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ABSTRACT
Classification of stars and galaxies is a well-known astronomical problem that has been
treated using different approaches, most of them relying on morphological information.
In this paper, we tackle this issue using the low-resolution spectra from narrow band
photometry, provided by the PAUS (Physics of the Accelerating Universe) survey. We
find that, with the photometric fluxes from the 40 narrow band filters and without
including morphological information, it is possible to separate stars and galaxies to
very high precision, 99% purity with a completeness of 98% for objects brighter than
I = 22.5. This precision is obtained with a Convolutional Neural Network as a classi-
fication algorithm, applied to the objects’ spectra. We have also applied the method
to the ALHAMBRA photometric survey and we provide an updated classification for
its Gold sample.

Key words: techniques: photometric – methods: data analysis

1 INTRODUCTION

A basic step in the extraction of astronomical information
from photometric images is the separation of stars from
galaxies. This is vital in a photometric survey in order to
provide pure samples with minimal systematic contribution
from the effect of cross-contamination of the star and galaxy
samples, to be used for parameter estimation or model
comparison in astrophysical or cosmological analyses (see,
e.g., Sevilla-Noarbe et al. (2018) or Soumagnac et al. (2015),
where the impact of this issue in large scale structure, weak
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lensing or Milky Way studies is addressed).

Historically, there have been many different approaches
to tackle this problem. The first classification methods were
morphology based (MacGillivray et al. 1976; Kron 1980;
Shimasaku et al. 2001; Leauthaud et al. 2007) and they
consisted in the estimation of an optimal cut on the space
of observable image properties, such as a magnitude-size
space, or in statistical properties such as measured second-
order moments. However, these methods perform poorly
when classifying faint objects as morphological information
contained in noisy measurements is limited. Improved clas-
sification based on morphology relying on more advanced
algorithms have been reported in Sevilla-Noarbe et al.
(2018); López-Sanjuan et al. (2018).
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Other classification methods use Bayesian-based ap-
proaches (Sebok 1979; Rachen 2013; Henrion et al. 2011;
Fadely et al. 2012). The application of a Bayesian classifica-
tion approach to multi band data must consider information
coming from morphologies and color: the morphological
features of a galaxy will be correlated with its magnitude.
Hence, as the number of photometric bands increases, this
approach gets more and more complicated.

Another approach is that provided by machine learning
algorithms, which have emerged as an important tool
for classification (see e.g. Odewahn et al. 1992; Bertin
& Arnouts 1996; Soumagnac et al. 2015). It consists in
learning the underlying behavior of a given class sample
adaptively from the training data and the later general-
ization of this learning to samples beyond such training data.

Different possible machine learning algorithms are
used in star galaxy classification problems, such as boosted
decision trees (BDT) (Sevilla-Noarbe & Etayo-Sotos 2015),
neural networks (ANN) (e.g. Soumagnac et al. 2015) or
random forests (RF) (e.g. Morice-Atkinson et al. 2017),
most of them trained on morphologically-based truth tables
from external, deeper datasets or detailed simulations.
Most broad band photometric surveys, such as DES (The
Dark Energy Survey Collaboration 2005), SDSS (Blanton
et al. 2017) or PANSTARRS (Chambers et al. 2016),
rely on morphological information, with just moderate
evidence that this can be improved with color information
(Sevilla-Noarbe et al. 2018), without resorting to infrared
data (Kovács & Szapudi 2015; Banerji et al. 2015).

For the case of narrow-band data one can ask if it is
possible to distinguish stars and galaxies only from the
fluxes. This way, narrow-band surveys, which do not go as
deep as their broad-band counterparts, could provide an
accurate classification based on their flux distribution as
well. In this work, we examine this question considering
several machine learning approaches.

We will discuss the performance of machine learning
algorithms on multiple narrow-band color information
using PAUS (Physics of the Accelerated Universe Survey,
Mart́ı et al. 2014; Castander et al. 2012) and ALHAM-
BRA (Advanced Large Homogeneous Area Medium Band
Redshift Astronomical survey, Moles et al. 2008b,a). In
the case of PAUS, the classification can be compared
with that provided by SExtractor (Bertin & Arnouts
1996), a software that detects, deblends, measures and
classifies sources from astronomical images. Concerning
ALHAMBRA, we will apply our algorithm and compare
with the current classification scheme from the Gold catalog
(Molino et al. 2014), which is based on photometric fluxes
and morphologies.

The standard processing of PAUS images is carried
out by performing forced photometry (S.Serrano et al. in
prep.): the fluxes from objects are computed at predefined
reference positions from external catalogs, in order to obtain
more precise photometric redshifts for these broad band
detections. Hence, the objects are already classified from
deeper observations, before applying any further method.

The results from this paper are meant to demonstrate the
efficiency of machine learning algorithms on astronomical
classification problems using narrow band photometry
spectra, and may be useful to think of implementation of
these algorithms to other crucial issues, such as galaxy
classification, photo-z or outlier rejection for this kind of
data. In addition, the objects used for PAUS photometric
calibration are SDSS stars (Castander et al. in prep.), so
it would be of great interest for PAUS to have its own
classified stars to perform such a calibration, with a more
pure selection. Lastly, an algorithm able to classify objects
with low-resolution spectra would also be interesting for
planned or future narrow-band surveys.

