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ABSTRACT

Galaxy observations are influenced by many physical parameters: stellar masses, star formation rates (SFRs),

star formation histories (SFHs), metallicities, dust, black hole activity, and more. As a result, inferring accurate

physical parameters requires high-dimensional models which capture or marginalize over this complexity. Here we

re-assess inferences of galaxy stellar masses and SFRs using the 14-parameter physical model Prospector-α built in

the Prospector Bayesian inference framework. We fit the photometry of 58,461 galaxies from the 3D-HST catalogs

at 0.5 < z < 2.5. The resulting stellar masses are ∼ 0.1 − 0.3 dex larger than the fiducial masses while remaining

consistent with dynamical constraints. This change is primarily due to the systematically older SFHs inferred with

Prospector. The SFRs are ∼ 0.1− 1+ dex lower than UV+IR SFRs, with the largest offsets caused by emission from

“old” (t > 100 Myr) stars. These new inferences lower the observed cosmic star formation rate density by ∼ 0.2 dex

and increase the observed stellar mass growth by ∼ 0.1 dex, finally bringing these two quantities into agreement and

implying an older, more quiescent Universe than found by previous studies at these redshifts. We corroborate these

results by showing that the Prospector-α SFHs are both more physically realistic and are much better predictors

of the evolution of the stellar mass function. Finally, we highlight examples of observational data which can break

degeneracies in the current model; these observations can be incorporated into priors in future models to produce new

& more accurate physical parameters.
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1. INTRODUCTION

The modern approach to galaxy spectral energy distri-

butions (SEDs) with stellar population synthesis (SPS)

models was pioneered by Sawicki & Yee (1998). These

authors fit the rest-frame UV-optical broadband pho-

tometry of Lyman-break galaxies with an exponentially

declining τ -model SFH, allowing variation in the start

time, the duration of star formation (τ), the stellar

metallicity, and a reddening factor. This basic formula

of a 4-5 parameter model covering a simple functional

SFH, a dust attenuation vector, and perhaps stellar

metallicity has remained a robust feature in the liter-

ature over the past two decades (Brinchmann & Ellis

2000; Papovich et al. 2001; Shapley et al. 2001; Ilbert

et al. 2006; Salim et al. 2007; Kriek et al. 2009; Maras-

ton et al. 2010; Acquaviva et al. 2011; Skelton et al.

2014; Salmon et al. 2015).

These fits have been extraordinarily successful as they

provide a physical map from galaxy photometry to phys-

ical properties. The most widely used parameters from

such fits are star formation rates and stellar masses (e.g.,

Shapley et al. 2001; Hopkins & Beacom 2006; Madau &

Dickinson 2014; Genel et al. 2014; Speagle et al. 2014;

Behroozi et al. 2018). Stellar masses are considered par-

ticularly robust due to fortuitous degeneracies between

dust, age, and metallicity, which means that there is a

fairly tight relation between M/L ratio and color (Bell

& de Jong 2001).

However, there are known uncertainties and system-

atic errors in this approach. There has remained a per-

sistent and systematic factor of two uncertainty in stellar

masses derived from SED fitting codes (Papovich et al.

2001; Marchesini et al. 2009; Wuyts et al. 2009; Behroozi

et al. 2010; Pforr et al. 2012; Conroy 2013; Mitchell et al.

2013; Mobasher et al. 2015; Santini et al. 2015; Leja et al.

2015; Tomczak et al. 2016; Leja et al. 2018a; Carnall

et al. 2018b), while star formation rates (SFRs) obtained

via either monochromatic indicators or SED modeling

are subject to similar 0.3 − 0.5 dex systematics (Wuyts

et al. 2011a; Speagle et al. 2014; Carnall et al. 2018b;

Leja et al. 2018b). These systematics are caused by a

combination of: (1) fundamental uncertainties in the in-

put physics such as dust models, stellar evolution, initial

mass function (IMF), and stellar spectral libraries, and

(2) observations which are at best weakly informative

about the complexities of extragalactic stellar popula-

tions, resulting in strong model degeneracies. Examples

of specific issues include differences in the underlying

physics of SPS models (∼0.1-0.2 dex), degeneracies from

fundamental limitations such as the “outshining” of old

stellar populations by young stars, the relative similarity

of old stellar populations, and the age-dust-metallicity

degeneracy (for a more complete list, see the review by

Conroy 2013 and discussion therein). Due to the many

confounding factors, solving any one of these problems

in isolation is challenging and requires very carefully de-

signed experiments (e.g. measuring contribution of TP-

AGB stars to the near-IR fluxes, Kriek et al. 2010). As

a result the conventional wisdom has been that there

is a nigh-unbreakable factor-of-two error in SED fitting

outputs. This has created little incentive to improve on

the basic SED fitting approach presented in Sawicki &

Yee (1998), which is likely related to the persistence of

this 4-5 parameter framework in the literature.

Fortunately, many big-picture questions in galaxy evo-

lution are on order-of-magnitude scales and relatively in-

sensitive to uncertainties at the factor of two level. For

example, the cosmic star formation rate density is now

known to peak at z ∼ 2 (Madau & Dickinson 2014), the

amount of stellar mass in the Universe has increased by

a factor of ∼4 since z ∼ 2 (Madau & Dickinson 2014),

and galaxies likely reionized the Universe around z ∼ 7

(Schmidt et al. 2014; Mason et al. 2018).

However, our understanding of many other key as-

pects of galaxy formation is sensitive to factor of two sys-

tematics in stellar mass, star formation rates, and other

SED fitting parameters. Massive galaxies are thought to

approximately double their stellar mass from z = 2 to

the present (van Dokkum et al. 2010; Patel et al. 2013a)

while Milky Way-mass galaxies grow their mass by a fac-

tor of ∼ 10 (van Dokkum et al. 2013; Patel et al. 2013b;

Papovich et al. 2015). Both star-forming and quiescent

galaxies approximately double their size at a fixed stellar

mass from z = 2.75 (van der Wel et al. 2014). The stel-

lar mass–metallicity relationship most likely evolves at

fixed mass by a factor of ∼ 2 from z ∼ 2 to the present in

observations (Erb et al. 2006a) and simulations (Torrey

et al. 2017). A fundamental factor of two uncertainty

in stellar mass means that even well-measured dynam-

ical masses cannot be used to constrain the dark mat-

ter fraction in the inner regions of a galaxy (Cappellari

et al. 2012; van de Sande et al. 2015; Wuyts et al. 2016).

The slope of the star-forming sequence is quite sensi-

tive to factor-of-two changes (e.g., Shivaei et al. 2017),

meaning that relatively small changes in this slope can

cause large changes in inferred galaxy formation histo-

ries (Leitner 2012; Leja et al. 2015) or that gas depletion

times are no longer constant (Genzel et al. 2015). Sys-

tematic factor-of-two changes in SED-derived parame-

ters can invalidate or inalterably change any or all of

these conclusions. This presents a strong motivation to

break the “factor of two barrier”, the same motivation

which has inspired our new approach to galaxy SED fit-

ting.
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Fortunately, many of the model improvements needed

for this work have seen significant improvement over the

past several decades. MAGPHYS was the first code to

use energy balance to tie together UV-NIR and MIR-

FIR photometry into a single physical model (da Cunha

et al. 2008). More complex and more flexible star for-

mation history parameterizations have been explored,

starting with SFH libraries with random bursts super-

imposed (Kauffmann et al. 2003; Gallazzi et al. 2005;

da Cunha et al. 2008), to fits using multiple parametric

SFHs (Iyer & Gawiser 2017; Lee et al. 2018), to nonpara-

metric piecewise-constant SFHs (Cid Fernandes et al.

2005; Ocvirk et al. 2006; Tojeiro et al. 2007; Leja et al.

2017), to libraries of SFHs from simulations (Finlator

et al. 2007; Pacifici et al. 2012). Spatially complex dust

attenuation models have been developed which include

extra attenuation towards younger star-forming regions

(Charlot & Fall 2000) and flexible attenuation curves

(Noll et al. 2009; Salmon et al. 2016; Leja et al. 2017;

Salim et al. 2018). Emission from central active galactic

nuclei (AGN) is now built into many SED fitting mod-

els (Berta et al. 2013; Ciesla et al. 2015; Calistro Rivera

et al. 2016; Leja et al. 2018b). Including the effect of

nebular emission using photoionization models such as

CLOUDY (Ferland et al. 1998, 2013) and MAPPINGS

III (Groves et al. 2004) has become standard practice.

Large uncertainties in the IR contribution of TP-AGB

stars have largely been resolved (Maraston et al. 2006;

Kriek et al. 2010), though other fundamental uncertain-

ties in stellar population synthesis techniques remain

(e.g. the effect of binaries and rotation on the ioniz-

ing flux production rates of massive stars, Choi et al.

2017).

These new model components necessitate more ro-

bust statistical frameworks to properly constrain them.

Bayesian forward-modeling techniques pioneered by

Kauffmann et al. (2003); Burgarella et al. (2005); and

Salim et al. (2007) help to constrain the complex, corre-

lated parameter uncertainties typically present in galaxy

models. Classic grid-based models grow exponentially in

size with model dimensionality, but gridless ‘on-the-fly’

models combined with Markov chain Monte Carlo algo-

rithms can efficiently explore high-dimensional (N & 7)

spaces (Chevallard & Charlot 2016; Leja et al. 2017; Car-

nall et al. 2018b). The computational time necessary

for on-the-fly model exploration is both less expensive

and more readily available than ever before.

By combining many of these advances into a single

consistent framework, it may be possible to finally break

the factor of two accuracy barrier in galaxy SED mod-

eling. Here we take the first step towards this goal

with the Prospector-α physical model built within the

Prospector inference framework. Prospector-α has

been cross-calibrated by fitting broadband photometry

and using the posteriors to predict independent spectro-

scopic and spatially resolved data as an external check

(Leja et al. 2017, 2018b). These checks ensure that SED

fitting results are consistent with the overall picture of

galaxy formation; given the lack of “ground truth” in

SED modeling, such an approach is necessary to ensure

accurate results. This necessitates an iterative cycle of

refining the model, fitting new data, performing new

predictive checks, and further refining the model. These

new data could include large catalogs of photometry

at longer wavelengths from e.g. ALMA or Herschel,

or intermediate-redshift information-rich spectroscopic

surveys such as as MOSDEF or KMOS-3D (Kriek et al.

