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ABSTRACT

We report on the confirmation and mass determination of a transiting planet orbiting the old and inactive G7 dwarf star HD 219666 (M?=0.92 ±
0.03 M�, R?=1.03 ± 0.03 R�, τ?=10± 2 Gyr). With a mass of Mb = 16.6 ± 1.3 M⊕, a radius of Rb = 4.71 ± 0.17 R⊕, and an orbital period of
Porb ' 6 days, HD 219666 b is a new member of a rare class of exoplanets: the hot-Neptunes. The Transiting Exoplanet Survey Satellite (TESS)
observed HD 219666 (also known as TOI-118) in its Sector 1 and the light curve shows four transit-like events, equally spaced in time. We
confirmed the planetary nature of the candidate by gathering precise radial velocity measurements with HARPS@ESO 3.6m. We used the co-
added HARPS spectrum to derive the host star fundamental parameters (Teff = 5527 ± 65 K, log g? = 4.40± 0.11 (cgs), [Fe/H] = 0.04± 0.04 dex,
log R′HK =−5.07± 0.03), as well as the abundances of many volatile and refractory elements. The host star brightness (V=9.9) makes it suitable
for further characterization by means of in-transit spectroscopy. The determination of the planet orbital obliquity, along with the atmospheric
metal-to-hydrogen content and thermal structure could provide us with important clues on the mechanisms of formation of this class of objects.

Key words. Planetary systems – Planets and satellites: fundamental parameters – Planets and satellites: individual: HD 219666 b – Stars: funda-
mental parameters – Techniques: photometric – Techniques: radial velocities

1. Introduction

Following the success of the Kepler space mission (Borucki
2016), NASA launched in April 2018 a new satellite, the Tran-
siting Exoplanet Survey Satellite (TESS, Ricker et al. 2015). By
performing a full-sky survey, TESS is expected to detect ∼10 000
transiting exoplanets (TEPs) (Barclay et al. 2018; Huang et al.
2018b). Most interestingly, ∼1000 of them will orbit host stars
with magnitude V.10 (as of November 2018 there are 56 known
TEPs around stars with V<10, only 13 of which have masses
< 20 M⊕, according to the NASA exoplanet archive1). Bright
host stars are suitable for precise radial velocity (RV) measure-
ments that can lead to planet mass determinations down to a few
M⊕, and, for TEPs, to estimate the planet bulk density. In-transit
precise RVs can also allow us to measure the planet orbital obliq-
uity through the observation of the Rossiter-McLaughlin effect
(see, e.g., Triaud 2017). High S/N spectra are very much needed
for transmission spectroscopy studies aimed at the detection of
atomic and molecular species, and the characterization of the

? Based on observations made with the 3.6m-ESO telescope at La
Silla observatory under ESO programmes IDs 1102.C-0923 (PI: Gan-
dolfi) and 1102.C-0249 (PI: Armstrong).
1 https://exoplanetarchive.ipac.caltech.edu/.

thermal structure of planet atmospheres (Snellen et al. 2010;
Bean et al. 2013).

TESS has a field of view of 24°× 96°, and will cover almost
the full sky in 26 Sectors, each monitored for about 27 days.
Full frame images (FFIs) are registered every 30 minutes, while
for a selected sample of bright targets (∼16 000 per Sector)
pixel sub-arrays are saved with a 2 minutes cadence. The first
TESS data set of FFIs from Sectors 1 and 2 was released on
December 6th, 2018, and the TESS Science Office, supported by
the Payload Operations Centre at MIT, had already issued TESS
data alerts for a number of transiting planet host star candidates,
the so called TESS Objects of Interest (TOIs). Preliminary
2-min cadence light curves and target pixel files (Twicken et al.
2018) are made publicly available for download at the MAST
web site2.

Several TESS confirmed planets have already been an-
nounced: π Mensae c (TOI-144), a super-Earth orbiting a
V=5.65 mag G0 V star (Huang et al. 2018a; Gandolfi et al.
2018); HD 1397 b (TOI-120), a warm giant planet around a
V=7.8 mag sub-giant star (Brahm et al. 2018; Nielsen et al.
2018); HD 2685 b (TOI-135), a hot-Jupiter hosted by an early

2 Mikulski Archive for Space Telescopes,
https://archive.stsci.edu/prepds/tess-data-alerts/.
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Table 1. Main identifiers, coordinates, parallax, and optical and infrared
magnitudes of HD 219666.

Parameter Value Source

HD 219666
TIC ID 266980320 TIC
TOI ID 118 TESS Alerts
Gaia DR2 ID 6492940453524576128 Gaia DR2a

RA (J2000) 23h 18m 13.630s Gaia DR2a

DEC (J2000) -56° 54’ 14.036” Gaia DR2a

µRA [mas yr−1] 313.918 ± 0.039 Gaia DR2a

µDEC [mas yr−1] -20.177 ± 0.043 Gaia DR2a

π [mas] 10.590 ± 0.028 Gaia DR2a

BT 10.785 ± 0.027 Tycho-2b

VT 9.897 ± 0.018 Tycho-2b

G 9.6496 ± 0.0002 Gaia DR2a

GBP 10.0349 ± 0.0009 Gaia DR2a

GRP 9.1331 ± 0.0008 Gaia DR2a

J 8.557 ± 0.020 2MASSc

H 8.254 ± 0.042 2MASSc

Ks 8.158 ± 0.033 2MASSc

W1(3.35 µm) 8.080 ± 0.023 WISEd

W2(4.6 µm) 8.138 ± 0.020 WISEd

W3(11.6 µm) 8.100 ± 0.021 WISEd

W4(22.1 µm) 8.250 ± 0.288 WISEd

Notes. (a) Gaia Collaboration et al. (2018). (b) Høg et al. (2000). (c) Cutri
et al. (2003). (d) Cutri et al. (2013).

