
Simulating stellar winds in AMUSE
Helm, E. van der; Saladino, M.I.; Portegies Zwart, S.F.; Pols, O.

Citation
Helm, E. van der, Saladino, M. I., Portegies Zwart, S. F., & Pols, O. (2019). Simulating
stellar winds in AMUSE. Astronomy And Astrophysics (0004-6361), 625, A85.
doi:10.1051/0004-6361/201732020
 
Version: Accepted Manuscript
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/84986
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/84986


Astronomy & Astrophysics manuscript no. wind c© ESO 2019
March 28, 2019

Simulating stellar winds in AMUSE
Edwin van der Helm1, Martha I. Saladino2,1, Simon Portegies Zwart1, and Onno Pols2

1 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA, Leiden, The Netherlands
2 Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands

Received October 2, 2017; Accepted March 23, 2019

ABSTRACT

Aims. We present stellar wind.py, a module that provides multiple methods of simulating stellar winds using smoothed particle
hydrodynamics codes (SPH) within the astrophysical multipurpose software environment (amuse) framework.
Methods. The module currently includes three ways of simulating stellar winds: With the simple wind mode, we create SPH wind
particles in a spherically symmetric shell for which the inner boundary is located at the radius of the star. We inject the wind particles
with a velocity equal to their terminal velocity. The accelerating wind mode is similar, but with this method particles can be injected
with a lower initial velocity than the terminal velocity and they are accelerated away from the star according to an acceleration
function. With the heating wind mode, SPH particles are created with zero initial velocity with respect to the star, but instead wind
particles are given an internal energy based on the integrated mechanical luminosity of the star. This mode is designed to be used on
longer timescales and larger spatial scales compared to the other two modes and assumes that the star is embedded in a gas cloud.
Results. We present a number of tests and compare the results and performance of the different methods. For fast winds, we find
that both the simple and accelerating mode can reproduce the desired velocity, density and temperature profiles. For slow winds, the
simple wind mode is insufficient due to dominant hydrodynamical effects that change the wind velocities. The accelerating mode,
with additional options to account for these hydrodynamical effects, can still reproduce the desired wind profiles. We test the heating
mode by simulating both a normal wind and a supernova explosion of a single star in a uniform density medium. The stellar wind
simulation results matches the analytical solution for an expanding wind bubble. The supernova simulation gives qualitatively correct
results, but the simulated bubble expands faster than the analytical solution predicts. We conclude with an example of a triple star
system which includes the colliding winds of all three stars.

Key words. stars: winds, outflows – methods: numerical – hydrodynamics

1. Introduction

Stars lose mass through stellar winds during various stages of
their evolution (e.g. Meyer-Vernet 2007; Owocki 2013; Puls
et al. 2015). These winds can affect the gas near the star, cre-
ating lower density bubbles (Castor et al. 1975) and regulating
star formation (Oey & Clarke 2009). If a binary companion is
present, accretion of the stellar wind material can also affect the
evolution of that companion (Boffin 2015).

The two most important parameters of the stellar wind are
the mass-loss rate, Ṁ, and the terminal wind velocity, v∞,
which determine the effect of the wind on the environment.
Based on these parameters, stellar winds can be broadly divided
into three categories (Owocki 2013): 1) Cool main-sequence
stars like the Sun have winds with very low mass-loss rates
(Ṁ∼10−14 M�/yr) that are thermally or gas pressure driven.
2) Cool giants and super giants have slow (v∞∼5 – 30 km/s)
high mass-loss rate (Ṁ∼10−7 – 10−5 M�/yr) winds driven mainly
by radiation pressure on dust (Höfner 2015). 3) Hot lumi-
nous stars have fast (v∞∼200 – 3000 km/s) high mass-loss rate
(Ṁ∼10−7 – 10−5 M�/yr) line driven winds (Puls et al. 2009). The
second and third category have the highest kinetic output and
therefore have the most pronounced effect on the stellar environ-
ment (not including cumulative effects).

To simulate stellar winds in detail, a combination of hydro-
dynamics, radiative transfer, dust formation and chemical abun-
dances is required. Such simulations have been done for many
years although they are extremely computationally expensive.
In most cases simulations are limited to 1D or 2D models (e.g.

Owocki et al. 1988; Blondin et al. 1990; Kudritzki & Puls 2000;
Boffin 2015). To investigate the net effect of the stellar wind on
the environment, it is often sufficient to simulate the stellar wind
using only hydrodynamics (Theuns & Jorissen 1993; Cuadra
et al. 2006; Mohamed et al. 2012). For larger scale simulations,
stellar wind feedback is often included using a sub-grid model
as it can influence star formation and launch galactic winds (e.g.
Agertz et al. 2013; Muratov et al. 2015).

For all these simulations, the astrophysical multipurpose
software environment (amuse1; Portegies Zwart et al. 2013;
Pelupessy et al. 2013; van Elteren et al. 2014; Portegies Zwart
& McMillan 2018; Portegies Zwart et al. 2018) can be useful.
It provides a uniform interface for many types of simulations
with a large and growing set of simulation codes. The consis-
tent python interface makes it possible to quickly set up a sci-
entific simulation and easily exchange different parts of these
simulations. While stellar winds have been simulated before us-
ing amuse (e.g. Pelupessy & Portegies Zwart 2012), a consistent
and properly tested module was still missing.

The stellar wind.py code presented in this paper can be
combined with the SPH (Smoothed particle hydrodynamics), N-
body, stellar evolution and (with some additional work) radia-
tive transfer codes that are already available. We describe the
stellar wind.py code and explain the different modes in which
it can be used (Section 2). In Section 3 we present a series of
tests in which we compare the results from the different modes
with theoretical expectations and previous work. We conclude in

1 amusecode.org
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Section 4 with an exposition of some ongoing research projects
using this code and ideas for further use.

2. Methods

The goal of stellar wind.py is to create gas particles that repre-
sent the stellar wind from one or more stars. The code requires
a number of stars, represented by amuse particles2, with stellar
properties that can be derived from observations or stellar evolu-
tion simulations. Using this, SPH particles are created with the
appropriate wind properties in an initially spherically symmetric
shell with inner boundary at the radius of the star. The number
of SPH particles is computed according to the mass-loss rate as-
sociated with the star undergoing mass loss and the predefined
SPH particle mass, MSPH. These particles can be added to any
SPH code in amuse which simulates the hydrodynamics of the
wind.

Creating the SPH particles is only one step in the simulations
for which stellar wind.py is used. Following the goal of the
amuse framework, the other parts of the simulations are handled
by specialized interchangeable codes. For the hydrodynamics,
SPH codes such as fi (Pelupessy 2005) and gadget2 (Springel
2005) can be used. In many applications, the stars move, for
which a large number of N-body codes are available. To cou-
ple the stellar dynamics to the hydrodynamics gravitationally,
bridge (Fujii et al. 2007) is available. The stellar properties on
which the wind is based will generally be calculated using a stel-
lar evolution code. Both parametrized (e.g. Hurley et al. 2000)
and Henyey type (e.g. Paxton et al. 2011) stellar evolution codes
are available in amuse. Any or all of these codes can be com-
bined with stellar wind.py to set up a wide variety of simu-
lations (see Section 3). For more information about the codes
available within amuse and examples of how to couple them, we
refer the reader to Portegies Zwart & McMillan (2018).

