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Abstract
Massively parallel sequencing (MPS) is on the advent of a broad scale application in 

forensic research and casework. The improved capabilities to analyse evidentiary traces 
representing unbalanced mixtures is often mentioned as one of the major advantages 
of this technique. However, most of the available software packages that analyse forensic 
short tandem repeat (STR) sequencing data are not well suited for high throughput 
analysis of such mixed traces. The largest challenge is the presence of stutter artefacts 
in STR amplifications, which are not readily discerned from minor contributions. 
FDSTools is an open-source software solution developed for this purpose. The level of 
stutter formation is influenced by various aspects of the sequence, such as the length 
of the longest uninterrupted stretch occurring in an STR. When MPS is used, STRs 
are evaluated as sequence variants that each have particular stutter characteristics 
which can be precisely determined. FDSTools uses a database of reference samples to 
determine stutter and other systemic PCR or sequencing artefacts for each individual 
allele. In addition, stutter models are created for each repeating element in order 
to predict stutter artefacts for alleles that are not included in the reference set. This 
information is subsequently used to recognise and compensate for the noise in a 
sequence profile. The result is a better representation of the true composition of a 
sample. Using Promega Powerseq™ Auto System data from 450 reference samples 
and 31 two-person mixtures, we show that the FDSTools correction module decreases 
stutter ratios above 20% to below 3%. Consequently, much lower levels of contributions 
in the mixed traces are detected. FDSTools contains modules to visualise the data in 
an interactive format allowing users to filter data with their own preferred thresholds.

Introduction
Analysis of Short Tandem Repeats (STRs) has been a successful forensic tool in 

the past two decades. The comparison of STR profiles from forensic DNA evidentiary 
traces with reference samples and DNA databases has provided essential information 
in many forensic cases. [1] Standard practice is to use Capillary Electrophoresis (CE) to 
analyse STR length variation. In recent years, Massively Parallel Sequencing (MPS) was 
introduced as a new method to analyse STRs and other forensic DNA markers [2,3]. 
MPS enables the simultaneous detection of both length and sequence variation of STRs, 
which increases the discriminatory value substantially [4,5,6]. The output of CE consists 
of peaks reflecting fluorescent signal intensities with their own respective shapes and 
peak heights. The output of MPS data analysis consists simply of read counts of the 
observed sequences. Both methods can suffer from the occurrence of PCR artefacts 
such as STR stutters [7]. This especially complicates the analysis of STR profiles coming 
from multiple contributors, which is common in forensic evidentiary traces. [8] The 
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level of stutter formation depends on a number of distinct aspects of the sequence, 
including the A/T content of the repeat unit and the number of consecutive repeat 
units occurring in an STR [9]. Since any specific STR length identified by CE can consist 
of multiple different sequences, these CE-identified length variants show a larger 
variation in measured stutter percentage than individual sequences analysed through 
MPS. This decreased variation in stutter percentage for MPS STR data may aid in the 
interpretation of mixtures [2], as it allows for a better prediction of stutter behaviour, 
which can be used to filter the data for stutter products. Existing software packages for 
the analysis of STR sequencing data [10,11,12] do not support extensive filtering and 
correction of systemic PCR and/or sequencing errors and therefore seem less suited 
for analysis of mixed DNA samples. This prompted us to develop a software package 
that harbours the following features: 1) characterisation and correction of noise in 
the sequencing data caused by PCR stutter or other systemic PCR and/or sequencing 
errors; 2) visualisation of sequencing data as comprehensive profiles; 3) filtering of data 
in graphs and tables with user definable thresholds and 4) open-source accessibility. 
Forensic DNA Sequencing Tools (FDSTools) is available via the Python Package Index 
(either by manual installation or by using the command ‘pip install fdstools’). We assess 
the performance of FDSTools on 31 two-person mixtures genotyped via the Promega 
Powerseq™ Auto System for which we first generated a reference dataset of 450 
samples.

Material and Methods
Sample preparation

PCR products and sequencing libraries were prepared as described previously 
[2] using a prototype Promega Powerseq™ Auto System containing 23 STRs and 
amelogenin. A set of 450 Dutch samples [13] and 31 two-person mixtures were 
amplified and sequenced. The mixtures consisted of three combinations of two donors 
selected randomly from a pool of unrelated individuals, which were mixed in different 
ratios. The minor components in the mixtures contributed 0.5% (six mixtures), 1% (six 
mixtures), 5% (four mixtures), 10% (six mixtures), 20% (six mixtures) and 50% (three 
mixtures).

Since the mixtures were used to test the performance of the software and also 
to determine analysis thresholds that are fit for purpose, we balanced the influence 
of varying DNA inputs in the PCR and increased drop-out due to low DNA input. 
This was achieved by the use of a minimum of the minor component of 60 pg in the 
0.5%, 1% and 5% mixtures, resulting in a total DNA input of 12 ng, 6 ng and 1.2 ng, 
respectively (60 pg resulted in less than 20% drop-out in the validation of Powerplex 
6C [14]). The same total DNA input of 1.2 ng was used for the 5%, 10%, 20% and 
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50% mixtures (resulting in 120 pg and 240 pg of the minor components in the 10% 
and 20% mixtures, respectively). The DNA input was 0.5 ng for single donor samples.

The genotypes of the donors used in the mixtures were known, which enables 
the identification of drop-in and drop-out allele calls. Paired-end sequencing data of all 
amplicons was generated using the MiSeq® Sequencer (Illumina).

Initial data processing

In Figure 1, the main tools of the FDSTools package and their role in the data 
analysis pipeline are displayed. The tools can be split into three functional groups: tools 
for reference database creation, tools for reference database curation (data quality 
assessment) and tools for case sample filtering and data interpretation. In addition, the 
package contains initial data processing tools such as TSSV [10] that are common to 
reference database samples and case samples.

Figure 1. Flow chart of the analysis process, showing the main tools of FDSTools

Flow chart showing the main tools (blue rectangles) of the FDSTools package and their roles in the data analysis pipeline. The output of each 
tool can be visualised using the Vis tool (not shown).
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Paired-end read merging

Using paired-end sequencing, forward and reverse strand molecules of each 
amplicon were sequenced from both ends. The first ~300 nucleotides from either end 
were obtained. These read pairs were merged into a consensus read by aligning the 
read pair such that the largest possible overlap is obtained while allowing for up to 
33% mismatches in the overlapped region. Most amplicons were about 300 base pairs 
in length and provided fully complementary read pairs.

With STR amplicons that are longer than 300 bp, a problem may occur when 
both reads end in the middle of the STR structure and the pair may be merged into 
a truncated STR sequence. A modified version of FLASH 1.2.11 [15] (available via 
github.com/Jerrythafast/FLASH-lowercase-overhang) was used to mark the bases that 
were not in the overlapped region in lower case in the consensus read. This enables 
detection of truncated STR sequences in downstream analysis.

Linking reads to loci and alleles

The merged reads are linked to specific loci and alleles by the TSSV tool, which is a 
wrapper around a simplified version of the TSSV [10] program called TSSV-Lite. TSSV 
links reads to loci by scanning the reads for the sequences flanking the STR loci used. 
The flanking sequences of each locus, that usually represent the most 5’ nucleotides 
of the primers, are provided to FDSTools in a library file, together with various other 
details about the loci used. Supplementary File 1 represents the library file used in this 
study. The file contains a description for the contents of each section.

Each read is scanned for these flanking sequences by computing alignments. In 
this study, the flanking sequences were 18 nucleotides in length and two substitutions 
(or two inserted or deleted bases) per flank were allowed in the alignment. Reads 
are categorised as ‘unrecognised’ if no flanking sequence is found. Furthermore, both 
flanking sequences are required to have at least one upper case letter, which ensures 
that overlapped reads that are potentially truncated are categorised as ‘unrecognised’ 
as well. Reads in which only one flanking sequence is found with at least one upper 
case letter get linked to a locus but flagged as ‘no start’ or ‘no end’ depending on 
whether the left or right flank is missing, respectively (optionally, these reads can be 
written to separate fasta or fastq files).

