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ABSTRACT

We analyse three public cosmic shear surveys; the Kilo-Degree Survey (KiDS-450), the Dark Energy Survey (DES-SV) and the
Canada France Hawaii Telescope Lensing Survey (CFHTLenS). Adopting the ‘COSEBIs’ statistic to cleanly and completely separate
the lensing E-modes from the non-lensing B-modes, we detect B-modes in KiDS-450 and CFHTLenS at the level of∼ 2.7σ. For DES-
SV we detect B-modes at the level of 2.8σ in a non-tomographic analysis, increasing to a 5.5σ B-mode detection in a tomographic
analysis. In order to understand the origin of these detected B-modes we measure the B-mode signature of a range of different
simulated systematics including PSF leakage, random but correlated PSF modelling errors, camera-based additive shear bias and
photometric redshift selection bias. We show that any correlation between photometric-noise and the relative orientation of the galaxy
to the point-spread-function leads to an ellipticity selection bias in tomographic analyses. This work therefore introduces a new
systematic for future lensing surveys to consider. We find that the B-modes in DES-SV appear similar to a superposition of the B-
mode signatures from all of the systematics simulated. The KiDS-450 and CFHTLenS B-mode measurements show features that are
consistent with a repeating additive shear bias.
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1. Introduction

Weak gravitational lensing is recognised as a powerful probe
of the large-scale structure of the Universe. Its reach, however,
will always be limited by the accuracy to which terrestrial and
astrophysical contaminating signals can be controlled. Known
sources of astrophysical systematics include the intrinsic align-
ment of neighbouring galaxies (see Joachimi et al. 2015, and ref-
erences therein) and the impact of baryon feedback when mod-
elling the non-linear matter power spectrum (Semboloni et al.
2011) as well as the more subtle effect of the clustering of
background ‘source’ galaxies (Schneider et al. 2002b). Known
sources of terrestrial systematics arise from residual distortions
resulting from uncertainty in the point-spread function (PSF)
model (Hoekstra 2004), biases in the adopted source redshift dis-
tributions (Hildebrandt et al. 2012), object selection bias (Hirata
& Seljak 2003), shear calibration bias (Heymans et al. 2006) and
detector-level effects (Massey et al. 2014; Antilogus et al. 2014).
As weak lensing surveys have grown in size, the list of known
sources of error has also grown, with accompanying mitigation
strategies (see Mandelbaum 2017). This progress is impressive,
but there will always be the possibility that hitherto unknown
sources are contaminating the cosmic shear signals that we ob-
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serve. In this paper we therefore explore the sensitivity of the
‘COSEBIs’ weak lensing statistic to blindly uncover a range of
different contaminating signals.

Complete Orthogonal Sets of E/B-Integrals, ‘COSEBIs’,
were defined by Schneider et al. (2010). They provide a complete
set of filter functions which cleanly separate a measured cos-
mic shear signal into its curl-free (E-mode) and divergence-free
(B-mode) distortion patterns over a finite angular range. Weak
lensing can only produce E-modes1, and as such any detected
B-modes in the measured cosmic shear signal will have a non-
lensing origin. The most popular statistic used in current cos-
mic shear analyses are the shear two-point correlation functions,
ξ±, (2PCFs) (Jee et al. 2016; Joudaki et al. 2017b; Hildebrandt
et al. 2017; Troxel et al. 2018b). As these direct measurements
of the cosmic shear signal mix E and B modes, other methods
are required in order to extract and identify any contaminating
non-lensing signal through its B-mode distortion pattern.

A range of different statistics exist to filter E/B-modes in
2PCFs, for example, aperture mass statistics (Schneider et al.

1 Contributions beyond the first-order Born approximation (Schneider
et al. 1998) and source clustering (Schneider et al. 2002b) can produce
insignificant levels of B-modes for the current generation of shear sur-
veys.
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2002a), ξE/B (Crittenden et al. 2002) and ring statistics (Schnei-
der & Kilbinger 2007). The aperture mass statistics and ξE/B
rely on knowing the 2PCFs at either very small angular sepa-
rations (where the galaxy images blend) or very large angular
scales, (beyond the surveyed area). Using these statistics there-
fore results in biased estimates of E/B-modes. For the aperture
mass statistic, the E/B-mode leakage is ∼ 10 percent for a typ-
ical case (Kilbinger et al. 2013). Both ring and aperture mass
statistics suffer from a loss of information due to their filtering
method.

Alternatives to real-space estimators decompose the cosmic
shear signal into its E and B-mode convergence power spectrum.
Quadratic estimators can be used (Köhlinger et al. 2016), but this
method is sensitive to the modelling of the noise and is also chal-
lenging to use to estimate the power at large Fourier modes due
to its computational speed (Köhlinger et al. 2017). Faster meth-
ods estimate ‘pseudo’ power spectra where in an ideal case the
E/B- power spectra can be easily separated. Unfortunately the
presence of masks mixes Fourier modes, and hence E/B-modes,
making this method sensitive to the modelling of the mask (As-
gari et al. 2018; Hikage et al. 2018) . Power spectra can also be
estimated from 2PCFs, if the 2PCFs are known over all scales.
In practice this is not feasible, hence the integrals over 2PCFs
are truncated, which can produce biases in the estimates (van
Uitert et al. 2018). Alternatives to band-power spectrum esti-
mation from 2PCFs have also been suggested (Becker & Rozo
2016), which attempt to minimize the information leakage from
the out-of-range angular scales.

In this paper we adopt the COSEBIs statistic as it is the only
method that can cleanly, without loss of information, separate E
and B-modes over a finite angular range from realistic lensing
survey data. They are also efficient as a small number of COSE-
BIs modes (∼ 5 per tomographic redshift bin) can essentially
capture the full cosmological information (Asgari et al. 2012).
With data compression, using linear combinations of the tomo-
graphic COSEBIs modes that are most sensitive to the parame-
ters to be estimated, the total number of data points can also be
significantly decreased (Asgari & Schneider 2015) . This com-
pression then makes the method less sensitive to the accuracy to
which the covariance matrix of the data can be estimated from
numerical simulations.

COSEBIs have been used to analyse the Canada-France-
Hawaii Telescope Lensing Survey (CFHTLenS, Kilbinger et al.
2013; Asgari et al. 2017), finding significant B-mode signals in
the tomographic analysis that were not detected by a range of
other systematic analyses (Heymans et al. 2012). The COSEBIs
statistic is therefore more sensitive and stringent in detecting B-
mode distortions. It is not immediately apparent, however, how a
COSEBIs B-mode detection can be used in order to uncover the
origin of the observed non-lensing distortions. In contrast, the
ξB and aperture mass statistics are rather intuitive. For example.
a peak in the measured B-mode at the angular scale of the CCD
chip can be readily associated with an issue on the chip-level. It
is also unclear how detected COSEBIs B-modes impact the cos-
mological parameters from the measured E-modes. For example,
is a significant high-order COSEBIs B-mode detection an issue,
when all the cosmological information is contained in the first
five COSEBIs E-modes?

By using a range of different simulated systematic errors and
analysing three public weak lensing surveys, this paper explores
how B-mode statistics can be used to diagnose data-related sys-
tematic errors as follows. We describe the COSEBIs, ξE/B and
compressed COSEBIs (CCOSEBIs) statistics as well as their co-
variance matrices in Sect. 2. In Sect. 3, we introduce the three

public weak lensing surveys that we analyse; the Kilo-Degree
Survey (KiDS-450, Hildebrandt et al. 2017), the science verifi-
cation data from the Dark Energy Survey (DES-SV, Dark En-
ergy Survey Collaboration et al. 2016) and CFHTLenS (Hey-
mans et al. 2013), presenting a full B-mode analysis of these
surveys in Sect. 4. We then use mock weak lensing surveys to
explore how the COSEBIs and ξE/B statistics respond to a range
of different observationally motivated systematics, introduced in
Sect. 5, with results presented in Sect. 6. We compare the results
for the mocks and real data in Sect. 7 and conclude in Sect. 8. In
Appendix A we discuss the biases that exist in published 2PCF
analyses that arise from the angular binning of the 2PCFs. We
also show how these biases can be mitigated. Appendix B deter-
mines the σ8−Ωm degeneracy direction for a CCOSEBIs analy-
sis of KiDS data. We discuss how to optimise B-mode null-tests
using differing selections of the data vector in Appendix C and
present supplementary material for the tomographic data analy-
sis in Appendix D.

2. Methods

The most familiar two-point statistics used in cosmic shear anal-
ysis are the shear two-point correlation functions, ξ±, which cor-
relate γt/×, the tangential and cross components of shear, of two
galaxies separated by an angle θ in the sky. They are defined as

ξ±(θ) = 〈γtγt〉(θ)± 〈γ×γ×〉(θ). (1)

In practice, galaxy ellipticities, ε, are measured with differing
accuracies, accounted for using weights, w. In this case, an un-
biased estimator for ξ± is given by

ξ̂±(θ) =
∑
ab wawb [εt(xxxa)εt(xxxb)± ε×(xxxa)ε×(xxxb)]∑

ab wawb
, (2)

where the sum goes over all galaxy pairs in an angular bin la-
belled as θ (see Appendix A for binning choices). wa is the
weight associated with the measured ellipticity at xxxa and εt/×
are the tangential and cross components of the measured elliptic-
ity (Schneider et al. 2002a). Here the ellipticity is defined such
that its expectation value is equal to the reduced shear, in ab-
sence of systematics (Schramm & Kayser 1995; Seitz & Schnei-
der 1997). If the ellipticity measurements require a multiplica-
tive correction, m (see for example Miller et al. 2013), then the
correlation functions may be calibrated by dividing them with
the following correction,

1 +K(θ) =
∑
ab wawb(1 +ma)(1 +mb)∑

ab wawb
. (3)

Theoretically the 2PCFs can be calculated through their re-
lation to the shear power spectrum, Pγ ,

ξ+(θ) =
∫ ∞

0

d` `
2π J0(`θ) Pγ(`) , (4)

ξ−(θ) =
∫ ∞

0

d` `
2π J4(`θ) Pγ(`) ,

where ` is the Fourier conjugate of θ and J0 and J4 are the or-
dinary Bessel functions of zeroth and fourth order. The shear
power spectrum is in turn related to the three-dimensional mat-
ter power spectrum. This relation can be simplified assuming
a flat-sky and Limber approximation (Kaiser 1998), although,
these approximations start to fail for small `-modes. Various ap-
proximations and corrections are investigated in Kilbinger et al.
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(2017). Their "hybrid" case which is used in most of the recent
cosmic shear data analysis (see also Loverde & Afshordi 2008),
can be written for redshift bins i and j as follows,

P ijγ (`) = 9H4
0 Ω2

m
4c4

∫ χh

0
dχ g

i(χ)gj(χ)
a2 Pδ

(
`+ 1/2
fK(χ) , χ

)
,

(5)

where H0 is the Hubble constant, Ωm is the matter density pa-
rameter, c is the speed of light in vacuum, a is the scale factor
normalized to one at the present, Pδ is the 3D matter power spec-
trum and χ is the comoving radial coordinate. The geometric
factor for redshift bin i, gi(χ), is given by

gi(χ) =
∫ χh

χ

dχ′ piχ(χ′) fK(χ′ − χ)
fK(χ′) , (6)

where χh is the comoving horizon scale, piχ(χ) is the probability
density of sources in comoving distance for redshift bin i and
fK(χ) is the comoving angular diameter distance, which is equal
to χ for a Universe with flat spatial geometry.

When we compare the theory and the estimated ξ±, it is im-
portant to treat them in the same way. As we usually compress
the data by binning ξ± into broad θ-bins, we should apply the
same binning to the theory, to take the functional form of the
2PCFs over the angular bin into account. Additionally, there are
more galaxy pairs with a larger angular separation, which bi-
ases the binned data towards 2PCFs values for larger θ. In Ap-
pendix A we calculate the biases introduced by binning 2PCFs
data, showing that using a point estimate for the expected values
of ξ± can produce biases of up to ±10% for the angular range
and binning adopted in Hildebrandt et al. (2017) and Troxel et al.
(2018a).

2.1. E/B-mode 2PCFs

In practice we need to modify the relation between the 2PCFs
and shear power spectrum in Eq. 4, to accommodate any B-mode
power spectra that may exist in the data,

ξ+(θ) =
∫ ∞

0

d` `
2π J0(θ`)[PE(`) + PB(`)] , (7)

ξ−(θ) =
∫ ∞

0

d` `
2π J4(θ`)[PE(`)− PB(`)] ,

where2 Pγ(`) = PE(`) and PB(`) is the B-mode power spec-
trum.

The correlation functions, ξ±, can be separated into E/B-
modes following Crittenden et al. (2002) and Schneider et al.
(2002b), where

ξE = ξ+(θ) + ξ′(θ)
2 and ξB = ξ+(θ)− ξ′(θ)

2 , (8)

with

ξ′(θ) = ξ−(θ) + 4
∫ ∞
θ

dϑ
ϑ
ξ−(ϑ)− 12θ2

∫ ∞
θ

dϑ
ϑ3 ξ−(ϑ) . (9)

The above definition makes ξE/B pure E/B-modes and hence we
can write

ξE(θ) =
∫ ∞

0

d` `
2π J0(θ`)PE(`) , (10)

ξB(θ) =
∫ ∞

0

d` `
2π J0(θ`)PB(`) .

2 neglecting small contributions from source clustering and higher or-
der effects

From equations 7, 8 and 10 we can immediately see that for a
B-mode free case ξE = ξ+(θ).

In Schneider et al. (2002b), ξE/B(θ) is denoted ξE+/B+(θ) as
they also provide an alternative definition for E/B two point cor-
relation functions, ξE−/B−(θ), in terms of integrals over ξ+(ϑ).
In that case the integrals are taken from ϑ = 0 up to ϑ = θ,
instead. Although in both cases the integral is taken over a range
of angular separations that are not observable, it is preferable to
use equation 8 since, at least for a B-mode free case, ξ−(θ)/θ is
very small for large θ (ξ−(θ) ∝ θ−3 at large scales). In this case
we can truncate the integrals in equation 9 without needing to
extrapolate to infinitely large ϑ. However, we may lose some B-
mode information by this truncation, as there is no guarantee that
the B-mode signal is negligible for large angular scales. One way
to extend the integral to large angular scales that are not avail-
able in the data is to use the theoretical value of ξ−(θ) for these
angular ranges. In this paper we use measurements over an an-
gular range of [0.5′, 300′] and a theoretical ξ−(θ) from θ = 300′
out to θ = 1000′. We find that this correction has less than 5%
effect on the largest angular bin (used in KiDS-450) centred at
50′ and drops to subpercent level for θ . 20′.

2.2. COSEBIs

COSEBIs (Complete Orthogonal Sets of E/B-Integrals) modes
live neither in Fourier nor real space. The filter functions for
COSEBIs form sets of basis functions which transform 2PCFs
and shear power spectra to the COSEBIs modes. The two sets of
COSEBIs basis functions are the Lin- and Log-COSEBIs filters,
which are written in terms of polynomials in ϑ and ln(ϑ) in real
space, respectively. In this analysis we use the Log-COSEBIs, as
they require fewer modes compared to the Lin-COSEBIs to cap-
ture essentially all the cosmological information (see Schneider
et al. 2010 for a single redshift bin and Asgari et al. 2012 for the
tomographic case).