2.1. Calculating stellar wind properties

To simulate the stellar winds, the stellar parameters (mass, ra-
dius, temperature and position) and wind parameters (mass-loss
rate, initial and terminal wind velocity) are required. All these
parameters can simply be set directly, however some of them
can be derived directly from stellar evolution codes available in
amuse.

The stellar wind.py module includes user-friendly routines
to derive some of the stellar parameters such as stellar mass,
mass-loss rate, stellar radius and effective temperature from one
of the stellar evolution codes within amuse. However, the termi-
nal wind velocity, v∞, is not calculated by any code currently
in amuse. Determining v∞ requires detailed and computationally
expensive stellar wind simulations which include radiative trans-
fer. For this reason, in order to compute the terminal velocities of
hot stars, we provide within stellar wind.py a formula that has
been fitted to observations of hot stars (Kudritzki & Puls 2000),
and which, they claim, is valid for these stars within 20%. The

2 A particle set is the fundamental data structure in amuse. It is an
array of particles (stars, SPH particles etc) which contain information
to control the data. Each element (particle) of the particle set has certain
attributes, such as mass, position, velocity, etc.

terminal velocity of the wind is given by:

v∞ = C(T∗)vphesc,

where,

C(T∗) =


1 T∗ ≤ 10 000 K,
1.4 10 000 K < T∗ < 21 000 K,
2.65 T∗ ≥ 21 000 K,

vphesc =
√

2g∗R∗ (1 − Γ),

g∗ =
GM∗

R2
∗

,

Γ = 7.66 · 10−5σe
L∗/L�

M∗/M�
,

σe = 0.398
1 + IHeY
1 + 4Y

,

(1)

where vphesc is the photospheric escape velocity (similar to the
escape velocity vesc with a correction term for Thomson scat-
tering), G is the gravitational constant, M∗, R∗, L∗ and T∗ are
the mass, radius, luminosity and effective temperature of the star
respectively, Γ is the ratio of radiative Thomson acceleration to
gravitational acceleration, σe is the Thomson absorption coef-
ficient, Y is the Helium fraction and IHe is the number of elec-
trons per Helium nucleus (in this paper we use default values of
IHe = 2 and Y = 0.25). For cooler stars, v∞ ≈ vphesc and this
formula is still applicable (Kudritzki, private communication).

2.2. Simple wind

Within stellar wind.py, there are currently three wind modes
available. The simplest mode creates a spherical shell of particles
around the star with radial velocity, v(r) = v∞ and initial temper-
ature equal to the effective temperature of the star. While this
may sound simplistic, a similar setup has been used effectively
for a number of scientific problems (e.g. Mohamed et al. 2012)
and it serves as a starting point for the two other modes described
in Sections 2.3 and 2.4. When the gravitational attraction of the
star on the wind is included in the simulation, however, this will
not result in the desired terminal wind velocity. We therefore
release the wind with a larger velocity v(r) =

√
v∞2 + vesc(r)2

where vesc(r) =
√

2GM∗/r is the local escape velocity at the
initial particle radius, r. We calculate this new velocity for each
particle because vesc(r) can vary within the thin shell in which
we create the particles.

We set the outer radius (rmax) of the shell of new particles
at the radius that the innermost part of the previously released
shell (R∗) should have reached in the elapsed simulation time δt
(see Appendix A.1). We scale the particle positions within the
shell to follow the density profile matching the velocity profile
as described in Appendix A.2.

2.2.1. SPH and initial distributions

SPH is a method to solve the dynamics of a fluid by approxi-
mating it with a set of discrete particles (Monaghan 1992). Each
particle has both a mass and a density, where the density is cal-
culated using the distance to, and mass of, other particles that are
nearby. To determine which other particles are taken into account
(how nearby they have to be) a kernel function3 and a particle
smoothing length (h) are used. In all modes of stellar wind.py,

3 In the SPH code used in this paper we use the spline kernel.

2



Edwin van der Helm et al.: Simulating stellar winds in AMUSE

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

y
(R
∗)

−3 −2 −1 0 1 2 3

x (R∗)

−3

−2

−1

0

1

2

3

y
(R
∗)

Fig. 1. An example of the initial positions of newly created parti-
cles using a random (top) and grid (bottom) distribution. A shell
of particles was created between 1 and 3 stellar radii (R∗) and
the x and y positions of a thin slice (|z| < 0.05 R∗) are shown.
The positions are scaled to match the given density profile (see
Appendix A). Note that this is merely an illustration of the differ-
ence between random and grid initial distributions. In real simu-
lations, the shells would generally be much thinner.

the SPH particle mass is required to be fixed and the same for
each particle. The smoothing length, h, is set adaptively by fix-
ing the number of neighbouring particles that fall within one h
(e.g. see Pelupessy 2005).

Creating an initial distribution of SPH particle positions is
not trivial (e.g. Diehl et al. 2015). Randomly distributed posi-
tions are clumpy which can introduce shot noise that can affect
the entire simulation. A better alternative is to have more regular
spaces between particles, for instance a distribution that follows
a grid. However, a regular grid tends to introduce preferred di-
rections in the simulation that can affect the overall results. To
solve this, it is common to start with either a random or grid
distribution and let the system evolve (relax) to a steady state
where the positions are regularly spaced without preferred direc-

tions (for example a ‘glass’ initial condition, White 1996; Wang
& White 2007). While some form of relaxation is preferred for
simulations where all particles are created at once, for continu-
ous particle creation like we describe here, this is not generally
required.

In stellar wind.py we implement two methods in which
wind particles can be initially distributed. One is a random dis-
tribution and the second follows a uniform grid. We present an
example of both in Figure 1. The random initial distribution (top
panel) is available so that users can investigate if it has advan-
tages for their simulations. In this case, a shell with uniform den-
sity is created and then the radii are scaled to ensure the correct
density profile. In the other option we have included (bottom
panel), each new shell is created by cutting it out from a cube
with positions following a uniform grid. The number of parti-
cles in this shell is generally not exactly the desired number of
particles, Ndesired = δt · Ṁ/MSPH. We therefore remove a number
of randomly selected particles from the grid (typically ∼30%)
to ensure the correct number of SPH particles. The grid can be
randomly rotated each time a new shell is generated to avoid
introducing preferred directions into the resulting wind. The po-
sitions of the particles are also radially scaled to ensure that the
desired density profile is achieved. This is the cause of the curved
appearance in the grid in Figure 1.