The main output of TSSV is a text file with tab-separated values. The file contains 
one line for every unique sequence of each locus. The columns include the name of the 
locus, the sequence, and the number of reads carrying this particular sequence. Read 
counts are given separately for the forward and reverse strand.
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TSSV includes additional options for filtering sequences that are seen too few 
times and sequences with a length outside a given range (e.g., primer-dimers). This 
range can be specified separately for each locus. Furthermore, filtered sequences can 
be aggregated into a single ‘other sequences’ category for each locus. In this project, 
only singletons (i.e., sequences with only one read) were aggregated to the ‘other 
sequences’ category.

Building a reference database

One function of FDSTools is the building of a reference database. Such a database 
can be used to obtain estimates of recurring allele-specific systemic noise. Here, ‘noise’ 
refers to the complete collection of sequences observed in a sample, except the 
sample’s true allelic sequences. Noise includes any artefact deriving from the PCR as 
well as the sequencing (such as PCR stutter or single-nucleotide errors). Additionally, 
based on the reference data a statistical model can be derived that aims to predict 
stutter ratios for alleles not present in the reference set.

The creation of a reference database involves various tools included in the FDSTools 
package, which will be discussed in the next sections. In addition to these separate 
tools, FDSTools offers the Pipeline tool, which conveniently integrates the entire data 
analysis pipeline. Users are advised to use Pipeline as it removes the complexity of 
having to run several separate tools and to combine their output. Pipeline takes a 
simple configuration file containing the analysis parameters and automatically runs the 
appropriate tools.

Building a reference database is a two-phase process. In the first phase, the 
reference samples are analysed in a global manner to identify their alleles and reject 
those samples in which the alleles are not readily identified. In the second phase, the 
systemic noise of each of these alleles is analysed in detail.

Allele calling for reference samples

Determining the alleles of single donor reference samples is a fairly straightforward 
process because these generally represent the one or two most abundant sequences 
for any locus. FDSTools includes Allelefinder to call alleles this way. It is applied after 
Stuttermark, which is described below. A number of thresholds are used to guard against 
including alleles of potential low-level contaminations, which are outlined in Figure 2. 
For heterozygous loci, a second allele is only called if it passes the allele threshold, 
which is defined in this project as 30% of the read count of the most frequent allele at 
the same locus. As we expect no stutter above 30% [2], this threshold separates the 
alleles from noise. No alleles are called at a locus when additional sequences occur that 
have a read count below the allele threshold but above the noise threshold (which is 
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defined as 15% of the most frequent allele in this project) or if a third sequence passes 
the allele threshold. If more than two loci in the same sample fail to give a result for 
these reasons, the overall quality of the sample is considered too poor to report any 
alleles. Additionally, Allelefinder can be configured to call at most one allele at haploid 
loci.

Figure 2. Thresholds used by Allelefinder to call alleles in reference samples

      
Sequence variants with a read count above the allele threshold are called as alleles. The four lighter-shaded bars represent stutter variants (as 
recognised by Stuttermark), which are ignored by Allelefinder.

 

The three potential pitfalls are 1) PCR stutter artefacts that exceed the noise 
threshold; 2) strong read count imbalance for heterozygous alleles, which may be the 
result of e.g., primer-site sequence variants and 3) autosomal trisomy, which is rare. To 
deal with the problem of stutter, each sample was analysed with Stuttermark [2] before 
calling alleles. With Stuttermark, sequences that are in a stutter position of another 
sequence while having a read count below a user-supplied percentage with respect to 
the other sequence are marked as ‘stutter’. Sequences that have a read count that is 
too high to be explained by stutter alone will not be marked as ‘stutter’, as they may 
coincide with a genuine allele. The thresholds used here were 30% for −1 stutter (loss 
of a repeat unit) and 10% for +1 stutter (gain of a repeat unit). For −2 stutter products, 
a 30% threshold of the −1 stutter product is used. Sequences that are marked as 
‘stutter’ are completely ignored by Allelefinder.

Allelefinder produces the list of alleles and a report detailing for which samples and 
loci allele calling is rejected and for which reasons.

Estimating average allele-specific systemic noise

For each allele, a profile of recurring systemic noise, including PCR stutter products 
as well as any other ‘side products’, can be generated based on the reference data. 



FDSTools – Forensic DNA Sequencing Tools for MPS data analysis

137

C
hapter 5

Noise profiles are always computed separately for forward and reverse reads, because 
strand bias may exist in the sequencing technology used. Profiles are also computed 
separately for each locus, under the assumption that noise production is not influenced 
by alleles of other loci. The level of noise is expressed as the number of noise reads as 
a percentage of the number of reads of the parent allele. In the context of PCR stutter 
analysis, this quantity is often referred to as the ‘stutter ratio’, despite the representation 
as a percentage of the parent allele. We use the generalised term ‘noise ratio’ (also 
represented as a percentage of the parent allele) to account for all other systemic 
noise as well.

       
In homozygous samples, the noise ratio can be calculated by dividing the number 

of reads of a non-allelic sequence by the number of reads of the allele. Allele-specific 
noise profiles are readily computed from homozygous samples carrying this allele by 
scaling the read counts in each sample such that the parent allele is 100 and averaging 
the noise ratios for each noise sequence. These per-allele noise statistics and other 
statistics, such as the standard deviations of the noise ratios can be obtained using 
BGHomStats. In heterozygous samples the extraction of noise sequences is more 
complex, because it has to be determined which proportions each allele contributed 
to the observed noise sequences. We assume that noise in heterozygous samples 
corresponds to the sum of the noise profiles of the two alleles, after the application of 
a scaling correction to account for differences in the amount of each allele amplified. 
This is needed as even for heterozygous allele pairs, PCR efficiency may vary due 
to primer binding site sequence variation or STR length. [16] To extract noise from 
heterozygous reference samples an iterative approach was taken and implemented in 
the BGEstimate tool in FDSTools.

In essence, the algorithm, which is discussed in more detail in Supplementary Text 
1, seeks a non-negative least squares solution to the matrix equation A P = C. In this 
equation, C is an N × M matrix of constants derived from the read counts in the 
reference samples, A is an N × N matrix summarising the allele balance in the samples, 
and P is an N × M matrix containing the estimated profiles of systemic noise. N is 
the number of unique genuine alleles among the reference samples and thus also the 
number of profiles produced and M is the total number of unique sequences observed.

Matrix C is computed once at the start of the algorithm. Each row in C corresponds 
to one allele and contains the sum of the read counts of all samples that have that 
particular allele, after scaling the allele to 100 reads for homozygous samples and 50 
reads for heterozygotes. The noise profiles in P are initialised with the assumption that 
no systemic noise is present, i.e., all elements are set to 0, except for the elements that 
correspond to the actual alleles, which are set to 100.
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The algorithm then proceeds by repeatedly re-estimating the allele balance matrix 
A while reading cross-contributions between the alleles from the current profiles P and 
subsequently re-estimating P by finding a non-negative least squares optimal solution 
to A P = C. The values thus obtained in P are the average noise ratios of all observed 
systemic noise for all alleles (i.e., each row in P contains the noise profile of one allele).

To avoid noise from one allele being incorporated in the noise profile of another 
allele, a minimum of three different heterozygous genotypes per allele was used in this 
study. A threshold can be set for the minimal read count of noise to consider and the 
minimal percentage (we used 80%) of reference samples with the same allele which 
should contain the same noise before it is included in the noise profile. Each of these 
parameters can be set using various options of the ‘fdstools bgestimate’ command.

Relating the amount of stutter to repeat length
With the methods outlined above, profiles of systemic noise were obtained for each 

allele present in the reference set. However, one would also like to be able to filter and 
correct the noise originating from alleles that are not (yet) included in the reference set, 
as case samples may be encountered that contain alleles for which no reference sample 
was available. For this purpose, we developed a method to predict the sequence and 
corresponding amount of PCR stutter artefacts that would be produced for any allele 
of a given locus. Note that this method does not predict noise other than noise resulting 
from STR stutter or single nucleotide stretches.