The COSEBIs can be written in terms of the 2PCFs as

E(ij)
n = 1

2

∫ θmax

θmin

dϑϑ [T+n(ϑ) ξ(ij)
+ (ϑ) + T−n(ϑ) ξ(ij)

− (ϑ)] ,

(11)

B(ij)
n = 1

2

∫ θmax

θmin

dϑϑ [T+n(ϑ) ξ(ij)
+ (ϑ)− T−n(ϑ) ξ(ij)

− (ϑ)] ,

(12)

where E
(ij)
n and B

(ij)
n are the E and B-mode COSEBIs for

redshift bins i and j, and n, a natural number, is the order of
the COSEBIs modes. T±n(ϑ) are the COSEBIs filter functions,
(given in equations 28 to 37 in Schneider et al. 2010). These are
oscillatory functions with n+1 roots in their range of support, as
shown in Fig. 1. The COSEBIs modes with larger n values are
therefore more sensitive to small-scale variations in the shear
2PCFs, while the modes with small n are sensitive to large-scale
variations.

The E/B-COSEBIs can also be expressed as a function of the
convergence power spectra,

E(ij)
n =

∫ ∞
0

d` `
2π P

(ij)
E (`)Wn(`) , (13)

B(ij)
n =

∫ ∞
0

d` `
2π P

(ij)
B (`)Wn(`) ,
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Fig. 1. Log-COSEBIs filter functions, T±n(θ). These filter functions
convert ξ± to COSEBIs E and B modes through equations 11 and 12.
We show four example n-modes for each filter for the angular separa-
tion range of [0.5′, 100′]. By definition T±n(θ) are equal to zero outside
of the range of their support.

where P (ij)
E(B) are the E(B)-mode convergence power spectra and

the Wn(`) are the Hankel transforms of T±n(ϑ),

Wn(`) =
∫ ϑmax

ϑmin

dϑ ϑ T+n(ϑ)J0(`ϑ) ,

=
∫ ϑmax

ϑmin

dϑ ϑ T−n(ϑ)J4(`ϑ) . (14)

Figure 2 shows the Wn(`) functions corresponding to the
T±n(θ) filters shown in Fig. 1. The first peak in Wn(`) is set
by the value of ϑmax and n. As can be seen, the higher orderWn

pick up more power from larger `. We use Eq. 13 to calculate the
theoretical value of the E-mode COSEBIs as theories, in general,
give their predictions in terms of the power spectrum. However,
in practice the shear 2PCFs are more straightforward to mea-
sure from data, hence Eq. 11 and Eq. 12 are used to calculate
the E/B-mode COSEBIs from data and simulations. To evaluate
these integrals in the angular range of [0.5′, 100′] we use 4×105

linear angular bins (see Asgari et al. 2017, for a discussion on
optimising the number of bins for this type of analysis).

2.3. CCOSEBIs

We use the data compression method of Asgari & Schneider
(2015) to explore the effect of systematics on cosmological pa-
rameter estimation, as this method is informed by the sensitivity
of the data to the parameters. This method, which can be applied

102 103 104
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W
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Fig. 2. Log-COSEBIs weight functions, Wn(`), normalized to their
maximum value. These weight functions convert E and B shear power
spectra to COSEBIs modes through equation 13. Four example n-
modes are shown for the angular range of [0.5′, 100′].

to any statistic, reduces the number of data points, which is im-
portant to minimise errors when estimating covariance matrices
from simulations (see Hartlap et al. 2007, for example).

To compress COSEBIs we need to have an estimate for their
inverse covariance matrix (see Sect. 2.4), as well as their first
and second-order derivatives with respect to the parameters to be
measured. We then linearly combine the COSEBIs modes using
the sensitivity of each mode to the given parameter(s) as their
coefficient. For the first-order compressed E-COSEBIs we have,

Ec
µ =

nmax∑
n,m=1

∂Em
∂µ

(C−1)mnEn , (15)

where µ is a cosmological parameter, C−1 is the inverse covari-
ance matrix of En and nmax is the number of COSEBIs modes
considered in the compression. This first order compression is
equivalent to a Karhunen-Loeve compression where the covari-
ance matrix is known (see Tegmark et al. 1997, for example),
but using the first order compression alone can result in a loss of
information when the covariance matrix estimate is inaccurate.
We therefore follow Asgari & Schneider (2015) by adding the
following second-order compressed quantities to the data,

Ec
µν =

nmax∑
n,m=1

∂2Em
∂µ∂ν

(C−1)mnEn , (16)

where ν is a second cosmological parameter and second order
derivatives of En are taken. In short, we can write both first and
second-order CCOSEBIs as the following matrix equation,

Ec = ΓE and Bc = ΓB , (17)

where the elements of the compression matrix, Γ, are formed
from combinations of the derivatives of En with respect to the
parameters and their inverse covariance matrix.

2.4. Covariance matrix

To quantify the significance of the B-modes measured from the
data or in the simulations, we need to know the covariance matrix
of the data vector. Aside from currently negligible physical ef-
fects that can produce B-modes (discussed in Sect. 1) and in the
absence of systematics, we expect any observed B-modes to be
consistent with random noise arising from galaxy shape-noise.
Therefore, to calculate the B-mode covariance, we assume that
they are only due to noise and find the covariance matrix for each
of the above statistics.
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Assuming a field of galaxies with ellipticities randomly
picked from a Gaussian with zero mean and σ2

ε variance, we can
write the covariance of the 2PCF as

〈ξij,noise
± (θ)ξkl,noise

± (ϑ)〉 = σ4
ε

2N ij
pair(θ)

δθϑ[δikδjl + δilδjk] ,

(18)

where N ij
pair(θ) is the number of galaxy pairs, in redshift bin

pair ij, within an angular separation bin with the label θ. The
Kronecker symbols, δij and δθϑ, are equal to unity if their argu-
ments are equal and are otherwise zero (for example see Eq. 34
in Joachimi et al. 2008).

An approximation for Npair(θ) can be determined by calcu-
lating the number of pairs in an infinite field, scaled by the true
finite field area, A, where

N ij
pair(θ)approx = 2πAθ∆θ n̄igaln̄

j
gal , (19)

and n̄igal is the mean number density of galaxies in redshift bin
i. This approximation fails, however, as it does not account for
intricate small-scale survey geometry, source clustering or any
variable depth effects. Furthermore, as we get closer to the field
size, it does not account for the pairs of galaxies which are lost
due to the discontinuities in the observed field (see for exam-
ple Joachimi et al. 2008). As the significance of any measured
B-modes is determined entirely by the shot-noise, we therefore
choose to use a direct measurement of Npair(θ) from the data.
We follow the method of Schneider et al. (2002a), who deter-
mine the full covariance matrix for 2PCFs for a weighted ellip-
ticity field, to find the shape-noise-only term of the covariance
matrix, with the number of galaxy pairs given as

Npair(θ) =
(
∑
ab wawb)2∑
ab w

2
aw

2
b

. (20)

Here the sums are over galaxies in the given angular separation
bin. Determining Npair from Eq. (20) instead of the approxima-
tion in Eq. (19), enlarges the covariance at large scales where
there are fewer pairs of galaxies due to geometry effects. On
small scales where variable depth and source clustering become
important, the covariance is decreased.

Inserting Eq. (18) into the following expression for the
COSEBIs covariance (Schneider et al. 2010)

Cij,klmn = 1
4

∫ θmax

θmin

dθ θ
∫ θmax

θmin

dθ′ θ′ (21)

×
∑

µν=+,−
Tµm(θ)Tνn(θ′)Cij,klµν (θ, θ′) ,

where C±±(θ, θ′) is the covariance of ξ±, we find the B-mode
covariance for COSEBIs,

Cij,klmn = σ4
ε

8

∫ θmax

θmin

dθ θ
∫ θmax

θmin

dθ′ θ′

nijpair(θ′)
[δikδjl + δilδjk] (22)

× δD(θ − θ′)[T+m(θ)T+n(θ′) + T−m(θ)T−n(θ′)] ,

where nijpair(θ) dθ = N ij
pair(θ), δD is the Dirac delta function and

we have used δθθ′ = δD(θ − θ′) ∆θ to remove the Kronecker
symbol. Taking the inner integral in Eq. (22) results in,

Cij,klmn = σ4
ε

8 [δikδjl + δilδjk]
∫ θmax

θmin

dθ θ2

nijpair(θ)
(23)

× [T+m(θ)T+n(θ) + T−m(θ)T−n(θ)] .

We calculate the COSEBIs B-mode covariance using trapezoidal
integration with fine θ-bins and verified that these equations ac-
curately predict the noise-only covariance, by analysing a series
of shape-noise-only mock simulations.

The corresponding covariance for CCOSEBIs is simply
equal to the COSEBIs covariance sandwiched between two com-
pression matrices,

Cc = ΓCΓt , (24)

where t denotes a transposed matrix3.
The covariance matrix of ξB can also be calculated from

Eq. (18),

〈ξijB (θ)ξklB (ϑ)〉 = σ4
ε

4N ij
pair(θ)

δθϑ[δikδjl + δilδjk] . (25)

Note that the only difference between Eqs. (25) and (18) is a fac-
tor of 2, which arises from the fact that ξ± depends on both E/B-
modes and their associated noise, while ξE/B only depends on a
single component, as can be seen in Eqs. (10) and (7). As a re-
sult, ξE/B is only sensitive to the noise components that resem-
ble E/B-modes. The power spectrum of the noise can be equally
divided into an E-mode and a B-mode component, and as such
the noise covariance for ξE/B is half the amplitude of the corre-
sponding covariance for 2PCFs.

In addition to B-modes, we show E-mode measurements for
the data with error bars calculated assuming Gaussian covari-
ances. We choose not to include the non-Gaussian and super
sample terms in the error calculation which primarily affect the
off-diagonal terms of the covariance matrix4. As we do not anal-
yse the E-modes in a quantitative way in this study, and use
the E-mode covariances solely for plotting purposes, our cho-
sen Gaussian treatment of the covariance is sufficient. We can
write the Gaussian covariance for the E-modes in terms of three
contributors,

C = Cosmic variance + Mixed + Noise, (26)

where the Mixed term depends on both cosmology and noise.
The Noise term here is estimated in the same manner as the
B-modes covariance, (Eqs. 23 to 25), taking all the survey ef-
fects into account. For the other two contributions, however,
we assume a simple survey geometry and follow Eqs. (53) and
(54) in Joachimi et al. (2008) for the covariance of power spec-
tra and correlation functions5, respectively. The Gaussian mixed
and cosmic variance terms for COSEBIs covariance are given in
equation 11 in Asgari et al. (2012) for the tomographic case.

3. Data

We use three sets of cosmic shear catalogues that are in the pub-
lic domain, KiDS-450, DES-SV and CFHTLenS. Our focus in
this paper is the analysis of their B-mode signal, but we also
compare the corresponding measured E-mode signals to theoret-
ical predictions, based on the published best fitting cosmological
3 The transpose is applied to the right hand Γ, since Γ is a matrix with
p, the number of cosmological parameters, rows and nmax columns.
4 Semboloni et al. (2007) find the transition between the Gaussian and
non-Gaussian terms occurs at θ ∼ 20′. At this scale the cosmic variance
and mixed term roughly double the size of the error bars. At θ ∼ 1′ the
non-Gaussian term is an order of magnitude larger than the Gaussian
cosmic variance term, but as the noise term is dominant here the effect
of the non-Gaussian term on the error bars is only ∼ 10%.
5 These two terms are the same for ξ+ and ξE.
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Table 1. The published best-fitting cosmological parameters for the sur-
veys (KiDS-450, CFHTLenS and DES-SV: Hildebrandt et al. 2017;
Heymans et al. 2013; Abbott et al. 2016), and the simulation (SLICS,
Harnois-Déraps et al. 2018), that we use in this paper. σ8 is the standard
deviation of perturbations in a sphere of radius 8h−1Mpc today. ns is
the spectral index of the primordial power spectrum. Ωm and Ωb are the
matter and baryon density parameters, respectively and h is the dimen-
sionless Hubble parameter. The underlying cosmology for all cases is
a flat ΛCDM model with Gaussian initial perturbations. The final col-
umn showsAIA, the amplitude of the intrinsic galaxy alignment model.
DES-SV best-fit parameters are provided by Joe Zuntz.

σ8 Ωm ns h Ωb AIA
KiDS-450 0.849 0.2478 1.09 0.747 0.0400 1.1

CFHTLenS 0.794 0.255 0.967 0.717 0.0437 −1.18
DES-SV 0.745 0.378 0.96 0.405 0.0440 2.07
SLICS 0.826 0.2905 0.969 0.6898 0.0473 0

parameters from each survey, as given in Table 1. This allows for
the level of B-modes to be assessed, relative to the E-modes, but
we leave a full E-mode cosmological parameter analysis to a fu-
ture paper.

The theoretical predictions are calculated using COSMOSIS
(Zuntz et al. 2015)6 with linear matter power spectra calculated
with CAMB (Lewis et al. 2000; Howlett et al. 2012)7. Takahashi
et al. (2012) is used to model the nonlinear evolution of the mat-
ter power spectrum. A Limber approximation is employed to es-
timate the lensing power spectrum as described in Sect. 2. For
the intrinsic alignment of galaxies we adopt the non-linear model
from Bridle & King (2007)8, which is equivalent to the models
used in the analysis of all three surveys. The 2PCFs are mea-
sured from the data and the simulations using ATHENA9 (Kil-
binger et al. 2014).

CFHTLenS

Heymans et al. (2012) present the Canada-France Hawaii Tele-
scope Lensing Survey (CFHTLenS), a completed survey with
154 square degrees of observed data in 5 photometric bands.
The public data products that we analyse here are processed
by THELI (Erben et al. 2013), with galaxy ellipticities mea-
sured using lensfit (Miller et al. 2013) and photometric redshifts
determined using the Bayesian photometric redshift code BPZ
(Benítez 2000; Hildebrandt et al. 2012).

The 2PCFs cosmic shear analysis for CFHTLenS is pre-
sented in Kilbinger et al. (2013) and Heymans et al. (2013). As
summarised in Kilbinger et al. (2017), however, several improve-
ments have been recognised since these publications, in partic-
ular with respect to the calibration of the photometric redshifts
(see for example Choi et al. 2016; Joudaki et al. 2017a) and the
shear measurements (see Kuijken et al. 2015; Fenech Conti et al.
2017). The resulting uncertainty in these calibrations will im-
pact the E-mode cosmological parameter constraints from this
survey. As our focus is on a B-mode analysis however, which is
independent of these calibration corrections, we choose to use
the redshift distributions and calibration corrections adopted by
Heymans et al. (2013) for this study.