There are many more ways to create initial particle distribu-
tions. A good overview of the different methods and their advan-
tages can be found in Diehl et al. (2015). Our method is a mix
between the ‘stretched lattice’ and the ‘shell’ methods described
there. The reason we do not use the more advanced methods
described there is that they would require some form of com-
putationally expensive relaxation for every new shell. This is a
common issue with continuous particle creation methods. If the
current methods are found to be unsatisfactory for a specific sim-
ulation, the code is set up in a modular way so adding a new
particle distribution method is relatively easy. The uniform grid
with random rotation is the default option used throughout this
paper. However, due to the small number of particles in a single
shell, the difference between this option and a random distribu-
tion is negligible for all the tests in Section 3.

2.3. Accelerating wind

Near the surface of the star, usually within a few stellar radii, the
wind is accelerated to the terminal wind velocity. In the acceler-
ating wind mode, the wind particles are created in the same way
as in the simple wind mode, but with a lower velocity, v < v∞.
All particles near the star are artificially accelerated in such a
way that the wind follows a predefined velocity profile.

The artificial acceleration is implemented using bridge (Fujii
et al. 2007). Originally, bridge was designed to couple multiple
gravitational codes. In this method, each code is evolved sepa-
rately for a short, predefined timestep4. The mutual gravitational
effect is included by bridge using a kick-drift-kick scheme (see
e.g. Portegies Zwart & McMillan 2018). This method can also be
used to gravitationally couple a pure N-body code with an SPH
code, or to apply a gravitational potential to the particles in one
or more codes. In stellar wind.py, we use bridge by including
an artificial potential near the star, and then use the same kick-
drift-kick scheme to ensure a smooth acceleration of the wind
particles.

4 This should not be confused with the internal timesteps for each
code which may be variable, meaning particles have different timesteps
depending on conditions such as local particle density.
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Fig. 2. Radial velocity profiles for the wind acceleration func-
tions currently available in stellar wind.py. The formulae for
these functions can be found in Table 1. For the beta law we
show two curves that are good fits for hot massive stars (β = 0.8)
and cool giants (β = 2.0) (Lamers & Cassinelli 1999). To il-
lustrate the shape of the acceleration curves, we have chosen
v0 = 0.2 v∞, racc start = 2 R∗ (for the delayed rsquared function),
and rmid = 3 R∗ and s = α = 10 (for the logistic and agb func-
tion).

In Figure 2 and Table 1 we present the acceleration func-
tions (sometimes referred to as acceleration laws) currently im-
plemented in stellar wind.py. For a given velocity (or accel-
eration) profile, all required quantities are calculated following

Table 1. An overview of the acceleration functions currently
available in stellar wind.py. Either the acceleration (a) or the
velocity (v) is given depending on which is simpler. The cor-
responding v or a function can be derived using a(r) = v(r) dv

dr
and the known boundary conditions. Some functions allow user
defined parameters to affect the functions (e.g. racc start, rmid, β,
etc.) The first three functions are rough approximations to the
last three functions. Their advantage is that they are computa-
tionally faster.

Name Equation Use

constant velocity v(r) = v∞ Wide
binaries

rsquared a(r) ∝
1
r2 Hot stars

delayed rsquared a(r) ∝
{

0 r < racc start
1
r2 r ≥ racc start

Cool stars

logistic v(r) = v0 +
v∞ − v0

1 + e−s
r−rmid

rmid

AGB winds

agb v(r) = v0 +
v∞ − v0

1 +
(

rmid
R∗

)α (
r

R∗

)−α AGB winds

beta law v(r) = v0 + (v∞ − v0)
(
1 −

R∗
r

)β
Hot/cool
stars

the equations in Appendix A. The constant velocity function is
similar to the simple wind mode in that when the wind particles
are created, they already have the terminal velocity. However, as
noted below, when used in the accelerating mode we can add ex-
tra terms to compensate for the gravity of the star, as well as the
pressure of the gas on the wind. These extra accelerating terms
are added after the particles have been created, which is not pos-
sible with the simple wind mode. In this way, we guarantee the
desired constant velocity profile. The logistic and agb functions
provide a fit to the time-averaged behaviour of dynamical mod-
els of asymptotic giant branch (AGB) winds from Nowotny et al.
(2010). These winds exhibit a specific acceleration zone, the lo-
cation of which can be chosen with the parameters rmid and either
s or α (for the logistic and agb function, respectively). These pa-
rameters determine the center and the width of the acceleration
zone. The default values rmid = 3 and s = α = 10 are chosen
to fit the dynamic models. The beta law function, which was de-
rived using a combination of observations and theoretical wind
models, was taken from Lamers & Cassinelli (1999) and Maciel
(2014). The β parameter indicates the steepness of the accelera-
tion curve and is often derived from observations. The example
values β = 0.8 and β = 2 are typical for hot and cool stars re-
spectively. The rsquared and delayed rsquared functions can be
used as rough approximations to the wind profiles of hot stars
and cool giants, respectively. They have the advantage of being
computationally faster than the beta-law, agb and logistic func-
tions. In the delayed rsquared model the parameter racc start (with
a default value of 2) sets the lower boundary of the acceleration
zone. The initial velocity v0, which is used in all functions ex-
cept for constant velocity, is of the order of a few km/s due to
microturbulence in the stellar atmosphere where the material is
launched. We note that low values of v0 result in high densities
which lead to slow simulations, so in many cases a higher value
of v0 can be used as an approximation. In addition to these pre-
defined functions, new user defined velocity functions can easily
be incorporated.

When the gravity of the star is included, an additional accel-
eration term can be added to compensate for it and ensure that
the wind particles follow the chosen velocity profile. The gas
pressure can also exert an acceleration on the wind. We therefore
provide the option to subtract the expected gas pressure accelera-
tion (see Appendix A.3) from the applied artificial acceleration.
If we do not include a hydrodynamical simulation of the stel-
lar interior, unphysical boundary effects near the surface of the
star can influence the wind evolution or even prevent the wind
from being launched. We therefore provide the option to create a
“staging shell” near the star, generally at least twice the thickness
of the newly created shells. Within this shell, the accelerations
are chosen in such a way that the desired velocities are enforced
regardless of the gas dynamics. This shell then provides a better
boundary condition for the rest of the simulation.

For many simulations using the simple and accelerating wind
we can start the simulation with a vacuum around the star into
which the wind particles are released. However, this can lead
to an extra acceleration at the outer radius as the vacuum does
not exert any pressure on the outermost particles. This can be
problematic, especially for slow winds, where this spurious ac-
celeration can significantly increase the velocities. We therefore
include a function in stellar wind.py that creates an initial set
of SPH particles following the desired temperature, density and
velocity profiles up to a given radius. This function uses the
same initial grid distribution described in Section 2.2.1. Since
the whole grid is created at once, without random rotations be-
tween different shells, this can introduce preferential directions.

4
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We advise that any scientific measurements are started after all
these particles have left the area of interest.

When particles are created, we ensure that they follow the
desired density profile by solving equation A.9 for each particle.
For most acceleration functions, this equation has to be solved
numerically, which can severely slow down the simulation (see
Section 3.1). We therefore include the option to define a critical
timestep, tc. When new wind particles are created, δt, which de-
termines the thickness of the shell of new particles, is compared
to tc. If δt < tc it means that the new wind particles have not
reached the accelerating region yet. For this reason, the acceler-
ation function is approximated by the constant velocity function,
for which equation A.9 is solved analytically. This approxima-
tion is only valid for acceleration functions for which the veloc-
ity near the star is close to constant, like the logistic function,
not for acceleration functions with a large acceleration near the
stellar surface, like the beta law function (see Figure 2).