Previous studies have shown that the amount of stutter is strongly correlated with 
the length of the repeated sequence [17] and even more so with the number of 
consecutive repeat units [2,18]. The FDSTools tool Stuttermodel seeks to fit polynomial 
functions to the repeat length and stutter ratio in homozygous reference samples. 
Stuttermodel scans each of the alleles for all positions where a particular repeat unit 
(e.g., the sequence ‘AGAT’) is repeated and records the length of this repeat, as the 
number of nucleotides, including incomplete repeats at the beginning or end of the 
repeated stretch. For each sample with this allele, the number of noise reads that lack 
exactly one repeat is counted. Reads that combine the loss of one repeat with one or 
more other differences (e.g., substitutions, or stutter in another stretch of repeats in the 
same allele) are included in this count. The counts thus obtained are used to compute 
the noise ratios of individual stutter sites and a polynomial function is fitted to quantify 
the relationship between the length of the repeat and the stutter ratio.

This analysis is repeated for each unique repeat unit of a length between one and a 
configurable maximum number of nucleotides (inclusive), treating cyclically equivalent 
units (e.g., ‘ATAG’ and ‘AGAT’) and their respective reverse complements (e.g., ‘CTAT’ 
and ‘ATCT’) synonymously. The amount of +1 stutter, −2 stutter etc. is analysed the 
same way.

Because different loci behave different in stutter formation, a separate function is 
fitted for each locus. Additionally, a polynomial function is fitted to all data at once, 
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which is used to predict stutter in alleles of loci for which insufficient reference data was 
available to fit a locus-specific function. Separate functions are fitted for the forward 
and reverse strands.

For each fitted function, Stuttermodel also determines the lower bound of the 
repeat length for which the function gives meaningful results. This lower bound is 
defined as the lowest repeat length for which the function produces a nonnegative 
result and the function is non-decreasing. Below this threshold, and in any other points 
where the function value would be negative, the function value is set to zero.

 
The quality of fit is assessed by computing the coefficient of determination,

where

           
with yi the noise ratios of the reference samples,  the mean, fi the polynomial 

function’s estimate of the noise ratio of sample i, and  the modified function value. 
The R2 score will be close to one when the function is a good fit and lower otherwise.

Stuttermodel supports fitting polynomial functions of any degree. To prevent over-
fitting while still allowing a non-linear relationship, second-degree polynomials (with a 
minimum R2 score) were used. In cases where the fit for one strand has an R2 score 
above the threshold while the fit for the other strand scores below the threshold, both 
fits are rejected to prevent unintended introduction of strand bias by filtering stutter 
on only one strand.

Curating the reference database

To make sure all reference samples were of good quality and all alleles were called 
correctly, they were put through the same analysis pipeline as case samples, thereby 
performing noise filtering and correction on the reference samples. It is important to 
note that these reference samples were previously genotyped by us in great detail 
using CE [13]. The remaining amounts of noise in each sample were assessed using 
BGAnalyse (described below) to identify potentially unsuitable reference samples that 
still passed the thresholds of Allelefinder. Any sample with a notably higher amount of 
remaining background was manually removed from the set of reference samples to 
prevent pollution of the noise profiles.

BGAnalyse was developed and employed to analyse the remaining noise after 
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correction. For each locus and each sample, this tool calculates the least frequent (this 
can be a negative value because of over-correction), most frequent, and total noise as 
a percentage of the number of reads of the highest allele at each locus. These results 
are subsequently visualised to easily identify potentially problematic samples. In the 
visualisation, samples can be sorted by any of the calculated values or by coverage 
(total number of reads). Samples were subjected to manual inspection and any sample 
that exhibited non-stutter products with corrected read counts above 4% of the most 
frequent allele or above 2% of the total reads was rejected.

Analysing case samples 

The analysis of mock case samples was performed in a three-step process which is 
described in the following sections.

1. A prediction was made for the amount of stutter for each sequence in the sample, 
using the fitted polynomial functions obtained from running Stuttermodel on 
the reference samples. These predictions are used to extend the allele-specific 
noise profiles obtained from running BGEstimate on the reference samples.

2. The extracted noise profiles are used to filter and correct the noise in the case 
sample.

3. Alleles are called and the sample is subjected to manual interpretation.

Similar to the creation of a reference database, analysing case samples involves 
multiple tools discussed in the following sections. Pipeline offers a convenient way to 
automatically analyse a case sample with all tools discussed.

Predicting stutter amounts for unknown alleles

Because case samples may contain alleles that are not present in the reference 
samples, noise profiles for these alleles need to be predicted. FDSTools includes the 
BGPredict tool, which uses a previously created Stuttermodel file to predict the 
amounts of stutter artefacts for alleles not present in the reference data. BGPredict 
finds all sequences in the analysed case sample in which a particular repeat unit is 
repeated. The expected amount of stutter in this repeat is then computed using the 
corresponding fitted polynomial function from the Stuttermodel file. All possible 
combinations of stutter are taken into consideration when the frequencies of each 
stutter artefact are computed. The noise profiles created in this way are used to extend 
the noise profiles in the previously created BGEstimate file (a tool called BGMerge is 
included in FDSTools for this purpose).
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Noise filtering and correction in case samples 

To be able to filter systemic noise in case samples, one first needs to determine 
which alleles are likely present in the sample. To this end, the algorithm of BGEstimate is 
essentially reversed, i.e., the goal is now to solve for a in a P = c, where c is a row vector 
with the sample’s read counts for the M sequences in the noise profiles and a is a row 
vector with the estimated amount of each of the N profiles in the sample. P is the  
N × M matrix of noise profiles obtained from BGEstimate, extended with the 
predictions obtained from BGPredict. Solving for a is done in a non-negative least 
squares sense as before, giving estimated allele contributions that best fit the various 
sequences – alleles as well as noise – present in the sample.

Background-corrected read counts can then be computed by first subtracting the 
scaled profiles from the sample’s read counts

    
and then adding the total size of each profile to the corresponding allele, i.e.,

         
Note that d may have negative elements if the sample contains a lower amount of 

a certain sequence than was predicted by the profiles of its dominant alleles.

FDSTools offers BGCorrect to filter and correct background noise following the 
procedure outlined above. Given a sample data file (obtained from TSSV for example) 
and a file containing noise profiles, BGCorrect produces a copy of the sample data with 
additional columns giving the amounts of each sequence attributed to noise and the 
amounts of each sequence that would be recovered by noise correction (i.e., adding 
the noise to the originating allele). These values are given separately for the forward 
and reverse strand. Although the method by which BGCorrect computes them results 
in non-integer values, it was decided not to round these numbers to avoid unnecessary 
loss of precision. If necessary, these numbers can be rounded to integer values, thereby 
easing the interpretation as ‘read counts’ when presented in a graph or table in a 
report.

Allele calling for case samples

The naïve method of calling alleles that Allelefinder uses is not appropriate for case 
samples, since these may contain alleles of multiple contributors in different quantities. 
Therefore, calling alleles in case samples is done by computing various statistics based 
on the information of the detected sequences and subsequently setting interpretation 
thresholds on these statistics. For this, Samplestats was developed, which operates on 
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and adds various columns to the output of BGCorrect. Samplestats automatically marks 
sequences as ‘allele’ using the thresholds outlined in Table 1.

Alleles can also be called while visualising the sample data, hence, FDSTools 
includes the Samplevis visualisation. By means of the interactive graphical user interface 
of Samplevis, the same set of thresholds as depicted in Table 1 are available to filter 
the visible sequences and to automatically call alleles. Thresholds can be specified 
separately for the graphs and for the tables. While the table displays the called alleles, 
less conservative settings may be used for the filtering of the corresponding graph to 
ensure visibility of alleles just below the allele-calling threshold. The results of changing 
the thresholds are immediately visible. Clicking a sequence in any of the graphs toggles 
its ‘allele’ status. This allows the user to manually add alleles to and remove alleles from 
the profile. A note is added to manually added alleles, stating that the allele is ‘User-
added’. Similarly, if the user removes any alleles, the allele remains visible but a ‘User-
removed’ note is added. In this way it remains easy to trace back exactly which alleles 
meet the thresholds and which ones were manually added and removed.