F-type star (Jones et al. 2018); an ultra-short period Earth-like
planet around the M dwarf star LHS 3844 (TOI-136; Vanderspek
et al. 2018). Here we report on the detection and mass determi-
nation of a Neptune-like planet (Mb ' 16.6 M⊕, Rb ' 4.7 R⊕)
on a Porb ' 6-day orbit around the bright (V=9.9) G7 V star
HD 219666 (TOI-118; Table 1).

The work here presented is part of the ongoing RV follow-up
effort carried out by two teams, namely, the KESPRINT consor-
tium (see, e.g., Johnson et al. 2016; Van Eylen et al. 2016; Dai
et al. 2017; Gandolfi et al. 2017; Barragán et al. 2018; Prieto-
Arranz et al. 2018) and the NCORES consortium (see, e.g. Arm-
strong et al. 2015; Lillo-Box et al. 2016; Barros et al. 2017; Lam
et al. 2018; Santerne et al. 2018). Both teams have recently been
awarded two large programs with the HARPS spectrograph at
the ESO-3.6m telescope to follow-up TESS transiting planet can-
didates. The two consortia have joined forces to make better use
of the instrument, optimize the scientific return of the available
observing time, and tackle more ambitious planet detections and
characterizations.

This paper is organized as follows. Sect. 2 describes the
TESS photometric data, our custom light curve extraction and
assessment of the light contamination factor. Sect. 3 reports on
our spectroscopic follow-up observations, which were used to
confirm the planetary nature of the transiting companion, and to
derive the fundamental parameters and metal abundances of the
host star (Sect. 4). The joint analysis of transit light curves and
radial velocity data set is described in Sect. 5. Finally we discuss
our results in Sect. 6.

2. TESS photometry

HD 219666 was observed by TESS in Sector 1 (CCD #2 of
Camera #2), and falls in a region of the sky that will not be
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Fig. 1. 5′×5′ archival image taken in 1980 from the SERCJ survey, with
the SPOC photometric aperture overplotted in blue (TESS pixel size
is 21′′), and the positions of Gaia DR2 sources (J2015.5) within 2′ of
HD 219666 indicated by circles. HD 219666 is in red, nearby sources
contributing more than 1% of their flux to the aperture are in orange
(see Section 2.2), and other sources are in green.

further visited by TESS. Sector 1 was monitored continuously
for ∼27.9 days, from 2018-07-25 (BJDTDB = 2458325.29953)
to 2018-08-22 (BJDTDB = 2458353.17886), with only a 1.14
days gap (from BJDTDB = 2458338.52472 to BJDTDB =
2458339.66500) when the satellite was repointed for data down-
link. In addition, between BJDTDB = 2458347 and BJDTDB =
2458350, the TESS light curve shows a higher noise level caused
by the spacecraft pointing instabilities. The corresponding data-
points were masked out and not included in the analysis pre-
sented in this paper.

2.1. Custom light curve preparation

To check that the SPOC aperture is indeed an optimal choice,
we extracted a series of light curves from the pixel data using
contiguous sets of pixels centered on HD 219666. We first com-
puted the 50th to 95th percentiles (in 1% steps) of the median
image, and then selected pixels with median counts above each
percentile value to form each aperture. We then computed the
6.5 hour combined differential photometric precision (CDPP)
(Christiansen et al. 2012) of the light curve resulting from each
of these apertures, and we found that the aperture that minimized
the CDPP was slightly larger than the SPOC aperture shown
in Fig. 1. However, we opted to use the PDCSAP light curve
produced from the SPOC aperture, which has lower levels of
systematic noise as a result of the processing performed by the
SPOC pipeline (Ricker & Vanderspek 2018).

The median-normalized light curve that we used in our anal-
ysis is showed in Fig. 2.

2.2. Limits on photometric contamination

To investigate the possibility of contaminating flux from nearby
stars within the SPOC photometric aperture, we compared the
Gaia DR2 (Gaia Collaboration et al. 2018) sources with the aper-
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Fig. 2. The TESS light curve of HD 219666. The red arrows point to the four planet transit occurrences.

ture and an archival image of HD 219666 from the SERC-J sur-
vey3. To do so, we executed a query centered on the coordinates
of HD 219666 from the TESS Input Catalog4 (TIC; Stassun et al.
2018) using a search radius of 3′. The archival image, taken
in 1980, shows HD 219666 to be offset from its current posi-
tion by ∼4.8′′. The proper motion is not sufficient to completely
rule out chance alignment with a background source, but such
an alignment with a bright source is qualitatively unlikely. We
also note the non-detection by Gaia of any other sources within
∼30′′ of HD 219666. Fig. 1 shows Gaia DR2 source positions
overplotted on the archival image, along with the SPOC photo-
metric aperture. Using a 2-dimensional Gaussian profile with a
FWHM of ∼25′′ to approximate the TESS point spread function
(PSF), and a negligible difference between the GRP and T band-
passes, we found that the transit depth of HD 219666 should be
diluted by no more than 0.1%, even considering partial flux con-
tributions from nearby stars outside the aperture. Furthermore,
we found that HD 219666 is the only star in or near the aper-
ture that is bright enough to be the source of the transit sig-
nal, given the observed depth and assuming a maximum eclipse
depth of 100%.

