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Introduction / Outline
Since the discovery of hypervariable DNA ‘fingerprints’ by Jeffreys et al. [12] in 1985, 

development and application of forensic DNA research has evolved rapidly. Over the 
past two decades, investigation of Short Tandem Repeat (STR) loci has played a major 
role in human identification. The implementation of short tandem repeat (STR) analysis 
by capillary electrophoresis in forensic casework [15] and the establishments of large 
STR databases [30] have provided crucial investigative leads or evidence in numerous 
cases.

Short Tandem Repeats and Capillary Electrophoresis

STRs are DNA loci containing repeated sequence motifs of 2-6 bp in length. An 
important feature of STRs is the high mutation rate caused by polymerase slippage [5] 
which results in a high degree of variability between individuals. By analysing a relatively 
small number of STRs, DNA profiles can be obtained with very high discriminatory 
power. Unfortunately, STR slippage also occurs in the PCR amplification step resulting 
in PCR artefacts known as stutter (discussed in more detail later in this thesis). 

Routine analysis of STRs is a relatively straightforward process performed by size 
separation of fluorescently labelled PCR fragments using Capillary Electrophoresis 
(CE) [18]. Multiplexing of sufficient loci in one reaction for CE is achieved by labelling 
loci with several fluorescent labels and PCR design of different loci for separated 
fragment length ranges. 

In addition to autosomal STR analysis, targets such as mitochondrial DNA [20], 
Y chromosomal markers [16], biogeographical informative markers [23] or tissue 
informative RNA markers [3] have also been investigated. However, until recently, 
application of DNA analyses in casework was performed almost exclusively by 
capillary electrophoresis (CE) based methods such as fragment length analysis, Sanger 
Sequencing [20] and SNaPshot single base extension [27]. 

Molecular genetics developments (non-forensic)

In the meantime, a major transition is taking place in the molecular and medical 
genetic field where routine analysis by Sanger sequencing is being replaced by Massively 
Parallel Sequencing (MPS), also known as Next Generation Sequencing (targeted or 
whole exome / genome) [4]. This transition is initiated either to reduce cost or to 
expand possibilities. The price per sequence for MPS is much lower than for Sanger 
when sufficient targets / samples are analysed simultaneously. Expansion of possibilities 
is achieved by analyses of more / larger genomic regions, or by a more quantitative 
analysis (e.g. bisulphite sequencing [28] and low-level mixture analysis used for NIPT 
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[31]). 
Introduction of a new technique in the forensic field commonly happens in a later 

stage than developments in the medical field since methods need to be optimised for 
minute amounts of (often degraded) DNA. In addition, software needs to be optimised 
to handle mixed DNA samples and answer specific forensically relevant questions.

Why use MPS in forensics?

MPS has some features which make these techniques interesting for application in 
forensics. 

• A sequence is generated separately for each DNA molecule, instead of a 
consensus sequence as is generated by Sanger sequencing. 

• MPS can generate millions of sequence reads (hence, the name ‘massively’). 
• Many different targets can be analysed simultaneously without the need of 

separate sequence reactions, thereby expanding multiplex possibilities, even 
allowing complete genome sequencing

• MPS data can be quantified by simply counting reads for every sequence  
variant, thereby creating ‘discrete data’ in contrast to CE where interpretation 
of the shape of peaks is an entity that is difficult to define using straightforward 
parameters.

• The number of reads for a single sample can be increased almost indefinitely, 
resulting in an unprecedented dynamic detection range.

• Small and overlapping fragment sizes can be used for all loci since, during the 
analysis, targets are recognised by sequence rather than by fragment size / label 
as for CE which will benefit the analysis of degraded DNA samples.

Several commercial companies have developed an MPS platform [28], which 
illustrates the large current and future market expected for these techniques, for 
instance in the field of medical research. The early versions of MPS platforms (2005 
– 2010) were undergoing constant improvements in sequence data quality and read 
output but since 2011 several platforms (such as MiSeq and Ion Torrent) started to 
focus on a more diagnostic application where data quality is relatively stable [11,31], 
also opening opportunities for the forensic field.

Not every platform is suited for use in forensic research. The specifics are further 
discussed below in the text box 1 ‘MPS platforms with forensic potential’
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MPS data and data analysis

Since 2004, the read-output and sequence read length increased steadily (with 
marked increases around 2007-2008 due to introduction and further expansion of the 
capacity of the Illumina HiSeq systems) which resulted in a notable decrease of cost 
per sequence. In the same time, more computer power is required to analyse the data. 
Gordon Moore predicted in 1965 that the speed of computer chips doubles each year 
while retaining the same costs. Figure 1 shows that MPS costs per megabase dropped 
substantially faster than the costs for increasing computation power. As a result of this 
increase of data, new approaches and tools needed to be developed to analyse the 
data fast, efficiently and accurately.