Samplestats can also be used to filter sequences using the same types of thresholds 
(albeit with more stringent threshold values than used for allele calling, as potential 
alleles should not be filtered out) and (optionally) aggregate the filtered sequences per 
locus to a single line categorised ‘other sequences’.



FDSTools – Forensic DNA Sequencing Tools for MPS data analysis

143

C
hapter 5

Table 1. Interpretation thresholds for case samples in Samplestats and Samplevis.

Sequences that meet either the ‘Percentage correction’ or ‘Percentage recovery’ threshold (or both) as well as all the other thresholds will be 
marked as ‘allele’. These threshold values are evaluated after noise correction. The ‘Allele calling default’ column lists the default threshold values 
for calling alleles. The ‘Filtering default’ column lists the default values used for filtering displayed sequences in Samplevis graphs.
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Visualisation

For visualisation of the data, FDSTools makes use of the JavaScript graphing library 
Vega [19]. Vega graphs can be embedded on a web page, exposing a JavaScript 
programming interface that allows for updating the graphs based on the user’s 
interaction with the web page. Vega can also run on Node.js, which allows it to be 
included in automated analysis pipelines to generate (static) image files.

FDSTools comes with Vega graph specifications and accompanying interactive web 
pages (HTML files) to visualise the output of each tool. The Vis tool can be used 
to obtain self-contained HTML files containing visualisations of various types of data 
files generated by the other tools. For example, Samplevis visualises a sample data 
file as a sequence profile and Profilevis visualises background noise profiles obtained 
from BGEstimate or BGPredict. A description of each visualisation can be found 
in Supplementary Table 1. When viewed in a web browser, the web page provides 
additional controls that allow the user to filter the data, switch between linear and 
logarithmic scales, or select different subsets of the data to visualise. The default values 
for the settings on the web page can be set when the HTML file is generated by the 
Vis tool.

The web pages also offer the option to save the displayed graphs as a Scalable 
Vector Graphics (SVG) or rasterised Portable Network Graphics (PNG) image, so 
that they can be imported into documents. Alternatively, the Vis tool can supply a raw 
Vega graph specification file (either with or without embedded data), which can then 
be used by Vega to generate SVG or PNG images directly on the command line.

Results and discussion
We developed FDSTools, a software package containing a suite of tools that can be 

used for the analysis of forensic MPS data. With these tools, FDSTools provides detailed 
insight in the quality of a sample and the noise profile of a certain allele (or sequence 
variant). In Supplementary Table 1, an overview of all tools currently available in the 
package is provided, of which a selection was described in more details in Section 2.

To enhance the analysis of mixed samples, FDSTools identifies, extracts and corrects 
for PCR or sequencing noise such as stutter from a reference database with the aim 
to discern low mixture proportions. Different STR amplification assays and different 
amplification protocols could result in different noise. It is therefore important to 
base the database for noise correction on references generated by a method that is 
representable for the casework samples to be analysed.

Note that it is not possible to correct all noise completely as the level of noise 
shows variation between samples.
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Reference database

Our reference samples were sequenced with an average coverage of 65,000 reads 
and a mode of about 45,000 reads. For the present study, a minimum coverage of 
6,000 reads per sample was required, which relates to an average of 250 reads per 
locus as 24 loci were co-amplified. For heterozygous loci, less than 250 reads per locus 
is not sufficient to quantify low amounts of noise accurately.

Reference sample curation

Since the reference database is used to filter and correct noise in case samples, it is 
essential that the reference samples contain no contaminants and reference alleles are 
called correctly. Although all other steps can be performed automatically by FDSTools, 
a manual curation of samples in the reference database is needed. BGAnalyse was 
developed to facilitate this process by visualising potential outliers.

Allelefinder automatically rejected two out of the initial 450 samples which were 
clearly contaminated and three samples that had too low coverage to detect alleles 
reliably. Manual inspection of samples with a notably higher amount of remaining noise 
after correction in BGAnalyse resulted in the rejection of an additional 16 samples. 
Reasons for rejection were low-level contamination, low coverage and low sequencing 
quality. The interactive BGAnalyse visualisations displaying the remaining noise for the 
reference samples are available in Supplementary File 2a (before database curation) 
and 2b (after curation). For the majority of samples, the highest remaining noise variant 
in the complete profile did not exceed 3% of the number of reads of the highest allele 
at the locus while without correction STR stutters can represent over 20%. For the 
remaining 429 samples, no drop-in or drop-out was observed when calling alleles using 
Allelefinder with the settings described in Section 2.3.1.

Extending noise profiles for noise correction

As described in Section 2.4.1, case samples may contain alleles which are not present 
in the reference database. In such cases, FDSTools resorts to noise prediction instead 
of noise estimation. A column in the output file of BGCorrect marks if correction has 
been performed using data obtained from BGEstimate (if the allele was available in the 
reference database) or by using BGPredict (if not available in the reference database).

From the results from Stuttermodel it becomes evident that for simple STRs consisting 
of a single repeating element or for long stretches of a specific repeating element 
within a complex STR, only few reference samples are needed to reliably fit a stutter 
model. However, when complex repeats consist of several repeating elements of which 



Chapter 5

146

C
ha

pt
er

 5

some show little length variation, correction using the stutter model is suboptimal as 
exemplified by the predictions for D12S391. This STR locus consists of two repeat 
units; an AGAT repeat stretch of highly variable length and an ACAG repeat that is 
repeated 6 to 8 times for most individuals. Since Stuttermodel predicts the amount of 
stutter based on the repeat length, at least four different repeat lengths need to be 
available in homozygous reference samples to obtain a reliable fit. However, the set of 
reference samples used in this study only contained homozygotes with 6 to 8 repeats 
of ACAG, which is not sufficiently variable to obtain a reliable fit. Consequently, ACAG 
is omitted from the stutter model for D12S391, even though this repeat stutters up to 
9% for the longer repeats (8 repeat units, data not shown). When BGEstimate does not 
obtain a background noise profile, BGPredict will not correct stutter in this repeat and 
thus stutters will remain present. As a last resort, BGPredict offers the possibility to use 
a stutter model based on data from all loci that have the same repeat unit sequence 
if no locus-specific fit is available. Supplementary Figure 1 displays the stutter model 
obtained from the set of 429 reference samples, including the individual observations 
on which the model was based.

Combining BGEstimate and BGPredict (by using BGMerge) instead of using BGPredict 
alone is expected to reduce the noise remaining after correction, as the combined 
correction also corrects for noise other than stutters . This is confirmed when we 
determine the percentage of remaining noise (the reads representing remaining noise 
as a percentage of the reads for the most frequent allele at the locus) and plot the 
highest percentage and various percentiles (90th, 95th and 99th) (Supplementary Figure 
2a–b). The percentiles illustrate how often samples exhibit outlying noise sequence 
variants and when the 99th percentile is regarded, BGPredict alone retains on average 
2.6% noise and the combined correction 2.4%. Also, the combined correction results 
in less overcorrected variants.

Thus, BGPredict can be used without BGEstimate with a slightly reduced accuracy 
in correction. Note that BGEstimate should not be used without BGPredict since 
alleles not included in the reference database will not be corrected, which can result 
in a combination of corrected and uncorrected alleles and remaining noise for the 
uncorrected alleles.

Reference database size and coverage

To test the effect of the sample size and type from which the reference database is 
built, we used the complete curated reference database of 429 samples and a random 
selection of 100 samples (both with combined BGEstimate and BGPredict correction, 
which was found to be slightly better as described in Section 3.1.2). Supplementary 
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Figures 2c–d display an overview of the most frequent and the total remaining noise at 
each locus after correction. The different percentiles of the reference samples are given 
to illustrate how often samples exhibit outlying noise sequence variants.

