & Norris, R. P. 1999, MNRAS, 306, 479
Storchi-Bergmann, T., Rodriguez-Ardila, A., Schmitt, H. R., Wilson, A. S., &

Baldwin, J. A. 1996, ApJ, 472, 83
Surcis, G., Tarchi, A., Henkel, C., et al. 2009, A&A, 502, 529
Tabatabaei, F. S., Weiß, A., Combes, F., et al. 2013, A&A, 555, A128
Tacconi, L. J., Neri, R., Genzel, R., et al. 2013, ApJ, 768, 74
Tombesi, F., Cappi, M., Reeves, J. N., et al. 2010, A&A, 521, A57
Toomre, A. 1964, ApJ, 139, 1217
Tremaine, S., Gebhardt, K., Bender, R., et al. 2002, ApJ, 574, 740
Tristram, K. R. W., Burtscher, L., Jaffe, W., et al. 2014, A&A, 563, A82
Urry, C. M. & Padovani, P. 1995, PASP, 107, 803
van den Bosch, R. C. E. 2016, ApJ, 831, 134
Veilleux, S., Cecil, G., & Bland-Hawthorn, J. 2005, ARA&A, 43, 769
Venturi, G., Marconi, A., Mingozzi, M., et al. 2017, Frontiers in Astronomy and

Space Sciences, 4, 46
Woodward, J. W., Tohline, J. E., & Hachisu, I. 1994, ApJ, 420, 247
Wozniak, H., Combes, F., Emsellem, E., & Friedli, D. 2003, A&A, 409, 469
Zhang, J. S., Henkel, C., Guo, Q., & Wang, J. 2012, A&A, 538, A152

Article number, page 20 of 20


	1 Introduction
	2 The sample
	3 Observations
	4 Results
	4.1 Continuum emission and AGN position
	4.2 Molecular gas distribution and morphology
	4.3 Masses of possible tori
	4.4 Determination of the mass of the black hole
	4.4.1 Model of the gravitational potential
	4.4.2 Fitting the PV diagrams, and the moment maps
	4.4.3 Summary of results on black hole masses


	5 Discussion and summary
	5.1 Characteristics of the tori
	5.1.1 Orientation of the tori
	5.1.2 Asymmetries: offsets and lopsidedness
	5.1.3 Cases of the nuclear spirals

	5.2 Black hole masses