MPS platforms with forensic potential

Several Massively Parallel Sequencing platforms are (or have been) available. Since 
forensic DNA analysis is different from that in medical genetic research (where mostly 
SNP genotyping is used) the forensic context has specific demands for MPS platforms. 
Current forensic reference databases exist of STR-profiles and the ability to sequence 
short tandem repeat is a prerequisite for the forensic community. To span the entire 
repeat region for the majority of STRs, read lengths of at least 200 nt are required 
which limits the choice to a few platforms. Current proven high quality MPS platforms 
with the ability to sequence such read lengths are the 454 pyrosequencers (454 / 
Roche, discontinued in 2017), Ion Torrent semiconductor sequencers (Ion Torrent / 
Life Technologies), Solexa / Illumina sequencers and Pacific Biosystems / Roche SMRT 
sequencers.  

454 and Ion Torrent are both based on one-by-one addition of unlabeled 
nucleotides [REF Rothberg, Merriman]. After incorporation of a nucleotide, the number 
of incorporated nucleotides is detected via an enzymatic cascade (Pyrosequencing) 
or by direct measurement of a pH-influx (semiconductor sequencing). Illumina 
sequencers incorporate labeled blocked nucleotides and enzymatically remove the 
label / block to incorporate one nucleotide during each sequencing cycle [7]. Pacific 
Biosystems provides the only platform (at the time of this study) that performs single-
molecule sequencing reaching read-lengths of many kbs [24]. This platform is not 
used for the projects used in this thesis but possible applications will be discussed 
in the general discussion. From the tested platforms in this thesis, the Illumina Miseq 
provided the most suitable and high-quality method (similar to the results shown by 
Salipante et al. [26], therefore, most data discussed in this thesis is generated using 
this system.
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Figure 1 – cost per raw megabase of DNA sequence in combination with Moore’s Law 
This graph (source: National Human Genome Research Institute) displays the decrease of cost / Mbase of DNA sequence since 2001 in combi-
nation with Moore’s law (development in increased computer power). It is apparent that the sequencing costs dropped substantially faster than 
the cost for the computer power required to perform the analysis.                                                  

Data analysis in forensics

An important aspect for forensics is robustness of the data (also known as sequencing 
quality, see text box 2 ‘Sequencing quality’). The choice of a robust platform, that is no 
longer undergoing continuous improvements, only prevents part of the challenges as 
low-level sequencing errors are inevitable and need to be recognised and filtered 
using appropriate data analysis tools. Thus, the development of software for analysis 
of forensic MPS data is highly important [10,19] and will be a crucial part of the work 
described and discussed in this thesis.
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Sceptics of MPS application in diagnostics or forensics are eager to bring up the 
issue of sequencing errors 2]. Sequence errors occur and could compromise the 
interpretation of MPS data. However, setting appropriate quality thresholds that 
filter reads containing sequence errors will solve the issue, alike done for any other 
technique, such as the filtering of baseline noise and stutter peaks in CE. In general, 
the quality of a sequence read is highest at the beginning of the read and signal noise 
slowly decreases as the read progresses as can be seen from the figure below [6]. 

           
   

Figure 2 – Signal to noise ratio of an Illumina MiSeq® run. 
The graph shows the signal to noise ratio over all data points in an Illumina MiSeq® run for nucleotide incorporation (1nt / cycle). As can be 
observed, the signal quality decreases as the read progresses for both, read 1 (cycle 1-300) and read 2 (cycle 321-620).

To compensate for a reducing quality in a progressing read, Paired End sequencing 
can be applied which refers to sequencing a molecule from both the 5’and 3’ end; the 
low quality base calls at the end of one strand will be the high quality base calls in the 
beginning of the read of the opposite strand. 