We follow Heymans et al. (2013) by dividing the data into six
photometric redshift bins: z1 ∈ (0.2, 0.39], z2 ∈ (0.39, 0.58],
z3 ∈ (0.58, 0.72], z4 ∈ (0.72, 0.86], z5 ∈ (0.86, 1.02] and

6 COSMOSIS: bitbucket.org/joezuntz/cosmosis
7 CAMB: http://camb.info
8 bk_corrected in COSMOSIS
9 ATHENA: www.cosmostat.org/software/athena

z6 ∈ (1.02, 1.3], also including a single bin case that uses the
full range of z ∈ (0.2, 1.3]. In Asgari et al. (2017), we anal-
ysed CFHTLenS using COSEBIs to find a significant level of
B-modes. We extend this analysis to explore higher modes in
COSEBIs, in addition to ξE/B, and we use an exact noise covari-
ance (Eq. 20) in contrast to our earlier work which used Eq. (19).

KiDS-450

The Kilo-Degree Survey (KiDS) will collect 1350 square de-
grees and in combination with VIKING (VISTA Kilo-degree
Infrared Galaxy survey) will present data in nine photometric
bands (see Kuijken et al. 2015 and de Jong et al. 2017). We anal-
yse the data products released for the first 450 square degrees
(KiDS-450), that has been processed by THELI (Erben et al.
2013) and Astro-WISE (Begeman et al. 2013). Galaxy elliptici-
ties are measured with lensfit (Miller et al. 2013) and calibrated
using the image simulations described in Fenech Conti et al.
(2017). The 4-band photometric redshifts are calibrated using
external overlapping spectroscopic surveys (Hildebrandt et al.
2017) and galaxies are binned into tomographic bins using BPZ.

The KiDS-450 2PCFs cosmic shear analysis is shown in
Hildebrandt et al. (2017) and Joudaki et al. (2017b, 2018), with
complementary cosmic shear power spectrum analyses calcu-
lated using quadratic estimators in Köhlinger et al. (2017), and
integrals over 2PCFs in van Uitert et al. (2018). All these anal-
yses reported significant but low-level traces of B-modes in the
data.

As in the KiDS-450 cosmic shear analyses we divide the
data into four photometric redshift bins: z1 ∈ (0.1, 0.3], z2 ∈
(0.3, 0.5], z3 ∈ (0.5, 0.7] and z4 ∈ (0.7, 0.9], including a single
bin case that uses the full range of z ∈ (0.1, 0.9].

DES-SV

The Dark Energy Survey Collaboration (2005) introduce the
Dark Energy Survey (DES) project which will produce 5000
square degrees of gravitational lensing data in five bands. The
science verification data also known as DES-SV 10 is the public
dataset that we analyse here. The galaxy ellipticities in DES-
SV are measured using NGMIX (Jarvis et al. 2016) and photo-
metric redshifts are determined using a machine learning-based
pipeline, SKYNET (Bonnett et al. 2016).

Becker et al. (2016) present the primary cosmic shear analy-
sis of the DES-SV data using 2PCFs along with cosmic shear
power spectrum measurements (also see Troxel et al. 2018b,
for the analysis of the first 1300 square degrees of DES data).
Fourier space B-mode measurements detected no significant B-
modes on scales ` < 2500.

We divide the data into three photometric redshift bins fol-
lowing Becker et al. (2016): z1 ∈ (0.3, 0.55), z2 ∈ (0.55, 0.83)
and z3 ∈ (0.83, 1.3) and also consider a single bin case that uses
the full range of z ∈ (0.3, 1.3). In order to compare our mea-
sured E-mode signal to the published best-fitting cosmological
parameters, listed in Table 1, we also take into consideration the
best-fitting DES-SV shear calibration and photometric redshift
biases in our predictions, which Abbott et al. (2016) include as
nuisance parameters in their fit. For our single bin analysis of
DES-SV data we adopt zero bias for the photometric redshift and
the same value as the first tomographic bin for the shear calibra-
tion bias, which is similar to the average of the biases measured
for the three bins (see Table D.1 in Appendix D).

10 DES-SV: http://des.ncsa.illinois.edu/releases/sva1
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4. Results: Survey E/B-modes

In this section we present the measured COSEBIs, CCOSEBIs
and ξE/B for KiDS-450, DES-SV and CFHTLenS. In Fig. 3 we
show the COSEBIs measurement for a single redshift bin en-
compassing the full range of redshifts adopted by each survey.
For the COSEBIs statistics we need to choose an angular range
and throughout this paper we show results for three sets of an-
gular ranges: the full angular range: [0.5′, 100′], large scales:
[40′, 100′] and small scales: [0.5′, 40′]. These were chosen to
span both the survey-adopted ξ+(θ) angular ranges: KiDS-450
(0.5′ < θ+ < 72′), DES-SV (2′ . θ+ . 60′), CFHTLenS
(1.5′ < θ+ < 35′), whilst also probing some of the larger an-
gular scales used in the corresponding ξ−(θ) analysis: KiDS-
450 (8.6′ < θ− < 300′), DES-SV (24.5′ . θ− . 245.5′) and
CFHTLenS (1.5′ < θ− < 35′). The large scale cut for ξ+(θ) is
generally employed to avoid biasing the results, when a constant
additive bias term (c-term) is present in the shear catalogues. The
same large scale angular-cut is not applied to ξ−(θ), since this
statistic is not sensitive to a constant c-term. COSEBIs share this
insensitivity with ξ−(θ) and hence any measured COSEBIs B-
modes that use scales beyond the maximum θ+ range are not a
result of a constant c-term.

Each row in Fig. 3 corresponds to one angular range, as de-
noted in the right panels, with E-modes on the left and B-modes
on the right. The different symbols show the results for DES-SV
(squares), KiDS-450 (stars) and CFHTLenS (triangles). Over-
laid are the theoretical predictions, given the published best-
fitting survey cosmological parameters from Table 1. We show
these E-mode predictions as curves for ease of comparison,
even though the COSEBIs modes are discrete. As the COSEBIs
modes are correlated to their neighbouring modes (see Asgari
et al. 2012, 2017, for plots of the covariance matrices), we cau-
tion that the goodness-of-fit to the model should not be deduced
by simply looking at the graphs, a practice commonly known as
‘χ-by-eye’. Any goodness-of-fit exercise must take into account
the significant correlations between the points.

Focusing first on the E-mode measurements (left panels of
Fig. 3) we expect to measure signal in the lower n-modes and
none for the modes n & 8, as seen in the theoretical predic-
tions. This arises from the fact that both the 2PCFs and shear
power spectrum are relatively smooth functions with a few fea-
tures that are captured, almost entirely, by the first few COSEBIs
modes. Any significant detection of high-order COSEBIs modes
indicates high-frequency variations in the 2PCFs, which are un-
expected in a ΛCDM cosmology and therefore indicative of sys-
tematics. We remind the reader that our E-mode errors, which
include both sampling variance assuming a Gaussian shear field
and shot noise, will be slightly underestimated as we have not
included the sub-dominant super sample and non-Gaussian con-
tributions to the sampling variance terms (see Sect. 2.4).

Turning to the B-mode measurements (right panels of Fig. 3),
we determine the significance of the measured B-modes using
‘p-values’, for each dataset and angular range, listed in Table 2.
The p-value is equal to the probability of randomly producing
a B-mode that is equally or more significant than the measured
B-mode signal, given the model that B-modes are equal to zero
and their distribution is Gaussian (see Appendix C for the math-
ematical definition of p-value). This model is appropriate for
B-modes generated from random noise. The p-values take into
account the correlations between the COSEBIs modes. Our er-
ror analysis for the B-modes is accurate, taking into account the
weighted number of galaxy pairs in each dataset. We consider
the B-modes to be significant when the measured p-values are

Table 2. The probability of zero B-mode contamination for each survey,
given the measured COSEBIs B-modes. Results are tabulated for three
different angular ranges, including the tomographic and broad single
redshift bin analysis. All p-values that are smaller than 0.01 are shown
in bold, corresponding to a greater than 2.3σ B-mode detection.

[0.5′, 40′] [0.5′, 100′] [40′, 100′]
DES-SV, Single bin 0.049 2.6 × 10−3 0.026
DES-SV, Tomography 9.9 × 10−7 1.5 × 10−8 3.8 × 10−5

KiDS-450, Single bin 0.40 0.12 0.55
KiDS-450, Tomography 0.94 0.61 0.77
CFHTLenS, Single bin 0.63 0.61 0.58
CFHTLenS, Tomography 2.5 × 10−3 0.047 0.037

Table 3. Same as Table 2 but for CCOSEBIs.

[0.5′, 40′] [0.5′, 100′] [40′, 100′]
DES-SV, Single bin 3.3 × 10−3 1.1 × 10−3 0.17
DES-SV, Tomography 0.029 0.014 2.6 × 10−3

KiDS-450, Single bin 4.8 × 10−3 3.0 × 10−3 0.56
KiDS-450, Tomography 0.013 3.3 × 10−3 0.51
CFHTLenS, Single bin 0.62 0.55 0.068
CFHTLenS, Tomography 0.70 0.90 0.026

p < 0.01 (highlighted in bold), corresponding to greater than
2.3σ detection of B-modes. We find that the B-modes of KiDS-
450 and CFHTLenS are consistent with zero, finding p > 0.1
in all cases. DES-SV, however, shows significant 2.8σ B-modes
with p = 0.0026, when the full angular range is considered.

In Table 2 we also list the significance of the measured
COSEBIs B-modes for a tomographic analysis of the three
angular ranges, using the survey-defined photometric redshift
bins (see Sect. 3). The COSEBIs tomographic measurements for
each survey, adopting the full angular range, are shown in Ap-
pendix D. For all angular ranges, we find no significant COSE-
BIs B-modes for KiDS-450. In contrast, for DES-SV data we
find a 4.0σ detection of B-modes for the large-scale angular
range that includes angular scales used in the DES-SV cosmic
shear analysis. For the full angular range, including small-scale
information that was excluded from the DES-SV cosmic shear
analysis, the significance of the detection increases to 5.5σ. For
CFHTLenS we find a significant B-mode detection for small
scales, but not at large scales. This result is in contrast to As-
gari et al. (2017) who found significant CFHTLenS B-modes for
large, but not small scales. We do however recover this result
if we limit our p-value analysis to the first 7 COSEBIs modes
adopted by Asgari et al. (2017). This demonstrates that the p-
values are sensitive to the choice of modes considered in the
analysis, motivating the study of how different systematics im-
pact different COSEBIs modes in Sect. 6.

In Fig. 4 we show the measured compressed COSEBIs,
where the COSEBIs modes are combined to produce a set of
E-mode CCOSEBIs that, in a systematic-free dataset, are only
sensitive to cosmological parameters (Eq. 17). We compress the
B-mode COSEBIs using the same compression matrix. Cos-
mic shear is mainly sensitive to a combination of σ8 and Ωm,
hence we choose these two parameters to form the CCOSEBIs
modes. The CCOSEBIs modes are highly correlated as σ8 and
Ωm are degenerate in cosmic shear data, and we hence caution
the reader, again, against a ‘χ-by-eye’ analysis.

Fig. 4 shows the results for a single-bin analysis (left) and a
tomographic analysis (right) for the three sets of angular ranges
indicated in the right panels. The E-modes are shown as open
symbols and the B-modes as filled symbols for DES-SV, KiDS-
450 and CFHTLenS. Overlaid is the theoretical expectation for
the E-mode signal, shown as curves for visual aid even though
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Fig. 3. COSEBIs E-modes (left) and B-modes (right) for a single broad redshift bin. Results for DES-SV are shown with blue squares, KiDS-450
with black stars and CFHTLenS with magenta triangles. The angular ranges are shown for each row in the upper right corner. In addition, the
significance of the B-modes is shown as p-values for each survey and angular range. E-mode predictions are calculated using the best fitting
cosmological parameter values given in Table 1 for DES-SV (solid), KiDS-450 (dashed) and CFHTLenS (dotted). Note that COSEBIs modes are
discrete and the theory values are connected to each other only as a visual aid. A zero-line is also shown for reference.

the CCOSEBIs modes are discrete. The horizontal axis shows
which parameter (for the first-order modes) or two parameters
(for the second-order modes) the CCOSEBIs mode is sensitive
to. We highlight that CCOSEBIs represent a significant data
compression, particularly in the tomographic case where, for ex-
ample, we compress the 3-bin 120 data-point DES-SV analysis,
and the 6-bin 420 data point CFHTLenS analysis, down to the
same 5 CCOSEBIs modes.

Comparing the measured E-modes with the level of B-modes
in Fig. 4 we find that, aside from the largest angular range that
also has the lowest signal-to-noise ratio, the E-modes are about
an order of magnitude larger than the B-modes. In all panels we
see that the KiDS-450 E-mode signal is lower than DES-SV and
CFHTLenS, resulting from a smaller upper photometric redshift
cut of zphot < 0.9 in this dataset.

Table 3 shows the p-values for CCOSEBIs B-modes. The
significance of the B-modes is different from the values shown
in Table 2, where we have used the first 20 COSEBIs modes to

measure the p-values. This apparent inconsistency is not unex-
pected, as the bulk of the CCOSEBIs signal comes from the first
few COSEBIs modes, which contain the cosmological signal and
different levels of systematics in comparison to the full set of
20 COSEBIs modes. A good example of this difference comes
in the tomographic analysis of DES-SV where we find a sig-
nificant ∼ 5.5σ non-zero B-mode signal for COSEBIs, but the
CCOSEBI B-mode is not significant at 2.2σ. This shows that the
first few COSEBIs modes have a smaller contribution to the to-
tal DES-SV B-mode signal compared to the higher order modes,
which can also be seen in Fig. D.1. KiDS-450, however, shows
an insignificant B-mode signal when we consider both high and
low COSEBIs modes, in contrast to a 2.7σ B-mode detection
when only the low n-modes are used to construct the CCOSE-
BIs. As can be seen in Table 3, and the upper right panel of Fig. 3,
the low-n B-modes for KiDS-450 data only become significant
when the small angular scales are included.
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Fig. 4. CCOSEBIs E and B-modes for non-tomographic (left) and tomographic (right) analyses. The E-modes are shown as empty symbols, with
the B-modes shown as filled symbols, for DES-SV (blue squares), KiDS-450 (black stars) and CFHTLenS (magenta triangles). The analysis
is conducted over three different angular ranges, denoted in the upper right corner of each panel. The CCOSEBIs mode is indicated on the
horizontal-axis. E-mode predictions are calculated using the best fitting cosmological parameter values given in Table 1 for DES-SV (solid),
KiDS-450 (dashed) and CFHTLenS (dotted). A zero-line is also shown for reference.

If the origin of the B-modes detected in the COSEBIs anal-
ysis was known to impact the E and B modes equally, then the
CCOSEBIs result would be the most relevant for cosmic shear
studies. If the systematics impact the E and B modes differ-
ently, however, then the compressed CCOSEBIs result, focused
on only low-n modes, could lead to a false null-test for the sur-
vey. It is therefore important to study how different systematics
impact the full range of E and B COSEBIs, which we carry out in
Sect. 6, and discuss this matter further in Sect. 7. In Appendix C
we also discuss how analysis choices, for example in this case
tomographic or non-tomographic, COSEBIs or CCOSEBIs, can
optimise or dilute the power of a B-mode null-test.