2.4. Heating wind

The third wind mode is based on the method used in Pelupessy
& Portegies Zwart (2012) and is designed for use in large scale
simulations, e.g. embedded star clusters. For these simulations,
the main effect of the wind is that it adds mass and energy to the
surrounding gas, therefore this mode cannot be used for a star in
a vacuum. Studying the detailed kinematics of the wind near the
star is not the goal of these simulations and therefore a simpler
approximation of the wind interaction is used. The advantage of
this approximate approach is that it can be used at far lower res-
olution (longer timesteps and higher SPH particle mass) which
greatly speeds up the simulations. If particles were created with
a high velocity, small timesteps would be required to completely
sample the particle trajectory and interactions with other parti-
cles.

The basic idea of the heating wind mode is that new wind
particles do not have an initial velocity relative to the star.
Instead they have an internal energy, u, which corresponds to
the mechanical energy (Emech) of the accumulated wind, defined
as,

Emech =

∫ t1

t0
Lmech(t) dt,

Lmech(t) =
1
2

Ṁ(t)v∞(t)2,

(2)

where Lmech is the instantaneous mechanical luminosity and
t0 and t1 are the previous and current wind release time
respectively. The integral is numerically approximated in
stellar wind.py during the simulation. The internal energy of
the new particles is set to

u = ffb
Emech

∆M∗
, (3)

where ∆M∗ is the mass lost and ffb is the feedback efficiency
parameter that accounts for radiative losses. Typical values for
these parameters can be found in the examples shown in Sections
3.3 and 3.4.

As discussed in Pelupessy & Portegies Zwart (2012), this
method of creating particles with appropriate internal energy can
also be used to simulate a supernova. If a star goes supernova,
the calculated mechanical energy is ignored, and instead 1051 erg
of energy is divided over the newly created particles. It should be
noted that the injection of so much energy in the surrounding gas

stellar_wind.py

N-body (Huayno)

create particles
gravity kicks

stellar position gravity kicks

SPH (FI)

Bridge + FastKick

acceleration

Fig. 3. A diagram of the amuse codes (boxes) and their relations
(labelled arrows). Dotted lines indicate optional codes that can
be added depending on the astrophysical application.

will cause the gas to evolve very rapidly, which can lead to time-
stepping artefacts (e.g. Pelupessy & Portegies Zwart 2012). One
way to prevent this is to use a very small timestep (preliminary
tests suggest ∼10 yr) shortly after a supernova.

3. Application

To ensure that stellar wind.py performs as expected, we run
test simulations with different initial conditions and wind modes.
In this section we present the results of these tests. The tests
in Sections 3.1 and 3.2 are simulations of processes that hap-
pen close to the star. Therefore only the simple and accelerat-
ing wind modes are applicable. The tests in Section 3.3 and 3.4
are large scale simulations of the interaction between the stellar
wind and the gas in which the star is embedded. For this type of
simulation the heating wind mode is applicable. The final test in
Section 3.5, where we couple stellar dynamics, hydrodynamics
and stellar winds, shows the power of stellar wind.py within
amuse by simulating the colliding winds from a stable triple star
system. The initial distribution of the wind particles is the one
based on a grid for all the models in these tests. The particu-
lar parameters used are described accordingly in the following
subsections.

The stellar wind.py module is designed to couple different
parts of a simulation in amuse. Testing the code requires the use
of other simulation codes, which have their own parameters to be
set. Here we describe the general method and general parameters
used in our test models. In Figure 3 we present a flow diagram
to illustrate the codes and the relationships between them. Note
that the codes and coupling strategies used here are merely an
example and should be modified in order to be suitable for any
specific application. To simulate the gas we use the SPH code
fi with an adiabatic equation of state and artificial viscosity pa-
rameters α = 0.5 and β = 1.0 (following Lombardi et al. 1999).
Self-gravity of the gas is only included in the tests which do not
require periodic boundary conditions, i.e. those tests where the
simple or accelerating mode are used. For simulating the gravi-
tational attraction of the star on the gas we need bridge, which
is also used in the accelerating wind mode (Section 2.3). The
bridge code requires an additional code for calculating the grav-
itational force. When we simulate only a single star that does not

5
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Table 2. Stellar and wind parameters used in the fast wind test.
Derived parameters are indicated with an arrow (→). Since the
smoothing length is highly variable with extreme outliers, we
include the median value of all gas particles shown in Figure 4.

name parameter value

mass-loss rate Ṁ 10−6 M�/yr
terminal wind velocity v∞ 700 km/s
initial wind velocity v0 100 km/s

stellar mass M∗ 20 M�

stellar radius R∗ 30 R�
stellar luminosity L∗ 100 000 L�
stellar surface temperature T∗ 20 000 K
escape velocity at R∗ vesc(R∗) → 504.5 km/s

wind timestep twind 0.02 days
end time tend 5 days
SPH particle mass MSPH 10−11 M�

particles per shell Nshell → ∼5
particles in simulation Ntot → ∼1378
median smoothing length h → ∼32 R�

evolve dynamically, we use fastkick5. When we simulate mul-
tiple stars that evolve dynamically (Section 3.5), we use the N-
body code huayno (Pelupessy et al. 2012). For each simulation,
we also need to define a number of integration timescales, such
as the bridge timestep (tbr), the (maximum) internal timestep
(tN−body) of the SPH and N-body codes and the wind release
timestep (twind), as well as the end time (tend) of the simulation.
The choice of these timesteps depends on the problem and the
type of simulation. For the bridge leap-frog algorithm to work,
we should set tbr ≥ tN−body and the wind code requires twind ≥ tbr.
It is also a good idea to ensure that larger timescales are integer
multiples of smaller timescales. For the simulations in this pa-
per, we only define twind and choose twind = 2tbr = 4tN−body. For
the hydro simulation we also need to set the SPH particle mass
(MSPH).

3.1. Fast winds

In this section we present the results of a set of simulations using
the simple and accelerating wind modes. We simulate the wind
from a single, hot, massive, luminous star, for which we present
the parameters in Table 2. Note that these values were not chosen
using a specific stellar model and this test should only be con-
sidered as an example of the use of stellar wind.py. The initial
wind velocity, v0 = 100 km/s, is based on numerical consider-
ations. As we shall see in Section 3.2, slow (subsonic6) winds
are more complex to simulate and for many applications using a
higher v0 is sufficient.

In Figure 4 we show the velocity, density and temperature
profiles for the simple wind mode and two accelerating func-
tions: the beta law and logistic function. In all cases the veloc-
ity profiles follow the desired analytical velocity curve. For the
simple wind mode, the density and temperature profiles also fol-

5 The fastkick code, developed by N. de Vries, is an unpublished
gpu-enabled code in amuse that can calculate the gravitational force of
one set of particles on another set of particles. It is ideal for the gravita-
tional coupling between particles in different codes via bridge.