The layout of this paper is as follows; in section 2
we will define the datasets employed in the analysis. In
section 3, there is a short definition of all the machine
learning algorithms used at some point in this study. The
characterization of the algorithms is done in section 4 and
section 5 provides the results on the ALHAMBRA and
PAUS datasets. In section 6 there is a final discussion of
the main results.

2 DATA

In this work we would like to assess the performance of a
machine learning classifier over two narrow-band datasets,
PAUS early data and the ALHAMBRA Gold catalog1, in the
latter case comparing with the standard classification pro-
vided by that survey. We will work on the COSMOS field2

comparing against the COSMOS space-based imaging cata-
log (Leauthaud et al. 2007), which provides a morphology-
based classification (MU_CLASS) for the objects to train and
test our methods on. It contains 1.2×106 objects to a limiting
magnitude of F814W = 26.5 from images observed with the
Hubble Space Telescope (HST) using the Advanced Camera
for Surveys (ACS), therefore its image quality (very deep
and unaffected by the atmosphere) can be used as a ‘truth’
reference. Images were taken through the wide F814W filter
(I). The catalog contains, roughly, 1.1 × 106 galaxies, most
towards the faint end, 30,000 stars and the rest are fake
detections3.

2.1 PAUS

The Physics of the Accelerating Universe Survey was born
in 2008 with the idea of measuring precise redshifts4 for a
large number of galaxies using photometric measurements
(Mart́ı et al. 2014). The novelty of the project was to carry
out a photometric survey with a large number of narrow

1 https://cloud.iaa.csic.es/alhambra/
2 http://cosmos.astro.caltech.edu/
3 Technically, this classification only separates point-like versus

extended objects. QSOs and AGNs will tend to be mixed with
both samples and are neglected in this work. This can however

be a very interesting avenue to explore in the context of CNN

narrow band classification.
4 ≈ 0.35% error, meaning a precision of σ(z)/(1+z) ≈ 0.0035,

versus a typical 5% for broad band measurements
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The PAU Survey: star-galaxy classification with multi narrow-band data 3

filters, in order to obtain a low-resolution spectrum of a
large number of cosmological objects. Among other science
cases, this will allow the study of clustering at intermediate
scales (Stothert et al. in prep.), intrinsic alignments or
contributing to the effective modeling of galaxies in image
simulations (Tortorelli et al. 2018a).

The PAUS camera, named PAUCam (Padilla et al.
2016), is equipped with 40 narrow band (NB) filters, 13 nm
wide and separated by 10 nm, covering a total wavelength
range from 450 nm to 850 nm and 6 ugrizY broad band
filters (which are not used in this work). The survey covers
approximately 0.75 square degrees of equivalent 40 NB area
per night, delivering low-resolution (R ≈ 50) spectra for all
objects in the field of view. The camera is mounted at the
prime focus of the 4.2m William Herschel Telescope. As of
May 2018, PAUS has been observing for approximately 40
nights per year since mid-2015 (with an efficiency below
50% due to bad weather).

PAUS data is managed by a complex infrastructure
which starts at the mountaintop, stores data temporarily
there and sends it to the PAUS data center at the Port
d’Informació Cient́ıfica (PIC) where the nightly and higher
level pipelines (Serrano et al. in prep.) are run and data
is archived for long term storage, as well as distributed
through a database for scientific use (Tonello et al. in prep.,
Carretero et al. (2017)).

Photometric calibration is tied to the Sloan Digital
Sky Survey (SDSS, Smith et al. 2002) stellar photometry.
Each PAUS image is separately calibrated using high
signal-to-noise detected stars that are matched to the SDSS
catalogues. The SDSS broad band photometry for these
stars is fit to the Pickles stellar templates (Pickles 1998)5

to obtain a spectral energy distribution (SED), which is
used to synthesize the expected NB fluxes in PAUS. Single
image zero points are then determined by comparing the
modelled and observed fluxes (see Castander et al. in prep.
for more information).

The PAUS catalog over this field contains 49,000
astronomical objects, matched to the COSMOS catalog:
42,000 galaxies and 7,000 stars from magnitudes I = 16 to
I = 23.

2.2 ALHAMBRA

We have also used the ALHAMBRA photometric redshifts
catalog (Molino et al. 2014) over the ALHAMBRA-4 field,
which overlaps with COSMOS. It contains 37,000 objects
matched to our reference COSMOS catalog, from which
34,000 are galaxies and 3,000 are stars. The ALHAMBRA
photometric system (Aparicio Villegas et al. 2010) is char-
acterized by 20 constant width (31 nm), non-overlapping
medium band filters covering a wavelength range from 350
nm to 970 nm. The images were taken using the Calar Alto

5 http://www.stsci.edu/hst/observatory/crds/pickles_

atlas.html

3.5m telescope using the wide field optical camera LAICA
and the NIR instrument Omega-2000, which are equipped
with 20 intermediate width bands and 3 NIR broad bands:
J,H,K.