Finally we turn to Fig. 5 which shows the measured ξE/B
statistic across the full redshift range for each survey. Overlaid
are the best fitting theory curves for each dataset derived from
the published cosmological parameters in Table 1. The p-values
corresponding to the zero B-mode model are low in all cases,
as given in the legend of the figure. B-modes are therefore de-
tected at greater than ∼ 2.6σ for all surveys. For DES-SV the
significance of the B-modes is particularly high at∼ 9σ, but this
reduces to 2.3σ, or p = 0.012, when we select the angular scales
[4.2′, 72′] which roughly correspond to the angular cuts applied

to ξ+ in the DES-SV cosmic shear analysis11. In Appendix D we
present the ξE/B tomographic analysis for each survey where we
find a significant B-mode detection for DES-SV (p ∼ 4×10−19),
but no detection of B-modes for KiDS or CFHTLenS (p ∼ 0.7).

Given the required extrapolation of the data in order to cal-
culate the ξE/B statistic (see Eq. 9) we emphasize that these re-
sults are, by nature, a biased measurement of ξE/B, which may
not represent the data accurately. For this statistic, the errors on
ξB are uncorrelated (see Eq. 25) but also biased as the integral
truncation when estimating ξE/B also affects its noise properties,
which we have not taken into account. We therefore do not place
too strong an emphasis on the high significance of the measured
B-modes, or the lack of E-mode power on large-scales for all sur-
veys, particularly as these are the scales that are most impacted
by the choices made when extrapolating the data. That said, if
surveys continue to use 2PCFs as a standard cosmic shear statis-

11 The angular cuts used in DES-SV is variable for different redshift
bins and are also different for ξ+ and ξ−. Since ξE/B are estimated
using both ξ+ and ξ− the decision for corresponding angular cuts is
ambiguous.
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Fig. 5. ξE and ξB E/B-modes for a single broad redshift bin. The
E-modes are shown as empty symbols, with the B-modes shown as
filled symbols, for DES-SV (blue squares), KiDS-450 (black stars) and
CFHTLenS (magenta triangles). The DES-SV and CFHTLenS results
are horizontally offset relative to KiDS-450 to aid visualisation. E-mode
predictions for ξE are calculated using the best fitting cosmological pa-
rameter values given in Table 1 for DES-SV (solid), KiDS-450 (dashed)
and CFHTLenS (dotted). A zero-line is also shown for reference. We
detect significant B-modes in all cases as shown by the p-values, in the
legend, which determine the probability of the data B-modes given a
null B-mode model.

tic, then it is still relevant to measure ξE/B as it is the B-mode
measurement that is most closely related to the 2PCFs.

5. Modelling systematics

In Sect. 4 we detected significant B-modes in the DES-SV data
as well as in certain tomographic combinations of CFHTLenS
and KiDS-450 data. In this section we introduce models for a
range of data-related systematic effects that are appropriate for
the datasets described in Sect. 3. We consider three models of
systematics that affect the shear measurement of all galaxies in-
dependently of their redshift. In addition we model one photo-
metric redshift-dependent systematic, demonstrating how catas-
trophic errors in photometric redshifts can lead to shape selec-
tion bias. We add these systematic models to mock data to ex-
plore their effect on the 2 point statistics introduced in Sect. 2.
We are particularly interested in measuring the B-modes associ-
ated with each systematic (see Sect. 6). By comparing simulated
results with and without these systematic effects, the B-mode
signatures can then be used as a tool for diagnosing the source
of the B-modes in the surveys analysed in Sect. 4.

In this analysis, we do not model masking effects, since all
of the methods we use rely on measuring 2PCFs, which are in-
sensitive to masking12. This is in contrast to methods that rely on
Fourier transforms of the shear field, where masks can cause sig-
nificant systematic effects (see for example Asgari et al. 2018).

5.1. Shear measurement errors

For the case of weak shear with |γ| � 1, we can model the
observed ellipticity as

εobs = (1 +m)[εint + γ] + η + αε∗ + β δε∗ + c , (27)

12 2PCFs are insensitive to masking provided the mask is uncorrelated
with the shear field. If such correlations exist, all statistics will be af-
fected by them.

where εint is the intrinsic galaxy ellipticity, γ is the shear, η
is random noise on the ellipticity measurement, ε∗ is the PSF
model ellipticity, δε∗ = ε∗ − ε∗true is the residual ellipticity be-
tween the model and true PSF, and c is an additive shear that is
uncorrelated with the PSF. For all these quantities we use com-
plex notation where, for example, γ = γ1 + i γ2. For the two
PSF-dependent terms, αε∗ quantifies the fraction of the model
PSF ellipticity that leaks into the shape measurement, and β δε∗
quantifies the fraction of the residual PSF arising from PSF mod-
elling errors, that leaks into the shape measurement. The term m
is a multiplicative shear bias that is traditionally calibrated using
image simulations.

We simulate each of the systematic terms in Eq. (27) in isola-
tion, in order to characterise their B-mode signature. One excep-
tion is the shear calibration correction, m, which we set to zero,
as an isotropic shear bias cannot introduce a B-mode signal, only
scale an E-mode signal.

5.1.1. Point spread function (PSF) leakage: αε∗

In order to mimic the effect of the PSF leakage on cosmic shear
measurements we use PSF models from KiDS to make a real-
istic spatially varying PSF model spanning 100 square degrees.
We construct this large-scale PSF pattern on a 1 arcmin2 resolu-
tion grid, mapping the KiDS PSF measurements onto a 10◦×10◦
field by stitching together two 5◦ × 10◦ sections from the G12
and G15 regions in KiDS-450 data (see Hildebrandt et al. 2017,
for details). This provides us with a model for ε∗i (x, y), where
ε∗1(x, y) is shown in the left panel of Fig. 6. In KiDS the PSF is
modelled with polynomials of third order within each pointing,
where the lowest order is allowed to vary between CCDs to al-
low for discontinuities between CCD chips (see Kuijken et al.
2015, for more details). Similar modelling approaches are taken
by CFHTLenS and DES-SV. The mean of the PSF ellipticity and
its one sigma deviation is ε∗i = 0.006±0.016 and its full range is
covered by −0.1 < ε∗i < 0.1 for both components. Fig. 6 shows
how the PSF pattern changes within and across each ∼ square
degree pointing. In areas where the KiDS data are masked and
the PSF model unconstrained, we linearly interpolate the value
of the PSF ellipticity to accommodate all galaxy positions in our
unmasked mock data analysis.

We choose to apply a 10% PSF leakage by setting α = 0.1.
This level of leakage corresponds to the α measured in the
poorer-seeing KiDS i-band data (see Amon et al. 2018). For the
high-quality KiDS r-band data that are used for the main cosmic
shear analysis, α was found to be consistent with zero (Hilde-
brandt et al. 2017).

5.1.2. Regular repeating additive pattern: c(x, y)

In the absence of PSF-related errors, the amplitude of any re-
maining additive bias that is uncorrelated with the PSF, c, can be
estimated directly from the data. Since we expect 〈εint + γi +
η〉 = 0 over a large area, 〈εobs

i 〉 = c when α = β = 0. Surveys
typically correct for any significant measurement of c before any
analysis, but this empirical correction usually takes an average
over all galaxies and is therefore insensitive to small scale spatial
variations c(x, y) (van Uitert & Schneider 2016). Systematic ef-
fects that are stable and associated with the camera or telescope
would result in a repeating pattern in the survey which is built
from a series of different pointings. To determine the impact of
such a systematic, we model a spatially varying, but repeating
additive term, which remains constant between pointings.

Article number, page 10 of 31



M. Asgari et al.: Consistent cosmic shear in the face of systematics

Fig. 6. The first ellipticity component of the spatially varying systematic effects, simulated over a 10◦× 10◦ field. Here the effects are normalized
to their maximum value for a better visual comparison. From the left, the first panel shows the point spread function pattern used to model PSF
leakage (−0.01 < αε∗1 < 0.01). The second panel shows a regular pattern using the detector chip bias model from OmegaCam multiplied by
a factor of 5 (0.001 < c1 < 0.025). The third panel shows the random correlated noise PSF residual model with a smoothing length similar
to the chip size (−0.006 < βδε∗1 < 0.006), while the last panel shows the same systematic for a roughly pointing size smoothing length
(−0.003 < βδε∗1 < 0.003).

We use the data from Hoekstra et al. (2018), who present a
detailed analysis of imaging from the KiDS OmegaCam camera.
Hoekstra et al. (2018) report low-level but significant detector
and electronic defects that introduce an additive shear contribu-
tion per CCD that is uncorrelated with the PSF and spans the
range 0.0002 < ε∗1 < 0.005 and −0.0004 < ε∗2 < 0.00015,
shown in the second panel in Fig. 6. The white "chip 15" of
OmegaCam shows the largest bias at the level of ε1 = 0.005.
For the purposes of this analysis we multiply the Hoekstra et al.
(2018) detector-bias model by a factor of five to amplify its ef-
fect, as we find that the original level of this effect is too small
to show any significant E/B-modes for the current datasets.

5.1.3. Random but correlated noise: β δε∗

Errors in PSF modelling, δε∗, can be systematic if the stars used
in the modelling are unrepresentative of the PSF experienced by
the galaxies (Antilogus et al. 2014; Guyonnet et al. 2015; Gruen
et al. 2015). In this case the resulting systematic behaves sim-
ilarly to the PSF leakage model outlined in Sect. 5.1.1, and we
therefore do not consider this type of PSF modelling error.

Instead we consider the random errors in the PSF modelling
that arise from noise in the PSF measurement. The impact of
measurement noise on the PSF model increases as the number
of stars available to characterise the model at each position in
the field decreases. The PSF modelling strategy (see Sect. 5.1.1)
means that any local random errors from the sparse PSF mea-
surement will propagate as random but correlated errors across
the PSF model for the full field of view.

We mimic the impact of random but correlated PSF residual
errors by assigning a randomly generated number from a Gaus-
sian distribution with zero mean and unit dispersion to each 5×5
arcsecond pixel within a 10◦ × 10◦ field. We first verify that the
uncorrelated version of this systematic does not produce any co-
herent signal, as expected from a random error. We then correlate
the random PSF measurement noise over each pointing using a
Gaussian filter convolution defined within the boundaries of the
pointing. These convolved fields are then renormalized to pro-
duce an overall dispersion equal to 10% of the shear dispersion
in the mock data, σRCNP = 0.1σγ . We investigate two kernel
sizes with a correlation length of roughly the CCD chip level

(∼1.6 arcmin) and the pointing scale level (∼43 arcmin). The
resulting systematic patterns are shown in the two right panels of
Fig. 6, where the systematic ranges are −0.006 < βδε∗i < 0.006
(chip-level correlation) and −0.003 < βδε∗i < 0.003 (pointing-
level correlation). For this systematic we chose both components
of the contaminating ellipticity to be equal.

5.2. Photometric redshift selection bias

Cosmic shear surveys rely on photometric measurements to esti-
mate the redshifts of galaxies. The photometric redshift (photo-
z) of a galaxy can be estimated by comparing the magnitude
of the galaxy in several colour-bands to template catalogues of
galaxy spectral energy distributions (SEDs) or to spectroscopic
training samples (see Salvato et al. 2018, and references therein).
The most probable value for the redshift of each galaxy, given the
measured photometric colours, zphot, is then used to divide the
galaxy sample into tomographic redshift bins. The true redshifts
of these galaxies may not all lie within the boundaries of their
appointed photometric redshift bins but provided the true under-
lying redshift distribution of the galaxies is known, this can be
accounted for in the theoretical predictions of the cosmic shear
signal (Eq. 6). The dispersion in true redshift within these to-
mographic bins will however depend on the precision of each
galaxy’s photo-z estimate, which in turn depends on the error on
the measured flux of the galaxy in each photometric band. As
a galaxy imaged with different noise realisations can therefore
appear in different photometric redshift bins, in cases where the
flux error is correlated with the shape or orientation of the galaxy,
selecting a galaxy sample based on photometric redshifts could
therefore lead to an ellipticity-redshift selection bias and hence
a systematic error in a cosmic shear analysis.

Consider two identical elliptical galaxies of fixed size and
flux. The first galaxy is convolved with an elliptical PSF aligned
with its major axis. The second is convolved with an elliptical
PSF aligned perpendicular to its major axis. In the resulting im-
age our second galaxy will appear to cover a larger area than our
first galaxy and with a lower surface brightness and lower sig-
nificance. It will therefore have larger photometric errors com-
pared to the first galaxy. Kaiser (2000) recognised that this effect
implied that any cuts on observed significance would introduce
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a PSF-dependent selection bias in the ellipticity of the galaxies
(see also Bernstein & Jarvis 2002). The introduction of tomo-
graphic photo-z selection in a cosmic shear analysis, which im-
plicitly depends on the significance of each detection, can there-
fore also lead to an ellipticity-dependent selection bias.

In addition to this core effect, flux errors that are correlated
with the relative orientation of the galaxy and PSF can also
arise simply from the methodology used to measure the pho-
tometry in each band. DES-SV use SEXTRACTOR automated
aperture magnitudes where the aperture is fixed by the galaxy
shape in the detection image (Bonnett et al. 2016; Rykoff et al.
2016). Whilst this method ensures that the physical apertures are
matched between the bands, it does not take into account the dif-
fering PSFs. Hildebrandt et al. (2012) show that this approach
leads to an overall degradation in the photometric redshifts. For
example, if the PSF in the i-band is perpendicular to the PSF
in the detection r-band, the resulting i-band flux, assuming a
fixed-detection aperture, will be underestimated. This approach
therefore results in flux errors that are correlated with the rela-
tive orientation of the galaxy and PSF in each band. Hildebrandt
et al. (2012) demonstrate the importance of homogenising the
PSFs between bands before determining the matched-aperture
photometry. Both CFHTLenS and KiDS Gaussianise the PSFs
before measuring the photometry using the methodology pro-
posed by Kuijken (2008) and Kuijken et al. (2015). These sur-
veys should therefore be fairly immune to this additional error
and we note that the DES photometry methodology has been
significantly improved since the release of the DES-SV data that
we analyse in this paper (Drlica-Wagner et al. 2018).

In this analysis we make the first step to examine
photometric-redshift selection bias, by simulating a mock galaxy
catalogue where we introduce an anti-correlation between the
signal-to-noise ratio of the measured flux and the ellipticity of
the galaxies relative to the local PSF ellipticity, |ε − ε∗x|, in four
bands x = u, g, r, i. We use the following linear relation for the
anti-correlation,

Flux
Flux error = ax|ε− ε∗x|+ bx (28)

where the value for ax and bx are determined by fitting to KiDS-
450 multi-band data (see Table D.2). Given that KiDS can only
measure the noisy observed ellipticity, we recognise that the ma-
jority of the anti-correlation that we find in the KiDS-450 data,
derive from taking the mean of the absolute value of the observed
ellipticity where the measurement noise, η in Eq. (27), increases
with decreasing signal-to-noise. Using Eq. 28 to apply a corre-
lation between the signal-to-noise of a galaxy and its relative
ellipticity to the local PSF therefore provides an upper limit for
this effect. Future work will use multi-band image simulations
to determine values for ax and bx where the true ellipticity is
known. Our current approach is however sufficient for the pur-
poses of examining the B-mode signature that is introduced by
such an effect.