3. HARPS observations

We acquired 21 high-resolution (R≈ 115 000) spectra of
HD 219666 with the High Accuracy Radial velocity Planet
Searcher (HARPS) spectrograph (Mayor et al. 2003) mounted
at the ESO-3.6m telescope of La Silla observatory (Chile).
The observations were performed between 02 October and 05
November 2018 UTC, as part of the large observing programmes
1102.C-0923 (PI: Gandolfi) and 1102.C-0249 (PI: Armstrong).
We reduced the data using the dedicated HARPS Data Reduc-
tion Software (DRS) and extracted the radial velocities (RVs) by
cross-correlating the echelle spectra with a G2 numerical mask
(Baranne et al. 1996; Pepe et al. 2002; Lovis & Pepe 2007). Ta-
ble 3 lists the HARPS RVs and their uncertainties, along with the
bisector (BIS) and full-width at half maximum (FWHM) of the

3 Available at http://archive.stsci.edu/cgi-bin/dss_form.
4 Available at https://mast.stsci.edu/portal/Mashup/
Clients/Mast/Portal.html.

cross-correlation function (CCF), the Ca iiH & K Mount-Wilson
S-index, and S/N ratio per pixel at 5500 Å.

The generalized Lomb-Scargle (GLS; Zechmeister &
Kürster 2009) periodogram of the HARPS RV measurements
(Fig. 3, first panel) shows a significant peak at the frequency
of the transit signal ( f1=0.166 c/d; vertical dashed red line),
with a false alarm probability5 (FAP) lower than 0.1 % (hori-
zontal dashed blue line). The peak has no counterpart in the pe-
riodograms of the activity indicators, as shown in the second,
third, and fourth panels of Fig. 3. This provides strong evidence
that the signal detected in our Doppler data is induced by an
orbiting companion and confirms the presence of the transiting
planet with a period of about 6 days. The periodogram of the RV
measurements shows additional peaks symmetrically distributed
to the left and right of the dominant frequency. We interpreted
these peaks as aliases of the orbital frequency, as shown by the
position of the peaks in the periodogram of the window func-
tion (Fig. 3, fifth panel), which has been shifted to the right by
f1=0.166 c/d for the sake of clarity.

4. Stellar fundamental parameters

The determination of the stellar parameters from the spectrum of
the host star is crucial in order to derive the planetary parameters
from transit and radial velocity data. The three most important
planetary parameters are the mass, Mb, the radius Rb, and the
age τb, all of them only derivable with knowledge of the same
parameters for the host star, M?, R?, and τ?. Therefore we have
used two independent methods in order to determine the stellar
parameters with the highest degree of confidence available today.
For this aim, we utilized the co-added HARPS spectrum, which
has a S/N per pixel of ∼300 at 5500 Å.

In one of the methods, we used the Spectroscopy Made Easy
code (SME), version 5.22 (Valenti & Piskunov 1996; Valenti &
Fischer 2005; Piskunov & Valenti 2017). SME calculates syn-
thetic spectra, utilizing a grid of stellar models, and a set of
initial (assumed) fundamental stellar parameters and fits the re-
sult to the observed high resolution spectrum with a chi-square

5 Computed following the Monte Carlo bootstrap method described in
Kuerster et al. (1997).
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Fig. 3. Generilized Lomb-Scargle periodogram of the HARPS RVs (first
panel), of the CCF BIS and FWHM (second and third panel, respec-
tively), of the Ca ii H & K S-index (fourth panel), and of the window
function (fifth panel). For sake of clarity, the latter has been shifted to
the right by f1=0.166 c/d and mirrored to the left of this frequency. The
vertical dashed red line marks the frequency of the transit signal. The
horizontal dashed blue line marks the FAP = 0.1% level.

minimization procedure. SME contains a large library of differ-
ent 1-D and 3-D model grids. In our analysis of the co-added
HD 219666 HARPS spectrum, we used the ATLAS12 model at-
mosphere grid (Kurucz 2013). This is a set of 1-D models appli-
cable to solar-like stars. The observed spectral features that we fit
are sensitive to the different photospheric parameters, including
the effective temperature Teff , metallicity [M/H], surface gravity
log g?, micro- and macro-turbulent velocities vmic and vmac, and
the projected rotational velocity v sin i?. In order to minimize the
number of free parameters we adopted the calibration equation
of Bruntt et al. (2010) to estimate vmic and we fitted many iso-
lated and unblended metal lines to determine v sin i?.

We used several different observed spectral features as in-
dicators of each fundamental stellar parameter. The Teff was
primarily determined by fitting the wings of Balmer lines,
which for solar-type stars are almost totally dependent on the
temperature and weakly dependent on gravity and metallicity
(Fuhrmann et al. 1993). The surface gravity log g? was de-

termined by fitting the line profiles of the Ca i lines at 6102,
6122, 6162, and 6439 Å, and the profiles of the Mg i triplet
at 5160-5185 Å. Results were then checked by fitting also the
line wings of the sodium doublet at 5896 and 5890 Å us-
ing a sodium abundance determined from a number of fainter
lines. In this case all three ions provided the same value
for log g?. Using this method we derived an effective tem-
perature Teff = 5450± 70 K, surface gravity log g? = 4.35± 0.06
(cgs), iron content of [Fe/H] = +0.06± 0.03 dex, calcium content
of [Ca/H] = 0.12± 0.05 dex, magnesium [Mg/H] = 0.18± 0.10
dex, and sodium [Na/H] = 0.15± 0.01 dex. The vmic used was
0.9± 0.1 km s−1, and we found v sin i? = 2.2± 0.8 km s−1 and
vmac = 2.8± 0.9 km s−1.