For every base call the signal-to-noise ratio is translated to a quality score defining 
the likelihood of erroneous base calling. Quality thresholds during MPS data analysis 
usually involve coverage (number of reads covering a specific position), base quality 
and mapping quality (when matching reads to a reference). When paired end 
sequencing is applied, the length of the overlapping part between the reads in both 
orientations can vary if the amplicon length exceeds the read lengths which can 
impact sequence quality in the non-overlapped part.
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Public genome databases

The decrease in sequencing cost per nucleotide resulted first; in the (affordable) 
possibility to generate an (almost) complete individual genome sequence and later ; by 
impressive collaboration efforts, to the generation of databases of complete genomes 
[9, 8,33]. One of these projects, the 1000 genomes project, provides a public database 
of variation observed in individuals of globally dispersed populations and is a powerful 
tool for the selection of new (globally) informative forensic markers. Since different 
genome projects are started for different goals and budgets for these projects are not 
unlimited, there is a trade-off between quality in terms of per base sequence coverage 
and the number of individuals included in the project. While publicly available databases 
can drastically decrease the amount of wet lab work that is needed to reliably select 
new markers, it should be taken into account that genome databases are not free of 
errors. 

Microhaplotypes

While STRs and SNPs are well-known loci in molecular genetics, the use of 
microhaplotypes [14,17] is not common although they are potential forensic loci 
without some of the disadvantages of STRs (discussed in more detail in the discussion). 
Microhaplotypes are fragments that contain more than one SNP within a span of ≤200 
bp. The combinations of the different alleles of the SNPs form multiple haplotypes 
resulting in a higher number of alleles than the SNPs separately. In particular, the 
fragments that contain more than two SNPs within a short sequence span can be 
informative for forensic identification purposes, but might also serve as markers for 
prediction of biogeographic origin. These loci are discussed in more detail later on in this 
thesis.

Goal of this thesis

The research described in this thesis aimed to convert the power of MPS to 
the forensic field. We developed a complete forensic research tool kit for human 
identification by DNA analysis based on MPS. We focused on all the aspects that are 
essential for development and optimisation of MPS assays and analysis tools with the 
final goal of implementation in a forensic setup. MPS enables many more possibilities 
besides identification, for example in providing investigative leads by analysis of human, 
but also non-human DNA [1]. Several of these upcoming methods, targets, technologies 
and applications are briefly mentioned in the General Discussion to provide a more 
complete picture of the expected impact of MPS on the forensic field in the near 
future.
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Outline
The obvious application of MPS in forensics would be the sequencing of STRs as 

forensic DNA databases are filled with data from this marker type and MPS can have 
added value for the profiling of severely degraded DNA (all amplicons can be small-
sized) or discrimination of mixed samples (by adding sequence variants). However, 
when this project started, tools for analysis of MPS STR data were absent since MPS 
analysis outside the forensic field focussed almost exclusively on analysis of SNPs. In 
Chapter 2: ‘TSSV: a tool for characterization of complex allelic variants in pure 
and mixed genomes’, the development of the software TSSV is described, which 
represents one of the first tools for analysis of MPS STR data. Since mapping of STRs to 
a reference is complex and error-prone due to the repetitive nature of these loci, we 
chose not to map the actual repeat region but instead map short parts of both flanking 
regions (usually covering part of the primer binding sites). Any variation observed in 
the sequence in between is reported as strings without comparison to a reference 
thereby avoiding any mapping bias that may occur depending on the resemblance 
of sequences to the reference. Repeated elements were abbreviated as a first step 
towards a universal nomenclature.

Since CE allele calling for STRs does not provide information about the exact 
sequence of an allele, nomenclature needed to be developed for describing the 
additional variation typed by sequencing. In Chapter 3: ‘Forensic nomenclature for short 
tandem repeats updated for sequencing’; we provided the first recommendations for a 
nomenclature system for forensic STR sequencing data. These recommendations were 
largely incorporated in the ISFG recommendations for STR sequencing nomenclature 
which were published later that year [22].

After collaborating with Promega® in the optimisation of an STR sequencing assay 
for the commercial market, we performed a detailed in-house validation of a prototype 
version of the PowerseqTM assay in preparation of ISO17025 accreditation. The study 
of the performance of this assay included analysis of STR stutters, sequence variation 
in three distinct globally dispersed populations and analysis of mixtures is described in 
Chapter 4: ‘Massively parallel sequencing of short tandem repeats - Population data 
and mixture analysis results for the PowerSeq™ system’.