2015; Wisnioski et al. 2015). This approach sets us on a

long path, but it is the best path available to move the

field forward.

This model is fit to the 3D-HST photometric cata-

logs. These are ideal data to investigate the population-

wide 0.3 dex systematic errors in SED fitting: they pro-

vide rest-frame UV-IR photometry for ∼180,000 galax-

ies across 0.5 < z < 2.5 and are complete in stellar mass

down to ∼ 109 M� at z = 2 (Tal et al. 2014).

Section 2 describes the 3D-HST catalogs and how

they are fit. Section 3 describes the SED model that

is fit to these photometry. Section 4 details how the

Prospector-α masses and SFRs differ from previous es-

timates. Section 5 performs model cross-validation tests

to explore the accuracy of the inferred parameters and

also shows the change in the cosmic star formation rate

density (SFRD) as a result of the new measurements.

The results and next steps are discussed in Section 6

and the conclusion is presented in Section 7. This work

is done with a Chabrier (2003) IMF and a WMAP9 cos-

mology (Hinshaw et al. 2013). Unless otherwise noted,

all parameters are reported as the median of the poste-

rior probability distribution function (PDF).

2. SAMPLE AND DATA

Galaxies are selected from the 3D-HST photomet-

ric catalogs (Skelton et al. 2014). The 3D-HST cata-

logs consist of state-of-the-art PSF-matched UV-IR pho-

tometry for hundreds of thousands of distant galaxies,

covering ∼900 arcmin2 in five well-studied extragalac-

tic fields. Galaxies are identified in deep near-infrared

Hubble Space Telescope (HST) imaging from the CAN-

DELS survey (Grogin et al. 2011; Koekemoer et al.

2011) and are covered by between 17 (the UDS field)

to 44 (the COSMOS field) photometric bands spanning

a range of 0.3-8µm in the observed frame. The pho-

tometry is supplemented by Spitzer/MIPS 24µm fluxes
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from Whitaker et al. (2014). The MIPS 24µm coverage

is critical because the rest-frame MIR wavelengths are

dominated by warm dust emission, a key empirical proxy

for obscured star formation (Kennicutt 1998). Obscured

star formation is the dominant form of star formation for

massive galaxies in this redshift range (Whitaker et al.

2017).

The 3D-HST catalogs contain additional stellar popu-

lations parameters, including stellar masses from FAST

(Kriek et al. 2009) and SFRUV+IR (Whitaker et al.

2014). In this work these parameters are referred to

as the 3D-HST catalog masses and SFRs. The photom-

etry is complete in stellar mass to at least M∗ = 109.3

M� between 0.5 < z < 2.5 (Tal et al. 2014). Redshifts

are taken from, in order of reliability: (1) ground-based

spectroscopic redshifts, (2) near-infrared grism redshifts

from the 3D-HST survey (Momcheva et al. 2016), and

(3) photometric redshifts from EAZY (Brammer et al.

2008; Skelton et al. 2014).

2.1. Sample selection

There are 176,146 galaxies in v4.1 of the 3D-HST cat-

alogs with usable photometry and derived stellar popu-

lations parameters from FAST (Kriek et al. 2009). We

fit all galaxies above the FAST stellar mass completeness

limit from Tal et al. (2014) between 0.5 < z < 2.5 which

have usable photometry (i.e., 3D-HST use phot = 1).

We include a small fraction of galaxies which are below

the mass limits but have high-quality data according to

the following criteria:

• S/N(F160W) > 10

• 0.5 < z < 2.5

• σz < 0.25

• 3D-HST use phot = 1

These cuts result in 58,461 galaxies, of which 2702 (5%)

have measured zspec, 12,513 (21%) use zgrism, and the

remaining 43,246 (74%) use zphot. The target sample

is ∼33% of the total 3D-HST catalog by number, but

covers the majority of the observed star formation rate

density (& 74%) and the stellar mass density (& 95%)

at 0.5 < z < 2.5 (Figure 1).

This subsample has the reliable photometry and

high signal-to-noise in the detection bands where it

is most efficient to fit the computationally intensive

Prospector-α model. The higher S/N data provide

stronger parameter constraints. Additionally, the red-

shift quality cuts ensure that systematic errors due to

redshift uncertainties are minimized (future prospects

for propagating redshift uncertainties to the SED pa-

rameters are discussed in Section 6.2.1). The galaxies

removed by these cuts thus either have uncertain pho-

tometry, uncertain redshifts, or both.

The price of creating a computationally tractable sam-

ple is completeness: not every galaxy in the 3D-HST

catalogs has an associated Prospector fit. The com-

pleteness of the target sample in FAST stellar mass and

SFRUV+IR is shown in Figure 1. Galaxies in the 3D-

HST photometric catalog with use phot = 1 are taken

as the master sample against which this completeness

is inferred. The fraction of the total stellar mass and

total SFR covered by the target sample in each redshift

window is indicated in the upper-right of each panel. 95-

100% of the total stellar mass and 74-91% of the total

star formation rate is covered by our target sample.

In some cases, the incompleteness due to imaging

depth becomes comparable to the incompleteness due

to the sub-sampling of the catalog. The 90% complete-

ness in FAST stellar mass is taken from Tal et al. (2014),

and are derived by comparing object detection rates in

the CANDELS deep fields with a re-combined subset of

the exposures which reach the depth of the CANDELS

wide fields. The completeness in SFRUV+IR is taken as

the 3σ 24µm depth calculated in Whitaker et al. (2014)

and represents where the observable constraint on IR

star formation rates starts to become unreliable.

2.2. Treatment of photometric zero points

The 3D-HST team self-consistently re-derive zero

points for each instrument and filter. This is necessary

to bring data from many telescopes and instruments

onto a common flux scale. This procedure is described

in detail in the Appendix of Skelton et al. (2014). In

brief, every galaxy is fit by the photometric redshift code

EAZY, and the systematic residuals between the EAZY

templates and the observed photometry are tabulated.

In general, the systematic residuals are caused by a com-

bination of template mismatch and zero point errors.

These two effects can be distinguished with sufficient

quantities of high-quality data, as template mismatch

occurs in the rest frame, while zero point errors are in

the observed frame. The resulting derived zero point

errors are used to correct the raw 3D-HST photometric

fluxes to the fluxes reported in the catalog.

However, this process is imperfect: the ‘edges’ of the

wavelength coverage (IRAC 4 and U -band) are more

poorly calibrated, and effects such as redshift-dependent

template mismatch may also be folded into the derived

zero point offsets. To avoid potentially imprinting any

systematic offsets from this process into the photome-

try, we add the zero point correction for each band of

photometry to the flux errors in quadrature. This effect
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Figure 1. Sample selection completeness in stellar mass and star formation rate. The black lines in the histograms represent the
number of galaxies in the full 3D-HST photometric catalogs while the red lines represent the subset fit with the Prospector-α
model. Stellar masses come from FAST and the star formation rate shows SFRUV+IR. The fraction of the (stellar mass
density/star formation rate density) measured by the target sample is indicated in the upper right of each panel, where the
total is taken to be the full 3D-HST sample in that redshift range. The 95% completeness limit is marked in grey.

varies from 0 − 28% of the total flux, depending on the

photometric band.

The HST zero points are considerably more stable

than the other bands, and are therefore treated differ-

ently. For HST bands the zero point corrections derived

by the 3D-HST team are removed (these are typically

near zero, though can be up to 8% of the total flux),
and no inflation of photometric errors is performed.

After this process, a 5% minimum error is enforced for

each band of photometry to allow for systematic errors

in the physical models for stellar, gas, and dust emission.

3. SED MODELING

3.1. The Prospector-α physical model

We use the Prospector inference framework (Leja

et al. 2017; Johnson & Leja 2017) to construct a galaxy

SED model. Prospector adopts a Bayesian approach

to forward-modeling galaxy SEDs.

Prospector uses the Flexible Stellar Population Syn-

thesis (FSPS) code (Conroy et al. 2009) to generate the

underlying physical model and python-fsps (Foreman-

Mackey et al. 2014) to interface with FSPS in python.

The physical model uses the MIST stellar evolution-

ary tracks and isochrones (Choi et al. 2016; Dotter

2016) based on MESA, an open-source stellar evolu-

tion package (Paxton et al. 2011, 2013, 2015). No-

tably, MIST models include the effects of stellar rota-

tion, which lengthens the lifetimes of massive stars and

thus increases the UV and ionizing photon budget over

timescales of tens of millions of years (Choi et al. 2017).

Though smaller in magnitude, this is conceptually sim-

ilar to the effect of stellar binaries on stellar evolution

(Eldridge et al. 2017).

In this study, we use an adapted version of the

Prospector-α model framework described in Leja et al.

(2017, 2018b). The Prospector-α model includes a

nonparametric star formation history, a two-component

dust attenuation model with a flexible attenuation

curve, variable stellar metallicity, and dust emission

powered via energy balance. Nebular line and contin-

uum emission is generated self-consistently through use

of CLOUDY (Ferland et al. 2013) model grids from

Byler et al. (2017). Extensive calibration and testing of

this model has been performed on local galaxies (Leja

et al. 2017, 2018b)

We make multiple changes to the Prospector-α

model in order to reflect the different physics of galaxies

at higher redshifts and to tailor the model more closely
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Figure 2. The continuity SFH prior adopted in the Prospector-α model. The left panel shows the prior density for SFR(t),
with 5 random draws from the prior illustrated in red. The solid black line shows the median while the dashed black lines
show the 16th and 84th percentiles. The middle and right panels show the prior in sSFR(100 Myr) and mass-weighted age as a
function of redshift. See Leja et al. (2018a) for further details.

Table 1. Free parameters and their associated priors for the Prospector-α physical model.