When comparing the results for the complete database with the results for the 
subset of 100 samples, the difference in remaining noise seems surprisingly small 
(Supplementary Figure 2c–d). However, with a smaller database, less alleles will fit the 
criteria to create a BGEstimate noise profile and more alleles rely on noise prediction 
by BGPredict. Indeed, for the reference set of 429 samples, only 3.5% of the alleles are 
corrected using BGPredict. This percentage increases to 10.2% when the correction is 
based on the subset of 100 samples. 

In a larger reference database more alleles will be observed. Supplementary Figure 
3 displays the alleles observed in the reference databases of 429 and 100 samples. 
To fit the criteria to create a BGEstimate noise profile, alleles need to be present as 
a homozygous genotype or be available as part of shared genotypes with at least 
three other alleles that must also fit these criteria. For the stutter model, only the 
homozygous genotypes are used. In the larger 429 database, more alleles fit these 
criteria than in the smaller 100 sample set database.

To examine the effect of read coverage of the reference samples on noise profile 
analysis, we generated two subsets comprising samples with high or low coverage, 
which is specified as a total read count between 82,000 and 350,000 or 8,000 and 
44,000 respectively. The high coverage set comprised 71 samples; the low coverage set 
70. We noticed that in the low-coverage noise profiles, strand bias can occur especially 
for the low-percentage noise that is due to single-strand drop-out of this noise. This 
is illustrated by the BGEstimate noise profiles for the CE10_TCTA[10]_-20T>A allele 
for locus D7S820 in Supplementary Figure 4, in which forward and reverse reads 
are in good or reasonable balance for all seven noise sequences in the high coverage 
sample set while good balance is only seen for the two main noise sequences in the 
low coverage set.

Since the most abundant noise after correction in a sample is usually in the range 
of 0.5–3% (for STR analysis), we recommend a coverage of at least 1,000 reads per 
locus (which relates to a 24,000 total read coverage for our 24 loci amplification kit) 
for the samples of the reference database to obtain the most accurate noise estimates.

Infrequent alleles

Depending on the composition of the reference database, occasionally alleles will 
be encountered that are not included in the database. BGPredict can predict the noise 
from stutter or other repeating elements but correction of other types of noise (like 
low level SNPs caused by sequence errors) is not possible for these infrequent alleles.
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We therefore recommend to obtain BGEstimate noise profiles for as many alleles 
as possible, while retaining good quality of these noise profiles. Several filtering criteria 
can be applied, such as the minimum number of different heterozygous genotypes 
per allele, the minimum number of samples per allele and the minimum number of 
homozygous samples per allele. The effect of increasing the stringency on the filtering 
criteria on the number of retrieved BGEstimate noise profiles for our 429 reference 
set is shown in Supplementary Table 2. The settings selected for use in this study are: 
at least two samples per allele (which ensures noise is not based on a single sample as 
that could be an outlier) that present at least three different heterozygous or at least 
one homozygote genotype (i.e., the samples can be three different heterozygotes or 
two homozygotes or one homozygote and one heterozygote).

When an allele at a heterozygous locus fails the criteria, the complete locus carrying 
this allele cannot be used for establishment of a noise profile since the noise cannot 
be attributed to any of the two alleles. Thus, for both alleles at a heterozygous locus no 
noise profile is extracted.

Accuracy of noise reference database and stutter model

To verify the accuracy of the noise profiles obtained through BGEstimate and 
BGPredict, it can be useful to compare the average noise ratios with the noise 
ratios observed in individual homozygous samples. The noise ratios of all noise in all 
homozygous reference samples can easily be collected using the BGHomRaw tool. 
These data points can be plotted on top of a noise profile to inspect the consistency 
and variation in the noise ratios of various types of noise for each allele. In Figure 3, 
the noise profile of the most frequent allele of D7S820 (CE10_TCTA[10]_-20T>A ) 
is displayed, which has foremost a –1 stutter (CE10_TCTA[9]_-20T>A) in addition to 
a –1 nt slippage product at the A-stretch (CE9.3_TCTA[10]_-20T>-). The individual 
observations for the homozygous samples coincide nicely with the estimated noise 
profile ratios.
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Figure 3. Noise profile of D7S820 allele CE10_TCTA[10]_-20T>A

The noise ratio is shown for each systemic noise sequence observed with a noise ratio of 0.1% or higher. Individual observations in homozygous 
samples (above 0.5%) are displayed as circles. As expected, the most frequently observed noise sequence is the −1 stutter, but since the allele 
contains a single-nucleotide stretch of 9 A nucleotides, a considerable portion of the noise consists of sequences with slippage at this A-stretch 
(or a combination of the two).

Similarly, it is useful to compare the functions fitted by Stuttermodel to the data 
points to which they were fitted. Stuttermodel includes an option to write the raw 
data points to a separate output file, which can be visualised together with the fitted 
model as shown in Figure 4 for D7S820. This example shows that the homozygous 
calls and the Stuttermodel estimation follow the same trend and that there is no 
discrepancy between forward and reverse reads. The same holds for the A-stretch 
(data not shown).

In the stutter model, fits with an R2 score below 0.75 were rejected. Although this 
may seem a very low R2 score, we obtained better results by including more fits than 
by excluding them, which would result in the inability of the stutter model to be used 
to filter and correct stutter for the respective repeat units at all.
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Figure 4. Stutter model for the –1 stutter of D7S820

On the x-axis the length of the repeat is displayed (in nucleotides) and on the y-axis the –1 stutter noise ratio (as percentage of reads of the 
parent allele) is displayed. Each homozygous reference sample is displayed as a dot and the lines display the fitted functions used for calculating 
the expected stutter of each allele.

Sample analysis
Allele calling, interpretation and visualisation

When a reference database has been created, one can proceed with the analysis 
of samples. FDSTools analyses sequencing data, calls alleles and interprets the data 
by correction for noise as inferred from the reference database. Results can be 
represented as a graphical sequence profile output and as an interactive profile report.

In Figure 5, an example of a sequence profile of two loci of a single-source sample 
is displayed (generated by the command ‘fdstools vis sample’). A sequence profile 
displays the read counts before and after correction and visualises the effects of noise 
filtering and noise correction. A more detailed explanation of the interpretation of a 
sequence profile can be found in Supplementary Figure 5.

The interactive sequence profile reports provide separate filtering options for the 
graphs and tables displayed (see Section 2.4.3). In the graphs, all alleles that are hidden 
by the filtering options are (optionally) aggregated as a separate bar (displaying the 
cumulative numbers of reads) with the label ‘other sequences’. In addition, we aggregate 
all singleton reads into ‘other sequences’ already in the first step of the analysis (using 
‘fdstools tssv --minimum 2 --aggregate-filtered’) which has the additional benefits of 
speeding up subsequent analysis and decreasing data storage demand.
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Figure 5. Sequence profile of a single-source sample

Sequence profile of loci D18S51 and D19S433 of a single-source sample. A sequence profile displays the read count before correction (in purple 
bars) and shows the effects of noise filtering (light purple for the reads that are removed) and noise correction (with the noise reads added to 
the parent alleles in dark orange). When performing correction, it is possible that an allele gains reads because the noise reads originating from 
this allele are added, but loses reads at the same time since the noise of another allele in the profile includes reads of this allele. This overlapping 
part of added and removed reads is marked separately in light orange. This means that the original read count of an allele before correction is 
the combination of the purple and the light orange bar. The lines in the bars indicate the strand balance; the line is drawn near the top of the 
bar if the majority of reads of a sequence is on the forward strand, near the bottom of the bar if the majority of reads is on the reverse strand, 
and in the middle of the bar in the absence of strand bias. Sequences displayed in green in the graphs are the alleles that the software infers 
to be genuine alleles in the sample. These are also displayed in the table.