6 If the wind speed near the star is lower than the local sound speed,
the wind is called subsonic. On the other hand if the wind speed is
higher than the local sound speed, i.e. past the ’sonic point’, the wind is
called supersonic.

Fig. 4. The analytical and simulated velocity (v), density (ρ) and
temperature (T ) as a function of radius (r) for the fast wind test.
The results are from simulations using the simple wind mode
(top) and the accelerating wind mode (bottom). The stellar and
wind parameters can be found it Table 2. To calculate the ana-
lytical temperature profile, we assume adiabatic expansion.

low the desired curve, but with more scatter. For the accelerating
wind curves, we see that in regions with high acceleration the
densities and temperatures in the simulation are too high. This is
a result of the low resolution in combination with the way den-
sities are calculated in SPH, using a kernel function that ’smears
out’ these variables. We show in Figure 5 that for a higher reso-
lution (smaller Mgas), the desired density and temperature curve
are recovered. Note that the logistic acceleration function is not
a good representation for the velocity profile of a hot massive
luminous star. This example was chosen to illustrate the discrep-
ancies that can potentially occur. For any scientific application
of this code, a detailed convergence test for the selected setup
will still be required.

In addition to being accurate, it is also important that a sim-
ulation code is fast. In Figure 6 we present the time spent in dif-
ferent parts of the simulation code (tcode) divided by the total cpu
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Fig. 5. The same as Figure 4, but only for a simulation using
the accelerating wind mode with the logistic acceleration func-
tion. We have varied the resolution by changing the SPH particle
mass (MSPH) and through that the number of particles in the sim-
ulation. We have added the smoothing length, h, as a function of
radius for each simulation, which is a measure of the local spatial
resolution.

(or wall-clock) time (ttot) as a function of resolution7. In the top

7 These simulations where all performed on the same desktop com-
puter using a 4-core Intel Xeon E5507 CPU.
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Fig. 6. The part of the simulation time used for the
stellar wind.py code while creating new particles (circles) and
accelerating them (stars) compared to the time used by the SPH
code (diagonal lines). The three panels show results for simu-
lations with the simple wind mode (top), the accelerating wind
mode with the logistic acceleration function without a critical
timestep (middle) and the accelerating wind mode with a critical
time step (bottom). Marks along each line denote separate simu-
lation runs. At the top axis we give an estimate of the number of
SPH particles (N) actually used in the simulation with the corre-
sponding particle mass (MSPH). The remaining simulation time
(white space) was mostly spent on unoptimized administrative
tasks like saving snapshots and removing escaping particles.

panel we see that when using the simple wind mode, the time
spent in the stellar wind.py code is less than 1% when using
more than ∼104 particles. Most of the simulation time is there-
fore spent in the SPH code itself, which is what we want. When
we use the accelerating wind mode however (middle panel), the
particle creation becomes a major bottleneck because numeri-
cally solving equation A.9 is slow. To speed up the simulation,
we have included the option to approximate the acceleration
function with a constant velocity when particles are created near
the star by defining a critical timestep (tc, see Section 2.3). In the
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Table 3. Stellar and wind parameters used in the slow wind test.
Derived parameters are indicated with an arrow (→). Since the
smoothing length is highly variable with extreme outliers, we
include the median value of all gas particles shown in Figure 8.

name parameter value

mass-loss rate Ṁ 5 · 10−7 M�/yr
terminal wind velocity v∞ 25 km/s
initial wind velocity v0 2 km/s

stellar mass M∗ 2 M�

stellar radius R∗ 300 R�
stellar luminosity L∗ 8 000 L�
stellar surface temperature T∗ 3 000 K
escape velocity at R∗ vesc(R∗) → 50.45 km/s

wind timestep twind 2 days
end time tend 2 000 days
SPH particle mass MSPH 10−9 M�

particles per shell Nshell → ∼5
particles in simulation Ntot → ∼8476
median smoothing length h → ∼159 R�

bottom panel we see that by using this approximation, the time
spent in stellar wind.py reduces to < 1% for > 104 particles.

3.2. Slow wind

For the slow wind test, we simulate the wind from a single, cool,
giant star, for which we present the parameters in Table 3. The
values of these parameters are not computed with a stellar evo-
lution code, but they correspond to typical values for AGB stars.
Part of the stellar wind is subsonic and therefore hydrodynamical
effects are no longer negligible, unlike in the fast wind test.

In Figure 7 we present the velocity profiles of simulations
using the simple wind mode and varying v∞ at t = 5 days. We
have not included the stellar gravity in these simulations, there-
fore the escape speed is not a relevant factor. However, when the
wind speed is near or below the sound speed, the gas pressure
gradient dominates and affects the terminal wind velocity. For
very low wind speeds, this can cause wind particles to move in-
side the star, which is unphysical. We therefore conclude that the
simple wind mode is not reliable for slow winds.

In Figure 8 we present the results of simulations using the
accelerating wind mode. In these simulations we have used the
staging shell option (Section 2.3) that enforces the correct parti-
cle velocity for all SPH particles with radius r < 1.1R∗. We have
also used the option to subtract the expected gas pressure accel-
eration from the acceleration to ensure that the particles follow
the desired velocity profile. To avoid spurious acceleration of
the outer particles, we start the simulation after initially creating
a sphere of particles following the desired velocity and density
profiles throughout the simulation area (up to r = 1500R�).

For the constant, rsquared and beta law velocity profiles, the
particles follow the desired velocity profiles. For the logistic ve-
locity profile, where particles are subsonic for a longer time, the
simulated velocity profile deviates from the desired velocity pro-
file in the subsonic region. However, the corrections described
above ensure that the resulting velocities after particles pass the
sonic point follow the desired velocity profile. To see how this
deviation will affect the results of simulations where the sub-
sonic region is of interest, we have compared this velocity pro-
file with detailed velocity profiles of AGB stars (Nowotny et al.
2010). In these profiles, the velocities in the subsonic region
oscillate due to stellar pulsations and do not follow the simple

Fig. 7. Same as Figure 4 but for the slow wind simulations using
the simple wind mode without gravity where we vary the wind
velocity. We have added the expected local sound speed (dotted
line) for comparison.

acceleration functions we have used here. We therefore advise
caution when interpreting results of simulations in the subsonic
region.

Similar discrepancies in density and temperature as seen for
the fast wind test in Figure 4 are also present for the slow wind
test in Figure 8. In Figure 9 we present the results of a resolu-
tion test for the slow wind test. We see that the discrepancies
in density and temperature decrease with higher resolution, as
expected. The deviations in the velocity profile in the subsonic
region also decrease, although some differences are still present
even at high resolution.

3.3. Embedded star

For the embedded star test (Table 4), we take the hot, massive,
luminous star from Section 3.1 and embed it in a constant den-
sity medium. The stellar wind will heat the gas and create a cav-
ity around the star. This situation is quite common in embedded
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Fig. 8. Same as Figure 7 but for the accelerating wind mode with
four different acceleration functions.