The catalog presents multicolor PSF-corrected photom-
etry detected in synthetic F814W images with objects up to
a magnitude of F814W ≈ 26.5.

3 METHODS

Neural networks and random forests have already been used
to classify stars and galaxies successfully (as shown, e.g., in
Kim et al. 2015; Soumagnac et al. 2015), however, as men-
tioned before, they have never been used solely with band
fluxes inputs. On the other hand, Convolutional Neural Net-
works (CNN) have been applied to different fields with excel-
lent results, for instance in medical imaging (Qayyum et al.
2017), and they have proven to be very powerful in image
processing and pattern recognition, also for one dimensional
information (Méndez-Jiménez & Cárdenas-Montes 2018).
These algorithms have also been applied to spectral clas-
sification (Hála 2014) and to tackle the star-galaxy classi-
fication problem using whole CCD images as input feature
map (Kim & Brunner 2017).

3.1 Machine Learning algorithms

In this section, we describe the three machine learning al-
gorithms for which we have compared performances in our
case of study.

3.1.1 Artificial Neural Networks (ANN)

Neural networks (Werbos 1982) are a biologically-inspired
programming paradigm that enables a computer to learn
from observed data. They can be applied to difficult classi-
fication tasks, where a training sample already classified by
other means is used to ‘teach’ the network. The learning pro-
cess consists in recursively weighting the input features (the
fluxes on the different bands in our case) by some factors,
the weights, chosen in order to optimize the classification
algorithm. This consists in the evaluation of a ‘cost func-
tion’, which is a measure of the overall agreement between
the actual nature of the objects in the training sample and
that inferred from the weighted inputs. In every iteration
each weight is updated (back-propagated) in proportion to
the corresponding gradient of the cost function. We have
used the neural network implementation from the Python
scikit-learn package (Pedregosa et al. 2011). The combi-
nation of weights which minimizes the cost function is con-
sidered to be a solution of the learning problem.

3.1.2 Random Forests

As with neural networks, a random forest algorithm is also
a supervised classification algorithm (Breiman 2001). It is
composed of a collection of simple decision tree predictors,
each of them giving an output class when given a set of
input features.

MNRAS 000, 1–12 (2018)
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A decision tree classifies data items executing step-
by-step choices by posing a series of questions about the
features associated with the objects. Each question is
contained in a node and each node leads to children nodes,
one per possible answer to the parents’ node question. The
questions therefore form a hierarchy encoded as a tree. The
training set is used to establish the features’ hierarchy and
the value of the cuts in each of the nodes which optimizes
the classification. After each iteration over the whole tree,
the separation power is evaluated and the cuts are selected
according to it.

In a random forest approach, many different decision
trees are created. The training set is sampled with replace-
ment so as to produce a training set for each of the decision
trees taking part of the forest. Another difference is in the
choice of the question at each node. In the random forest ap-
proach, only a random subset of the features is considered.
Therefore, each decision tree shaping the forest may give a
different classification output for the same sample. The pre-
diction output is a combination of all the particular results
by taking the most common prediction.
As with the case with neural networks, we have also used
a random forest implementation provided by the scikit-

learn Python package.

3.1.3 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (Lecun et al. 2015) are a
category of neural networks that have proven very effective
in areas such as image recognition and classification. One
characteristic of CNN compared to its predecessors is its
ability to recognize patterns based on local features.

The architecture of the network consists basically of
two types of layers: the convolutional layer and the pooling
layer. In the convolutional layer, the algorithm takes a batch
of the input feature map (the photometric spectrum in our
case) and convolves it with a set of filters. This filtering
consists of a weight vector (kernels, learning parameters)
that multiplies the input map in stacks such that all the
input features are covered at least once. The output of this
layer is a set of feature maps resulting from the convolution
of the initial input. A remarkable aspect of CNN is its local
connectivity. While in ANN the different layers are fully
connected, which means that all neurons from a layer are
connected to those on the layer below, CNN are locally
connected, meaning exactly the opposite. Each neuron only
receives input from a small local group of the pixels in
the input image, where the inputs that go into a given
neuron are actually close to each other. The aim of locally
connected layers is to avoid the loss of some subtle nuances
of spatial arrangements.

On the other hand, pooling layers are used to reduce
the dimensionality of the feature maps. There are different
pooling methods carried out by different functions across
local regions of the input. One usual pooling function is the
maximum, which consists in grouping features together and
keeping only that containing the largest value, although
another typical alternative uses the mean function instead.
This layer reduces the number of operations required for all

Table 1. TP stands for ’True positive’. Alike, FP stands for ’False
positive’, FN for ’False negative’ and TN for ’True negative’, for

a given threshold.