We produce mock ellipticity catalogues by randomly associ-
ating ellipticities to galaxies, using a fit to the observed KiDS-
450 galaxy ellipticity distribution, such that 〈εmock〉 = 0. We
simulate 15 fields of 100 deg2 each with a total galaxy number
density of 5.5 arcmin−2. We choose a simple model of constant
PSF per 1 deg2 pointing taken randomly from a uniform distri-
bution between [−0.1, 0.1] for each component of the PSF ellip-
ticity13.

13 When adopting the very low ellipticity KiDS-450 PSF model, ε∗ =
−0.006 ± 0.018, shown in the left-hand panel of Fig. 6, our B-mode

We associate noise-free multi-band fluxes to the mock galax-
ies using simulations similar to the ones presented in Sect. 3.1
of Hildebrandt et al. (2009) but adapted to KiDS. These sim-
ulations were created with the HYPERZ package (Bolzonella
et al. 2000) and are based on SED templates from the library
of Bruzual & Charlot (1993), i-band number counts from COS-
MOS (Capak et al. 2007), and redshift distributions from BPZ
(Benítez 2000). These magnitude simulations contain half a mil-
lion galaxies with magnitudes given in each of the four bands, se-
lected to recover the KiDS redshift distributions given in Fig. 7.

For each galaxy, we assign an error on the flux in each band
using Eq. (28). Noise is then added to the mock galaxy flux,
sampling from a Gaussian distribution. This approach corre-
lates high values of observed galaxy ellipticity with high flux
errors, as expected from the ellipticity measurement noise in the
data. In addition, the flux error may also depend on the relative-
orientation of the galaxy and the PSF, in each band, as expected
from some photometry measurement methods in addition to the
Kaiser (2000) effect. As this is the first investigation into photo-
metric redshift selection bias, we have not tried to separate these
effects in our analysis. We also note that this method of assigning
noise to our mock galaxy sample ignores the additional depen-
dence of the signal-to-noise ratio on galaxy size and magnitude.
Future work will need to investigate this in more detail, using
multi-colour image simulations.

We use the Bayesian Photometric Redshifts software BPZ to
estimate photo-z’s for each of our mock galaxies using a tem-
plate fitting method (Benítez 2000; Benítez et al. 2004; Coe et al.
2006). The inputs are the noisy flux measurements and their as-
sociated errors. The output is the best fitting photometric red-
shift, zB, which we use to then bin the galaxies into the four red-
shift bins that were used in the KiDS-450 cosmic shear analysis,
zi ≤ zB < zi+1, with zi = {0.1, 0.3, 0.5, 0.7, 0.9} as well as a
broad single bin encompassing the full redshift range of KiDS-
450, 0.1 ≤ zB < 0.9. DES-SV and CFHTLenS use a similar
number of tomographic bins, spanning similar ranges in photo-
metric redshifts. Note that the SED templates that we use in BPZ
to estimate the redshift of the mock galaxies is independent from
the ones used to make the mocks, which shows the robustness of
this method to the choice of templates.

Fig. 7 shows the true redshift distribution of the mock galax-
ies for each tomographic redshift bin in zB. The distributions are
broad due to the noise with extended high and low redshift tails
which we label as catastrophic outliers in the distribution. The
mean and median of each tomographic bin is similar to those
in the KiDS-450 data, demonstrating that our method to assign
noise to our mock galaxy sample is sufficient for this analysis.

6. Results: Mock E/B-modes

In this section we present the two-point statistic signatures of the
systematics introduced in Sect. 5.1 using the statistics explained
in Sect. 2. With these signatures identified, our goal is to use B-
mode measurements as a diagnostic tool to uncover the origin
of the systematic signals identified in DES-SV, CFHTLenS and
KiDS in Sect. 4. We can also determine the impact of these sys-
tematics on the measured E-mode signals. Our approach is com-
plementary to previous studies by Amara & Réfrégier (2008);
Kitching et al. (2016); Taylor & Kitching (2018) who propagated

measurements, discussed in Sect. 6, did not detect any significant pho-
tometric redshift selection bias in the 1500 deg2 of data simulated for
this analysis.
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Fig. 7. The true redshift distribution of the mock galaxies, separated
into photometric redshift bins. The zB selection is shown in the legend.
The cyan histogram shows the true redshift distribution of the galaxies
in the parent noise-free sample. In order to determine the photometric
redshifts we introduce flux errors that mimic a KiDS-like survey and
depend on the relative ellipticity of the mock galaxy to the mock PSF.

cosmic shear systematics through to cosmological parameters in
order to set requirements on their (in)significance.

6.1. SLICS shear simulations

The basis of our systematics analysis makes use of the ensem-
ble of mock KiDS-450 catalogues constructed from the SLICS14

simulations suite described in Harnois-Déraps & van Waerbeke
(2015) and Harnois-Déraps et al. (2018). Each SLICS line of
sight corresponds to a 10◦ × 10◦ field that includes galaxy posi-
tions, shear and their true and photometric redshifts. On average
the redshift distribution and number density of galaxies in these
mocks correspond to the KiDS-450 data, which is not so dissim-
ilar from the properties of both DES-SV and CFHTLenS.

In Fig. 8 we present the SLICS cosmic shear measurements,
ξ±, ξE/B and COSEBIs, averaged over 10 shape noise-free lines
of sight (i.e. εint = 0). On the left we show ξ± and ξE/B,
for θ ∈ [0.5′, 300′] in 50 logarithmic bins. The top left panel
shows ξ+ and ξE and the lower left panel shows ξ− and ξB.
The right panels belong to the E-mode COSEBIs for a range
of angular scales. The measurements from SLICS can be com-
pared to the theoretical prediction (Eqs. 4, 10, 13), shown as
thick solid curves for ξ and pluses for COSEBIs. Here we adopt
a flat ΛCDM model given by the input cosmology of the SLICS
simulations in Table 1. We use a Bond & Efstathiou (1984) trans-
fer function to estimate the linear matter power spectrum and the
Smith et al. (2003) halofit model for the non-linear scales. This
combination, although dated, was chosen as the resulting the-
oretical predictions fit the mocks better than the more modern
alternatives (Harnois-Déraps & van Waerbeke 2015). The thin
coloured lines in Fig. 8 show the measured values for each line-
of-sight (LOS), which show a considerable scatter, especially for
larger angular scales. Even with the inclusion of a larger number
of LOS, however, we do not expect the theory to match the mean
of the mocks perfectly, as the finite box-size of the N-body sim-

14 Available here: http://slics.roe.ac.uk/

ulations, where Lbox = 505h−1 Mpc, results in a loss of power
on large scales (Harnois-Déraps et al. 2018).

For a B-mode free dataset, ξ+ = ξE. In the upper left panel
of Fig. 8, we see that this is not the case for SLICS as at large an-
gular scales ξE is smaller than ξ+. Looking at the lower panel we
see that ξB is non-zero for the same angular ranges. This leakage
from E to B in the ξE/B statistic is a result of using the theoretical
ξ− at large scales for calculating the integrals in Eq. (9), which
differs from the ξ− of SLICS due to its finite box-size. We find
that COSEBIs do not suffer from either of these effects, with the
COSEBIs B-mode signal in the mocks found to be ∼ 4 orders
of magnitude smaller than the E-modes (not shown). The reason
for the robustness of COSEBIs to the finite box bias comes from
the weight functions that convert the shear power spectrum to
these statistics. The low ` behaviour of the weight functions for
COSEBIs have a leading-order term proportional to `4 such that
the function reaches zero at small `-values in contrast to the ξ+
kernel, J0, which has power at small arguments (see Eq. 4). At
high ` the COSEBI weights also diminish rapidly in contrast to
the 2PCFs which include some degree of power from all scales
(see figure 4 in Kilbinger et al. 2017, for a comparison between
the kernels corresponding to COSEBIs and 2PCFs).

6.2. The B-mode signature of shear measurement
systematics

We add the shear measurement systematic effects, developed in
Sect. 5.1, in turn to the SLICS simulations. We follow the stan-
dard approach of applying an empirical systematics correction to
each mock by subtracting the average observed ellipticity from
each line of sight before commencing our statistical analysis. In
Fig. 9 we compare the resulting 2PCFs with the signal measured
in the systematic-free fiducial data. The 2PCFs are ξ+ (squares),
ξ− (pluses), ξE (blue diamonds) and ξB (crosses). The left pan-
els show the ratio of ξ± and ξE to their fiducial values, calculated
from systematic free mocks and shown with a ‘fid’ superscript,
for each systematic, while the right panels show the difference
between ξB and its fiducial value as well as ξE − ξB (pluses)
for each case. Here we use 50 logarithmic θ-bins, to show the
angular dependence of each systematic in detail.

Each row in Fig. 9 shows the impact of the systematic which
from top-down cover PSF leakage, a repeating additive pattern,
and random but correlated noise (RCN), similar to PSF resid-
uals, correlated over chip-scales and then pointing scales. The
grey regions in the right panels show the level of noise expected
for KiDS-450 data, which is similar to the noise in the DES-SV
and CFHTLenS analyses. We note that all these systematics also
produce parity violating signals ξ×. We find that their amplitude
is about an order of magnitude smaller than the B-modes, how-
ever, and are therefore harder to detect in the data. As a result,
we limit our systematics study to the effect of systematics on
E/B-modes.

One interesting result from Fig. 9 comes from the non-zero
signal in the (ξE − ξfid

E ) − (ξB − ξfid
B ) curves. If a systematic

adds equal power to both observed E and B-modes, Psys, from
Eq. (7) we find ξobs

E − ξtrue
E − ξobs

B = 0. Furthermore as ξ− is
proportional to PE−PB, an equal Psys contribution to the E and
B-modes will cancel such that ξobs

− −ξtrue
− = 0. In this case there

is a clear route to correct the measured E-mode by the measured
B-mode or to select ‘clean’ angular scales for the E-mode anal-
ysis which are B-mode free (see for example Hildebrandt et al.
2017). For the sample of systematics that we have simulated,
however, we see that this common assumption of the equal con-
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Fig. 8. SLICS 2-point statistics, ξ± and ξE/B (left) and E-mode COSEBIs (right), averaged over 10 noise-free lines-of-sight, which serves as
our fiducial ‘systematics-free’ measurement. The mean result can be compared to the theoretical expectation (smooth solid curves). For ξ± and
COSEBIs we also show the measurements for each individual line-of-sight with thin solid curves with matching colors between different panels.
The upper left panel shows the measured ξ+ (magenta squares) and ξE (blue diamonds), with the lower left panel showing ξ− (green pluses) and
ξB (black crosses). The expectation value for ξB is zero, shown with the dashed black line. The COSEBIs E-modes (right panels) are shown for
the three angular ranges indicated in each row. The measurements are shown as squares and their expected theory value as plus symbols. Note that
COSEBIs modes are discrete and the points are only connected together as a visual aid.

tribution of systematic power to the E and B modes is far from
reality, especially for larger angular scales15. This implies that if
a ξB signal is detected at any angular scale, its origin should be
identified and mitigated at the catalogue or image level. Without
understanding the origin it is unclear how that systematic will
contaminate the ξ± signal.

In Fig. 10 we present the COSEBIs analysis of the mocks.
We show the relative effect of systematics on the E-mode (left)
and B-mode (right) COSEBIs, as the difference between their
fiducial values and those estimated from the systematic induced
mocks including PSF leakage, αε∗, repeating additive pattern,
c(x, y), and random but correlated noise (RCN), βδε∗, corre-
lated on chip scales and pointing scales. All values are shown for
the mean of the 10 SLICS lines-of-sight. The grey regions show
the one sigma errors corresponding to a KiDS-450-like survey.
Random but correlated noise at the chip level shows small devi-
ations from the fiducial values in agreement with Fig. 9. Within
a single pointing, this systematic has a similar form to the ad-
ditive pattern, and as such we see similar low-n behaviour be-
tween these two systematics with similar peaks at n = 2 and a

15 Note that the finite box-size bias has already been accounted for by
subtracting the fiducial values for each statistic. Any remaining correla-
tion originates from the systematic effects that we have introduced.

dip at n = 4, 5, albeit at different amplitudes. PSF leakage and
the random but correlated noise at the pointing level are more
significant, exhibiting a similar signal from the lower COSEBIs
modes. The repeating additive pattern has the most chaotic ef-
fect on COSEBIs, in comparison to the other systematics that we
have simulated. The erratic high frequency changes that can be
seen in the 2PCFs in Fig. 9 are reflected in the significant power
seen in the higher COSEBIs modes. As these systematics pro-
duce varying correlations for different angular scales, COSEBIs
modes are affected by them in differing amplitudes, which also
depend on the angular range they probe. Comparing Fig. 9 and
Fig. 10 gives insight into the sensitivity of COSEBIs modes to
correlation at various angular scales.

For all four systematics, we find that their effects on the
COSEBIs are more prominent when the full angular range is
used (middle panels). Comparing the right and left panels we see
that all systematics affect both E and B-modes, but not equally.
In general a significant B-mode signal translates to a significant
contamination to the E-modes on the same scales. The repeat-
ing additive pattern forms a clear exception to this rule though.
This draws us to the same conclusion as the ξB analysis, the ori-
gin of any COSEBIs B-mode signal should be traced back to its
source and corrected for at the pixel-data product level where
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Fig. 9. The impact of shear measurement systematics on ξ± and ξE/B for four different types of shear measurement systematics; PSF leakage,
a repeating additive pattern, and random but correlated noise, correlated on chip and pointing scales (see Fig. 6). For ξ+ (magenta squares), ξ−
(green pluses) and ξE (blue diamonds) we present, in the left panels, the fractional difference between the measured signal in the systematic-
induced KiDS-like SLICS mocks and the fiducial systematic-free case. As ξB (black crosses) and the E/B difference ξE − ξB (red pluses) tends
to zero, we present, in the right panels, the difference between these measurements and the fiducial case, multiplied by the angular distance in
arcminutes and scaled by 104. The measured B-modes can be compared to the expected shape-noise error for KiDS-450 (shaded area).
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Fig. 10. The impact of shear measurement systematics on E-mode (left) and B-mode (right) COSEBIs for four different types of shear measurement
systematics; PSF leakage (blue squares), a repeating additive pattern (black stars), and random but correlated noise on chip (green triangles) and
pointing (magenta diamonds) scales (see Fig. 6). The analysis is conducted for three different angular ranges spanning [0.5′, 40′] (upper panels),
[0.5′, 100′] (middle), and [40′, 100′] (lower panels). We present the difference between the measured signal in the systematic-induced KiDS-
like SLICS mocks and the fiducial systematic-free case scaled by 1010. The measured B-modes and the resulting change to the E-mode can be
compared to the expected shape-noise error for KiDS-450 (shaded area).

phase information is still available, since it is unclear how these
systematics will impact the E-mode at another angular scale.