In an independent analysis, stellar atmospheric parameters
(Teff , log g?, vmic, and [Fe/H]) and respective error bars were
derived using the methodology described in Sousa (2014) and
Santos et al. (2013). In brief, we made use of the equivalent
widths (EW) of 224 Fe i and 35 Fe ii lines, as measured in the
combined HARPS spectrum of HD 219666 using the ARES v2
code6 (Sousa et al. 2015), and we assumed ionization and ex-
citation equilibrium. The process makes use of a grid of AT-
LAS model atmospheres (Kurucz 1993) and the radiative trans-
fer code MOOG (Sneden 1973). As discussed in the references
above, this method provides effective temperatures in excellent
agreement with values derived using the infra-red flux method
that are independent of the derived surface gravity. The re-
sulting values are Teff = 5527± 25 K, log g?= 4.34±0.04 (cgs),
vmic = 0.90± 0.04 km s−1, and [Fe/H] = 0.04± 0.02 dex. The sur-
face gravity corrected for the systematic effects discussed in
Mortier et al. (2013) has a value of log g?= 4.40±0.04 (cgs).

The two sets of spectroscopic parameters obtained using the
two independent methods described above are in good agree-
ment. While we have no reason to prefer one method over the
other, in the following analyses we adopted the values derived
using the equivalent widths method. We stress that the quoted
uncertainties are internal error bars that do not account for the
choice of spectral lines and/or atmospheric models. Following
Sousa et al. (2011), we accounted for systematic effects by
quadratically adding 60 K, 0.1 (cgs), and 0.04 dex to the nom-
inal uncertainty of the effective temperature, surface gravity, and
iron content, respectively. The adopted values of Teff = 5527± 65
K, log g?= 4.40± 0.11 (cgs), and [Fe/H] = 0.04± 0.04 dex are
listed in Table 2.

Stellar abundances of the elements were also derived us-
ing the same tools and models as for stellar parameter determi-
nation, as well as using the classical curve-of-growth analysis
method, assuming local thermodynamic equilibrium. Although
the EWs of the spectral lines were automatically measured with
ARES, for the elements with only two-three lines available we
performed careful visual inspection of the EWs measurements.
For the derivation of chemical abundances of refractory elements
we closely followed the methods described in Adibekyan et al.
(e.g. 2012, 2015); Delgado Mena et al. (e.g. 2017). Abundances
of the volatile elements, O and C, were derived following the
method of Delgado Mena et al. (2010); Bertran de Lis et al.
(2015). Since the two spectral lines of oxygen are usually weak
and the 6300.3Å line is blended with Ni and CN lines, the EWs
of these lines were manually measured with the task splot in
IRAF. We noticed that for several individual spectra of the star,
the 6300Å region was contaminated by the telluric [OI] emission
line. We excluded these contaminated spectra when measuring

6 The last version of the ARES code (ARES v2) can be downloaded at
http://www.astro.up.pt/$\sim$sousasag/ares.
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the EW of the stellar oxygen line at 6300.3Å. Lithium and sul-
fur abundances were derived by performing spectral synthesis
with MOOG (Delgado Mena et al. 2014). The final abundances
of the elements are presented in Table 2. It is worth noting that
the abundances of Na, Mg, and Ca derived with this EW method
are in agreement with the abundances obtained with the spec-
tral fitting method. Perhaps it is also interesting to note that the
star seems to be enhanced in several α elements (Mg, Si, Ti) and
show under-abundance of some heavy elements (e.g. Ba and Y).
Such a chemical composition is typical for the so called high-
α metal-rich stars first discovered by Adibekyan et al. (2011,
2013). The origin of this population is not fully clear yet, but
most probably these stars are migrators from the inner Galaxy
(Adibekyan et al. 2011; Anders et al. 2018)

We derived the stellar radius (R?) combining the Tycho BT,
VT magnitudes, the Gaia G, GBP, GRP photometry, and 2MASS
J, H, Ks magnitudes (see Table 1) with our spectroscopic pa-
rameters (Teff , log g?, [Fe/H]; see Table 2) and the Gaia’ par-
allax (10.590± 0.028 mas, Gaia Collaboration et al. 2018, see
Table 2). We corrected the Gaia G photometry for the magni-
tude dependent offset using Eq. 3 from Casagrande & Vanden-
Berg (2018), and adopted a minimum uncertainty of 0.01 mag
for the Gaia magnitudes to account for additional systematic
uncertainties in the Gaia photometry. We added 0.06 mas to
the nominal Gaia’s parallax to account for the systematic offset
found by Stassun & Torres (2018), Riess et al. (2018), and Zinn
et al. (2018). Following the method described in Gandolfi et al.
(2008), we found that the reddening along the line of sight to the
star is consistent with zero and did not correct the apparent mag-
nitudes. The bolometric correction for each band-pass was com-
puted using the routine from Casagrande & VandenBerg (2018).
We determined a stellar radius of R? = 1.03 ± 0.03 R�.