Classified galaxy Classified star

True Galaxy TP FN

True star FP TN

the following layers while still passing on the valid infor-
mation from the previous layer. The trainable parameters
are located in the convolutional layer and typically, the
pooling layer does not contain any. The final CNN output is
generated through a fully connected layer (also called dense
layer). It applies a linear operation in which every input
is connected to every output by the weight to generate
an output with dimensionality equal to the number of
output classes we need. The output layer contains again
a cost function that evaluates the error in the prediction.
Similar to the ANN, once the forward pass is complete
the back-propagation begins to update the weights for loss
reduction.

Figure 1 shows the architecture of our CNN. It contains
three convolutional layers provided with an activation func-
tion. The first convolution is larger, so that the algorithm
learns about more general features. The following layers
have a smaller kernel, to focus on more subtle nuances.
Between convolutions, there are also two pooling layers
and again, the first one is the largest, 4x1, whereas the
other two are 2x1. The third pooling layer connects the last
convolution with the fully connected layers. The last two
layers are fully connected layers (dense layers), where the
second one has the dimension of the output, which in our
case is two, one giving the object’s probability of being a
star and the other of being a galaxy (technically, however,
both add up to unity in our case). We have used the Keras

Python library (Chollet et al. 2015) to build our algorithm.

3.2 Analysis

To analyze the performance of the classifiers, we will often
refer to precision, completeness or recall, and receiver oper-
ating characteristic curves, ROC curves. In the context of
this paper, a positive result means an object classified as a
galaxy whereas a negative result refers to any object clas-
sified as a star. With such terminology, Table 1 defines the
concepts of true and false positive and true and false nega-
tive contextualized to our problem. With such parameters,
we can define the true positive rate (TPR) and the false
positive rate (FPR) (Equations (1) and (2)) and also, the
precision and the recall (completeness) (Equations (3), (4)).

TPR =
TP

TP + FN
, (1)

FPR =
FP

FP + T N
, (2)

MNRAS 000, 1–12 (2018)



The PAU Survey: star-galaxy classification with multi narrow-band data 5

Figure 1. The CNN structure used for this paper. It is provided with 3 convolutional layers, with a larger kernel for the first convolution,

and with 3 intercalated pooling layers. The last two layers are fully connected (dense) layers. NB that the input information is a one
dimensional spectrum and not an image.

.

Precision =
TP

TP + FP
, (3)

Recall =
TP

TP + FN
= TPR, (4)

The performance of the classifiers is generally studied
in the ROC space by ROC curves. A ROC curve is a
graphical plot that illustrates the diagnostic ability of a
binary classifier system as its discrimination threshold is
varied (the limit on a given classifier for which an objects
is considered to belong either to a class or another), using
the TPR vs FPR values typically. The area under the
curve (AUC) gives a measurement of the performance of
the classifier, where an area of 1.0 would mean a perfect
classifier. A diagonal through the plot would indicate a
random performance (therefore with an AUC ∼ 0.5).

For our case of study, the algorithms output is the ob-
ject’s probability of being a galaxy. The ROC curve shows
the TPR (the number of galaxies classified as galaxies over
the total number of galaxies) against the FPR, (the number
of stars classified as galaxies over the total number of ob-
jects classified as galaxies) when the probability threshold
for which an object is considered either a star or a galaxy is
varied. The ROC curve could also be represented with the
TNR and the FNR, rating the classification/misclassifica-
tion of stars instead of galaxies.

4 ALGORITHM PERFORMANCE

In this section, we analyze concurrently the performance of
the three algorithms defined in section 3: artificial neural
networks, random forests and convolutional neural networks.
We use a training sample over the COSMOS catalog,
matched to PAUS objects, where their 40 narrow-band
fluxes have been used as the input data vector, up to magni-
tude I = 22.5 as defined by our reference COSMOS catalog.

4.1 Training set size dependence

The performance of any machine learning algorithm is
related to the number of samples used in the training
phase. However, using too many training samples may be
self-defeating; the training could take much longer than
really needed.

Figure 2(a) shows the training size dependence for the
neural network, the random forest and the convolutional
neural network, where the results plotted are those obtained
on a distinct validation sample. We only vary the size of
the training sample, while the validation sample size keeps
constant in all cases.

One can already see here that the CNN is the algorithm
yielding the best classification, with a better performance
than those of the random forest or the ANN (see section 4.3
for discussion). It also showcases that for this sample, 10,000
objects are enough to get high classification rates with the
CNN. Nevertheless, Figure 2(b) shows that from 10,000 to
30,000 objects the classification is still improving, although

MNRAS 000, 1–12 (2018)
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the improvement is smaller than from 3,000 to 10,000 ob-
jects. This means that the algorithm is more sensitive to
training sample size increments when the training datasets
are small.

4.2 Number of input bands dependency

In any classification problem, the more information is avail-
able about each class, the easier it is to identify particular
patterns useful to differentiate between them. For the case
of astronomical object classification, any spectral related or
morphological information may be meaningful. However, a
large number of input features can also have its drawbacks.
Over-fitting or scaling problems may arise from such a large
dimensionality. When the input’s dimension increases, the
hypervolume in input feature space increases so fast that
the available data becomes sparse. Also, the data needed to
provide reliable results increases exponentially.