The characteristic patterns that we have identified should
be used in any future approach to diagnose and correct shear-
measurement systematics. As an example, if COSEBI B-modes
are found to be oscillatory and extend to high-n, the survey
should investigate additive biases that repeat on a fixed angu-
lar scale across the survey, for example detector-level effects.
If the B-modes are localised at low-n with little high-n power,
the survey should investigate the PSF modelling. With COSE-
BIs alone we cannot distinguish between PSF leakage, αε∗ or
correlated noise in the PSF model, βδε∗, but these two effects
can be separated by measuring the correlation between galaxy
shape and PSF ellipticity, which will be significant if α is non-
zero (Bacon et al. 2003). If our ellipticity model in Eq. (27) is
reasonable in its approach to add systematic terms linearly, we
would expect the B-modes from each individual effect to also
add linearly. When we see both significant power at n < 7 and
high-n oscillatory power, as we do for DES-SV for example, we

can conclude that there is a likely superposition of systematics
from both the PSF modelling errors and repeating additive bi-
ases.

The simulation approach that we use here should be spe-
cialised to the survey in question in future work. This would al-
low for a more precise exploration of how survey-specific issues
flow through to cosmological biases. In this analysis we have
presented results that use KiDS to motivate the angular depen-
dence of the systematics that we have simulated. In addition, we
have also tested a variety of alternative schemes in the devel-
opment of this work such that we are confident that the global
behaviour of the B-mode signatures, presented in Figure 10, are
broadly representative of how these systematics would feature in
any weak lensing survey.
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6.3. The B-mode signature of photometric redshift
selection bias

We simulate photometric redshift selection bias following the
approach developed in Sect. 5.2. As this effect is subtle, we
choose to analyse the correlations in a random intrinsic ellipticity
field alone, in contrast to the analysis in Sect. 6.2. where we also
include the correlated SLICS cosmic shear field. Starting with
the traditional statistics in Fig. 11, we compare two cases. The
top panels show the 2PCFs using the full galaxy sample which
are consistent with zero by construction. The lower panels show
the same 2PCF analysis, including a photometric redshift selec-
tion with 0.1 ≤ zphot ≤ 0.9. Comparing these two results we
immediately see that the photometric redshift selection has pro-
duced a significant signal in all but the ξ− statistic. As such we
find similar levels of E/B-modes in the lower right panel where
the difference between ξE − ξB ≈ 0.

To see the full effect of the photometric redshift selection
bias on the measured correlation function, we use COSEBIs to
analyse four photometric redshift bins, corresponding to those
chosen in the KiDS-450 analysis. Fig. 12 shows the results re-
vealing significant signal in the different tomographic slices,
with the strongest effect in the highest redshift bins. To quan-
tify the significance of this effect we use a theoretical covariance
to estimate a χ2 value for COSEBIs relative to the null hypoth-
esis of zero signal. We then calculate the p-value corresponding
to that χ2 finding vanishingly small values of p ∼ 10−28 and
p ∼ 10−15 for the E and B modes respectively, leaving little
doubt in the existence of this bias.

As with the analysis of the shear measurement systematics in
Sect. 6.2 we see similarities (low-n) and differences (high-n) in
the measured E and B-modes, again leading us to the conclusion
that B-modes can be used as a diagnostic but cannot blindly be
used to correct the E-modes.

6.4. Cosmological parameter inference

Although we can see the signature of each systematic in Fig-
ures 9 to 12, it is not immediately clear how they would affect
cosmological parameter inference. One could carry out a likeli-
hood analysis to find any biases introduced by these systemat-
ics (see for example Amara & Réfrégier 2008), but our prefer-
ence is to use compressed COSEBIs (CCOSEBIs, see Sect. 2.3)
as a faster alternative approach. CCOSEBIs are formed of lin-
ear combinations of COSEBIs that are sensitive to cosmological
parameters. If the systematics that we identify in the COSEBIs
analyses are null in both the E and B mode CCOSEBIs case, then
we can conclude that the systematics are unlikely to be detrimen-
tal to the cosmological inference.

In this analysis we focus on the CCOSEBIs that are sensitive
to Σ8 = σ8(Ωm/0.3)α, as this is the combination of parame-
ters that cosmic shear data are mostly sensitive to. We find that
for a KiDS-450 redshift distribution, α = 0.65 best describes
the COSEBIs degeneracy direction (see Appendix B). Because
we are interested in Σ8 we only consider the 5 first and second-
order CCOSEBIs for σ8 and Ωm; Ecσ8

, EcΩm
, Ecσ8σ8

, Ecσ8Ωm
and

EcΩmΩm
, where Ec is defined in Eq. (15). Although it is possible

to construct a CCOSEBIs mode that is sensitive to Σ8 directly,
we choose to look at these 5 modes instead in order to also pro-
vide an internal consistency check. For each of the five modes we
calculate a single compressed value,Ecµ(ν), that can be compared
to its expectation value, given a set of cosmological parameters,
noise covariance and source redshift distribution.

Fig. 13 shows the measured E-mode (left panel) and B-mode
(right panel) CCOSEBIs for the full angular range of [0.5′, 100′].
The symbols correspond to the range of shear measurement sys-
tematics16 simulated using the SLICS cosmic shear simulations
in Sect. 5.1. The lines connecting the E-mode points indicate
which of the 5 CCOSEBIs modes are shown and also show their
theoretical value. Each measured E-mode can be compared to
the value of Σ8 = σ8(Ωm/0.3)0.65 that would be inferred from
the measurement. In the absence of systematic errors, we would
expect to find the inferred parameters to be consistent with each
other and the input SLICS cosmology with Σ8 = 0.808. We
would also expect to find the B-mode signal consistent with zero,
but looking at the fiducial ‘no-systematics’ mocks (circles), we
do recover a very small residual B-mode and a slightly high best-
fit Σ8 = 0.815. This result is expected, however, given the im-
perfect match between the two-point statistics measured from
SLICS and the theoretical expectation shown in Fig. 8. Here no
errors are associated to the E-mode CCOSEBIs, because the
mock data used to produce them are free of shape-noise.

We find that the introduction of the random, but correlated
noise (RCNP) increases the recovered Σ8 value, but within the
statistical tolerance of KiDS (shown as a grey bar) in the case of
the chip-scale correlation. The PSF leakage and repeating addi-
tive pattern result in the largest bias in cosmological parameters
with a ∼ 5% deviation from the true input cosmology. Applying
this level of bias to either σ8 or Ωm can produce excess corre-
lations of only up to 13% which is significantly less than the up
to 40% biases seen in the two-point correlation function analysis
in Fig. 9, from which we can conclude that the impact of these
systematics on the data can be only weakly correlated with the
impact of varying cosmological parameters.

We find that the stronger the bias in the recovered cosmology,
the larger the inconsistency between the 5 CCOSEBIs modes,
providing another important diagnostic tool. We also note that all
the shear measurement systematics tested in this analysis serve
to increase the inferred value of Σ8. If these types of systematics
were present in the weak lensing data, correcting for them would
decrease the recovered Σ8, exacerbating the current hints of cos-
mological parameter tension between weak lensing surveys and
Planck (see for example Troxel et al. 2018a).

Comparing the power in the measured E-modes (left panel)
and B-modes (right panel) reveals a close connection, where a
larger bias in the E-modes corresponds to larger B-modes. We
note that although the magnitude of the E/B-modes are con-
nected, they can take opposite signs. For example, in Fig. 10 we
see that for the large angular scale analysis with the repeating
additive pattern systematic, the sign of the first four E-modes
differs from the sign of the first four B-modes. This difference
in sign is also reflected in the CCOSEBIs analysis which is sen-
sitive to the first few modes that contain a large proportion of
the cosmological information. This example demonstrates that
although the large angular scales have the lowest signal to noise,
they can and should be used as an investigative tool for hunting
systematics that could also impact small angular scales.

7. Discussion

In this section we discuss how we can use the measured COSE-
BIs B-mode signatures from our systematics mocks in Sect. 6 to
diagnose the origin of the B-modes recovered in the CFHTLenS,

16 Note that as we do not include a cosmic shear signal in the photo-
metric redshift selection bias mocks developed in Sect. 5.2, we do not
present a CCOSEBIs analysis of this systematic.
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Fig. 11. Photometric redshift selection bias: the upper panels show the correlations measured from a random intrinsic ellipticity field using the
full galaxy sample. The lower panels show the correlations measured from the same random intrinsic ellipticity field after a 0.1 ≤ zphot ≤ 0.9
photometric redshift selection has been applied. The 2PCFs shown on the left are ξ+ (squares) and ξ− (pluses). On the right, ξE (diamonds), ξB
(crosses) and the difference between the two (pluses) are shown. The one-sigma error bars correspond to the level of ellipticity noise in the mock
data. The signals are shown multiplied by θ in arcminutes and scaled by 104.

DES and KiDS surveys in Sect. 4. Firstly, we focus on the non-
tomographic COSEBIs B-mode measurements in Fig. 3. One
feature that stands out for all three surveys is the high n-mode
oscillatory pattern in the full angular range, shown in the middle
right panel. This oscillatory pattern is the signature of a repeat-
ing additive systematic, shown in Fig. 10, which we find to be the
systematic that was most detrimental to cosmological parameter
estimation in Fig. 13.

We find the level of B-modes for KiDS-450 and CFHTLenS
for higher n-modes to be small and hence the repeating additive
signature is not highly significant in these cases. The similarity
between the B-modes in the data and this systematic signature
does however warrant further exploration, particularly as we also
see similarities in the E-modes for KiDS and the repeating pat-
tern E-mode signature. Here the unexpected E-mode ‘secondary
peak’ seen at n ∼ 6 in the small angular scales of KiDS-450
E-modes (upper left panel of Fig. 3) is replicated at n ∼ 6 in
the E-mode analysis of the same angular scales of the repeating
additive bias mocks (upper left panel of Fig. 10). If a repeating
additive systematic persists it would likely become significant
in future releases of KiDS. It could also be responsible for the
power seen in the low-n modes that lead to the significant detec-
tion of the KiDS CCOSEBIs B-modes.

For DES-SV we find a significant detection of B-modes,
noting that in addition to the high-n oscillatory pattern, DES-
SV presents significant additional signal for modes around
n = 8 and n = 4. For an instrument-based repeating addi-
tive pattern, the resulting B-mode signature will depend on the
dithering strategy and camera field-of-view. Both KiDS-450 and

CFHTLenS have a field-of-view of ∼ 1 deg2 with small dithers.
DES-SV, however, has a hexagonal field-of-view, 2.2 degrees
across, and uses half-field dithers. This means the frequency of
any repeating additive pattern will differ for DES-SV in compar-
ison to the KiDS-like imaging strategy that we have simulated
in our mocks. Looking at only the first few modes for DES-SV
data, however, we find that the signal resembles the signature of
both PSF leakage, and random but correlated noise on the point-
ing level. This result is consistent with the findings of Zuntz et al.
(2018) who report and correct for a small but significant PSF
residual in their analysis of the first year of DES observations.
We therefore conclude that the B-mode signature recovered for
DES-SV is likely a superposition of different shear measurement
systematics.

By comparing the p-values in Table 2 we can see that for
DES-SV the significance of the COSEBIs B-modes substantially
increases when the data are separated into tomographic bins.
This could be understood by considering the photometric red-
shift selection bias explained in Sect. 5.2. This systematic corre-
lates the PSF ellipticity with the redshift estimation for a galaxy,
and can produce significant B-modes when the data are binned
into smaller photometric redshift bins. It is likely that all surveys
will suffer from this systematic to some degree, but the level will
depend on how the multi-band photometry is measured in each
survey and how the PSF ellipticity varies in each optical band.
We cannot directly compare our mock analysis with the B-modes
in the DES-SV tomographic analysis, but our first-look at this
effect certainly motivates further exploration with more detailed
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Fig. 12. The impact of photometric redshift selection bias for a COSEBIs 4-bin tomographic analysis of a random intrinsic ellipticity field. The
upper triangle shows the E-modes and the lower triangle shows the B-modes, where the error bars in both cases correspond to the level of ellipticity
noise in the mocks. Each panel shows COSEBIs for a tomographic redshift bin pair, z-ij, corresponding to the correlation between photometric
redshift bins i and j. As our photometric redshift mocks are devoid of any cosmological correlations, in the absence of any selection bias, we
would expect both the E and B modes to be consistent with zero.

simulations that fully mimic the photometric redshift measure-
ment in each survey.

Interestingly, comparing the DES-SV tomographic and non-
tomographic p-values in Table 3, we find that for the analy-
ses that include small-scale information, the significance of the
B-modes, measured using the cosmological-parameter-sensitive
CCOSEBIs, decreases when the data are separated into tomo-
graphic bins. This promising result means that if the systematic
that was introduced when the DES-SV tomographic selection
is applied adds equal power to the E and B modes, that sys-
tematic would not introduce modifications to the E-mode sig-
nal that would bias the inferred cosmological parameters. Un-

fortunately, however, the photometric redshift selection bias sys-
tematic was found to exhibit different E and B mode signals in
Fig. 12. Passing the CCOSEBIs B-mode null-test therefore can-
not validate the CCOSEBIs E-mode measurement. In addition,
this CCOSEBIs B-mode result does not hold for the large angu-
lar scales, [40′, 100′], where again we see a substantial increase
in the measured B-mode when the data are separated into tomo-
graphic bins.

Our findings for DES-SV contradict Becker et al. (2016) who
conclude that the B-modes in DES-SV are insignificant using
two Fourier space methods. We argue that as power spectra pick
up features of the data at different scales compared to ξ±, they
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Fig. 13. Left panel: the inferred values of Σ8 = σ8(Ωm/0.3)0.65 from an E-mode CCOSEBIs analysis of four mock cosmic shear surveys that
suffer from PSF leakage (blue squares), a repeating additive pattern (black stars), and random but correlated noise on chip (green triangles) and
pointing (magenta diamond) scales. The curves show the theoretical values of the 5 E-mode CCOSEBIs when varying Σ8, calculated using the
KiDS-450 noise only covariance matrix and redshift distribution; Eσ8σ8 (dashed), EΩmΩm (dotted), Eσ8 (middle solid), EΩm (dot-dashed) and
Eσ8Ωm (lower solid). The inferred cosmology for each mock systematic survey can be compared between the 5 different modes. The higher
the recovered E-mode is relative to the fiducial ‘no-systematics case’ (circles), the stronger the bias is on the inferred value of Σ8 and the more
discrepant the inferred cosmology is between the different CCOSEBIs modes. The bias in Σ8 can be compared to the grey region which shows
the one-sigma error for Σ8 from the KiDS-450 cosmic shear analysis, centred on the fiducial case. Right panel: B-mode CCOSEBIs from the four
mock cosmic shear surveys. The measured B-mode signal can be compared to the shape noise on a KiDS-450-like survey (shown in grey).

are not suitable statistics for verifying the absence of B-modes in
a ξ± cosmic shear analysis. In addition, power spectra measure-
ments are binned in a range of Fourier modes, such that any high-
frequency variations in Fourier space will average out. COSEBIs
are sensitive to these variations and can therefore be used to di-
agnose the origin of the B-modes in the data.