Improving heterozygote balance through noise correction

The amplification of long STR alleles in the PCR is generally less efficient than 
shorter alleles and, in addition, long STR alleles suffer from a higher degree of stutter 
resulting in reduced heterozygote balance between the two alleles. [2] Since FDSTools 
determines which ‘noise reads’ are derived from which parent alleles, these reads can 
(optionally) be added to the read counts of the parent alleles, which theoretically 
will improve the heterozygote balance. When we examine the heterozygote allele 
balance in the 429 single-source reference samples, an improved heterozygote balance 
is indeed observed when the stutter reads are added to the read counts of the parent 
alleles (Table 2). Heterozygote balance was determined per locus by dividing the read 
counts for the less frequent alleles by those for the more frequent alleles, and taking 
the average of all 429 samples.
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Table 2. Heterozygote balance for original, filtered and corrected datasets

The read counts for the less frequent alleles are divided by those for the more frequent alleles, and the average for all 429 single-source refer-
ence samples is taken.

Mixture analysis 

For the analysis mixtures, noise correction may assist in identifying the alleles of a 
low minor contributor. We used 31 two-person mixtures with minor contributions of 
50%, 20%, 10%, 5%, 1% and 0.5% to assess this expectation.

We varied the ‘percentage of locus’ threshold (Table 1) for calling alleles, which 
sets a limit to the mixture proportion. When no noise correction was applied the 
threshold was varied between 5.0% and 1.5%; when noise correction was applied, 
a lower threshold could be used, varying between 3.0% to 0.5%. We compared 
the various methods by calculating percentage missed alleles (a.k.a. drop-out) and 
the number of erroneous allele calls (a.k.a. drop-in). The percentage drop-out was 
calculated by dividing the number of donor alleles not called by the total number of 
possible alleles (homozygous and shared alleles are counted as one, Amel is included), 
and the percentage was averaged for the mixtures with the same mixture ratio. Drop-
in is presented in the average number occurring in profiles with the same mixture 
ratio. In Table 3, the results of these analyses are displayed and it is obvious that without 
correction more drop-in alleles occur that mostly represent stutters. Consequently, the 
threshold for calling an allele can be lower when correction is applied, as less stutters 
remain in the corrected profile that can be wrongfully called as an allele. As expected, 
the percentage of drop-out depends largely on the ‘percentage of locus’ threshold 
for allele calling (and hardly on the application of noise correction); drop-out is more 
frequent with a higher (more stringent) threshold. When the threshold for corrected 
data is decreased below 1.5%, the number of drop-ins rapidly increases for all ratios. 
Not surprisingly, the drop-out percentage for the mixtures with 1% and 0.5% is very 
high when using a threshold that is higher than the minor component. Therefore, the 
data from the 5% and 10% minor contribution was used to determine the optimal 
threshold for allele calling.

In Figure 6, we show the relation between the ‘percentage of locus’ allele-calling 
threshold, drop-out and drop-in for the mixtures with a 5% or 10% minor contribution. 
In the used dataset, a threshold of 1.5% appears to be the most effective for calling 
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genuine alleles in mixtures with minimal erroneous calling of remaining noise in the 
mixtures. With mixture ratios down to 10%, no drop-out and only minimal drop-in is 
observed with this threshold, whereas with contributions smaller than 10% an optimal 
balance between drop-out and drop-in is achieved (Table 3). When investigating the 
noise that is erroneously called using this threshold it is apparent that the drop-in alleles 
are rarely resulting from stutter but almost exclusively consist of PCR hybrids [20]. In 
Table 3b, the percentage of drop-out when using the 1.5% allele-calling threshold is 
categorised and illustrates that drop-out alleles consist mostly of heterozygous minor 
alleles. Most of these drop-out alleles represent minor contributions on stutter positions 
(where stutter ratio of the major contributor was lower than the average observed 
in the set of reference samples, thereby causing over-correction) and long alleles that 
suffer from heterozygote imbalance. In Figure 6 the trends from Table 3 are confirmed: 
drop-out is hardly and drop-in is largely affected by the use of noise correction. Thus, 
calling of genuine alleles is not negatively influenced by noise correction.

Note that the number of drop-ins may be reduced further by applying additional 
thresholds from Table 1, but the effects of varying additional threshold values were not 
studied in depth.

Table 3. Average number of drop-in alleles and average drop-out percentage 
per sample for different ‘percentage of locus’ allele-calling thresholds

a) Summary of drop-in and drop-out rates for various allele-calling thresholds

b) Categorised drop-out rates when using 1.5% allele-calling threshold (with 
correction)
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Figure 6. Average number of drop-in and percentage of drop-out per sample 
for different ‘percentage of locus’ allele-calling thresholds

Effect of different ‘percentage of locus’ allele-calling thresholds on the drop-in and drop-out rates. The numbers next to the points display allele-
calling thresholds. The position of each point illustrates the number of drop-ins and percentage of drop-out for the corresponding threshold in 
mixtures with a ratio of 90:10 (orange) and 95:5 (blue). Points connected by dashed lines correspond to results obtained without noise correc-
tion, points connected by solid lines correspond to results obtained after noise correction. The 1.5% ‘percentage of locus’ allele-calling threshold 
that appears most optimal is indicated in bold.

In Figure 7a–b, the effect of noise correction on allele calling is shown for a highly 
unbalanced mixture (95:5 mixture ratio) in which the alleles of the minor contributor 
have a similar or lower read count than the stutter products of the alleles of the major 
contributor. Without noise correction the four most frequent sequence variants are 
the major contributor’s alleles and the corresponding –1 stutters and interpretation 
of the less frequent sequence variants becomes intractable; after noise correction, the 
stutter products and other PCR artefacts are filtered out and four sequence variants 
meet the ‘percentage of locus’ allele-calling threshold of 1.5%, which correspond to the 
four alleles of the two heterozygous donors. Also, the alleles of both the major and 
minor contributor have gained recovered reads.
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Figure 7. Interpretation of a mixed sequence profile before and after correction

a) Sequence profile of locus D12S391 of a mixed sample with a ratio of 95:5, 
without noise filtering and correction

b) Sequence profile of locus D12S391 of a mixed sample with a ratio of 95:5, 
with noise filtering and correction applied

c) Noise profile of D12S391 allele CE21_TAGA[15]CAGA[6]

Sequence profile of locus D12S391 of a mixed sample with a ratio of 95:5, A without and B with applying noise filtering and correction. The 
table displays all sequence variants with at least 1.5% of the reads of the locus (the ‘percentage of locus’ allele-calling threshold used), which 
are also marked in green in the graph. A note in the table in panel B warns that no noise profile was available for the major CE22_TAGA[16]
CAGA[6] allele and a stutter prediction has been used instead. An additional variant CE22_TAGA[17]CAGA[5], which is derived from the major 
CE22 allele, remains visible in the sequence profile (although not marked green as it does not meet the 1.5% threshold). C Noise profile of a 
similar allele, showing a non-stutter PCR artefact with a noise ratio of about 2%.
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This example also displays a pitfall of the interpretation of a mixed DNA profile 
where the major contributor has an infrequent allele for which no BGEstimate noise 
profile is available. The noise correction of allele CE22_TAGA[16]CAGA[6] is only 
based on the stutter model (using BGPredict), which fails to correct for the CE22_
TAGA[17]CAGA[5] PCR artefact. Looking at the noise profile of the most resembling 
allele in the reference database, CE21_TAGA[15]CAGA[6], we find a similar PCR 
artefact CE21_TAGA[16]CAGA[5] that represents a C to T substitution at the first 
CAGA repeat unit , with a noise ratio of about 2% (Figure 7c). This suggests that the 
CE22_TAGA[17]CAGA[5] artefact would be properly corrected if a noise profile for 
the CE22_TAGA[16]CAGA[6] allele would be available. Thus, additional inspection 
of the applied method of correction (BGPredict or BGEstimate) may be useful when 
infrequent alleles occur.

Analysis time and computer demand

To indicate the required time and computer memory demand, five samples with 
different numbers of reads (15,169–318,403 total read pairs) were analysed and the 
time and peak memory usage for each separate tool was registered (Supplementary 
Figure 6). With the used 2.0 GHz processor, the analysis time is mostly consumed by 
TSSV (≈75% of the total analysis time) and the complete analysis only takes up to 
13:30 minutes for a sample with 318,403 reads. BGCorrect shows the highest peak 
memory usage but does not exceed 200 MB for the largest sample (of the five tested 
samples). Both the required time and memory increase more or less linearly when the 
read count of the analysed samples is increased.