Parameter Description Prior

log(M/M�) total stellar mass formed uniform: min=7, max=12.5

log(Z/Z�) stellar metallicity clipped normal: min=-1.98, max=0.19, mean and
σ from the Gallazzi et al. (2005) mass–metallicity
relationship (see Section 3.1)

SFR ratios ratio of the SFRs in adjacent bins of the 7-bin non-
parametric SFH (6 parameters total)

Student’s-t distribution with σ = 0.3 and ν = 2.

τ̂λ,2 diffuse dust optical depth clipped normal: min=0, max=4, mean=0.3, σ=1

τ̂λ,1 birth-cloud dust optical depth clipped normal in (τ̂λ,1/τ̂λ,2): min=0, max=2,
mean=1, σ=0.3

n power-law modifier to the shape of the Calzetti
et al. (2000) attenuation curve

uniform: min=-1, max=0.4

log(Zgas/Z�) gas-phase metallicity uniform: min=-2, max=0.5

fAGN AGN luminosity as a fraction of the galaxy bolo-
metric luminosity

log-uniform: min=10−5, max=3

τAGN optical depth of AGN torus dust log-uniform: min=5, max=150

to the wavelength coverage and S/N of the 3D-HST

photometry. The full set of priors and parameter ranges

for the adjusted 14-parameter Prospector-α model are

shown in Table 1. The salient changes are described

below.

Nonparametric star formation history prior:

the continuity prior described in Leja et al. (2018a)

is taken as the prior for the nonparametric SFR(t).

In brief, this prior weights against sharp transitions

in SFR(t), similar to the regularization schemes from

Ocvirk et al. (2006); Tojeiro et al. (2007). The prior is

tuned to allow similar transitions in SFR(t) to those of

galaxies in the Illustris hydrodynamical simulations (Vo-

gelsberger et al. 2014a,b; Torrey et al. 2014; Diemer et al.

2017), though it is deliberately set to encompass broader

behavior than is seen in these simulations. The result-
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ing prior probability density for SFR(t), mass-weighted

age, and sSFR100 Myr is shown in Figure 2.

Spacing of the nonparametric star formation

history bins: Seven time bins are used in the nonpara-

metric star formation history model. The bins are spec-

ified in lookback time. Two bins are fixed at 0−30 Myr

and 30−100 Myr to capture variations in the recent star

formation history of galaxies. A third bin is placed at

(0.85tuniv - tuniv), where tuniv is the age of the Universe

at the observed redshift, to model a “maximally old”

population. The remaining four bins are spaced equally

in logarithmic time between 100 Myr and 0.85tuniv.

Stellar mass–stellar metallicity prior: A modi-

fied version of the stellar mass–stellar metallicity rela-

tionship from z = 0 Sloan Digital Sky Survey (SDSS)

data (Gallazzi et al. 2005) is adopted as a prior. The

relationship is modeled as a clipped normal distribution

with limits of −1.98 < log(Z/Z�) < 0.19 set by the

range of the MIST stellar evolution tracks. The stan-

dard deviation is taken as the (84th − 16th) percentile

range from the Gallazzi et al. (2005) z = 0 relation-

ship, i.e. twice the observed standard deviation of the

z = 0 relationship. This wider relationship is adopted

to allow potential redshift evolution in the stellar mass–

stellar metallicity relationship.

A fixed IR SED: The rest-frame mid-infrared is

poorly sampled by the 3D-HST photometric catalog,

as the reddest two filters are Spitzer/IRAC channel

4 (7.8µm) and Spitzer/MIPS 24µm. This results in

poor constraints on the shape of the IR SED (rest-

frame ∼4-1000µm). Accordingly, we fix the shape of the

IR SED in Prospector-α such that the Spitzer/MIPS

24µm to LIR(8−1000µm) conversion approximates that

of the log-average of the Dale & Helou (2002) tem-

plates (Wuyts et al. 2008). Wuyts et al. (2011a) show

that this luminosity-independent conversion produce

LIR estimates which are in agreement with observed

Herschel/PACS photometry, though with significant

scatter. Additionally, this choice of IR SED follows

Whitaker et al. (2014), which facilitates direct compar-

isons with SFRUV+IR from the 3D-HST catalog. Hot

dust emission powered by an AGN of variable strength

is also permitted in the Prospector-α model (Leja et al.

2018b)– notably, this energy balance is performed sep-

arately from the rest of the IR SED, which is powered

solely by stellar emission. Future potential for a more

flexible IR SED model in Prospector-α is discussed in

Section 6.2.2.

Altered nebular physics: Observations suggest

that the gas in star-forming galaxies at higher red-

shifts experiences more extreme ionizing radiation fields

and has metallicity abundances which may differ sig-

nificantly from their stellar abundances (Shapley et al.

2015; Steidel et al. 2016). Accordingly, the ionization

parameter for the nebular emission model is raised from

log(U) = −2 to log(U) = −1, and gas-phase metallicity

is decoupled from the stellar metallicity and allowed to

vary between −2 < log(Z/Z�) < 0.5. This is a nuisance

parameter for the majority of galaxies as it typically

is very poorly constrained by the photometry, though it

can be important for very blue galaxies with high sSFRs

(Cohn et al. 2018).

3.2. Posterior sampling

The posteriors are sampled with the dynamic nested

sampling code dynesty (Speagle et al., in prep)1.

Nested sampling has a number of desirable properties

over standard Markov Chain Monte Carlo (MCMC)

sampling, including well-defined stopping criteria, eas-

ier access to independent samples, more sophisticated

treatment of multi-modal solutions, and simultaneous

estimation of the Bayesian evidence. Additionally, dy-

namic nested sampling can be performed such that

samples are targeted adaptively during the fit to better

sample specific areas of the posterior. Finally, internal

testing with Prospector shows that dynesty requires

∼2x fewer model calls to produce similar posteriors to

MCMC methods, which translates to a ∼50% decrease

in run-time. Each galaxy takes an average of ∼ 25

CPU-hours to converge for our 14-parameter model,

resulting in ∼1.5 million CPU-hours2 to analyze the

whole sample.

Unless indicated otherwise, all reported parameters

are the median of the marginalized posterior probability

function, with 1σ error bars reported as half of the 84th-

16th interquartile range. The Prospector parameter file

for this version of the Prospector-α model is available

online3.

3.3. Benchmark models for SFR and stellar mass

The next section compares the stellar masses and star

formation rates derived from the Prospector-α fits to

the fiducial inferences from the 3D-HST catalogs. The

key physical assumptions made in the 3D-HST deriva-

tions are repeated here for completeness.

Stellar masses in the 3D-HST catalogs are calculated

with FAST (Kriek et al. 2009), a grid-based χ2 mini-

1 https://github.com/joshspeagle/dynesty
2 As a useful point of comparison, at the time of this writing 1.5

million CPU-hours costs approximately $20,000 on Amazon Web
Services. This is ∼40% of the cost of one observing night on the
Keck telescopes.

3 https://github.com/jrleja/prospector_alpha/blob/

master/parameter_files/td_delta_params.py

https://github.com/jrleja/prospector_alpha/blob/master/parameter_files/td_delta_params.py
https://github.com/jrleja/prospector_alpha/blob/master/parameter_files/td_delta_params.py
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mization code. Bruzual & Charlot (2003) (BC03) stel-

lar population synthesis models are used with a Chabrier

(2003) IMF, fixed solar metallicity, exponentially declin-

ing star formation histories, and a single dust screen

with a Calzetti et al. (2000) attenuation law. There

is no nebular or dust emission; accordingly, regions of

the SED with significant dust emission (λrest & 3µm)

are heavily downweighted and Spitzer/MIPS 24µm pho-

tometry is not included in the fit. Only the best-fit pa-

rameters are reported. These are interchangeably called

the 3D-HST catalog masses or the FAST masses in the

text.

Star formation rates are calculated with the following

relationship from Bell et al. (2005):

SFR [M� yr−1] = 1.09×10−10(LIR+2.2LUV) [L�], (1)

with LIR(8 − 1000µm) estimated directly from the

Spitzer/MIPS 24µm flux and LUV(1216−3000Å) deter-

mined from the best-fit EAZY template (Whitaker et al.

2014). This conversion does not include any additional

information about the composition of the underlying

stellar populations. These are interchangeably called

the 3D-HST catalog SFRs or SFRUV+IR in the text.

4. RESULTS

Stellar masses and star formation rates are among

the most basic and important outputs of galaxy SED

fitting codes and are therefore critical benchmarks for

cross-code comparison. Here we compare the stel-

lar masses and SFRs inferred from Prospector-α to

the fiducial masses and SFRs in the 3D-HST catalogs.

There are systematic offsets in this comparison such

that Prospector-α masses are higher and the SFRs are

lower. We demonstrate that the most significant causes

of these offsets are older stellar populations and dust

heating from old stars, respectively.

4.1. Revised stellar masses

Stellar mass is generally considered to be one of the

most robust outputs of SED fitting, with typical sys-

tematic variations of ∼0.2 dex between codes (e.g.,

Mobasher et al. 2015). Though robust when compared

to other outputs, systematic uncertainties of 0.2 dex in

stellar masses result in critical uncertainties when inter-

preting dynamical masses, measuring galaxy mass as-

sembly rates, and calibrating simulations of galaxy for-

mation.

Figure 3 shows the difference between the 3D-HST

catalog masses and Prospector masses as a function

of redshift. Specifically, the probability function for

log(MProspector/MFAST) as a function of log(MFAST) is

created by summing the individual PDFs for all galax-

ies. The individual PDFs are calculated with the best-fit

3D-HST stellar masses and the full posterior distribution

for the Prospector-α stellar masses. As the 3D-HST

stellar masses do not include error estimates, they are

assigned a Gaussian PDF with a uniform width of 0.1

dex. The stacked PDFs thus include both galaxy-to-

galaxy scatter and measurement uncertainty.

The correlation of the offset with mass and red-

shift give important clues as to the cause of the off-

sets. The median stellar mass difference is ∼ 0.1 − 0.2

dex (∼25 − 60%) with a 68th percentile range between

0.2 − 0.4 dex. As stellar mass increases, the offset be-

comes smaller and the distribution becomes tighter. The

offset also increases with decreasing redshift, with a

larger increase at lower masses.