We used the BAyesian STellar Algorithm (BASTA, Silva
Aguirre et al. 2015) to determine a stellar mass of M∗ =0.92 ±
0.03 M� and an age of τ? = 10± 2 Gyr by fitting the stellar ra-
dius R∗, effective temperature Teff and iron abundance [Fe/H] to
a large, finely-sampled grid of GARSTEC stellar models (Weiss &
Schlattl 2008).

From the Ca iiH & K S-index values provided by the HARPS
DRS, we calculated log R

′

HK =−5.07± 0.03 (Lovis et al. 2011).
Using the activity-rotation empirical relationships reported in
Noyes et al. (1984) and Mamajek & Hillenbrand (2008), we de-
rived a stellar rotation period of Prot = 34± 6 and 37± 4 days re-
spectively, which are in good mutual agreement. An upper limit
to Prot of 22+13

−6 days can be inferred from the the stellar radius
and v sin i? , which is compatible with good alignment between
the stellar rotation axis and the planetary orbital axis. We note
that the 27.9-day duration of the TESS observations is not long
enough to attempt a reliable estimation of the photometric stellar
rotational period.

5. Joint analysis of the transit and Doppler data

We performed a joint fit to the TESS light curve (Sect. 2) and the
21 HARPS measurements (Sect. 3) utilizing the code pyaneti
(Barragán et al. 2019). The code uses a Bayesian approach for
the model parameter estimations, and samples the posteriors via
Markov chain Monte Carlo (MCMC) methods.

We selected 10 hours of photometric data-points centered
around each of the four transits observed by TESS and flattened
the four segments using a second-order polynomial fitted to the
out-of-transit data. We fitted the transit light curves using the
limb-darkened quadratic model of Mandel & Agol (2002). We
set Gaussian priors on the limb darkening coefficients adopting

Table 2. Fundamental parameters and elemental abundances of
HD 219666.

Parameter Value
Star mass M? [M�] 0.92 ± 0.03
Star radius R? [R�] 1.03 ± 0.03
Effective Temperature Teff [K] 5527± 65
Surface gravity log g? [cgs] 4.40± 0.11
Iron abundance [Fe/H] [dex] 0.04± 0.04
Project. rot. vel. v sin i? [km s−1] 2.2± 0.8
Micro-turb. vel. vmic [km s−1] 0.9± 0.1
Macro-turb. vel. vmac [km s−1] 2.8± 0.9
Ca ii activity indicator log R

′

HK -5.07± 0.03
Age τ? [Gyr] 10± 2
Lithium abundance A(Li) <0.40
[C I/H] 0.074±0.065
[O I/H] 0.043±0.148
[Na I/H] 0.090±0.044
[Mg I/H] 0.152±0.049
[Al I/H] 0.196±0.041
[Si I/H] 0.085±0.035
[Ca I/H] 0.041±0.073
[Sc II/H] 0.103±0.050
[Ti I/H] 0.149±0.073
[Ti II/H] 0.097±0.055
[Cr I/H] 0.057±0.055
[Ni I/H] 0.058±0.034
[Cu I/H] 0.148±0.051
[Zn I/H] 0.098±0.038
[Sr I/H] -0.034±0.105
[Y II/H] -0.057±0.057
[Zr II/H] 0.027±0.073
[Ba II/H] -0.058±0.043
[Ce II/H] 0.071±0.063
[Nd II/H] 0.118±0.068
[S I/H] 0.070±0.081

the theoretical values predicted by Claret (2017) along with a
conservative error bar of 0.1 for both the linear and the quadratic
limb-darkening term. The transit light curve poorly constrains
the scaled semi-major axis (a/R?). We therefore set a Gaussian
prior on a/R? using the orbital period and the derived stellar pa-
rameters (Sec. 4) via Kepler’s third law.

The RV model consists of a Keplerian equation. Following
(Anderson et al. 2011), we fitted for

√
e sinω? and

√
e cosω?,

where e is the eccentricity and ω? is the argument of periastron.
We also fitted for an RV jitter term to account for instrumen-
tal noise not included in the nominal uncertainties, and/or for
RV variations induced by stellar activity. We imposed uniform
priors for the remaining fitted parameters. Details of the fitted
parameters and prior ranges are given in Table 4.

We used 500 independent Markov chains initialized ran-
domly inside the prior ranges. Once all chains converged, we
used the last 5 000 iterations and saved the chain states every
ten iterations. This approach generates a posterior distribution of
250 000 points for each fitted parameter. Table 4 lists the inferred
planetary parameters. They are defined as the median and 68%
region of the credible interval of the posterior distributions for
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Fig. 4. The phase-folded and normalized TESS photometric data with
our best fitting transit light curve.
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Fig. 5. The phase-folded HARPS RV data points with our best fitting
circular RV curve.

each fitted parameter. The transit and RV curves are shown in
Fig. 4 and 5, respectively.