Conclusions
We developed FDSTools for the analysis of forensic MPS data. FDSTools can 

determine systemic PCR and/or sequencing noise from the data of reference samples, 
build a database from this data and use it to correct for systemic noise in case samples. 
The software is also able to predict the noise caused by stutter for alleles not included 
in the reference database and uses this information in the correction of case samples.

With automatic threshold-based allele calling, noise correction reduces the 
occurrence of drop-in and drop-out substantially and improves the balance between 
alleles of a heterozygote pair. This decreases the detection limits of minor contributions 
in mixtures. STR stutter variants are no longer the most frequent remaining noise as 
PCR hybrid artefacts now generally exceed the corrected read counts of stutters.

Although reliable noise correction can already be obtained from a database of 100 
samples, a larger database is preferred as a larger number of alleles can be corrected by 
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the use of a complete noise profile instead of relying on noise predictions based on the 
stutter model. This will also reduce manual inspection of retained non-stutter noise for 
infrequent alleles. When building the database, it is important to use an amplification 
kit representative for the kit used for the samples. Although not extensively tested, 
we anticipate that noise prediction will be less precise when less DNA is used and 
more stochastic PCR effects occur. Also, more strand bias will occur during the 
massively parallel sequencing. These effects are intrinsic to low-level DNA typing and 
probabilistic genotyping software have been developed that accommodate drop-in 
and dropout during profile interpretation [21,22,23,24,25,26,27,28]. Such software are 
not yet straightforwardly able to deal with MPS data, but the necessary adaptations are 
feasible and include nomenclature for sequence variants, allele frequencies databases 
and  read counts replacing peak heights in continuous models (not required for semi-
continuous models) . In CE-based analysis, PCR replicates are often used to reduce 
profiling uncertainty [7]; replicates can be entered in probabilistic genotyping software 
or used to prepare a consensus profile [7,8]. A future version of FDSTools will feature 
a consensus-based analysis method alike those used with CE data [8]. Besides,  export 
options for DNA database systems such as CODIS will be added. 

FDSTools has been validated following recommendations for software validation 
[29,30] and is already implemented in the ISO17025 certified environment of the 
LUMC for forensic casework. The validation for use and performance of the software 
in casework was a separate study which was not based on the data described in this 
manuscript. By providing tools to evaluate the performance of noise correction in 
reference samples FDSTools facilitates the determination of analysis thresholds that 
are fit for purpose.

The application of FDSTools is not limited to the analysis of STRs. FDSTools has 
already been applied successfully to the analysis of multiplex assays of SNP fragments 
(manuscript in preparation) and complete mtDNA data (Weiler et al., submitted). 
Note that the minimum number of required reference samples for loci other than 
STRs will depend on the amount of variation observed in these loci.
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Supplementary materials
Supplementary Text 1 - Allele-centric systemic noise estimation (BGEstimate)

The BGEstimate tool of FDSTools does the computation of a background noise 
profile for each allele found among a set of reference samples. Computing background 
noise profiles from a set of homozygous samples is straightforward, whereas for 
heterozygous samples this becomes more complicated as the alleles of one sample in 
general appear in different amounts, thereby systematically contributing to a different 
amount of the same background noise sequence. 

Algorithm 1, which enables the computation of these background noise profiles 
from heterozygous samples, is implemented in BGEstimate. In testing, the best results 
were obtained if for each allele at least one homozygous sample or at least three 
different heterozygous samples were available. With default settings, BGEstimate will 
ensure these conditions are met before executing Algorithm 1. 

In essence Algorithm 1 seeks a non-negative least squares solution to the matrix 
equation AP = C. In this equation, C is an N×M matrix of constants derived from the 
observed read counts in the reference samples (see Figure 1), A is an N×N matrix 
in which the estimated allele balance in the samples is summarised and P is an N×M 
matrix containing the estimated profiles of systemic noise. N is the number of unique 
alleles among the observed reference samples and therefore also the number of 
profiles produced and M is the number of unique sequences observed. It is possible 
to include additional sequences beyond the N alleles of the samples if this is deemed 
appropriate. With default settings, BGEstimate will include all sequences that appear 
in at least 80% of the samples with any particular allele, since these sequences are 
probably the result of systemic noise. In any case, the first N columns in P and C 
correspond to the N alleles of the samples and the order of the rows and columns is 
the same (i.e., row n and column n in both P and C correspond to the same sequence).

The input of Algorithm 1 consists of a K×M matrix S which contains the observed 
number of reads of each of the M sequences in each of the K samples. The genotype 
of each sample is provided as a set of indices gk, gk ≤ N. 

Any element Pn,m of P can be interpreted as the amount of sequence m that is 
observed, on average, for every 100 reads of sequence n. Therefore, the algorithm 
initialises P to a diagonal N×M matrix with the elements on its major diagonal set to 
100. The number 100 was chosen for practical reasons since it directly results in noise 
ratios expressed as percentages of the actual allele. 
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Figure 1. Construction of matrix C in Algorithm 1 by summing scaled read counts of the samples that share the same alleles. Left: Samples 1 
and 2 are homozygous for the third and fifth allele respectively. The read counts of both samples are scaled such that their true allele is equal 
to 100, after which they are added to the third and fifth row of matrix C respectively. Right: Sample 3 is heterozygous, having both the third 
and fifth allele. Therefore, it is added to both the third and fifth row of matrix C, with its read counts scaled such that the third or fifth allele is 
equal to 50 respectively. 

Similarly, the elements Cn,m of C can be interpreted as the total amount of 
sequence m that is observed in all samples with allele n. Line 6 in Algorithm 1 initialises 
C. For homozygous samples, it scales the read counts of each sample Sk such that 
its allele Sk,i,i gk is equal to 100 and then adds the scaled counts to row Ci of C. 
Heterozygous samples are treated likewise twice — once for each of their alleles — 
except that the allele is scaled to 50 instead of 100 to compensate for the fact that the 
sample is added to two rows in C, as compared to just one for homozygous samples.1 

Each row Ci of C thus contains the sum of the read counts of all samples that 
have allele i, with the read counts of each sample scaled such that allele Sk,i,i gk 
becomes 100/|gk|.2 After matrices P and C are initialised, the algorithm enters its main 
loop wherein it alternately estimates the allele balance in the samples (matrix A) and 
refines the least squares fit of the profiles P. The main loop is exited and the profiles 
are returned when the sum of the squared errors,

is reduced by less than 0.01% in one iteration. This stopping condition is generally 
met within 20 iterations.

1 One may also say that the samples are added once for each allele, adding them to the same row twice
2 Interestingly, because Algorithm 1 scales read counts to 100 divided by the number of alleles in the sample, it handles samples with more 
than two alleles without problems. Since Algorithm 1 makes no assumptions about the number of alleles each sample can have, it is possible to 
use mixed samples to compute systemic noise profiles as well. This has not been tested, however.
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Estimation of the allele balance is done for every sample in isolation. At line 11, the 
elements in P that correspond to cross-contributions between the alleles i,j [1...|gk|] 
of sample k are extracted. Similarly, the corresponding elements from Sk are extracted 
at line 12. For heterozygous samples, this expands to (shortening gk,i to i for brevity):

 

At line 13, a non-negative least squares algorithm is employed to estimate the allele 
balance within the sample. The nnls function can be any algorithm that solves JK = L 
for K subject to K≥0 in the least squares sense, e.g., [1]. Line 13 of Algorithm 1 uses this 
function to solve bQ = r for b (by solving QTbT = rT), which gives an estimation of 
the proportions in which the alleles are present in the sample. The resulting row vector 
b isleft-multipliedbyacolumnvectorwiththesamescalingfactorsaspreviously calculated at 
line 6. The result is, for heterozygotes, a 2×2 matrix B.3 Finally, at line 14, the elements 
of B are added to their corresponding elements of A.