One potential cause of the mass offset is that FAST

and Prospector use different stellar population synthe-

sis codes (BC03 versus FSPS, respectively). The modu-

larity of Prospector makes it possible to build a phys-

ical model in the Prospector framework which mimics

the FAST physical model, thereby isolating the effect

of different SPS codes. This FAST-like model is fit to a

fraction of the 3D-HST catalog (∼2700 galaxies) and the

resulting mass offset is log(MFSPS/MBC03) ≈ 0.05 dex.

This implies that different stellar population synthesis

codes contribute to, but do not dominate, the observed

mass offset.

The bulk of the difference must then come from other

differences in the SED models. Figure 4 explores three

primary candidates: the mass-weighted stellar age, the

stellar metallicity, and the dust optical depth. The

FAST mass-weighted stellar ages are calculated from

the best-fit FAST SFH, while the Prospector ages are

calculated from samples of the SFH posterior. As the

stellar metallicity is fixed to solar in the 3D-HST cata-

log fits, the variable Prospector-α metallicity is shown

alone. The dust attenuation models have substantial

differences: here we compare the V-band dust opti-

cal depth from the 3D-HST catalogs (computed with

a fixed Calzetti et al. 2000 attenuation curve) to the

Prospector-α V-and diffuse dust optical depth (com-

puted with a flexible attenuation curve), which is only

one component of the two-component Charlot & Fall

(2000) dust model in Prospector-α. The relative dif-

ference in the V-band dust optical depths is a good proxy

for the differential attenuation between each model.

Figure 4 makes it clear that, of the model differences

considered, the age differences are the primary driver

of the systematic offset in stellar mass. Indeed, older

stellar ages provide a clean explanation for the trend in

median mass offset with redshift and stellar mass. The

trend with redshift comes from the dependence of age

on tuniverse(z): as redshift decreases, the upper limit on
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Figure 3. Prospector-α infers larger stellar masses than FAST. The right panels show the ratio of stellar masses in four discrete
redshift windows, while the left panel shows the median from each redshift window. The offset increases with decreasing redshift
and increases with decreasing stellar mass. The grey shading is proportional to the stacked probability distribution function.
The median is indicated by a colored solid line and the 16th and 84th percentiles are indicated by colored dashed lines.

stellar age increases. This results in larger relative age

differences permitted between Prospector-α and the

3D-HST catalog inferences. The offset increases with

decreasing stellar mass because low-mass galaxies are

primarily blue and star-forming: these galaxies display

the most sensitivity to the SFH parameterization and

priors (Leja et al. 2018a).
Notably, the systematic mass differences suggest that

Prospector-α will modify or break the tight relation-

ship between mass-to-light (M/L) and optical color (Bell

& de Jong 2001). As may be expected, Prospector-α

finds an increased M/L ratio at fixed optical color. It

also finds greatly increased scatter in this relationship.

This can broadly be attributed to the fact that a more

complex physical model allows a wider range of physical

properties at fixed optical color. This scatter in M/L

is associated with variations in stellar age, metallicity,

and the shape of the dust attenuation curve, and will be

explored further in future work.

4.2. Contrasting pictures of galaxy star formation

histories

The previous section demonstrated that differences in

galaxy star formation histories can cause systematics in

inferred stellar masses. These differences in SFR(t) can

be substantial: the mass-weighted ages inferred in the

3D-HST catalog and Prospector-α differ by factors of

3-5 for the majority of the galaxy population, despite

being constrained by the exact same photometry. There

are several reasons that SFHs are typically only weakly

constrained by broadband photometry:

1. Younger stars (t . 100 Myr) dominate the ob-

served SEDs of star-forming galaxies, greatly out-

shining older stars (Maraston et al. 2010),

2. Stellar isochrones evolve very little at late ages (t

& 2 Gyr), making it relatively difficult to distin-

guish between different age models for older galax-

ies (Conroy 2013),

3. Stellar age, stellar metallicity, and dust have sim-

ilar effects on the UV-NIR SED which can result

in significant parameter degeneracies (Bell & de

Jong 2001).

When the data provide poor constraints, the prior for

SFR(t) becomes very important in determining the out-

put (Carnall et al. 2018a; Leja et al. 2018a). The prior
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Figure 4. Correlations between the stellar mass offset and other derived properties in SED modeling. From left to right,
the y-axis variables are half-mass assembly time, diffuse dust optical depth, and stellar metallicity. The running median is
highlighted in red. Stellar age appears to be the primary cause of the offset in stellar mass between the 3D-HST catalog values
and Prospector-α.

on SFR(t) is determined both by the chosen SFH param-

eterization and by the priors on each parameter. Cru-

cially, sensitivity to the prior is not specific to Bayesian

analysis; classical methods implicitly set a uniform prior

over the chosen SFH parameterization and range of the

parameter grids. The continuity prior in Prospector-α

is qualitatively very different than the exponentially de-

clining SFH assumed in the 3D-HST analysis, so the

difference in recovered SFHs is not surprising.

The SFHs inferred from these two analyses imply

very different pictures of galaxy evolution. Figure 5

shows star formation histories stacked across the star-

forming sequence from both the 3D-HST analysis and

the Prospector-α fits. These stacks are comprised of

galaxies split into four categories: above, on, and be-

low the star-forming sequence, and quiescent. For con-

sistency, star formation rates from Prospector-α are

used to sort galaxies in both stacks (the FAST SFRs
are unreliable as they do not include IR constraints).

The locus of the star-forming main sequence is taken

from Whitaker et al. (2014) and corrected downwards

by 0.3 dex to account for the typical difference be-

tween SFRProspector and SFRUV+IR (see Section 4.3).

The vertical divisions are taken to be 0.6 dex wide, or

roughly twice the logarithmic scatter in the main se-

quence (Speagle et al. 2014). The SFH stacks are created

by summing the individual PDFs for SFR(t)/Mformed
4

such that each galaxy in the stack is weighted equally.

4 Note that sSFR is calculated using stellar mass but SFR(t)
is normalized by total mass formed. This causes some overlap in
the youngest star formation history bins, which would be strictly
forbidden if the definitions of mass were the same.

The most striking result in Figure 5 is the contrast in

average galaxy age. For example, the FAST fits infer

that at 0.5 < z < 1, galaxies above the star-forming

sequence are ∼ 200 − 300 Myr old while galaxies on

the star-forming sequence are ∼ 1 Gyr old. In contrast,

the Prospector-α SFHs infer galaxy ages of order a

few Gyr regardless of their position on the star-forming

sequence. These SFHs imply very different galaxy mass

assembly histories. We demonstrate via a continuity

analysis (Section 5.1) that the assembly histories implied

by the 3D-HST fits are far too rapid to be consistent

with the observed evolution of the stellar mass function.

There are also strikingly different descriptions of a

galaxy’s lifetime on the star-forming sequence. The

Prospector-α SFHs find that galaxy ages show lit-

tle correlation with their position relative to the star-

forming sequence. Indeed, the Prospector-α SFHs are

consistent with a galaxy’s position on the star-forming

sequence being a temporary status, lasting of order

∼ 100 − 500 Myr before converging on long-term SFHs

with similar trajectories. On the other hand, the 3D-

HST fits imply that a galaxy’s position relative to the

star-forming sequence is strongly correlated with its life-

time, with galaxies above the main sequence having ap-

peared between 300 − 500 Myr in the past and galaxies

on the star-forming sequence having lifetimes of ∼ 1

Gyr. This is almost a necessary conclusion when fitting

exponentially declining SFHs, as the only way to gener-

ate relatively high sSFRs in such a framework is to have

very young ages.

A common rationale for using exponentially declining

SFHs is that the inferred τ and age are meant to charac-

terize the bulk of the most recent star formation rather

than representing an actual SFH. However, given that
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Figure 5. Stacked star formation histories from Prospector-α and FAST as a function of star formation rate, stellar mass,
and redshift. The upper row of panels show the distribution of galaxies in the star-forming sequence. Galaxies are divided into
above, on, and below the star-forming sequence, and quiescent and their SFHs are stacked separately. The two lower rows of
panels show the median of the SFH stacks and the shaded regions cover the 16th and 84th percentiles from both Prospector-α
and the 3D-HST catalogs. The 3D-HST catalog SFHs produce stellar populations which are far younger (factors of 3-5 and
more) than the Prospector-α SFHs.

the actual SFH implied by these models directly affects

the mass estimate, it is more useful in this comparison

to take the SFHs at face value.

Beyond the cross-comparison, the Prospector-α

SFHs in Figure 5 provide an interesting overview of

galaxy formation and evolution over the critical period

of 0.5 < z < 2.5. The Prospector-α stacks show that at

higher redshifts, typical galaxies on and above the star-

forming sequence have rising SFHs while those below

the star-forming sequence have flatter SFHs. Galaxies

above the star-forming sequence at 2 < z < 2.5 were

on this sequence ∼ 100 Myr in the past, while galaxies

below the star-forming sequence have been off this se-

quence for three times longer. Quenched galaxies have

falling SFHs and get older with decreasing redshift, and

have also been quenched for longer at lower redshifts.

Given the dominant role of the prior in the recovery

of star formation histories (Carnall et al. 2018b; Leja

et al. 2018b), it is important to establish which of the

Prospector-α results are driven by the data and which

are driven by the prior. For example, it is unlikely that

the data are constraining the characteristic timescales
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on which star formation rates change as a broad range

of characteristic timescales are often equally consistent

with constraints from broadband photometry (Leja et al.

2018b). A more detailed analysis of these trends is de-

ferred to future work.

4.3. Revised star formation rates

UV+IR star formation rates are considered more re-

liable than those from SED fitting codes such as FAST

because they also include contributions from dusty star

formation via the observed IR luminosities. However,

these values do not include galaxy-to-galaxy variation

in the underlying stellar populations properties which is

measured directly in SED fitting. Here we show that

SFRs from panchromatic SED fitting are systematically

lower than SFRUV+IR, and that this offset is largely due

to energy emitted from older stellar populations. This

includes energy observed directly in the UV and energy

attenuated and re-emitted by dust.

The 3D-HST catalogs provide SFRUV+IR from Equa-

tion 1 following the methodology of Whitaker et al.