An initial fit for an eccentric orbit yielded e = 0.07+0.06
−0.05,

which is consistent with zero within less than 2σ. We determined
the probability that the best-fitting eccentric solution could have
arisen by chance if the orbit were actually circular using Monte
Carlo simulations. Briefly, we created 105 sets of synthetic RVs
that sample the best fitting circular solution at the epochs of our
observations. We added Gaussian noise at the level of our mea-
surements and fitted the simulated data allowing for an eccentric
solution. We found that, given our measurements, there is a 35 %
probability that an eccentric solution with e ≥ 0.07 could have
arisen by chance if the orbit were actually circular. As this is
above the 5 % significance level suggested by Lucy & Sweeney
(1971), we decided to conservatively assume a circular model.
We note that the eccentric solution provides a planetary mass
that is consistent within less than 1-σ of the result from the cir-
cular model.

6. Discussion and conclusion

HD 219666 b has nearly the same mass as Neptune (Mb = 16.6±
1.3 M⊕) but a larger radius (Rb = 4.71 ± 0.17 R⊕). With an or-
bital period of Porb ' 6 days and an equilibrium temperature of

HD 219666 b

K2-32 b
K2-24 b

Kepler-18 c

GJ 3470 b 
EPIC 246471491 c

NGTS-4 b

WASP-47 d

Kepler-20 c
Kepler-48 c

K2-110 b K2-66 b

Fig. 6. Mass-radius diagram for planets with masses Mp < 25 M⊕ and
radii Rp < 6 R⊕, as retrieved from the catalogue for transiting plan-
ets TEPCat (available at http://www.astro.keele.ac.uk/jkt/
tepcat/; Southworth 2011). Planets whose masses and radii are known
with a precision better than 25% are plotted with grey circles. Compo-
sition models from Zeng et al. (2016) are displayed with different lines
and colors. The red circle marks the position of HD 219666 b. Planets
closer in mass to HD 219666 b are labeled.

Teq ' 1073 K, it is a new member of a relatively rare class of ex-
oplanets: the hot-Neptunes. Fig. 6 shows that HD 219666 b lies
in a region of the mass-radius diagram that is scarcely populated.
The comparison with rocky planets composition models (Zeng
et al. 2016) suggests that HD 219666 b holds a conspicuous gas
envelope.

The existence of a hot-Neptunes “desert” was already
pointed out (see, e.g., Szabó & Kiss 2011; Mazeh et al. 2016;
Owen & Lai 2018), and HD 219666 b falls close to the lower
edge of the desert in the mass-period diagram, and well in the
desert in the radius-period diagram (see Fig. 1 and 4 in Mazeh
et al. 2016). The relative paucity of hot-Neptunes (as compared
to hot super-Earths and hot-Jupiters) can be interpreted as a
consequence of two different formation mechanisms for short-
period planets: in-situ formation for terrestrial planets (Ogihara
et al. 2018; Matsumoto & Kokubo 2017), and formation at larger
separations followed by inward migration for giant planets (Nel-
son et al. 2017). Intermediate mass planets like HD 219666 b
would then be either the upper tail of terrestrial planets or the
lower tail of giant planet distributions. Alternatively giant and
small close-in planets could have a common origin but a dra-
matically different atmospheric escape history (Lundkvist et al.
2016; Ionov et al. 2018; Owen & Lai 2018). Other mechanisms
to explain the observed hot-Neptune desert have been proposed
by Batygin et al. (2016) and Matsakos & Königl (2016).

To determine whether in situ formation of a planet so close
to its star is even possible, we calculate the isolation mass of a
planet orbiting with a period of 6 days around a 0.9 M� star. This
is the mass of the planet that can form assuming that it grows
by consuming all the planetesimals that are within its gravita-
tional influence. Assuming a typical T Tauri disc with a mass
of 0.01M� within 100 AU, a gas-to-dust ratio of 100 and a sur-
face mass density profile of Σ ∝ R−3/2 (a steep profile enables
as much material as possible to be made available in the in-
ner disc for planet formation), the available rocky material is
≈ 5 × 10−3 M⊕. Even if the gas-to-dust ratio was a factor of 10
lower (Ansdell et al. 2016) the resulting mass is still nowhere
near the mass of the planet reported in this study. We point out
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that this calculation assumes no accretion through the disc when
in reality rocky material could drift inwards and build up the
core. From the perspective of pebble accretion, Lambrechts et al.
(2014) showed that the pebble isolation mass – the core mass at
which the drift of pebbles ceases so that the accretion of rocky
material onto the core stops – at the radial location of the re-
ported planet is approximately 1 M⊕, and simulations of planet
growth by pebble accretion in evolving discs also show that the
high mass of rocky material reported here cannot be produced
in the inner discs (Bitsch et al. 2015). Consequently it is more
likely that this planet formed further out and migrated inwards.

We derived the atmospheric mass-loss rate of HD 219666 b
using the interpolation routine presented by Kubyshkina et al.
(2018), which is based on a large grid of hydrodynamic upper at-
mosphere models. The main assumption is that the planet hosts
a hydrogen-dominated atmosphere, which, given the measured
bulk density, appears to be valid. For the computation, we em-
ployed the system parameters listed in Table 2 and a high-energy
stellar flux (hereafter called XUV) at the planetary distance to
the star of 573.8 erg cm−2 s−1, obtained by scaling the solar XUV
flux, derived from integrating the solar irradiance reference spec-
trum (Woods et al. 2009) below 912 Å, to the distance of the
planet and the radius of the host star. This is a good assumption
because the host star has a mass close to solar and it appears to be
rather inactive and old. We obtained a hydrogen mass-loss rate of
about 1.2× 1010 g s−1, which is comparable to what is obtained
employing the energy-limited formula (5.2× 109 g s−1; Erkaev
et al. 2007). This indicates that, for this planet, atmospheric ex-
pansion and mass loss are driven mostly by atmospheric heat-
ing due to absorption of the stellar XUV flux, with an addi-
tional component due to the intrinsic thermal energy of the at-
mosphere and low planetary gravity (Fossati et al. 2017).The ob-
tained mass-loss rate corresponds to 0.06 M⊕ Gyr−1, suggesting
that mass loss does not play a major role in the current evolution
of the planetary atmosphere. However, this does not account for
the fact that the star was probably more active in the past, par-
ticularly during the first few hundred Myr, up to about 1 Gyr
(Jackson et al. 2012; Tu et al. 2015), when the XUV fluxes could
have been up to about 500 times larger than the current estimate.
This would lead to mass-loss rates about 500 times higher. It is
therefore likely that atmospheric escape has played a significant
role in shaping the early planetary atmospheric evolution.