Table 4. The parameters used in the embedded star test. The
stellar and wind parameters are the same as in Table 2.

name parameter value

gas density ρgas 10 and 100 M�/pc3

wind timestep twind 2 · 104 yr
end time tend 106 yr
SPH particle mass MSPH 0.05 to 1 M�

wind release radius rwind 0.01 pc
feedback efficiency ffb 0.01
particles per shell Nshell → 0 or 1
new particles in simulation Nnew → 5 to 100
median smoothing length h → ∼0.2 pc

star clusters and it is what the heating wind mode is designed
for. The initial gas is distributed along a grid8 to ensure a con-
stant density and a divergence-free random Gaussian velocity

8 As mentioned in Section 2.2.1, this can introduce preferential di-
rections and a glass or other relaxed system should be considered for
most applications.

Fig. 9. Same as Figure 5 but for the slow wind test.

field following Bonnell et al. (2003). To ensure that the medium
is stable, we use periodic boundary conditions and stop the sim-
ulation when the wind-blown bubble covers more than half the
simulation box. For the heating wind mode, the outer radius for
new wind particles (rwind) is set manually to rwind = 0.01 pc and
the feedback efficiency is set to ffb = 0.01 following Pelupessy
& Portegies Zwart (2012).

In Figure 10 we show the gas density when the bubble has
just started to form (t = 0.2 Myr) and when it has had time to
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Fig. 10. The gas density in the x−y plane after 0.2 Myr (top) and
after 0.6 Myr (bottom) for the embedded star simulation with
MSPH = 0.1 M� and ρgas = 100 M�/pc3. The embedded star is
positioned at the origin (yellow dot) and the red dashed circle
shows the radius with the largest mean density.

grow (t = 0.6 Myr). The stellar wind creates an approximately
spherical bubble of lower density as the gas is swept up in a
high density shell around it. To understand why the bubble is not
perfectly spherical, we note that the finite number of gas parti-
cles cause small numerical fluctuations in the initial gas density.
When we then introduce a small number of wind particles with
higher energy than the surrounding gas, these small fluctuations
grow into a larger asymmetry in the wind bubble. This growth
of small initial asymmetries was observed in SPH simulations of
supernovae explosions (Rimoldi et al. 2016) where they found
that if the injected energy is spread out over more particles, the
asymmetric effects diminish. If the asymmetry in the wind bub-
bles would become a problem for specific simulations, then the
wind energy could be spread out in a similar way.

In Figure 10 we have drawn a dashed line that shows the ra-
dius where the mean density is highest (rρmax, see Appendix A.4
for details). At the start of the simulation, this radius is unde-
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Fig. 11. The radius with the highest mean gas density (rρmax) as
a function of time, t for the embedded star simulations. Different
colours correspond to different resolutions resulting from differ-
ent SPH particle masses (MSPH). In the top panel, we show rρmax
for all simulations as a function of t. Lines with open circles cor-
respond to simulations where the gas density, ρgas = 10 M�/pc3

and lines with filled circles to simulations with a gas density,
ρgas = 100 M�/pc3. In the bottom panel, we only show simu-
lations with ρgas = 100 M�/pc3 and subtract Ṁ/MSPH (the time
of the first SPH particle creation) from t. The black solid line
shows the analytical solution for the shell radius of an energy
driven flow in a constant density medium (Dyson 1984).

fined, because the gas has a constant density. As the bubble
grows and gas is swept up in an approximately spherical shell,
the radius of maximum density matches the shell radius, which
is what we plot as a function of time in Figure 11. Note that
rρmax is slightly larger than the shell radius because of the asym-
metry of the wind bubble. We present this expansion for different
values of MSPH (different resolutions) and two different gas den-
sities. Even when the resolution is very low (MSPH = 1.0 M�),
the heating wind method still results in a dispersion of the gas
cloud. The expansion is faster for lower gas density, which is

10



Edwin van der Helm et al.: Simulating stellar winds in AMUSE

Table 5. The parameters used in the supernova test.

name parameter value

initial stellar mass MZAMS 20 M�

stellar age T∗ 9.78 Myr

gas density ρgas 10 M�/pc3

end time tend 2000 yr
SPH particle mass MSPH 0.01 – 1 M�

wind timestep twind 20 yr
wind release radius rwind 0.01 pc
supernova energy ESN 1051 erg
mass-loss ∆M∗ 12.95 M�

feedback efficiency ffb 0.01
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Fig. 12. The mean gas density as a function of radius at time
t = 1000 yr for the supernova test at four resolutions (dashed
lines). The analytical solution (solid black line), is the Sedov-
Taylor solution for a self-similar blast wave in a uniform medium
(Taylor 1950; Sedov 1959).

in agreement with analytical solutions for the shell radius of an
energy driven flow in a constant density medium (Dyson 1984).
However, the bubble expansion starts later for simulations with
a lower resolution. This delay corresponds to the time it takes
for the star to lose enough mass to create the first wind particle.
For example, if MSPH = 1.0 M� and Ṁ = 1 M�/Myr, this delay
is 1 Myr. In the bottom panel of Figure 11, we show the shell
expansion starting at the moment of the first wind injection. We
see that lower resolution results in a faster expansion, caused by
the larger energy injected in a single SPH particle. The expan-
sion profile approaches the analytical solution for high resolu-
tion (small MSPH). We therefore advise that the choice of MSPH
be based on the stellar mass-loss rate and the delay and expan-
sion profile that would be acceptable in the desired simulations.

3.4. Supernova

As discussed in Section 2.4, the heating wind mode can also be
used to simulate the effect of a supernova on the surrounding gas.
The supernova test (Table 5) is similar to the embedded star test
(Section 3.3). We start the simulation by evolving the star us-
ing the stellar evolution code SeBa (Portegies Zwart & Verbunt
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Fig. 13. The radius with the highest mean gas density (rρmax) as a
function of time for the supernova test. We include the analytical
solution, which is free expansion followed by the Sedov-Taylor
solution.

2012) to a few timesteps (∼40 yr) before the star goes super-
nova (∼9.78 Myr). We place the star inside the uniform density
gas medium and use the option to derive the stellar wind pa-
rameters from the output of a stellar evolution calculation (see
Section 2.1). When this option is set, stellar wind.py detects
the supernova and creates the particles with a combined mass of
12.95 M� and an energy of 1051 erg. After the supernova feed-
back is generated we trace the resulting blast wave. Similar to
the embedded star test, we get a sphere of high density material
moving away from the star, however, due to the higher energy in-
put, the radial velocity is higher. Using test simulations, we have
found that a timestep of twind = 20 yr is required to avoid time-
stepping artefacts with this high velocity (also see: Pelupessy &
Portegies Zwart 2012).