(2014). LIR is obtained in the 3D-HST analysis by con-

verting the observed Spitzer/MIPS 24µm flux directly

into LIR using a fixed template. However, the observed

IR fluxes are not reliable for low-mass galaxies due to

confusion limits. To extend this comparison to low-mass

galaxies, we instead calculate the Spitzer/MIPS 24µm

flux from model spectra drawn from the Prospector-α

posteriors. These are combined with the log-average of

the Dale & Helou (2002) templates to calculate LIR.

LUV is measured directly from the Prospector-α model

spectra.

To ensure that the resulting SFRUV+IR values are not

systematically biased by this approximation, we com-

pare UV+IR SFRs calculated from the posteriors of

the Prospector-α model fits to the UV+IR SFRs from

Whitaker et al. (2014). There is no measurable offset

as a function of SFR and there is a relatively low scat-

ter of 0.24 dex, suggesting the model SFRUV+IR are an

acceptable approximation for the values in the 3D-HST

catalog.

Figure 6 shows the stacked distribution of SFRUV+IR

/ SFRProspector as a function of sSFRProspector. This is

created by summing the individual probability distribu-

tion functions for all galaxies. The median offset ranges

between 0−1 dex and is largest at low sSFRs. The cen-

tral 68th percentile ranges from 0.2− 0.8 dex and is also

largest at low sSFRs.

Figure 7 explores potential physical causes of this off-

set: additional flux from “old” (t >100 Myr) stellar

populations, hot dust emission from AGN activity, and

a nonsolar stellar metallicity. The x-axis of the left two

panels shows the fractional change in (LUV + LIR) when

old stars and AGN are removed from the Prospector-α

model, while the third panel simply shows log(Z/Z�).

The offsets show some correlation with all three pa-

rameters, suggesting that the overall change in inferred

SFR cannot be simply associated with a single cause.

However, the clearest correlation is with energy from

old stars. This effect naturally explains the trend of in-

creasing offset with decreasing sSFR: at lower sSFRs,

a higher fractional contribution of total flux is emitted

by old stars. This energy from old stars includes both

energy emitted directly in the UV and energy which

is attenuated from the UV, optical, and near-infrared

and re-emitted in the IR. Emission from buried AGN

also strongly affect the star formation rate of a small

fraction of galaxies, while stellar metallicity has a more

subtle effect for many galaxies below Z = Z�.

4.4. Effect of old stellar heating on SFR estimates

Flux from old stars can have a strong effect on star

formation rates inferred only from LUV+LIR. It is there-

fore important to clarify both how the strength of this

effect varies across the galaxy population and how ro-

bustly this effect can be modeled within Prospector.

Equation 1 for SFRUV+IR was derived by creating a

stellar population with a constant SFR over 100 Myr.

The underlying principle is energy balance: if all the

observed luminosity comes from young stars, inverting

this will return the number of young stars (i.e. the star

formation rate). This is a good assumption when young

stars dominate the stellar energy budget. However, old

stars (t > 100 Myr) also contribute to the observed UV

emission and indirectly to the observed IR emission via

dust attenuation. This heating is undoubtedly occurring

at some level: the salient question is to what extent it is

important in affecting the simple SFRUV+IR estimates.

Figure 8 shows the fraction of LUV+LIR emission

originating from stars older than 100 Myr in the

Prospector-α model as a function of sSFR. The ef-

fect of old stellar heating on SFR estimates has been

demonstrated at both low and high redshift for small

samples (Cortese et al. 2008; De Looze et al. 2014;

Utomo et al. 2014) but the measurement presented here

is the first for a statistically significant sample of galax-

ies. The relationship in Figure 8 is fit with the equation

y = 0.5 tanh
(
a log

[
sSFR/yr

−1
]
− b
)

+ 1 (2)

where y = (LUV+IR)old stars/(LUV+IR)total, a = −0.8,

and b = 8.4.

As might be expected, galaxies with high sSFRs (&
10−9 yr−1) experience negligible contribution from old

stars, while galaxies with low specific star formation
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Figure 6. The offset between SFRUV+IR and SFRProspector as a function of sSFRProspector. The right panels show four different
redshift windows with grey shading representing the stacked probability distribution function. The median is a colored solid
line and the 16th and 84th percentiles are colored dashed lines. The left panel highlights the redshift evolution of the median.
There is good agreement at high sSFR, but at lower sSFRs the Prospector-α SFRs are increasingly lower than SFRUV+IR.

rates . 1010.5 yr−1 are dominated by emission from old

stars. The point of equal contribution is at sSFR ≈
10−10.3 yr−1. For reference, a 1010.5 M� galaxy on the

star-forming sequence at z = 0.75 has a specific star for-

mation rate of ∼10−9.4 yr−1 (Whitaker et al. 2014) and

approximately 20% of the observed IR and UV luminos-

ity in such a galaxy is expected to come from old stars.

This effect decreases to < 10% at z = 2.25.

There is a good reason that this effect isn’t typically

included in SFR estimates: it is technically challenging

to include the effect of dust heating from old stars as

it requires that SFR, SFH, and dust attenuation be es-

timated from a single self-consistent model. In theory,

it is possible to modify the assumed star formation his-

tory assumed in calculating SFRUV+IR to include more

emission from old stars and reduce this bias (Kennicutt

& Evans 2012). This is not a universal solution though,

as revising the recipe for SFRUV+IR in this fashion will

then necessarily underestimate star formation rates in

high sSFR galaxies.

Using a sophisticated model such as Prospector to

estimate SFRs is not necessarily a panacea either. The

fractional amount of energy generated by old stars de-

pends not only on accurate estimates of the long-term

SFH, but also on the spatial distribution of old and

young stars relative to the dust. Thus the size of the

effect in Figure 8 is dependent on the adopted dust

model. Prospector-α uses a two-component Charlot

& Fall (2000) model wherein all stars are attenuated

equally by a diffuse screen of dust, while younger stars

experience extra attenuation. The variable shape of the

dust attenuation curve adds more variance to the age-

dependent attenuation, as wavelength-dependent atten-

uation translates into age-dependent attenuation due to
the different emission profiles of young and old stars.

Assumptions about the dust geometry can be tested

directly by observing systems where the contribution of

old stars to the integrated UV and IR emission of galax-

ies can be separated. For example, the bulge of An-

dromeda is composed almost entirely of old stars and

comprises 30% of the total stellar mass yet only con-

tributes 5% of the IR luminosity. This may not be sur-

prising, given the bulge also contains only 0.5% of the

total dust mass (Groves et al. 2012). The majority of

the dust lives in star-forming regions in the spiral arms.

The key question, then, is to what extent the IR emis-

sion from the dusty spiral arms is caused by old stars,

both nearby and from ∼kpc distances. This can be an-

swered by spatially resolved modeling of mixed systems

of old and young stars with a careful accounting of en-
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Figure 7. Correlations between SFRProspector/SFRUV+IR and derived galaxy properties. From left to right, the x-axis values
are the fraction of LIR+LUV emitted by old stars, the fraction of galaxy LIR+LUV emitted by AGN, and the stellar metallicity.
While all three components are correlated with the offset, the offset correlates most clearly with heating by old stellar populations
(’old’ defined here as t > 100 Myr).

ergy transfer between adjacent pixels. Studies which

employ this approach find that a large fraction of the

energy absorbed by dust in nearby spiral galaxies orig-

inates from the old stellar populations (e.g., 37% for

M51, 91% for M31) (De Looze et al. 2014; Viaene et al.

2017).

Spatially resolved modeling may also have the po-

tential to yield observables which can be used in un-

resolved SED modeling (e.g., Conroy et al. 2018). For

example, direct Herschel observations of Andromeda

show that optical light from old bulge stars heat dust

to higher temperatures than star-forming regions do

(Groves et al. 2012). Panchromatic radiative transfer

models of Andromeda corroborate this picture, suggest-

ing that dust heated only by old stars would peak at

150µm whereas younger stellar populations would cause

it to peak around 200 − 250µm (Viaene et al. 2017).

This difference in dust temperature results in a wave-

length dependence which could be exploited in unre-

solved SED modeling. However, this is complicated by

the fact that this temperature dependence is intrinsically

caused by the relationship between stellar morphology

and stellar age: the radiation density is extremely high

in dense stellar regions such as bulges where old stars

happen to live. Thus, galaxies which do not have a

classic bulge-and-disk stellar morphology will likely not

show this temperature dependence.

5. GLOBAL IMPLICATIONS AND MODEL

CROSS-VALIDATION

The Prospector-α model finds that on average,

galaxies in the distant Universe are both more mas-

sive and more quiescent. These effects are due to

Prospector-α inferring older ages and including the

Figure 8. Relationship between the fraction of LUV+LIR

emitted by old stars (t > 100 Myr) and the sSFR inferred
from panchromatic SED modeling. The fit to this relation-
ship from Equation 2 is shown in red, while the 16th − 84th

percentile range is shaded in red. As the specific star forma-
tion rate decreases, more and more of the luminosity is emit-
ted by old stars. A linear transformation between UV+IR
luminosity and star formation rate can thus overestimate the
star formation rate for galaxies with low sSFR.

effect of old stellar heating respectively. In this section

we examine the implications and the self-consistency

of these results by cross-comparing different infer-

ences of global quantities including the evolution of

the stellar mass function and the cosmic star forma-
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tion rate density. We also indirectly test the accuracy

of Prospector-α masses by comparing stellar and dy-

namical masses.

5.1. The consistency between star formation histories

and the growth of the stellar mass function

SED fitting simultaneously infers both the current

stellar mass M∗(t = 0) and the past star formation his-

tory, dM/dt(t). In principle this means that the galaxy

stellar mass function φ(M, z) needs only to be observed

at z = 0; the redshift dependence of this function can

then be predicted by evolving each galaxy backwards in

time according to dM/dt(t) while also accounting for the

effect of galaxy mergers. In practice, the current stellar

mass is a much more robust quantity than the SFH and

so the mass function is better constrained by measuring

the current stellar mass for galaxy populations across a

range of redshifts. This “redundant” measurement cre-

ates an opportunity to test the self-consistency of SED

fitting models. The inferred SFHs can be used to evolve

the observed stellar mass function at a lower redshift

zstart to some higher redshift zobs and then compared

with the observed stellar mass function at that redshift.