The equilibrium temperature of HD 219666 b makes it an in-
teresting target for further atmospheric characterization, since
it straddles widely different atmospheric chemical compositions
under thermochemical equilibrium. Using the properties of the
system, we modeled the planet’s transmission spectrum using the
Python Radiative Transfer in a Bayesian framework7 (Cubillos
et al., in prep.), which is based on the Bayesian Atmospheric Ra-
diative Transfer package (Blecic 2016; Cubillos 2016), and sim-
ulated James Webb Space Telescope (JWST) observations with
Pandexo (Batalha et al. 2017). These models consider opaci-
ties from the main spectroscopically active species expected for
exoplanets at these wavelengths: H2O and CO2 from Rothman
et al. (2010); CH4, NH3, and HCN from Yurchenko & Ten-
nyson (2014); CO from (Li et al. 2015); Na and K from Burrows
et al. (2000); Rayleigh opacities from H, He, and H2 (Kurucz
1970; Lecavelier Des Etangs et al. 2008); and collision-induced
absorption from H2–H2 (Borysow et al. 2001; Borysow 2002)
and H2–He (Borysow et al. 1988, 1989; Borysow & Frommhold
1989). We compressed the HITEMP and ExoMol databases with

7 http://pcubillos.github.io/pyratbay
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Fig. 7. Model transmission spectra of HD 219666 b (top panel). The
dots and error bars denote simulated single-transit JWST transmission
observations with NIRISS SOSS and NIRSpec G395H (wavelength
coverage at bottom) for two underlying models (solid curves) at temper-
atures of 600 K and 1000 K (see legend). CH4 shows as strong absorp-
tion bands at 1.7, 2.3, and 3.3 µm in the 600 K model; whereas CO and
CO2 show their strongest absorption features at wavelengths beyond
4 µm in the 1000 K model. The bottom panels show the composition
of the main species that shape the transmission spectrum. Depending
on the atmospheric temperature, carbon favors either higher CH4 (low
temperatures) or CO/CO2 abundances.

the open-source repack package (Cubillos 2017) to extract only
the strong, dominating line transitions.

Figure 7 shows estimated transmission spectra of
HD 219666 b assuming a cloud-free atmosphere, in ther-
mochemical equilibrium (Blecic et al. 2016) for solar elemental
composition, at two atmospheric temperatures. By combining
NIRISS SOSS and NIRSpec G395H observations, one could
potentially constrain the atmospheric chemistry and tempera-
ture of the planet with a single-transit observation with each
instrument. The transmission spectrum at wavelengths shorter
than 2 µm constrain the H2O abundance for both models, setting
the baseline to constrain the abundances of other species. At
longer wavelengths, either CH4 (T = 600 K model) or CO/CO2
(T = 1000 K model) dominate the carbon chemistry at the
probed altitudes (Fig. 7, bottom panels), producing widely
different features in the transmission spectrum (Fig. 7, top
panel).

An important clue to the formation mechanism of
HD 219666 b could come from the knowledge of its orbital
obliquity with respect to the stellar equatorial plane, which
can be estimated through the observation of the Rossiter-
McLaughlin (RM) effect. We calculated that the RV amplitude of
the RM effect is of ∼3 m s−1, so it would probably be detectable
with HARPS, and certainly with ESPRESSO (Pepe et al. 2010).
Remarkably, there are only two hot-Neptunes with a reported
measure of the orbital obliquity, GJ 436 b (Bourrier et al. 2018)
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and HAT-P-11 b (Winn et al. 2010), and both have a misaligned
orbit .

Given the precise RV measurements from HARPS and the
mid-transit time from the TESS mission, we can also constrain
the presence of co-orbital planets (or trojans) to HD 219666 b, by
putting upper limits to their mass Mt (assuming no other planets
in the system or far enough to not perturb the RVs in the time
span of our observations). We followed the technique described
in Leleu et al. (2017), and subsequently applied in Lillo-Box
et al. (2018a,b), to model the RV data by including the so-called
α parameter, which accounts for the possible mass imbalance be-
tween the L4 and L5 regions in the co-orbital region of the planet.
α is defined as Mt/Mb sin θ + O(e2), where θ is the resonant an-
gle representing the difference between the mean longitudes of
the trojan and the planet. We set Gaussian priors on the time
of transit and period of the planet, and left the rest of the pa-
rameters (i.e., e cosω, e sinω, α, γ, and Kb) with uniform broad
priors. We also included a slope term and a jitter term to account
for white noise. The result of this analysis provides parameters
compatible with the prior joint analysis and allows us to set con-
straints on co-orbital planets in the system. In particular, we find
α = −0.14 ± 0.22, which assuming the estimated planet mass
provides an upper limit (95% confidence level) of Mt = 4.6 M⊕
at L5 and no constraint (i.e. up to the planet’s mass) at L4.