At first sight our findings for KiDS also contradict Hilde-
brandt et al. (2017) who report a low-level but significant de-
tection of ξB. This is in contrast to our tomographic ξB analysis
which concludes that ξB is consistent with zero. We find that the
ξB statistic is sensitive to the choice of the maximum θ-scale
measured from the data and the maximum θ-scale used for com-
pleting the integral to infinity using a theoretical prediction (in
this analysis we use 1000′ instead of 3000′ used in Hildebrandt
et al. 2017). We also find that ξB is sensitive to the method used
to bin ξ± as explained in Sect. A (see Eq. A.10). This sensitivity
to data analysis choices provides another reason to archive the
traditional ξE/B approach. In this paper we promote COSEBIs
as the optimal statistic for both E and B mode measurements as
it can be estimated accurately and free of any biases connected
to binning and extrapolating the data. Analysing all 20 COSEBIs
modes, we find no significant evidence for B-modes in KiDS. In
our compressed CCOSEBIs analysis, however, we arrive at the
same conclusion of both Hildebrandt et al. (2017) and van Uitert
et al. (2018), that low-level but significant B-modes are present
in KiDS-450. In our [0.5′, 100′] CCOSEBIs analysis, we find
a ∼ 2.7σ detection of a B-mode signal that is less than 10%
of the amplitude of the E-mode. This difference between the
significance of the COSEBIs and CCOSEBIs B-mode analysis
might seem confusing or even contradictory. We therefore refer
the reader to Appendix C where we explore how choices over
the number of modes used in a null-test can dilute or optimise
the detection of systematics.

8. Conclusions

Two-point shear correlation functions (2PCFs) have been the pri-
mary observables in cosmic shear analysis to date, but they are
not immune to systematics. These statistics mix E and B-modes
in the data, giving rise to a mixed lensing and non-lensing signal
in the presence of systematic errors. In order to test for system-
atics most surveys turn to alternative statistics to separate E/B-
modes, using ξE,B or power spectrum measurements. We argue
that these alternative statistics are biased as they depend on in-
finite integrals over 2PCFs and are sensitive to binning choices.
In addition, treating the E/B-mode decomposition with a statistic
that has a different scale-dependence to the statistic used in the
cosmological parameter inference, causes a disparity in the anal-
ysis. For future cosmic shear analyses, we therefore advocate
the use of COSEBIs for both parameter inference and system-
atic analyses (see Sect. 2.2). COSEBIs cleanly and completely
separate E/B-modes over a finite angular range, without loss of
information. They have discrete modes and therefore are insensi-
tive to binning choices. The first few modes of COSEBIs contain
almost all of the cosmological information and as such a COSE-
BIs analysis is also an efficient approach to data compression.

In this paper we analysed the E and B-mode signals in three
public cosmic shear surveys, CFHTLenS, DES-SV and KiDS-
450. We compared the ξE,B statistic with COSEBIs and CCOSE-
BIs, using p-values to quantify the level of B-modes in the data.
To determine COSEBIs filter functions we need to first define an
angular range of interest. For this study we chose three sets of an-
gular separation ranges: small separations, [0.5′, 40′], large sepa-
rations, [40′, 100′], and the overall separation range, [0.5′, 100′].
We measure COSEBIs up to mode n = 20. We considered
two cases for each survey; one using the same redshift bins as
used in each survey’s primary cosmic shear analysis, and an-
other combining those bins into a single redshift bin. We see
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that for DES-SV data the tomographic cases show significant B-
modes at a level between 4σ and 5.5σ. For the non-tomographic
DES-SV analyses, B-modes are detected at the level of 2.8σ.
For KiDS-450 and CFHTLenS, we find no significant detection
of B-modes for the majority of our analyses. There is however
some exceptions in each case. The CCOSEBIs analysis of the
small separations (non-tomographic case only) and the analysis
of the full angular range show B-modes at up to 2.7σ for KiDS-
450. The tomographic COSEBIs analysis over the small angular
range [0.5′, 40′] detects a B-mode signal at 2.8σ for CFHTLenS.

In order to diagnose the origin of the B-modes detected in
each survey, we modelled several non-astrophysical systematic
effects relevant to current data in order to determine their E/B
mode signature and assess their impact on cosmological param-
eter inference. We modelled four shear measurement systemat-
ics. PSF-leakage, was modelled using the mosaic PSF pattern
from KiDS-450 assuming a 10% leakage with α = 0.1. An
instrument-based additive bias term resulting in a repeating pat-
tern from pointing to pointing. Here we used the low-level CCD
bias of OmegaCam (Hoekstra et al. 2018), multiplied by a factor
of five to amplify and model this effect. To model biases arising
from random PSF modelling errors, we correlated low levels of
random noise using two kernel sizes, corresponding to roughly
KiDS CCD and pointing scales. In addition to these shear mea-
surement systematics, we modelled the impact of photometric
redshift selection bias that arises from the correlation between
the relative orientation of PSF ellipticity and galaxy ellipticity,
and the measured signal-to-noise of the galaxy.

All of the systematics simulated were detected in our B-
mode analysis. The PSF-leakage and random but correlated
noise systematics introduced low n-mode COSEBIs signal. This
was in contrast to the repeating additive bias which introduced
high frequency variations in the shear field which are picked up
as oscillatory behaviour in the high n-mode COSEBIs measure-
ments. Photometric redshift selection bias also resulted in high
n-mode power in the high photometric redshift bins. Compar-
ing the B-mode signatures recovered by our mocks to the B-
modes measured in each survey we conclude that DES-SV is
likely to suffer from a combination of all the systematics that we
have simulated. The significant increase in DES-SV B-modes
when the tomographic redshift selection is applied is particu-
larly striking, motivating future work to enhance the realism of
the first-look photometric redshift simulations that we have anal-
ysed in this paper. KiDS-450 and CFHTLenS show oscillatory
behaviour in the high n-mode indicating a repeating additive bias
in the data, although this result is not significant.

The simulated systematics produce E-modes that would bias
cosmological parameter inference. For the analysed shear mea-
surement systematics we found that Σ8 = σ8(Ωm/0.3)0.65 is bi-
ased high in all cases. As a result, we conclude that these types of
systematics, if present, cannot explain the mild tension between
some current cosmic shear and Planck results. It is interesting
to note that the DES-SV cosmological parameter constraints on
S8 = σ8(Ωm/0.3)0.5 are higher than those from KiDS-450,
CFHTLenS and the first year DES results, which include a num-
ber of improvements over the DES-SV analysis. Given the sig-
nificant DES-SV B-modes detected in our analysis, the direction
of the difference in S8 between the surveys is expected. The pub-
lished cosmological parameter constraints from all three surveys
are, however, in good agreement.

For the analysis of KiDS-450, we find an interesting case
where the survey formally passes the COSEBIs B-mode anal-
ysis, but a flag is raised with a 2.7σ B-mode detection in the
compressed CCOSEBIs analysis. Here the COSEBIs B-modes

that are insignificant overall are weighted in such a way that the
resulting CCOSEBIs signal becomes significant. We therefore
recommend measuring both CCOSEBIs and COSEBIs B-modes
in future analyses, ensuring that both are consistent with zero.
The CCOSEBIs B-modes will robustly identify systematics that
will lead to a bias in the cosmological parameter inference, if the
systematic impacts the E/B-modes in the same way. In contrast
the COSEBIs B-modes detect systematics that can affect E and
B-modes differently. As we have seen from our repeating addi-
tive bias systematic where the E and B mode behaviour is very
different, it will be crucial to look for both of these effects.
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Appendix A: Binning bias with ξ±

When using the traditional ξ± statistic an issue arises from the
choices that can be made when binning the data. ξ±(θ) is usu-
ally binned in broad θ-bins as a form of data compression. As we
expect the number of galaxy pairs to roughly scale with θ, see
Eq. (19), the sampling of ξ±(θ) within the bin is non-uniform. If
we bin these functions into broad angular bins, their value will
therefore be biased towards larger θ scales in each bin. This is
not an issue provided the theory is treated in the same way, but
this is not the standard approach that is taken, as it is computa-
tionally more expensive. Troxel et al. (2018a) compare the dif-
ferences in KiDS-450 cosmological parameter inference if one
takes the logarithmic mid-point of the bin or the weighted mean
value of θ in each bin and evaluate the theoretical 2PCFs at each
θ value. They argue that the latter approach is correct, supported
by Krause et al. (2017) who conclude that this approach is suffi-
ciently accurate for the first year DES analysis. Here we provide
more detail on the question of binning bias, quantifying how in-
exact each treatment of the theory is, where we find up to 10%
biases in both approaches. A full integration of the theory within
the bin is the correct approach to this problem. If future surveys
wish to use an approximation, however, we demonstrate that us-
ing the linear mid-point of the bin provides the closest match to
the binned data, with less than 2.5% bias.
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Appendix A.1: Binning theory

Consider making measurements of a function f(x) from noisy
data, with samples drawn non-uniformly in x. We denote the
sampled data points by fdata(x) and the distribution of measured
x byD(x). Given that the sampled data points are noisy, we want
to combine them to find an estimate for the function for a given
binning in x. One way to bin the data is to write it as

f̂binned(xb) = 1
Nbin

∑
x

fdata(x) ∆(x− xb) , (A.1)

where Nbin is the number of data points in the given bin and
∆(x− xb) is the binning function defined as

∆(x− xb) =
{

1 if x is in bin xb ,

0 if x is not in bin xb.
(A.2)

This estimate for the binned function corresponds to a weighted
binning, with more weight given to the values where there are
more sampled points. The expectation value of f̂binned(xb) is in
general not equal to f(xb),

〈f̂binned(xb)〉 =

∫ xmax(xb)
xmin(xb) dx f(x)D(x)∫ xmax(xb)
xmin(xb) dxD(x)

6= f(xb) , (A.3)

where xmin(xb) and xmax(xb) are the edges of bin xb. Even if
we define xb as the weighted mean of the x-values in the bin, as
advocated by Troxel et al. (2018a),

xb =

∫ xmax(xb)
xmin(xb) dxxD(x)∫ xmax(xb)
xmin(xb) dxD(x)

, (A.4)

we would only recover the true value of the binned data, if f(x)
is either a constant or has a linear relation to x.

Let’s now take very fine x-bins, such that the variation in the
sampling of f(x) is negligible, i.e. D(x) ≈ constant within each
bin. The expectation value of the finely binned function 〈f̂f(xf)〉,
where the subscript f represents "fine" and xf is the mid-point of
the fine bin, is given by

〈f̂f(xf)〉 =

∫ xmax(xf)
xmin(xf) dx f(x)D(x)∫ xmax(xf)
xmin(xf) dxD(x)

(A.5)

∼=
1

2 δx

∫ xf+δx

xf−δx
dx f(x) ∼= f(xf) ,

where 2 δx is the width of the fine bin. If we first measure finely
binned f̂f(xf) from the data, then we have the flexibility to re-bin
the measurements as desired,

f̂w(xb) =
∑
xf
w(xf)f̂f(xf)∆(xf − xb)∑
xf
w(xf)∆(xf − xb) , (A.6)

where w(xf) is a weight function assigned to each fine bin. If
we chose to set w(xf) to D(xf) we would recover the weighted
binning defined in Eq. (A.1).

If we choose w(xf) such that it does not vary between dif-
ferent realisations of the data, the expectation value of f̂w(xb) is
given by

〈f̂w(xb)〉 =
∑
xf
w(xf)f(xf)∆(xf − xb)∑
xf
w(xf)∆(xf − xb) , (A.7)

and the covariance of the binned data for bins xb and yb is given
by

Cw(xb, yb) = 〈f̂w(xb)f̂w(yb)〉 − 〈f̂w(xb)〉〈f̂w(yb)〉 (A.8)

=
∑
xf

∑
yf
w(xf)w(yf)Cf(xf , yf)∆(xf − xb)∆(yf − yb)∑

xf

∑
yf
w(xf)w(yf)∆(xf − xb)∆(yf − yb) ,

where Cf(xf , yf) is the covariance of the finely binned measure-
ments, ff(xf) and ff(yf). If we assume no cross-correlation be-
tween the bins, which is the case for a shape-noise only covari-
ance, then Eq. (A.8) simplifies and the variance of fw(xb) can
be written as,

σ2
w(xb) = 〈f̂2

w(xb)〉 − 〈f̂w(xb)〉2 (A.9)

=
∑
xf
w2(xf)σ2

f (xf)∆(xf − xb)∑
xf
w2(xf)∆(xf − xb) .

From this equation we can see that the variance of the binned
data is also not equal to the variance of the function at xb,
σ2

w(xb) 6= σ2(xb), which complicates the calculation of covari-
ance matrices for binned data.

To simplify covariance calculation we can set the weights
in Eq. (A.6) equal to unity and obtain an unweighted rebinned
estimate,

f̂unweighted(xb) =
∑
xf
f̂(xf)∆(xf − xb)∑
xf

∆(xf − xb) . (A.10)

In this case the expectation value of the estimator is,

〈f̂unweighted(xb)〉 = 1
2 ∆x

∫ xmax(xb)

xmin(xb)
dx f(x) , (A.11)

where 2 ∆x is the width of the bin. If the relative variation of the
sampled points within a broad bin is large, then this estimator
may not be optimal and can produce larger errors compared to
the estimator in Eq. (A.6).

Equation (A.7) is useful for predicting the theoretical value
of the binned function, especially when the sampling frequency
of the data points, D(x), is derived from the data itself. In the
case of cosmic shear ξ±(θ) the sampling of the data points
roughly scales with θ, however, survey geometry and masking
effects together with variations in the depth of the images com-
plicates the analytical estimation for the distribution of data in
angular scale. Hence we suggest measuring D(θ) from the data
and use Eq. (A.7) to predict the binned ξ± values.

Appendix A.2: Application to cosmic shear

To demonstrate the level of bias introduced by partial treatment
of the theory in a ξ± cosmic shear analysis we use a theoreti-
cal prediction for ξ± as our function, f(x), assuming a single
KiDS-450 redshift bin. To sample ξ±(θ) in a non-uniform way,
we randomly pick θ values from a D(θ) = θ/arcmin × 2000
distribution in the angular range of [0.5′, 300′]. We then add a
constant Gaussian random noise with σ = 0.01 to each sampled
point to produce the noisy sampled data points, ξ±data(θ) and
then bin ξ±data(θ) into 1000 fine logarithmic bins to produce
ξ̂±f(θf) and 9 broad logarithmic bins to get ξ̂±binned(θb) (see
Eq. A.1).