Here we perform this consistency check for the SFHs

from Prospector-α and from the FAST fits in the 3D-

HST catalogs. We take the observed mass functions

from Tomczak et al. (2014), specifically adopting the

smooth parameterizations of this mass function as a

function of redshift from Leja et al. (2015) to ensure

a monotonic evolution with redshift. The SED fitting

in Tomczak et al. (2014) is performed using FAST, the

same code used to generate the SED fitting outputs in

the 3D-HST catalog, which ensures that there is mini-

mal systematic offset between the mass function masses

and the 3D-HST catalog masses. Accordingly, for con-

sistency, the Prospector growth rate function is also

cast in terms of the 3D-HST catalog mass.

For three initial redshifts z=(0.6, 1.1, 1.6), we select

galaxies in a narrow range δz = 0.1 and transform their

SFHs into the distribution of fractional change in to-

tal mass formed ∆Mformed/Mformed, hereafter called the

growth kernel fM (z,M∗). For the Prospector results

the kernel is built by summing the full PDFs; the 3D-

HST results lack error estimates so the kernel is com-

posed of the distribution of best-fit SFHs. The growth

kernel fM (z,M∗) is then smoothed in the mass direction,

equivalent to assuming a smooth growth rate as a func-

tion of mass. Finally the mass function at a higher red-

shift zobs is predicted by convolving the mass function

observed at zstart by the growth kernel fM (zstart,M∗).

We additionally include a simple model for the effect

of galaxy-galaxy mergers on the stellar mass function

from Leja et al. (2015). In brief, this model includes

effects from both the rate at which galaxies merge with

more massive galaxies than themselves (i.e. the “de-

struction” rate) and the rate at which galaxies gain stel-

lar mass from mergers (the “growth” rate) as a function

of both stellar mass and redshift from the Guo et al.

(2013) semi-analytical model of galaxy formation. For

this work we first increase the number density accord-

ing to the destruction rate integrated between zstart and

zobs, and then remove mass from galaxies according to

the growth rate as a function of mass.

The results of this exercise are shown in Figure 9.

For all combinations of zstart and zobs, the FAST SFHs

greatly underpredict the number density of low-mass

galaxies (. 1010 M�). This suggests that the expo-

nentially declining SFHs assumed in FAST greatly un-

derestimate the ages of low-mass galaxies, in agreement

with the findings of Wuyts et al. (2011a) who use a sim-

ilar methodology. Meanwhile, the predictions from the

Prospector-α SFHs are in much better agreement with

the observations, though there are hints that there is

more rapid evolution at higher redshifts (z > 2.5) than

predicted from the Prospector-α SFHs.

The story is more complex at the higher masses. The

3D-HST SFHs underpredict the ages of massive galaxies

at lower redshifts (z ∼ 0.6) but give much more accu-

rate ages at z ∼ 1.1, 1.6. The Prospector-α SFHs ac-

curately predict the evolution of very massive galaxies

(M∗ > 1011 M�), but somewhat overpredict the ages of

galaxies around the knee of the mass function (1010 <

M∗/M� < 1011).

In summary, the Prospector-α SFHs present a re-

markable improvement over the FAST SFHs, but there

remain specific mass and redshift regimes which can be

improved. The continuity prior appears to be a reason-

able prior for some (even most) combinations of redshift

and mass, but perhaps can be improved upon for galax-

ies around the knee of the mass function. A hierarchical

Bayesian model would be a logical next step to craft

an SFH prior which is simultaneously consistent with

the observed SEDs and with observations such as the

evolution of the stellar mass function with time.
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5.2. A new consistency between independent inferences

of the cosmic star formation rate density

The cosmic star formation rate density is the rate of

new stars produced per unit volume and unit time. In

principle this quantity can be inferred with SED model-

ing in two ways: (1) by summing the instantaneous star

formation rate for all galaxies in a fixed volume, or (2) by

measuring the change in total stellar mass in the galaxy

population as a function of time. Previous work has

demonstrated that these two methods are inconsistent

with one another at roughly the 0.3 dex level (Madau &

Dickinson 2014; Leja et al. 2015; Tomczak et al. 2016).

While this offset is improved from the 0.6 dex discrep-

ancy measured just a decade ago (Wilkins et al. 2008),

it remains a serious concern as it implies systematic,

across-the-board errors in inferred stellar masses and

star formation rates at the factor-of-two level. Here we

show that the new masses and star formation rates es-

timated with Prospector-α resolve this tension.

We estimate ρSFR(z) (i.e., the SFRD) by again us-

ing the phenomenological description of the Tomczak

et al. (2014) mass functions from Leja et al. (2015) as

an intermediate step. This mass function is multiplied

by SFRProspector(MFAST) to produce the number den-

sity of galaxies as a function of SFR. The average value

of SFRProspector(MFAST) is calculated by stacking indi-

vidual galaxy posterior PDFs for this quantity. This

produces number density of galaxies as a function of

SFR, which is then integrated numerically to produce

the star formation rate density ρSFR(z). This calculation

is performed in small δz steps between 0.5 < z < 2.5.

This procedure is repeated for SFRUV+IR. The in-

tegration is performed at a fixed mass range of 9 <

log(MFAST/M�) < 13 for all redshifts.

To estimate ρ̇mass(z) (i.e., the SFRD from stellar mass
growth), we take Equation 5 from Tomczak et al. (2014)

describing the growth of stellar mass density from FAST:

log(ρmass) = a(1 + z) + b (3)

with ρmass the total mass density in M�/Mpc3, a =

−0.33, and b = 8.75. The Prospector-α stellar mass

density is calculated using a correction to this equation

estimated from MProspector(MFAST) and the Tomczak

et al. (2014) stellar mass functions. The stellar mass

density ρmass(z) is then converted into ρ̇mass(z) by nu-

merically estimating dρmass/dt between timesteps and

multiplying by 1 − R, where R is the fraction of mass

ejected from a stellar population during the course of

passive stellar evolution. This mass loss is assumed

to occur instantaneously. For a Chabrier (2003) IMF,

R = 0.36 (Leja et al. 2015).

This exercise produces ρ̇mass and ρSFR at 0.5 < z <

2.5 from both Prospector-α and from the combina-

tion of FAST stellar masses and SFRUV+IR. In prin-

ciple, ρ̇mass and ρSFR may disagree when using a fixed

lower mass limit due to galaxy mergers. Additionally,

the appropriate mean value of the instantaneous mass

loss approximation may change with redshift. Accord-

ingly we estimate the difference in ρ̇mass and ρSFR from

the Universe Machine (Behroozi et al. 2018), which is

a semi-empirical model which generates self-consistent

estimates of the mass assembly history of galaxies. The

applied mass selection purposely matches the selection

function used on the 3D-HST observations to create this

figure. This difference is < 0.1 dex at all redshifts.

The values of ρSFR/ρ̇mass from these two procedures

are shown in Figure 10. The combination of FAST

dM/dt and SFRUV+IR recovers the inconsistency in

SFRD inferences observed in previous work (e.g., Madau

& Dickinson 2014; Leja et al. 2015; Tomczak et al. 2016):

a ∼0.3 dex gap between the observed SFRD and the

SFRD implied by the mass function. Indeed, many

galaxy formation models have long been in tension with

the observed star formation rates at 1 < z < 3, roughly

at the factor of two level (Bouché et al. 2010; Firmani

et al. 2010; Davé et al. 2011; Lilly et al. 2013; Dekel &

Burkert 2014; Genel et al. 2014; Mitchell et al. 2014).

Given that models of galaxy formation often calibrate

themselves to the evolution of the stellar mass function,

this tension is not unexpected (Leja et al. 2015).

This tension disappears with the new stellar masses

and star formation rates from the Prospector-α model.

Internally, the star formation rate density decreases by

∼0.2 dex compared to SFRUV+IR while the observed

growth of stellar mass increases by ∼0.1 dex compared

to FAST stellar masses. The new estimates are inter-

nally consistent to within . 0.1 dex.

It is worth emphasizing that Prospector infers masses

and SFRs using the same physical model. This is in

contrast to the 3D-HST catalog masses and SFRs which

are estimated from models with different and conflicting

physical assumptions. It is better to use self-consistent

estimates of mass and SFR when possible (e.g., Driver

et al. 2017). Despite the internal consistency enforced in

Prospector-α, there is no guarantee that the global av-

erage of the stellar mass growth and star formation rate

will agree. This makes the global . 0.1 dex agreement

quite remarkable.

5.3. Comparison to dynamical masses

Galaxy dynamical masses are an independent con-

straint on stellar masses. More specifically, since the

total galaxy mass budget is comprised of gaseous, stel-
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Figure 10. Comparison between the observed cosmic SFRD and the cosmic SFRD implied by the observed growth of stellar
masses. The canonical values from the FAST SED fitting code and SFRUV+IR disagree such that there is too much observed
star formation by ∼0.2− 0.4 dex. The revised estimates from Prospector-α largely remove this offset, due to a combination of
lower star formation rates (∼ 0.2 dex) and higher stellar masses (∼ 0.1 dex). This comparison is performed at each redshift for
all galaxies with log(MFAST/M�) > 9. In principle galaxy mergers or the instantaneous mass loss approximation could result
in a nonzero expectation value for the y-axis. We measure this deviation within the Universe Machine model and show that it
is a small (< 0.1 dex) effect at all redshifts.

lar, and dark matter components, dynamical mass can

be thought of as an “upper limit” to the stellar mass.

Given that the Prospector-α model increases stellar

masses by an average of ∼ 0.2 dex, it is important to

ensure that the higher stellar masses do not violate dy-

namical constraints.

We test this with dynamical masses measured from

deep Keck-DEIMOS spectra of star-forming and qui-

escent galaxies at z ∼ 0.7 (Bezanson et al. 2015a).

We adopt the structure-corrected dynamical masses cal-

culated with the Sérsic-dependent virial constant from

Cappellari et al. (2006). The dynamical masses are mea-

sured within the effective radius for each galaxy. We

match 56 galaxies in the Bezanson et al. (2015a) sample

to the 3D-HST photometric catalogs and fit these galax-

ies with Prospector-α using the spectroscopic redshifts

from Bezanson et al. (2015a).