In conclusion, we have reported the discovery of a hot-
Neptune transiting the bright (V=9.9) G7 V star HD 219666.
The collaboration between the KESPRINT and NCORES con-
sortia has made possible a rapid spectroscopic follow-up with
HARPS, leading to the confirmation and characterization of
the planet candidate detected by TESS. HD 219666 b adds to a
list of only five Neptune-like planets (0.5 < Mp < 2 MNep with
1 MNep = 17.2 M⊕) transiting a V< 10 star. We have carried out
detailed analyses to derive the fundamental parameters and the
elemental abundances of the host star. We have discussed the
possibility of further characterization of the planet, in particu-
lar by examining the potential of JWST in-transit observations to
detect the presence of molecular features in transmission spectra.
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Table 3. HARPS RV measurements of HD 219666.

BJDa
TDB RV σRV BIS FWHM S-index σS−index Texp S/Nb

-2450000 [km s−1] [km s−1] [km s−1] [km s−1] [s]

8394.521096 -20.0909 0.0008 -0.0274 6.9061 0.154 0.001 1200 87.9
8394.641680 -20.0939 0.0009 -0.0281 6.9033 0.152 0.002 1200 85.7
8396.644285 -20.1024 0.0012 -0.0242 6.9048 0.144 0.003 1200 62.5
8396.756848 -20.1029 0.0011 -0.0267 6.9081 0.147 0.003 1200 72.4
8397.501496 -20.1066 0.0016 -0.0274 6.9102 0.143 0.004 1500 50.9
8397.710686 -20.1027 0.0014 -0.0253 6.9070 0.144 0.003 1200 54.2
8398.571357 -20.0984 0.0011 -0.0278 6.9130 0.148 0.002 1200 67.3
8398.671630 -20.0968 0.0011 -0.0264 6.9103 0.144 0.002 1200 70.3
8399.513841 -20.0951 0.0015 -0.0316 6.9114 0.148 0.004 1200 53.4
8401.643664 -20.0975 0.0016 -0.0280 6.9094 0.161 0.006 1200 51.8
8404.619501 -20.1005 0.0013 -0.0295 6.9103 0.145 0.003 1200 59.9
8406.554873 -20.0890 0.0017 -0.0282 6.9095 0.146 0.004 1200 47.3
8406.657043 -20.0905 0.0014 -0.0225 6.9092 0.140 0.003 1200 58.1
8407.538610 -20.1001 0.0013 -0.0242 6.9058 0.144 0.003 1200 58.0
8407.618837 -20.0963 0.0010 -0.0274 6.9078 0.150 0.002 1200 78.3
8408.519940 -20.1033 0.0014 -0.0304 6.9129 0.153 0.003 1200 55.6
8408.668982 -20.1005 0.0012 -0.0285 6.9096 0.145 0.003 1200 64.8
8424.508079 -20.0910 0.0007 -0.0263 6.9102 0.153 0.001 1200 108.7
8424.760122 -20.0922 0.0010 -0.0262 6.9148 0.144 0.003 1200 84.8
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Table 4. HD 219666 system parameters.

Parameter Prior(a) Derived value

Model parameters of HD 219666 b
Orbital period Porb,b (days) U[6.00, 6.08] 6.03607+0.00064

−0.00063

Transit epoch T0,b (BJDTDB−2 450 000) U[8329.10, 8329.30] 8329.1996 ± 0.0012
Scaled semi-major axis ab/R? N[14.39, 0.30] 13.27 ± 0.39
Planet-to-star radius ratio Rb/R? U[0, 0.1] 0.04192 ± 0.00083
Impact parameter bb U[0, 1] 0.838+0.012

−0.013
√

e sinω? F [0] 0
√

e cosω? F [0] 0
Radial velocity semi-amplitude variation K? (m s−1) U[0, 10] 6.17 ± 0.46

Additional model parameters
Parameterized limb-darkening coefficient q1 N[0.34, 0.1] 0.33 ± 0.10
Parameterized limb-darkening coefficient q2 N[0.23, 0.1] 0.20 ± 0.10
Systemic velocity γHARPS (km s−1) U[−20.30,−19.9] −20.0976 ± 0.0004
RV jitter term σHARPS (m s−1) U[0, 100] 1.04+0.48

−0.47

Derived parameters of HD 219666 b
Planet mass Mb (M⊕) · · · 16.6 ± 1.3
Planet radius Rb (R⊕) · · · 4.71 ± 0.17
Planet mean density ρb (g cm−3) · · · 0.87+0.12

−0.11

Semi-major axis of the planetary orbit ab (AU) · · · 0.06356 ± 0.00265
Orbit eccentricity eb · · · 0 (fixed)
Orbit inclination ib (deg) · · · 86.38 ± 0.15
Equilibrium temperature(d) Teq, b (K) · · · 1073 ± 20
Transit duration τ14, b (hours) · · · 2.158 ± 0.034

Note – (a) U[a, b] refers to uniform priors between a and b, and F [a] to a fixed a value. (b) From spectroscopy and isochrones. (c) From
spectroscopy. (d) Assuming zero albedo and uniform redistribution of heat.
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