For PAUS, the 40 available optical bands are probably
not enough to encounter such problems. However, it is also
of interest to check this and study how the performance
scales with the number of bands (i.e., with the spectral
resolution). To see how the algorithm scales with the loss
of resolution, we have merged the 40 PAU NB in groups
of 2,4,5 and 8 summing the flux of contiguous bands and
therefore providing data samples with 20,10,8 and 5 bands,
respectively.

Figure 3(a) presents the scaling with the number of
bands for the three different algorithms, exhibiting the same
pattern in all cases: as the spectral resolution increases, the
performance of the algorithms improves. Such improvement
is not linear; it has a more significant slope from 5 to 10
bands in all cases. One can see that with the CNN the
photometry does not need to have 40 narrow bands to
already give a good classification of stars and galaxies: 20
bands already result into high classification rates, as the
shapes from the spectrum used to differentiate these two
cases are already evident at such resolutions.

Figure 3(b) shows the different performances in the
ROC space for the CNN. It exhibits the results we have
already mentioned: there are important gaps between the
curves from 5 to 20 bands, whereas increasing from 20 to 40
bands translates into a smaller improvement.

We have also studied the difference between using the 20
bluest bands versus the 20 reddest. The ROC-AUC for the
bluer bands is 0.913 ± 0.005 whereas for those redder bands,
it is 0.950± 0.004. Therefore, we find that star-galaxy separa-
tion is therefore more sensitive to the information contained
in the redder bands, as many of the stars are typically red
dwarfs with characteristic absorption features. There is also
another effect one could consider: the bluer bands have lower
S/N than the redder ones and naively one would expect that
the classification performs worse.

4.3 Algorithms comparison

We have shown that the CNN is exhibiting the best
performance so henceforth it will be the fiducial algorithm
applied to the classification on the PAUS and ALHAMBRA
catalogs.

There are many effects that are contributing to this re-
sult. As was mentioned above, CNN are provided with lo-
cally connected layers that are capable of recognizing sub-
tle nuances of spatial arrangements. Figure 4 shows objects
classified as galaxies (a) or stars (b) with high probability
by the CNN. In the case of galaxies, one can notice that
many of them contain gaps in one or two consecutive bands
that most likely correspond to emission lines, meaning that
the CNN is able to learn from these characteristic traits. We
have made the same check with the ANN or the random for-
est algorithms and none of them present clear emission line
patterns in the best classified galaxies. For stars, one can see
that there are many objects with the same spectral shape,
including certain patterns (peaks, valleys) usually in approx-
imately nearby sections of the spectrum. Most of these cor-
respond to red stars which in general are more commonplace
in the dataset at the considered magnitudes. The algorithm
in these cases is able to recognize these objects from the
training set so that they can be identified readily as stars.
It is worthwhile noting that a small percentage of the train-
ing set will include QSOs labeled as ’stars’ in our case, so a
further optimization could be possible by identifying these.
This result (good performance of CNN on 1D quasi-spectral
data for classification) is a true finding of this work, which
opens up possibilities only available to this kind of photo-
metric surveys, in which object types could be classified for
large sets of objects simultaneously.

5 RESULTS

5.1 Classification on the PAUS catalog

As explained in section 2, the PAUS catalog in the COSMOS
region contains 49,000 objects up to magnitude I = 23, from
which 7,000 are stars and 42,000 are galaxies. We will often
work with a subsample of objects brighter than I = 22.5, for
which the catalog contains 6,000 stars and 28,000 galaxies.
In section 4, we already noted that CNN is the best choice
for classifying stars and galaxies using band fluxes input,
and therefore we will use it by default in the rest of this work.

The PAUS catalog contains objects with negative
flux measurements. This may happen for sources with a
very low signal-to-noise in a given band and for which the
background has been overestimated. In these cases, it is not
possible to estimate a magnitude, and the corresponding
value in the catalog is set to a ’sentinel’ value of 99.0.
It is not possible to train the algorithm with random
measurements set to 99, thus we will use the PAUS fluxes
as inputs for the algorithm, as it works well despite the
negative flux counts.

The training sample employed to carry out the clas-
sification is composed of 20,000 objects up to magnitude
I = 22.5, 15,000 galaxies and 5,000 stars, whereas the

MNRAS 000, 1–12 (2018)



The PAU Survey: star-galaxy classification with multi narrow-band data 7

(a) ROC-AUC values for different training sizes. (b) ROC curves corresponding to different number of training

objects for the CNN.

Figure 2. (a) ROC-AUC scaling for different training sample sizes for the ANN, random forests and the CNN using PAUS data with
iauto < 22.5 and 40 NB inputs. The results plotted are those obtained on the validation sample. (b) ROC curve showing the scaling of

the CNN performance with the number of training objects

(a) ROC-AUC values for different number of inputs bands. (b) Algorithm performance dependency on input number of
bands.