With the allele balance estimates all added to A, the second step in the main loop 
of Algorithm 1 is to update the profiles P such that they form a non-negative least 
squares solution to the equation AP = C subject to the additional requirement that the 
elements on the diagonal of P must be 100. Lines 16–24 implement nnls(A, C) with this 
additional requirement enforced on line 22. Indeed, with the omission of line 22, lines 
16–24 are a general purpose implementation of the nnls function. This implementation 
is based on [1].

Separate profiles for the numbers of forward and reverse reads can be constructed 
by doubling the number of columns in P and C, where the left half corresponds to the 
forward stand and the right half to the reverse strand. This ensures that the same allele 
balance matrix A is used for both strands.
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Supplementary Figure 1 – Stutter model based on a reference database of 429 
samples
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Supplementary Figure 2 – Comparison of remaining noise using different 
correction settings

a) Most frequent noise variant for each locus after correction in 429 reference 
samples, BGPredict correction vs combined BGEstimate and BGPredict 
correction
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b) Total remaining noise for each locus after correction in 429 reference samples, 
BGPredict correction vs combined BGEstimate and BGPredict correction

c) Most frequent noise variant for each locus after combined correction in 429 
reference samples, correction based on 100 vs 429 reference samples

d) Total remaining noise for each locus after correction in 429 reference sam-
ples, correction based on 100 vs 429 reference samples

a) The dotplot displays the most frequently observed noise that remained after correction in any of the 429 analysed reference samples when 
performing the correction using BGPredict only (based on the stutter model) or a combination of BGEstimate and BGPredict. In addition, the 
99th and the 95th percentile are plotted to illustrate the variation in remaining noise.
b) The dotplot displays the highest total observed noise (cumulative percentage of the reads of the most frequent allele) that remained after 
correction in any of the 429 analysed reference samples when performing the correction using BGPredict only (based on the stutter model) or a 
combination of BGEstimate and BGPredict. In addition, the 99th and the 95th percentile are plotted to illustrate the variation in remaining noise.
c) The dotplot displays the most frequently observed noise that remained after correction in any of the 429 analysed reference samples when 
performing the correction based on all 429 samples or only 100 randomly selected samples from this database. In addition, the 99th, 95th, and 
90th percentile are plotted to illustrate the variation in remaining noise.
d) The dotplot displays the highest total observed noise (cumulative percentage of the reads of the most frequent allele) that remained after cor-
rection in any of the 429 analysed reference samples when performing the correction based on all 429 samples or only 100 randomly selected 
samples from this database. In addition, the 99th and 95th percentile are plotted to illustrate the variation in remaining noise.
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Supplementary Figure 3 - Visualisation of the frequency of each allele and the 
frequency of co-occurence with other alleles as heterozygous genotypes

The graphs depict every allele among the reference samples as a circle. The size 
of the circle corresponds to the number of samples with that particular allele. 
A black inner circle depicts the number of homozygotes.

The circles of two alleles are connected by a line whenever samples exist that 
have a combination of the two connected alleles. The thickness of the line cor-
responds to the number of heterozygotes with that particular combination of 
alleles.

To fit the criteria to create a BGEstimate noise profile, alleles need to be pre-
sent as a homozygous genotype (displayed as a black circle) or be connected 
with at least three other alleles that must also fit these criteria.
These figures were generated using the command ‘fdstools vis allele’.

a) Allele visualisation of 429 reference samples
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b) Allele visualisation of 100 reference samples

c) Allele visualisation of 429 reference samples after removing alleles that do 
not meet thresholds for determining a reliable noise profile
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d) Allele visualisation of 100 reference samples after removing alleles that do 
not meet thresholds for determining a reliable noise profile
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Supplementary Figure 4 – Noise profiles of D7S820 allele CE10_TCTA[10]_-
20T>A estimated from high and low-coverage samples

a) Noise profile of D7S820 allele CE10_TCTA[10]_-20T>A estimated from 
high-coverage samples

b) Noise profile of D7S820 allele CE10_TCTA[10]_-20T>A estimated from 
low-coverage samples

Noise profiles created with BGEstimate based on a selection of a) 71 high-coverage samples (82,000–350,000 total reads) and b) 70 
low-coverage samples (8,000–44,000 total reads). The noise ratio is shown for each systemic noise sequence observed. It is clear that for the 
low-percentage noise in the low-coverage noise profile, more strand bias is introduced due to single-strand drop-out of this noise caused by 
insufficient coverage of the reference samples.
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Supplementary Figure 5a – Explanation of a sequence profile for raw, filtered 
and corrected data

Raw data

Noise reads filtered out

Noise reads added to the parent alleles

Sequence profiles for three different stages of the analysis for a simple reference sample without overlap between stutter and genuine alleles.

On top, raw read counts are displayed for each observed variant. 
In the middle, noise reads are filtered out (based on the observed reproducible noise for each allele in the reference database). Filtered noise 
reads are displayed in light purple. 
At the bottom, filtered reads are added to the parent allele (as determined by the noise profiles) as recovered reads marked in dark orange. The 
lines in the bars indicate the strand balance; the line is drawn near the top of the bar if the majority of reads of a sequence is on the forward 
strand, near the bottom of the bar if the majority of reads is on the reverse strand, and in the middle of the bar in the absence of strand bias. 
Sequences displayed in green in the graphs are the alleles that the software infers to be genuine alleles in the sample, based on a threshold of 
1.5% of the total number of reads of the locus. 
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Supplementary Figure 5b – Explanation of a sequence profile for raw, filtered 
and corrected data

Sequence profiles for three different stages of the analysis for a reference sample with overlap between stutter and genuine alleles.
On top, raw read counts are displayed for each observed variant. 
In the middle, noise reads are filtered out (based on the observed reproducible noise for each allele in the reference database). Filtered noise 
reads are displayed in light purple. Note that part of allele CE10 is filtered out as noise from allele CE11. 
At the bottom, filtered reads are added to the parent allele (as determined by the noise profiles) as recovered reads marked in dark orange. For 
allele CE10, part of the reads are removed as noise, but some reads are recovered as well. The overlap of this filtered noise and recovered reads 
is marked in light orange. The lines in the bars indicate the strand balance; the line is drawn near the top of the bar if the majority of reads of 
a sequence is on the forward strand, near the bottom of the bar if the majority of reads is on the reverse strand, and in the middle of the bar 
in the absence of strand bias. Sequences displayed in green in the graphs are the alleles that the software infers to be genuine alleles in the 
sample, based on a threshold of 1.5% of the total number of reads of the locus.
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Supplementary Figure 6 – Required time and memory for the analysis of case 
samples

The dot plots display the registered time (a) and the peak memory usage (b) of analysis for five samples for each tool of the standard casework 
analysis pipeline. The analysis was performed using a single core of an Intel(R) Xeon(R) E5-2620 processor at 2.00 GHz. The analysis time is 
mostly consumed by TSSV and the highest memory demand is measured for the tool BGCorrect . Both the analysis time and memory increase 
more or less linearly when the coverage of a sample is increased.
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Supplementary Table 1 – Currently available tools and visualisations in 
FDSTools
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Supplementary Table 2 – Effects of criteria for admission of alleles to noise 
profile estimation

Number of alleles for which a BGEstimate noise profile can be obtained in our 429 sample 
reference set when applying different criteria. These comprise the minimum number of different 
heterozygous genotypes per allele, minimum number of samples per allele and minimum num-
ber of homozygous samples per allele. When a criterion is varied, the other criteria are kept at 
the minimum value possible which is at least 1 heterozygous genotype per allele, 1 sample per 
allele and 0 homozygous samples per allele. The criterion of the minimum number of different 
heterozygotes per allele does not apply if the allele is present in at least one homozygote.

When the settings are more stringent, BGEstimate noise profiles are obtained for fewer alleles. 
The results for the settings selected for this study are indicated in the rightmost column label-
led ‘used settings’ and represent at least 3 different heterozygous genotypes per allele or, if a 
homozygote is available, at least 2 samples per allele.
Note that three different alleles have been detected for the gender locus Amel, which is due to 
the detection of 2 sequence variants for the X allele.