Figure 11 compares the measured dynamical masses to

FAST stellar masses from Bezanson et al. (2015a) and to

Prospector-α stellar masses. The mean log(Mdyn/M∗)

is 0.46 dex for FAST stellar masses and 0.22 dex for

Prospector-α stellar masses. Crucially, the distribu-

tion of Prospector-α stellar masses do not violate

the observed dynamical constraints. There is one no-

table outlier which violates the dynamical constraints

by ∼0.35 dex: however, it is consistent with the dynam-

ical mass at the 3σ level due to a long, non-Gaussian

tail in the stellar mass posterior PDF.
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Figure 11. Comparison between stellar and dynamical masses. The left panel shows stellar masses from FAST while the
middle shows stellar masses from Prospector-α. The scatter is similar though the offset decreases by ∼0.25 dex. The right
panel demonstrates that while there is considerable spread in MProspector/MFAST, this spread is distributed such that the
dynamical masses are not violated (the new stellar masses “know” about their dynamical mass). The outlier in the ‘forbidden’
region of the middle panel has a poorly determined stellar mass and is consistent with the dynamical constraint at the 3σ level.

There is considerable scatter in MProspector/MFAST,

but notably this scatter seems to respect the dynamical

constraints, as illustrated in the third panel of Figure

11. This is unlikely to be a random result: using the ob-

served distribution of MProspector/MFAST and applying

these offsets randomly to MFAST shows that 95% of the

time there should be more serious outliers (> 0.1 dex

mass discrepancy) than the single one observed here.

This implies that the additional stellar mass added by

Prospector-α is not random, but instead reflects real

variations in the underlying physical properties of these

galaxies.

Overall, these results demonstrate that the new

Prospector-α stellar masses are consistent with the

direct dynamical constraints. The new masses do leave

less room on average for additional massive components

such as dark matter, gas, or a more bottom-heavy IMF,

however. A key question is whether the maximal al-

lowed dark matter fractions are “reasonable” compared

to hydrodynamical simulations of ellipticals and spi-

rals. At these redshifts and masses, the Illustris TNG

simulation suggests that dark matter should constitute

about 50% of the total matter within the effective radius

(Lovell et al. 2018). This is closer to the revised stel-

lar masses than the old stellar masses. Observational

estimates of dark matter fractions necessarily rely on

other methods to estimate stellar masses and in general

create mixed expectations the amount of dark matter

within the effective radius. For example, Genzel et al.

(2017) finds that star-forming galaxies at 0.9 < z < 2.4

have dark matter fractions of < 0.22, but Tiley et al.

(2018) argues that these should be considerably larger

after correcting details of normalization prescription

(they report dark matter fractions of > 60% within 6

disk radii). Cappellari et al. (2013) use a variable IMF

and measure dark matter fractions < 0.4 in local early-

types from the ATLAS-3D project. Ultimately, it is

clear that the Prospector-α masses are consistent with

the dynamical masses in the sense that the stellar mass

alone does not violate the constraints: however, given

uncertainties in dynamical masses and expected galaxy-

to-galaxy scatter in gas and dark matter fractions, it’s

difficult to ascertain at this time to what extent the

Prospector-α masses are consistent with the full mass

budget including dark matter and gas reservoirs.

6. DISCUSSION

The accuracy of the updated physical parameters pre-

sented in this work are necessarily contingent on the

accuracy of the 14-parameter Prospector-α model.

Yet it can be challenging to perform hypothesis test-

ing for high-redshift galaxy SED modeling due to the

large number of “unknowns” relative to “knowns”. We

first discuss the necessity of performing model cross-

validation to further verify, dismantle, or alter the new

picture presented in this work (Section 6.1). We then

discuss potential future improvements in SED modeling

which could further improve our interpretation of the

observed galaxy photometry (Section 6.2).

6.1. Complex models and falsifiability

In this work we present new inferences of stellar

masses and SFRs from a high-dimensional physical

model for galaxy SEDs. This model pushes the field

forward by allowing galaxy-to-galaxy variation for many

components of galaxy formation which were fixed in pre-

vious work, such as the shape of the dust attenuation
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Figure 12. Future data has the potential to better constrain parameters in the Prospector-α model. The top panel shows the
fit to the photometry of a galaxy from the 3D-HST catalogs, UDS 7610. The grey shaded region in the upper panel represents
the 1-sigma range of model spectra drawn from the posteriors. The lower panels show predictions for future data which can
constrain the major uncertainties in the Prospector-α posteriors. The shaded regions in the lower panels correspond to 1, 2,
and 3σ ranges.

curve or the highly flexible step-function SFHs. This is

possible because of advances in statistical and sampling

methodologies, the ongoing and dramatic decrease in

the price of computing time, and substantial improve-

ments in stellar population synthesis techniques.

The primary challenge in evaluating this model (or

any such model) is that there is no “ground truth” with

which to compare basic properties derived from galaxy

SED fitting. Due to this lack of corroboration, there

has been a long history of skepticism in the literature

about the accuracy of galaxy SED modeling results (e.g.,

Papovich et al. 2001; Shapley et al. 2005; Conroy &

Wechsler 2009; Wuyts et al. 2009; Behroozi et al. 2010;

Walcher et al. 2011; Taylor et al. 2011; Mobasher et al.

2015; Santini et al. 2015).

Fitting simulated galaxies with galaxy SED models is

a useful way to cross-examine their assumptions (e.g.,

Hayward & Smith 2015), as this is a scenario in which

the ground truth is known. Simulations reproduce many

key components of galaxy formation, including complex

star formation histories, physically motivated metallic-

ity enrichment histories, and (for high-resolution sim-

ulations) complex spatial mixtures of stars and dust.

However, such comparisons are only useful insofar as

the physical conditions in simulated galaxies approxi-

mate those of real galaxies. It has been shown that

the outputs of numerical simulations of galaxy forma-

tion are sensitive to the implementation of their sub-

grid physics (e.g., Crain et al. 2015). This is notable

because different numerical simulations adopt different

sub-grid physics recipes (Somerville & Davé 2015). This
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means the accuracy of simulation outputs vary according

to the accuracy of their unique sub-grid recipes, which

are difficult to assess. Furthermore, it is only possible

to use simulations to test SED fitting ingredients which

are not inputs to simulated galaxies. This forbids testing

many basic components of galaxy SED models, includ-

ing stellar population synthesis assumptions, AGN emis-

sion models, and the sub-resolution behavior of dust and

the interstellar medium (Smith & Hayward 2015; Nelson

et al. 2018).

Given that a direct comparison between SED model-

ing results and ground truth is not possible, we suggest

here that next best approach is to build a model which is,

to the greatest extent possible, consistent with all other

observations. This involves projecting the implications

of galaxy SED models conditional on the observed data

into the space of completely independent observables.

Informative comparisons of this type can include com-

paring stellar masses to dynamical masses (Erb et al.

2006b; Taylor et al. 2010), predicting the strength of

spectral features from fits to the photometry (Leja et al.

2017), and comparing star formation histories of galax-

ies at low redshift to the observed star formation rates

and stellar masses of galaxies at higher redshift (Wuyts

et al. 2011b). This approach is particularly fruitful for

galaxy SED fitting: due to the covariance of basic pa-

rameters like age, dust, and metallicity, a simple change

to the prior for one parameter can have ramifications for

many other parameters of interest.

Figure 12 illustrates the potential for additional

data to further constrain the parameters in the

Prospector-α model. The top panel shows a model

fit to photometry from the 3D-HST survey. The lower

panels show the joint PDF between key model parame-

ters (specific star formation rate, AGN strength, stellar

metallicity, and stellar age) and potential future observ-

ables (Br-γ emission equivalent width, Hδ and Fe 5782Å

absorption equivalent width, and WISE rest-frame mid-

infrared colors). The covariance between these param-

eters means that future observations can constrain key

remaining uncertainties in the Prospector-α models.

Notably, while these types of covariances are very com-

mon, the particular galaxy shown in Figure 12 is un-

usual in displaying strong covariances with all of these

observables at once.

6.2. Towards a more accurate SED model

One key improvement in Prospector-α is the large

number of free parameters coupled with the statistical

machinery to put realistic constraints on them. Allow-

ing significant deviations from the “standard script” for

galaxy formation permits more accurate properties to

be inferred on a galaxy-by-galaxy basis.

However, there are still a number of key physical pa-

rameters which remain fixed. It is reasonable to think

of models such as Prospector-α as one important step

towards the ultimate goal, which is a fully flexible phys-

ical model for galaxy emission across all redshifts. Here

we discuss several important future steps on the path to

this goal.

6.2.1. Propagation of redshift uncertainties

Prospector-α treats redshift as a fixed parameter.

This approach explicitly neglects the effect of errors in

distance determination on the resulting galaxy proper-

ties.

This assumption will affect some galaxy fits more than

others. In the 3D-HST catalogs, redshift has been in-

ferred independently from a combination of HST grism

spectroscopy, ground-based spectroscopy, and photo-

metric redshifts from EAZY. A fixed redshift is an excel-

lent approximation for galaxies with solid spectroscopic

or grism redshifts but is a less robust approximation

for photometric redshifts. The reliability of photomet-

ric redshifts will also scale with the signal-to-noise of the

photometry. For example, the scatter between photo-

metric and spectroscopic redshifts for the entire 3D-HST

survey is 0.0197, but for galaxies with HF160W mag-

nitude > 26 this scatter increases to ∼0.05 (Bezanson

et al. 2015b).

Redshift errors can have a strong effect on the physi-

cal parameters inferred from SED fitting. For example,

Chevallard & Charlot (2016) use the Bayesian SED fit-

ting tool BEAGLE to fit two high-redshift galaxy SEDs

simultaneously for redshift and stellar populations pa-

rameters. The results show that redshift can have a

complex interplay with the derived stellar populations

parameters: even moderate redshift errors of ∼0.15 can

affect individual stellar masses by a full order of mag-

nitude or more. The systematic effect of redshift errors

on global properties of the galaxy population – such as

the stellar mass function or the cosmic star formation

rate density – has yet to be characterized in a Bayesian

framework.