Figure 3. (a) ROC-AUC scaling for different number of bands for the ANN, the RF and the CNN using PAUS data with iauto < 22.5
and 10,000 training objects. The results plotted are those obtained on the validation sample. (b) ROC curves showing the scaling with
the spectral resolution with the CNN algorithm.

(a) Galaxies. (b) Stars.

Figure 4. (a) Spectra of objects classified as galaxies with the CNN with probability ∼ 1. (b) Same for stars.

MNRAS 000, 1–12 (2018)



8 L. Cabayol et al.

Figure 5. Distribution of cnn stellarity for stars (blue) and
galaxies(red), both populations on the validation sample.

test sample contains 1,000 stars and 5,000 galaxies. The
algorithm outputs a probability of the object being either
a star or a galaxy, which we will call cnn stellarity. The
resulting ROC-AUC is 0.973 ± 0.001, leading to a purity of
99% for a completeness of 98% for objects brighter than
I = 22.5. This means that, the selected galaxy sample still
contains a 1% of stars contaminating it, while losing a 2%
of the original true galaxies of the sample.

Analyzing in more depth the classification of the PAUS
sample, Figure 5 shows the histogram of such output
probability. It exhibits two clearly differentiated peaks in
0 and 1, which correspond to stars and galaxies classified
without any ambiguity. For probabilities far from 0 or 1,
it presents some noisy measurements, coming mainly from
faint galaxies. Figure 6 shows the same information but as
a function of magnitude.

Figure 7 shows the performance of the algorithm for
training sets in three different magnitudes ranges: for I <
20.5, 20.5 < I < 22.5 and for I > 22.5. As expected, it shows
a degradation as the sample becomes fainter. Concretely, the
brighter range gives a ROC area of 0.991, worsening to 0.930
and 0.822, respectively. Training sizes have been fixed to
3,500 objects for the three cases as the number of objects is
limited by the smaller, brightest bin. Considering figure 2(b),
the performances could still improve with a larger training
set, specially for 20.5 < I < 22.5 and I > 22.5.

We can compare with morphological measurements on
the same dataset, so a SExtractor run was executed over
the same field to obtain the CLASS_STAR and SPREAD_MODEL

estimates of the shape of the object (see Sevilla-Noarbe et al.
(2018)). We used as an example the measurements in the
615 nm narrow band and compared with the CNN results
for a flux limited sample I < 22.5 adjusting both samples
to have the same signal to noise distributions. In Figure 8
we can see the advantages of using spectral information for
classification, versus the standard morphological approach.

Figure 6. Heatmap for cnn stellarity as as function of I magni-

tude, as measured by the HST-ACS on the COSMOS field.

Figure 7. ROC curve for star-galaxy classification on PAUS data
given different cuts on the magnitude. The results plotted are

those obtained on the validation sample.

Figure 8. ROC curves for star-galaxy classification in PAUS data

using CNN and SExtractor classifiers. ERR corresponds to the
SPREADERR_MODEL quantity from SExtractor. Both samples have

been selected to have similar signal to noise distributions.
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5.2 Classification on the ALHAMBRA catalog

The application of the algorithm on the ALHAMBRA
dataset should be useful to crosscheck the algorithm itself
and also to test its power against an alternative classifi-
cation scheme. The ALHAMBRA survey also performed
star-galaxy classification (Molino et al. 2014) assigning a
probability to every detection given its apparent geometry
(the Full With at Half Maximum (FWHM) from SExtrac-

tor, a synthetic F814W magnitude, and optical F489W -
F814W and near infrared (NIR) J-Ks colors). The authors
derived a probability distribution function (PDF) based
on the typical distribution of stars and galaxies for each
of the variables cited above. The final probabilities, the
star-galaxy classifier, are included in the catalogs as the
statistical variable ‘Stellar Flag’.

However, the ALHAMBRA images do not pro-
vide reliable morphological information for magnitudes
F814W > 22.5, therefore the classification scheme is only
applied up to this flux limit. For the rest of the catalog,
they assigned a probability of 0.5.

It is of interest to see if by applying our algorithm based
on low-resolution spectra on the ALHAMBRA catalog, we
are able to match the purity provided (or even improve it)
for objects brighter than I = 22.5. It is also of interest to see
whether the algorithm is also able to classify faint objects
for which ALHAMBRA did not provide any classification.

The ALHAMBRA catalog we are working with is
smaller than that of PAUS. It contains 36,000 objects in the
COSMOS region, from which, according to the COSMOS
catalog, 3,000 are stars and 33,000 are galaxies. As with
the PAUS catalog, in the ALHAMBRA catalog whenever a
source was not detected in a given band, its magnitude was
set to a ’sentinel’ value of 99. As was the case for the PAUS
catalog, it is not possible to train the CNN with random
band measurements of 99.0: a CNN algorithm cannot be
trained if the input contains gaps in some of the bands
and there are algorithms that can fill these with different
methods (mean value of the whole input, nearest neighbors,
etc.). To fill in the ALHAMBRA catalog, we have changed
the 99.0 with linearly interpolated magnitudes based on
its contiguous neighbors. To have reliable measurements to
test our method, we have only kept objects with 5 or less
non-detected bands.
We run the CNN on magnitudes this time, therefore also
checking the robustness of the code with a different range
of inputs.