In Figure 12 we present the radial mean density profile for
simulations with four different particle masses. We find that for
the low resolution simulation (MSPH = 1 M�), the gas has moved
away from the star, but the shape of the shockfront, where the
density is highest, is only loosely defined. For the higher reso-
lution simulations, we do see the shape of the main shockfront
clearly, and the simulations agree on the radius of highest density
at t = 1000 yr. However, the radius of the shockfront does not
converge to the analytical solution. There is an increased density
at r = 0 for the MSPH = 0.01 M� simulation. This feature is
present at some point for all high resolution simulations and is
the result of a reverse density wave within the outgoing shock-
wave. These waves are an artefact of the hydrodynamical simu-
lation method used, but they are not an accurate representation of
the true physical process. They should not be confused with the
reverse shock that takes place in real supernova remnants. While
these density waves do subside after a few thousand years, the
density inside the supernova bubble shortly after the explosion
should not be considered correct.

The time evolution of the expansion of gas from a supernova
explosion is usually modelled in separate phases. The first phase
is a free expansion, where the ejected gas moves at an approxi-
mately constant velocity, sweeping up the gas in the interstellar
medium. After the mass of swept up gas is equal to the mass of
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Table 6. The stellar, wind and orbital parameters of the colliding
wind triple simulation.

name parameter star 1 star 2 star 3

stellar type WR5 O6 O9.5 Giant
mass-loss rate Ṁ (M�/yr) 1.8 · 10−5 10−6 10−6

wind velocity v∞ (km/s) 2000 1000 1000
mass M∗ (M�) 12 20 30
radius R∗ (R�) 2.2 10 50
luminosity L∗ (L�) 2 · 105 1.4 · 105 5.5 · 104

temperature T∗ (K) 7.1 · 104 4.5 · 104 3.9 · 104

orbital period p 19.14 days 130 yr
eccentricity e 0 0
inclination i 0◦

wind timestep twind 0.2 days
end time tend 190 days
particle mass MSPH 10−11 M�

the originally expelled gas, the expansion can be approximated
as a pure adiabatic expansion, which is described by the self-
similar Sedov-Taylor solution. Only this last phase can be sim-
ulated with the heating wind mode of stellar wind.py, because
the particles are given a high internal energy instead of an initial
velocity.

In Figure 13 we present the time evolution of rρmax, which
we calculate in the same way as for the embedded star test. We
now compare it to the analytical solution for the two phases of a
supernova blast wave, the free expansion and the Sedov-Taylor
solution. We find that the simulations do approach the analyt-
ical solution and roughly follow the same shape, but even the
highest resolution simulation expands faster than the analytical
solution. We do not model the initial free expansion phase and
shockwaves are in general difficult to simulate using SPH (e.g.
Hubber et al. 2013). Differences with the analytical solution are
therefore to be expected and this type of simulation should be
interpreted with care.

Given these caveats, both the use of SPH and the chosen ap-
proximations may not seem to be the ideal choice for simulating
a supernova explosion in a gaseous medium. Indeed, depending
on the goal of the simulations, other available methods could be
more suitable, for example using a grid based simulation code
(e.g. Rogers & Pittard 2013) or including magnetic fields (e.g.
Körtgen et al. 2016). However, the method presented here has
two main advantages: 1) It is simple and scales well to very low
SPH resolution, making it computationally faster than more de-
tailed simulation techniques. 2) The use of SPH combined with
bridge allows easy gravitational coupling between the gas and
the stars. We can therefore use this code to run large scale sim-
ulations of multiple supernova explosions in a gaseous medium
also containing many dynamic stars. These advantages allow us
to model a very turbulent stage in the evolution of embedded star
clusters.

3.5. Colliding wind triple

The previous tests were for single stars and therefore the ge-
ometry of the outflow was not modified by the environment.
In this test (Table 6), we simulate a triple star system where
all three stars have a strong stellar wind. The system we sim-
ulate is loosely based9 on WR48 (θ Muscae), which is a triple

9 We are aware that the chosen values do not match the most up-
to-date observations of the WR48 system. However, the goal of this

system (Sugawara et al. 2008) consisting of a WC5/WC6 +
O6/O7V binary with a short period (∼19 days, Hill et al. 2002)
and an O9.5/B0Iab star in a longer orbit (> 130 yrs, Dougherty
& Williams 2000) around that binary. For this simulation we
have used similar numerical parameters to the fast wind test in
Section 3.1.

In Figure 14 we show the gas density, temperature and ve-
locity at the end of the simulation. Due to the large difference
between the inner and outer orbital periods, the system appears
similar to a normal colliding wind binary, which was assumed in
previous models of WR48 (Hill et al. 2002). However, the orbital
motion of the inner binary creates a spiral pattern in the density
and temperature distribution, which is very different from the
wind from a single star. This spiral pattern creates high and low
temperature regions in the shockfront where the wind from the
inner binary collides with the wind from the third star. The obser-
vations of this shockfront can therefore be quite different from
observations of a normal colliding wind binary.

It is important to note that this simulation is just an exam-
ple of what is possible with the stellar wind.py module and not
an in-depth investigation into wind interactions in a triple star
systems. For example, in the middle panels of Figure 14 we can
see that the temperature of the wind from the inner binary is ex-
tremely high (> 108 K). These high temperatures are unrealistic
because in reality the gas would cool, which is not taken into
account in this simulation. When using this code for simulations
that are to be compared with observations, gas cooling and a
convergence test of the shockfront regions should be performed.

4. Discussion and Conclusion

We have presented and tested the stellar wind.py module,
which can be used to simulate stellar winds within the amuse
framework by creating (and accelerating) SPH particles. The
code includes three different modes: the simple mode, the accel-
erating mode and the heating mode (Table 7). We have tested the
code for single stars with fast and slow winds, as well as an em-
bedded star with both wind and a supernova explosion. For both
fast and slow winds, the simple and accelerating wind modes
perform well, although subsonic winds must be simulated with
the latter. For the embedded star, the heating wind mode creates
a wind bubble, even at low resolution; with higher resolution
the expansion profile approaches the analytical solution. After
a supernova, the heating wind mode creates an expanding shell
with velocities similar to the analytical solution if small enough
timesteps are used. Finally we have shown an example of how
this module can be used to tackle new problems, by simulating
a colliding wind triple system.

The stellar wind.py module can be used for many different
simulations that involve stellar winds and several projects are al-
ready in progress. The simple wind mode has been used to sim-
ulate the accretion of gas from the winds of the S-stars onto the
super-massive black hole Sgr A∗ (Lützgendorf et al. 2016). The
accelerating wind mode is used to simulate the accretion of the
wind from a red giant onto a close binary companion (Saladino
et al. 2018). The heating wind mode is part of a larger simulation
to investigate the evolution of the Arches cluster (van der Helm
et al. in prep.). In Table 7 we give an overview of the applica-
tion of the different modes. The code is publicly available in the
amuse framework.

investigation is to demonstrate the use of the stellar wind.py code, not
to explain the observed system.
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Fig. 14. The gas density (top), temperature (center) and velocity (bottom) in the orbital plane of the colliding wind triple simulation
for the inner (left) and outer (right) binary. The sizes of the stars (yellow circles) in the plots on the right hand panels were multiplied
by 10 to make them visible. In the left hand panels, the Wolf-Rayet star (star 1, see Table 6) can be seen on the right and star 2 on
the left. In the right hand panels, the short period binary (star 1 and 2), can be seen on the left and the O9.5 supergiant (star 3) on the
right. In the bottom plots, the arrows indicate the wind direction and larger arrows correspond to higher wind velocities, however,
the colors provide a more precise indication of the velocities. Note that the two density plots have separate color bars, while the
temperature and velocity plots each share a single color bar.
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Table 7. An overview of the modes in stellar wind.py and their suggested application domains.

mode section description application

simple 2.2 Creates particles with a radial velocity given by the de-
sired terminal wind velocity.