One simple step way forward is to use posteriors from

photometric and grism redshift-fitting codes as priors for

the redshift estimated in SED fitting. This is an imper-

fect solution, as it mixes multiple different assumptions

about stellar populations. Ultimately, it would be ideal

to use a single workflow to analyze all the available spec-

troscopic and photometric data and then simultaneously

estimate redshifts and stellar populations parameters:

for a first step towards this, see Acquaviva et al. 2015.
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6.2.2. A flexible IR SED

In this work we adopt a fixed shape for the IR SED.

This fixed shape is used to extrapolate the total infrared

luminosity from the observed MIPS 24µm photometry.

The total infrared luminosity is a critical parameter as it

is closely related to the total star formation rate, though

the exact relationship depends on the stellar properties

as discussed in Section 4.4. Approximating the IR SED

as fixed is helpful due to the lack of MIR or FIR pho-

tometry at intermediate and high redshifts for the ma-

jority of the galaxy population. However, the IR SED

shows significant variation on a galaxy-by-galaxy basis

in the local Universe (e.g., Dale et al. 2005, 2012) and

this variation is likely to persist at higher redshifts.

Observations of variations in IR SED shape at higher

redshifts are limited by the depth of available Herschel

photometry. The handful of galaxies with individual

detections in Herschel IR photometry show that the

L8µm/LIR ratio has a scatter of a factor of ∼2, with

a tail towards higher values of L8µm/LIR in systems

with SFR& 100 M�/yr (Elbaz et al. 2011; Wuyts et al.

2011a). Lower flux limits can be reached with stacking

analysis. Shivaei et al. (2017) show that the L8µm/LIR

conversion is likely a strong function of stellar mass as

well, varying systematically by a factor of 2 when com-

paring massive galaxies to galaxies with log(M/M�) <

10. L8µm/LIR also shows significant redshift evolution

(Whitaker et al. 2017).

A comprehensive study of the variation of the IR SED

at z > 0.5 with galaxy properties has not yet been per-

formed due to the shallow limits of the available MIR

and FIR imaging. Stacking or deblendingHerschel pho-

tometry combined with accurate galaxy properties from

SED modeling is one potential way to address this issue.

It would be straightforward to incorporate these results

into galaxy SED fitting models via priors. Systematic

change in the IR SED with galaxy properties has the

potential to alter important galaxy scaling relationships

such as the low-mass slope of the star-forming sequence

in a mass-dependent fashion and correspondingly alter

the cosmic star formation rate density (Whitaker et al.

2014; Leja et al. 2015; Shivaei et al. 2017).

6.2.3. α-element abundances

Galaxy SED models currently assume a solar abun-

dance pattern by necessity. However, there is clear ev-

idence from high-resolution spectra of quiescent galax-

ies that the α-element abundance varies systematically

with galaxy properties. This correlation is apparent in

the nearby Universe where massive galaxies have [α/Fe]

∼ +0.23 (Thomas et al. 2005; Conroy et al. 2014).

This trend increases strengthens at intermediate red-

shifts (0.5 < z < 2), where small samples of massive

galaxies have [α/Fe] ∼ +0.3 (Choi et al. 2014; Onodera

et al. 2015). More extreme individual causes have been

detected, including [α/Fe] > 0.4 (Lonoce et al. 2015) and

[α/Fe] = +0.6 (Kriek et al. 2016). It is more difficult

to infer elemental abundance patterns in young galaxies

due to the lack of strong absorption lines, but simula-

tions predict that star-forming galaxies have trends in

α-element abundance patterns with mass, redshift, and

star formation rate (Matthee & Schaye 2018). These

can be [α/Fe] = +0.6 or higher in highly star-forming

galaxies at z = 2 and above, consistent with observed

nebular abundances (Steidel et al. 2016).

These trends in abundance patterns have ramifi-

cations for the integrated photometry of galaxies.

Vazdekis et al. (2015) generate α-enhanced models with

[α/Fe] = +0.4 and show that the resulting optical fluxes

change by 10%-40% and the optical colors change by

∼0.1 magnitude, depending on the age and metallicity

of the stars. This suggests that variations in α-element

patterns should be included when fitting galaxy pho-

tometry: for example, α abundance patterns could be

important in explaining the ugr colors of massive el-

lipticals, which have been too red in models for many

years (e.g., Conroy & Gunn 2010; Vazdekis et al. 2015).

Choi et al. (in prep) show explicitly that synthesizing

ugriz fluxes from the best-fit spectrum with individual

elemental abundances allowed to vary will reproduce

the observed colors to within < 0.03 magnitudes, while

using solar-scaled abundances results in larger residuals

(up to 0.1 magnitudes for the oldest systems).

It remains unclear how much variation in α-element

abundance will affect SED modeling at higher redshifts.

On one hand the α-element abundance patterns are

more extreme at higher redshifts, but on the other hand

galaxies are younger on average and therefore less sen-

sitive to α-element variations. Future versions of FSPS

will include variation in the α-abundance pattern, pro-

viding a straightforward way to include the effect of vari-

ations in α-enhancement on galaxy properties derived

from SED modeling.

7. CONCLUSIONS

In this work we present a revised estimate on the rate

of galaxy stellar mass assembly at 0.5 < z < 2.5 using

the Prospector-α galaxy physical model. The primary

advance over previous work is the much larger num-

ber of physical parameters which are modeled within

Prospector (N = 14, compared to N ∼ 4 − 7). This

high dimensionality permits modeling the effect of a

number of second-order physical effects on both stel-

lar mass and SFR estimates on an object-by-object ba-
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sis. These new high-dimensional SED models are pos-

sible due to a number of technical improvements: the

nested sampling routine dynesty, on-the-fly model gen-

eration with FSPS, and the Prospector Bayesian infer-

ence framework.

We fit a version of the Prospector-α physical model

from Leja et al. (2017, 2018b) modified for high-redshift

galaxies. This model makes use of the wide range

of physics available in FSPS and has a total of 14

free parameters. These physics include a flexible 6-

parameter nonparametric SFH, state-of-the-art MIST

stellar isochrones, a broad range of stellar metallicities,

a two-component dust attenuation model with a flexible

dust attenuation curve, dust emission via energy bal-

ance, nebular line and continuum emission, and a model

for the MIR emission of dusty AGN torii.

The Prospector-α model is fit to rest-frame UV-MIR

photometry of 58,461 galaxies from the 3D-HST survey

in the redshift range 0.5 < z < 2.5. These catalogs pro-

vide between an immense amount of information: there

are between 17 and 44 bands of aperture-matched pho-

tometry available across 5 distinct extragalactic fields.

These photometric data are coupled with redshifts in-

ferred from a combination of ground-based spectroscopy,

the HST G141 grism, and photometric redshifts from

EAZY. After fitting these data, we present the follow-

ing conclusions:

1a. The Prospector-α stellar masses are systemati-

cally 0.1− 0.3 dex higher than stellar masses from

the 3D-HST catalogs inferred with the FAST SED

fitting code. This offset correlates with stellar

mass and, more weakly, with redshift.

1b. While multiple effects contribute at a low level,

the primary cause of the offset is the older stel-

lar ages inferred with Prospector-α. Comparing

stacked SFHs inferred from the 3D-HST SED and

the Prospector-α model show that these differ-

ences can be dramatic: highly star-forming galax-

ies are older by a factor of ∼ 10 and galaxies on

the star-forming sequence are older by a factor of

∼ 5.

2a. The Prospector-α star formation rates match

state-of-the-art UV+IR SFRs at high sSFRs

(log(sSFR/yr−1) ≈ 8). They are increasingly

lower than SFRUV+IR with decreasing sSFR such

that by log(sSFR/yr−1) ≈ −10.5 there is an offset

of 0.75 − 1 dex.

2b. While again multiple effects contribute, the largest

cause of this offset is the emission from from

old stars. This is neglected in SFRUV+IR but

self-consistently estimated in the Prospector-α

model. The fraction of LIR+LUV powered by emis-

sion from ‘old’ (t > 100 Myr) stars as a function of

sSFR is derived and an equation to estimate this

effect is presented.

We explore the global implications of these new infer-

ences with several model cross-validation techniques:

i. The global star formation rate density is estimated

from the SED fits using both dM∗/dt and SFR(t).

These two estimators are inconsistent when esti-

mated with FAST stellar masses and SFRUV+IR

in the sense that ρSFR is higher than ρ̇mass by

∼ 0.3 dex, in agreement with other studies in

the literature. The Prospector-α estimates bring

ρSFR down by ∼0.2 dex and ρ̇mass up by ∼0.1 dex

such that there is now consistency in the inferred

SFRD. This is a notable finding as there is no guar-

antee of self-consistency in the cosmic sum of these

values.

ii. The Prospector-α SFHs are much better predic-

tors of the redshift evolution of the stellar mass

function. This is demonstrated by using observed

star formation histories coupled with a merger

model to wind the observed stellar mass function

back in time. This model mass function is com-

pared to the observed stellar mass functions to test

the consistency of the SFHs. The Prospector-α

SFHs are older on average and better describe

the observations than the 3D-HST SFHs across

most combinations of mass and redshift, though

galaxies in the knee of the mass function (10 <

log(M/M�) < 11) are likely too old within the

Prospector-α model.

iii. The new stellar masses from Prospector-α are

consistent with observed dynamical constraints,

with the average offset between stellar and dynam-

ical mass decreasing from ∼ 0.46 dex to ∼ 0.22

dex, though the new masses do leave less room on

average for additional components such as dark

matter, gas, or a more bottom-heavy IMF.

The primary goal of this work is to build a model for

galaxy properties which is, to the greatest extent possi-

ble, consistent with all observations. We take the first

steps in this direction by performing cross-validation

both within Prospector-α and with external data sets

and by highlighting future observations which will pro-

vide deeper constraints for the Prospector-α physical

model. Such future data will lead to updates of model

priors used in SED fitting. Due to the covariance of
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basic galaxy parameters, a change to the prior for one

parameter will have ramifications for other parameters

of interest: in this way such updates will create “evolv-

ing results” . It is hoped that this methodology can be

used to converge towards the truth.
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