The input features for the CNN are a total of 23
parameters distributed as follows: the 20 mid-band optical
magnitudes introduced as 19 colors, the 3 NIR broad bands
J,H,K magnitudes also included as 2 colors, the F814W
magnitude and the Full Width at Half Maximum (FWHM).

The sample of objects for which ALHAMBRA also
provided a classification (hence those with F814W < 22.5)
represents 20% of the objects, with 5,500 galaxies and
1,500 stars, in the complete ALHAMBRA Gold catalog.
Taking the COSMOS classification as the ’true’ value for

Figure 9. ROC AUC for the classification of the ALHAMBRA

validation sample for different set of input features. In blue, clas-
sification for a object’s sample with F814W < 22.5 in orange, with

F814W < 26.

classification (admitting some QSO contamination), the
ALHAMBRA classification obtains a ROC-AUC of 0.983.

Figure 9 shows the AUC-ROC of the classification
we have performed on objects brighter than 22.5 (blue)
and objects brighter than 26 (orange). There are different
performances, each of them corresponding to the addition of
new input features. Firstly, we have run the algorithm with
only the optical band information. Then, we have added
first the NIR information, then the F814W magnitude
and finally the FWHM. Each line corresponds to the
performance with a concrete CNN feature set. This way,
we can study how the algorithm scales as we add new
features. The curve shows that by means of only the optical
band information, the classification we get is similar to the
original ALHAMBRA classifier Stellar Flag.

The addition of the NIR data makes the most difference
and implies an important improvement in the classification
performance (the power of the addition of infrared bands
was already explored in (Banerji et al. 2015; Kovács
& Szapudi 2015; Sevilla-Noarbe et al. 2018)). The best
classification obtained is that with a ROC AUC of 0.99 cor-
responding to the performance with all the input features.
The FWHM seems to be improving the classification only
for fainter objects (orange line). However, it may be that the
brighter ones already have a classification rate too high to
be improved with an additional parameter. Table 2 contains
the ROC-AUC values for the classification with the different
input feature maps for both cases, brighter than 22.5 and 26.

As we did for PAUS (Figure 7), Figure 10 shows how
the classification scales with the objects’ magnitude. For
F814W < 22.5, we have already seen that the algorithm leads
to a high ROC-AUC. Figure 10 exhibits the performance of
the algorithm in different binned magnitude ranges and, as
expected, for magnitudes fainter than 22.5 the classification
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10 L. Cabayol et al.

Table 2. ROC-AUC values for the classification of stars and galaxies in the ALHAMBRA dataset for different input feature maps.
ALHAMBRA’s exhisting classification provides a ROC-AUC of 0.983.

Information used F814 <22.5 F814 <26

Optical Bands 0.980±0.003 0.901±0.001

Optical bands + NIR 0.987±0.002 0.918±0.006

Optical bands + NIR + F814 0.988±0.002 0.910±0.007

Optical bands + NIR + F814 + FWHM 0.989±0.002 0.927±0.004

Figure 10. ROC curves obtained in the ALHAMBRA for differ-

ent magnitude cuts.

performance degrades. Nevertheless, considering all objects
brighter than F814W < 26, we are able to get 97% purity
for completeness of 99%.

As it was mentioned above, ALHAMBRA provides
a classification for objects brighter than 22.5. For fainter
objects, it is common practice to consider every object
to be a galaxy. This is also a good approach as there are
relatively far fewer stars fainter than 22.5. In the catalog,
for F814W < 22.5 the misclassified stars represent a 3% of
the total dataset, meaning that one would have a 3% of
contamination without nearly any misclassified galaxy. In
the same magnitude range, we are able to obtain a purity
of 98%.
If we move to 22.5 < F814W < 23, considering all objects to
be galaxies implies, according to the COSMOS classifica-
tion, that the stellar contamination represents a 7.6% of the
total dataset. The CNN is able to achieve a purity of 98%,
therefore, we are able to improve this naive classification
scheme for this magnitude range.
For 23 < F814 < 24, the contamination of stars is also a 3.7%
of the total dataset, whereas the algorithm obtains a 97.5%
of purity. Finally, within 24 < F814 < 25, the contamination
of the samples is of a 2.2% whereas we get also a 98%
purity. Therefore, we are able to improve the ALHAMBRA
classification up to F814W < 25. For fainter objects on
the other hand, it is better to consider all sources as galaxies.

In order to further validate our algorithm, we have
tested on a different field, ALHAMBRA-2, corresponding

to DEEP2 observations (Newman et al. 2013) training on
ALHAMBRA-4 (COSMOS field). The reference catalog use
here comes from matching to Hubble Space Catalog space
imaging (Whitmore et al. 2016) making a cut on extend-
edness of 1.2, which separates cleanly the point-like ver-
sus extended sources. For objects with F814w < 22.5, the
cnn stellarity gives a ROC area of 0.943, while Stellar Flag
is 0.930.