Detailed wind interaction simulations well outside the
acceleration zone and past the sonic point.

accelerating 2.3 Similar to simple wind, but also accelerate particles
near the star.

Detailed wind simulation near or inside the acceleration
zone and near the sonic point.

heating 2.4 Does not give new particles a radial velocity, but instead
adds internal energy to the particles.

Large scale, low resolution simulations of wind from
embedded stars, including the effect of a supernova.

There are many other types of simulations involving stellar
winds that could be done with the amuse framework and cor-
responding modes could be added to stellar wind.py. It would
be possible to add the mass and corresponding energy lost by
stars to existing SPH particles. This would make it possible to
run simulations of embedded stars with even lower resolution
(higher SPH particle mass). However, this would result in un-
equal mass particles, which requires advanced treatment in the
SPH codes. In the other extreme, since radiative transfer codes
are available in amuse, it would be possible to add a mode that
solves the radiative hydrodynamics of the wind and this would
make detailed stellar wind simulations possible. In fact, such
coupled simulations have been performed with amuse already
(Wall et al. 2017, N. Clementel, private communication).
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Appendix A: Equations

In this appendix, we calculate the analytical predictions for
a stationary, spherically symmetric wind which are used in
stellar wind.py. For these calculations, we assume that the
mass-loss rate (Ṁ) and the velocity as a function of radius (v(r))
are known and we define the acceleration

a(r) =
dv
dt

=
dv
dr

dr
dt

= v(r)
dv
dr
. (A.1)

A.1. Radius as a function of time

To calculate the outer radius of a new wind shell, we need to
know the radius as a function of time (r(t)) where the wind starts
at the stellar surface, so r(0) = R∗. Since v(r) is known, we can
write

v(r(t)) =
dr(t)

dt
,

dt =
dr

v(r)
,

(A.2)
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which is solved by,

t =

∫ r(t)

R∗

1
v(r)

dr. (A.3)

In general this equation has to be solved numerically10 for r(t),
although for some velocity functions we can solve it analytically,
for example if v(r) = v∞ then

t =
1

v∞

∫ r(t)

R∗
dr =

r(t) − R∗
v∞

,

r(t) = R∗ + t ∗ v∞.
(A.4)

A.2. New particle radii

When we create a new shell of particles, we want the density
profile in the shell to match the density profile corresponding to
the chosen velocity profile. To calculate that density profile, we
first note that the mass-loss rate, Ṁ is related to the density and
the velocity at any point of the wind via the equation of mass
continuity,

Ṁ = 4πr2ρ(r)v(r), (A.5)

where ρ is the density of the wind. Because we assume that Ṁ
and v(r) are known, we can rewrite this as

ρ(r) =
Ṁ

4πr2v(r)
. (A.6)

To generate the positions of new particles, we start with a
cube filled with particle positions with a uniform density. In our
code, this can be a simple grid or randomly generated positions.
From that cube, we remove all particles that are not inside the de-
sired shell to get a shell of particles with uniform density. After
that, we shift the particle positions in the radial direction to get
the desired density profile.

To find the new particle radius, we define the relative en-
closed mass, x as

x =

∫ rp

R∗
πr2ρ(r)dr∫ r(t)

R∗
πr2ρ(r)dr

, (A.7)

where rp is the radius of the particle and R∗ and r(t) are the inner
and outer radius of the shell respectively. For the uniform density
shell that was generated, this reduces to

xu =

∫ rp

R∗
r2dr∫ r(t)

R∗
r2dr

=
r3

p − R3
∗

r(t)3 − R3
∗

. (A.8)

For the desired density profile based on a given velocity profile,
we rewrite equation A.7 in terms of v using equation A.6

xv =

∫ rp

R∗
Ṁ

v(r) dr∫ r(t)
R∗

Ṁ
v(r) dr

=

∫ rp

R∗
1

v(r) dr∫ r(t)
R∗

1
v(r) dr

. (A.9)

We then set xu = xv where xu is calculated with the old particle
radius (of the generated uniform density shell). The last step is to
solve equation A.9 to get the new particle radius rp. In general

10 When solving the equations mentioned here numerically, we
use the python library scipy (scipy.org). For integrals we use
scipy.integrate.quad and for finding a root we use scipy.optimize.brentq.
See docs.scipy.org for the details of these methods.

this equation has to be solved numerically, although for some
velocity functions we can solve it analytically, for example if
v(r) = v∞ then

x =

∫ rp

R∗
1

v∞
dr∫ r(t)

R∗
1

v∞
dr

=

∫ rp

R∗
dr∫ r(t)

R∗
dr

=
rp − R∗

r(t) − R∗
,

rp = R∗ + x(r(t) − R∗).

(A.10)

A.3. Gas pressure

To calculate the expected acceleration, aP(r) caused by the gra-
dient of the gas pressure, P(r) we assume a polytropic equation
of state,

P = Kρ(r)γ, (A.11)

where K is the polytropic constant and γ = 5/3 is the adiabatic
index for a monoatomic ideal gas. Because K is constant we can
calculate it at the surface of the star and use that value for the
entire wind. To calculate P(R∗) we use

P(r) = (γ − 1)ρ(r)u, (A.12)

where u is the internal energy of the gas particles defined by

u =
3
2

kBT∗
µ

, (A.13)

where kB is the Boltzmann constant, T∗ is the temperature at the
photosphere of the star and µ is the mean molecular weight of
the gas particles. Combining equations A.11 and A.12 we get

K = u(γ − 1)ρ(R∗)1−γ. (A.14)

The acceleration caused by the gradient of the gas pressure
is

aP(r) = −
1
ρ(r)

∂P(r)
∂r

, (A.15)

which we can rewrite using equations A.11 and A.6

aP(r) = −
K
ρ(r)

∂ργ

∂r

= −
K
ρ(r)

γρ(r)γ−1 ∂

∂r
Ṁ

4πr2v(r)

= Kγρ(r)γ−1
(

2
r

+
1

v(r)
dv(r)

dr

)
.

(A.16)

A.4. Density as a function of radius

In Sections 3.3 and 3.4 we calculate the density as a function of
radius. For each radius r, we take six points in six directions (+r
and −r along each axis x, y and z) and calculate the SPH density
at those points. Note that there does not need to be an SPH par-
ticle at that point to calculate the density. We then take the mean
of these 6 densities to be the density at that radius. To calculate
the radius with maximum density rρmax, we calculate this for a
grid of radii and select the radius with the largest density.
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