In Fig. A.1 we show the binning bias introduced for a range
of cases as a ratio between the measured and the proposed
theoretical value of ξ+ (top panel) and ξ− (bottom panel),
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Fig. A.1. 2PCF binning bias introduced for a range of analysis choices,
shown as the ratio between the measured ξ̂± and their proposed theo-
retical value as a function of angular scale, θ. The legends in this figure
are shared between the two panels. For the weighted broad bin estima-
tor, ξ̂±binned(θb), the bias is calculated assuming θb is given by the
logarithmic mid-point of the bin, θmid,log (green squares), the weighted
mean of the bin, θw (black pluses, under the blue diamonds), the geo-
metric mean or linear mid-point of the bin, θmid,lin (dark grey triangles),
or an area-weighted bin centre, θarea (blue diamonds). These estimators
can be compared to the fine binning case, ξ̂±fine(θmid, fine), where the
theory is estimated at the weighted mean of each bin (light grey circles),
and the exact case (red crosses) where the theoretical value is calculated
as a weighted integral over the signal within the bin (Eq. A.7). All points
are plotted with errorbars, but in the case of broad binning the errors are
too small to be visible.

as a function of angular scale, θ. The noisy finely binned
data, ξ̂±f(θ) (light grey circles), shows no significant bias rel-
ative to its expectation value (see Eq. A.5). As was shown
in Eq. (A.3) and Eq. (A.7) the expectation value of the broad
binned, ξ̂±binned(θb), should be calculated using an integral over
ξ± with the appropriate weights. The red crosses in the figure
correspond to this theoretical prediction which is unbiased as ex-
pected. The remaining curves show the biases introduced when
broad binning is applied to the measurements and the theory is
evaluated at a single point in the bin denoted as θb. The green
squares assume that θb is given by the logarithmic mid-point of
the bin (as used in Hildebrandt et al. 2017), for the black pluses
θb is the weighted mean of the bin (as used in Heymans et al.
2013; Troxel et al. 2018b,a), the grey triangles use the geometric
mean or linear mid-point of the bin (not used to date) and finally
blue diamonds assume that θb is the area-weighted bin centre (as

advocated by Krause et al. 2017), where

θarea =
∫ θmax
θmin

dθ θ2πθ∫ θmax
θmin

dθ 2πθ
= 2(θ3

max − θ3
min)

3(θ2
max − θ2

min) . (A.12)

Here θmin and θmax are the minimum and maximum values of
the bin.

We find that the weighted mid-point and the area weighted
values are similarly biased, boosting the signal at the∼ 3% level
at 10 arcmin, rising to ∼ 10% bias at large scales for ξ+. Taking
the logarithmic mid-point of the bin has the opposite effect, de-
creasing the signal at ∼ 7% level at 10′ and ∼ 10% bias at large
scales for ξ+. That the biases work in the opposite sense here in-
creases the inferred impact of binning bias when comparing the
two KiDS analyses in Troxel et al. (2018a).

In all cases we see that the choice of binning affects ξ+ more
than ξ−, since ξ+ has more curvature than ξ−. We note that these
biases will be smaller for narrower angular bins and as such their
effect will not be as significant for the first year DES analysis
(Troxel et al. 2018b) which uses the weighted mean for θb with
roughly twice as many bins in the same angular range as shown
here.

If future surveys conclude that it is too computationally ex-
pensive to calculate the impact of binning theoretically, espe-
cially in the case of the covariance matrix, our proposed solution
is to use the linear mid point of the θ-bin in the binned ξ± anal-
ysis. We find that this approximation presents the weakest bias
with at most 2.5% bias at large and small scales and below per-
cent level bias between 0.5′ < θ < 300′. Another alternative is
to move to a COSEBIs analysis. As COSEBIs are discrete they
are not subject to any of the binning biases presented in this Ap-
pendix.

Appendix B: σ8 − Ωm degeneracy

Cosmic shear is most sensitive to a combination of σ8 and Ωm
(Jain & Seljak 1997), where the degeneracy can be written as

Σ8 = σ8

(
Ωm

Ωfid
m

)α
. (B.1)

Here Ωfid
m is arbitrary but is usually taken to be 0.3. In the ma-

jority of cosmic shear analyses α has been taken to be α = 0.5,
even though the optimal value of α will depend on the statistic
used, the redshift distributions and the angular ranges used in the
analysis. As an example, Hildebrandt et al. (2017) present joint
Σ8−Ωm constraints with α = 0.5. The tilt seen in their Figure 6
of these constraints demonstrates that α = 0.5 does not best rep-
resent the degeneracy direction of Ωm and σ8 for the KiDS-450
2PCF tomographic analysis.

In Fig. B.1 we show the value of the CCOSEBIs mode Eσ8
(see colour bar) for a range of σ8 and Ωm values assuming a
KiDS-like survey. The degeneracy shown in Eσ8 can be com-
pared to the dashed lines of constant Σ8 = σ8(Ωm/0.3)α where
α = 0.65. We have carried out this test for all the CCOSEBIs
modes in our analysis;EΩm ,Eσ8,σ8 ,Eσ8,Ωm andEΩm,Ωm to con-
firm that α = 0.65 is an optimal choice for our CCOSEBIs anal-
ysis.

Appendix C: Optimising the COSEBIs B-mode
null-test

All null tests are subject to the choices we make in our data
analysis. As an example, if we limit our B-mode analysis of
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Fig. B.1. The degeneracy direction of σ8 and Ωm for a CCOSEBIs anal-
ysis of the KiDS-like data. The colours in the image show the value of
the CCOSEBIs Eσ8 mode, in comparison to dashed lines of constant
Σ8 = σ8(Ωm/0.3)α with α = 0.65. The repeating color scheme was
chosen to capture the variations in the values of Eσ8 . The lower left
corner has the smallest value of Eσ8 which gradually increases, per-
pendicular to the dashed curves, towards the upper right corner.
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Fig. C.1. Model comparison using 10, 000 random samples of the PSF-
leakage systematic model, MPSF, (solid) defined in Sect. 5.1.1. The data
points show the mean of the random samples, with the errors reflecting
the noise on a single realisation. The data samples are analysed to de-
termine how often the input model MPSF can be distinguished from the
no-systematics zero B-mode model, M0, (dashed).

CFHTLenS to the first 7 COSEBIs modes, following Asgari
et al. (2017), we conclude there are no significant small scale
B-modes in CFHTLenS. In contrast, our analysis of the first 20
COSEBIs modes, in Sect. 4, finds a significant B-mode detection
for CFHTLenS on the same scales. In this Appendix we explore
the question of how many COSEBIs modes should be used to
determine the overall significance of the B-modes in a dataset.

As an illustrative example, we take two parameter-free mod-
els for COSEBIs B-modes, shown in Fig. C.1: M0 whereBn = 0
for all n, and MPSF where Bn corresponds to the measured

PSF-leakage systematic defined in Sect. 5.1.1. The difference be-
tween these two models is captured by the first few modes, with
almost zero power for n & 10. We create 10, 000 random sam-
ples of Bn for the full angular range of [0.5′, 100′] given the
model MPSF and the KiDS noise-only covariance for the non-
tomographic case. Fig. C.1 shows the mean of these samples (red
squares) with errors corresponding to a single sample as well as
the input model (blue curve).

We can determine which of the two models best represents
the data using a Bayesian evidence analysis. If we give the same
weight to both models then the ratio of the Bayesian evidences
for these models is given by the Bayes factor,

Bayes Factor = P (D|M1)
P (D|M2) =

∫
P (D|M1,Φ1)P (Φ1|M1) dΦ1∫
P (D|M2,Φ2)P (Φ2|M2) dΦ2

,

(C.1)

where D is the data, Mi is model i and Φi represents the set of
parameters for model i. For the simplified case of parameter free
models that we consider here, Eq. C.1 simplifies to,

Bayes Factor = P (D|M0)
P (D|MPSF) . (C.2)

The resulting Bayes factor will however depend on the number
of n-modes that are included in the analysis. The Bayesian evi-
dence can only be used when an alternative model exists, but in
the case of null tests, such as a B-mode test, the only available
model is the null hypothesis and therefore we need to use clas-
sical methods to identify the significance of the B-modes. Here
we use χ2 and p-values to test the null hypothesis. The p-value
for the χ2 is defined as the probability of calculating a χ2 value
larger than the measured one, χ2

m, given the model M,

p-value = Pr(χ2 > χ2
m|M) =

∫ ∞
χ2

m

dχ2 Pr(χ2|M) . (C.3)

Fig. C.2 shows the distribution of the measured χ2 across
our 10, 000 random samples when the data are fit using the input
MPSF model (blue histogram) and the M0 no systematics model
(orange histogram). In the left panel we take the null-test case
where all modes up to n = 20 are included in the analysis (All-
modes). In the right panel, only the first 5 modes (n < 6) are
analysed. As MPSF is the correct model, we naturally find better
fits to the data, i.e. lower χ2 values, for this model. The dif-
ference between the two distributions for the χ2 values is how-
ever enhanced when the modes analysed are limited to the range
where the two models differ significantly. This means that the
power of the null test is optimised over this reduced, n ≤ 5,
range.

Fig. C.3 shows the distribution of p-values for the χ2 values
shown in Fig. C.2. If the model used to fit the data is the true
underlying model, any particular p-value is as likely to be mea-
sured as the other. If the model is not representative of the data,
however, then one is more likely to obtain smaller p-values from
the sample. As expected with MPSF as the correct model, we
find a uniform distribution of p-values and a skewed distribution
for the M0 model. When all 20 COSEBIs modes are included
this p-value distribution is less skewed compared to when we
only include the n ≤ 5 modes. By adding more data points to
the analysis, we have diluted the systematic signal of the PSF
leakage, making this null-test less effective.

Based on this analysis, we must recognise that finding that
the B-modes pass a null-test using a large data vector does not
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Fig. C.3. The distribution of p-values for the 10,000 data samples, showing the probability that the MPSF model (blue histogram) or the M0 no
systematics model (orange histogram) is the true underlying model, given each data sample. The left panel shows the p-values from an analysis of
the n ≤ 20 COSEBIs modes. In the right panel only the n ≤ 5 modes are considered.

ensure that analysing a smaller dataset will give the same re-
sult. A good example of this is KiDS-450 passing the 20-mode
COSEBIs null-test, but failing the CCOSEBIs null-test which is
most sensitive to the n ≤ 5 modes. In contrast DES-SV and
CFHTLenS fail the 20-mode COSEBIs null-test, even though
they pass the CCOSEBIs null-test. Their B-modes therefore ap-
pear when adding in more data points to the analysis. As our
example shows how increasing the size of your data set serves to
reduce the stringency of the null-test, we can therefore conclude
that the significant DES-SV and CFHTLenS B-mode, seen with
COSEBIs and not with CCOSEBIs, is present in the high-n data
that is not included in the CCOSEBIs analysis. If we had only
performed a COSEBIs null-test, we would have missed the pres-
ence of a systematic signal in KiDS. If we had only performed a
low-n CCOSEBIs null-test, we would have missed the presence
of a systematic signal in DES-SV and CFHTLenS.

To illustrate our discussion of null-tests we have used COSE-
BIs, but the concept holds for any statistic or null-test. If a sys-
tematic produces a feature at a particular scale, but is other-
wise identical to the standard model, by adding data from other
scales we will dilute the power of the statistical test to distin-
guish between the two cases. As null B-mode tests are generally
performed independently of alternative models, it is not clear
which data points should be added to the null-test analysis. We
therefore propose that future null-tests are performed with the
B-mode signatures shown in Sect. 6 in mind. In this way one can
optimise the modes over which to carry out a model comparison.

Appendix D: Supplementary data and figures

Figures D.1, D.2 and D.3 show the tomographic COSEBIs mea-
surements, using the angular range of [0.5′, 100′], for DES-SV,
KiDS-450 and CFHTLenS respectively. In each figure, the up-
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Table D.1. Best fitting shear calibration and photo-z biases for different
redshift bins in the DES-SV data (from private communication with Joe
Zuntz).

z1 z2 z3 Single bin
Shear calibration bias 0.0163 −0.0051 −0.0058 0.0163

Photo-z bias 0.0314 −0.0138 0.0106 0.0

Table D.2. Best fitting values for ax and bx as defined in Eq. 28, fitted to
KiDS-450 data. In this equation the signal-to-noise of measured fluxes
are written as a linear function of |ε − ε∗x|, where ε is the observed
ellipticity of galaxies and ε∗x is the PSF ellipticity in photometric band
x=u, g , r , i.

u-band g-band r-band i-band
ax −3.5 −17 −37 −19
bx 5.5 23 47 23

per panels present the E-modes, the lower panels present the B-
modes, and the significance of the B-modes are indicated with a
p-value shown in the upper left corner. The p-values for the other
two angular ranges analysed are given in Table 2. The predicted
E-modes, given the best-fitting cosmology parameters listed in
Table 1, are shown as curves.

Figures D.4, D.5 and D.6 show ξE/B for the tomographic
cases for DES-SV, KiDS-450 and CFHTLenS respectively. We
show p-values for the significance of the B-modes in each figure,
but caution the reader that due to binning and the truncated inte-
grals discussed in Sect. 4, this method is not robust. However, as
ξB data points are uncorrelated, they can help with identifying
the source of the systematic even though it was seen in Sect. 6
that systematics do not always affect the same angular ranges
for E and B-modes. The prediction for ξE, given the best-fitting
cosmology parameters listed in Table 1, is shown as curves.

For DES-SV, we note that the significance of the tomo-
graphic ξB signal significantly decreases when we restrict the
analysis to an angular range of [4.2′, 72′], as adopted by Dark
Energy Survey Collaboration et al. (2016), with the p-value in-
creasing from p = 4 × 10−19 to p = 0.012. If the systemat-
ics that source the B-modes detected in the standard [0.5′, 100′]
analysis add equally to the E and B modes, then the chosen DES-
SV angular selection would serve to mitigate the impact of these
systematics. As shown in Sect. 6, however, we find that the range
of tested systematics exhibit different E and B mode responses.
We would therefore caution against concluding that a choice se-
lection of angular scales, based on the B-mode response, is suf-
ficient to remove the systematic contamination to the E-modes
within those chosen scales.

In Table D.1 we list the best-fitting values of the calibration
parameters for DES-SV used to calculate the E-mode predictions
for DES-SV shown in Sect. 4 and this Appendix . The first row
shows the value of the multiplicative shear calibration bias and
the second row the additive photometric redshift bias for redshift
bins one to three. The last column shows the values we adopted
for the single bin case, which was not analysed in Abbott et al.
(2016). For this case we use a multiplicative shear calibration
equal to the first redshift bin value and a vanishing photometric
redshift bias.

Table D.2 lists the fitted values for ax and bx to KiDS-450
multi-band data using Eq. (28). This values are used to produce
a correlation between the measured ellipticity of galaxies that
are binned in photometric redshift bins with their local PSF el-
lipticity (see Sect. 5.2 and Sect. 6.3).
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Fig. D.2. Tomographic E/B mode COSEBIs analysis of KiDS-450. See the caption of Fig. D.1 for details.
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