6 CONCLUSIONS

Convolutional neural networks have proven to be a real
breakthrough in many fields, such as image pattern recog-
nition. We have shown here that they can be used as a
powerful object classification tool using the shape of low
resolution spectra from photometric data.

With such an algorithm, we have been able to classify
stars and galaxies from the PAU survey by means of
solely the object fluxes, without resorting to morphology,
which in absence of a deeper detection image, can degrade
significantly in the fainter end. This is done with a purity
and a completeness of 99% and 98%, as shown in Figure 7,
using the COSMOS field as our training and testing grounds.

These results demonstrate the power of both the PAUS
photometric quality, as the CNN is able to detect subtle
nuances in the spatial arrangement, such as characteristic
of stellar spectra or emission lines, and use them to differ-
entiate both populations.

In addition, using the same framework we have ex-
panded and improved the ALHAMBRA classification. This
survey also performed a star galaxy classification for objects
brighter than 22.5, using fluxes, color and morphology
as input features. We have applied our algorithm also to
their data with the same inputs, leading to a purity and
a completeness of 98% − 99%. Adding also the unclassified
fainter objects which contain the bulk of the catalog up
to magnitude 26 leads to a purity of 97% for a complete-
ness of 99% (nearly no misclassified galaxies). Under the
assumption that all sources fainter than 22.5 are galaxies,
we are able to improve the classification from objects with
F814W < 25. This classification for the ALHAMBRA Gold
catalog will be made available upon publication of this work.

The application of CNN in such a fashion, using it to
discover features in low-resolution spectra from this kind of
surveys, opens up the possibilities beyond star-galaxy clas-
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sification, such as for the identification of other families of
objects (e.g. adding a representative sample of quasars or
AGNs in multi-labeled classification) or photometric redshift
determination. This expands on their current astronomical
applications which up to now where mainly for image pro-
cessing and extraction of information from them directly.

An interesting avenue to explore is the comparison with
template fitting methods, which have not shown optimal re-
sults but might prevail over machine learning methods in
circumstances where the training set is poor (Fadely et al.
2012). Templates could additionally be used to augment the
training set and improve classification when a wider range
of labels is required.
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Kovács A., Szapudi I., 2015, MNRAS, 448, 1305

Kron R. G., 1980, ApJS, 43, 305

Laigle C., et al., 2016, The Astrophysical Journal Supplement

Series, 224, 24

Leauthaud A., et al., 2007, ApJS, 172, 219

Lecun Y., Bengio Y., Hinton G., 2015, Nature, 521, 436
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APPENDIX: THE ALHAMBRA CATALOG
EXTENSION WITH CNN CLASSIFICATION

As part of this work, we provide an additional column for
the ALHAMBRA Gold dataset for which we have computed
the stellarity value developed in this paper.

As training, we used the Leauthaud et al. (2007)
dataset overlapping with ALHAMBRA-4, and we
have updated the classification to cover objects up to
F814W < 26.5. The fields covered are from ALHAMBRA-2
to ALHAMBRA-8, in correspondence to DEEP-2, SDSS,
COSMOS, HDF-N, GROTH, ELAIS-N1 and SDSS, re-
spectively. The catalog with this classification is available
at http://cosmohub.pic.es. In Table 3 we provide the
value added catalog columns that are being provided (most
inherited from the original Gold catalog, for reference).

We only provide a classification for those objects with
all bands measured (20 optical, 3 NIR and F814W). For
those without, the class is set to a ’sentinel’ value of -1.

The catalog is constructed training and validating on
ALHAMBRA-4, in which ‘truth’ classification is obtained
from (Leauthaud et al. 2007), for those objects with the
24 bands measured. The training set counts with 13659
objects, whereas the validation set has 2096. Table 4 shows
the number of objects classified per field.

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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Table 3. Description of the fields shaping the ALHAMBRA catalog where we provide cnn stellarity.

FIELD Objects

ID ALHAMBRA’s objects unique identifier.

RA Right Ascension in decimal degrees.

DEC Declination in decimal degrees.

Stellar Flag ALHAMBRA’s Statistical STAR/GALAXY Discriminator (0:Pure-Galaxy,0.5:Unknown,1:Pure-Star)

F814W Isophotal magnitude [AB]

dF814W Isophotal magnitude uncertainty [AB]

cnn stellarity CNN star/galaxy discriminator probability: [0:Pure-Galaxy,1:Pure-Star]

Table 4. Number of objects for which we have provided a classi-
fication per ALHAMBRA field.

FIELD Objects

ALHAMBRA-2 25856

ALHAMBRA-3 27158

ALHAMBRA-4 14946

ALHAMBRA-5 15276

ALHAMBRA-6 27400

ALHAMBRA-7 26475

ALHAMBRA-8 27813

MNRAS 000, 1–12 (2018)