In the study described in chapter 3 it was apparent that, not surprisingly, STR 
stutter remained the limiting factor for analysis of mixtures. In Chapter 5: ‘FDSTools: A 
software package for analysis of massively parallel sequencing data with the ability to 
recognise and correct STR stutter and other PCR or sequencing noise.’ we describe 
a new software we developed namely FDSTools. While the software TSSV described in 
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Chapter 2 was able to catalogue the variation observed in a sample, FDSTools can use 
a set of training data to characterise structural PCR and sequencing noise including STR 
stutter and use this information to correct noise in case samples. In this way, noise can 
be reduced substantially to facilitate analysis of much lower contributions in mixtures. 
This software was designed for application in forensic casework and includes many 
features for visualisation, validation and quality filtering of all types of MPS data.

Although correction of noise improved the analysis of mixtures it can be debated 
whether STRs are the ideal loci for the purpose of analysing complex mixtures since 
the remaining levels of stutter after correction will still complicate analysis of highly in 
unbalanced mixtures. In Chapter 6: ‘Short hypervariable microhaplotypes: A novel set 
of very short high discriminating power loci without stutter artefacts.’ we describe an 
alternative set of loci for the analysis of mixtures namely microhaplotypes which are small 
fragments containing several SNPs. Although these loci cannot be used for comparison 
with the established databases (unless it is decided to type these loci routinely), they can 
still be used for comparison with known references in a case. The concluding Chapter 
7 discusses the potential of MPS in comparison with the currently used method CE 
and the future steps needed to use the full potential of this new technique. Software 
development is discussed including additional options to improve MPS data analysis in 
order to deal with remaining PCR noise. Novel targets and applications are presented 
that could provide new possibilities for forensic investigations concluded by suggestions 
for implementation of MPS in a casework setting. 
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Abstract
Motivation: Advances in sequencing technologies and computational algorithms 

have enabled the study of genomic variants to dissect their functional consequence. 
Despite this unprecedented progress, current tools fail to reliably detect and characterize 
more complex allelic variants, such as short tandem repeats (STRs). We developed 
TSSV as an efficient and sensitive tool to specifically profile all allelic variants present 
in targeted loci. Based on its design, requiring only two short flanking sequences, TSSV 
can work without the use of a complete reference sequence to reliably profile highly 
polymorphic, repetitive or uncharacterized regions. 

Results: We show that TSSV can accurately determine allelic STR structures in 
mixtures with 10% representation of minor alleles or complex mixtures in which 
a single STR allele is shared. Furthermore, we show the universal utility of TSSV in 
two other independent studies: characterizing de novo mutations introduced by 
transcription activator-like effector nucleases (TALENs) and profiling the noise and 
systematic errors in an Ion Torrent sequencing experiment. TSSV complements the 
existing tools by aiding the study of highly polymorphic and complex regions and 
provides a high-resolution map that can be used in a wide range of applications, from 
personal genomics to forensic analysis and clinical diagnostics.

Availability and implementation: We have implemented TSSV as a Python package 
that can be installed through the command-line using pip install TSSV command. Its 
source code and documentation are available at https://pypi.python.org/pypi/tssv and 
http://www.lgtc.nl/tssv.

Introduction
As a consequence of various mechanisms such as DNA recombination, replication 

and repair-associated processes, the spectrum of human genetic variation ranges from 
single nucleotide differences to large chromosomal events. Among the different types 
of genetic changes, repetitive DNA sequences show more polymorphism than single 
nucleotide variants (Conrad et al., 2010; Hinds et al., 2006; Iafrate et al., 2004; Kidd et al., 
2008; Redon et al., 2006; Sebat et al., 2004; Tuzun et al., 2005), and they are important 
in human diseases (Conrad et al., 2010; de Cid et al., 2009; Girirajan et al., 2011; Hollox 
et al., 2008; McCarroll et al., 2009; Pinto et al., 2010), complex traits and evolution 
(Mills et al., 2011; Stephens et al., 2011; Sudmant et al., 2010). In particular, microsatellite 
variants, also known as short tandem repeats (STR), and their expansion/shortening 
have been linked to a variety of human genetic disorders (Mirkin, 2007; Pearson et al., 
2005; Sutherland and Richards, 1995), and have been used in genotyping (Kimura et al., 
2009; Weber and May, 1989) and forensic DNA fingerprinting studies (Kayser and de 
Knijff, 2011; Moretti et al., 2001).



Chapter 2

24

C
ha

pt
er

 2

Because of the repetitive nature of STRs and often the low level of complexity of the 
DNA sequences in which they occur (Treangen and Salzberg, 2012), characterization 
of STR variability and understanding of their functional consequences are challenging 
(Weischenfeldt et al., 2013). So far, sequencing-based strategies have focused on 
reads mapped to the reference genome and subsequent identification of discordant 
signatures and classification of associated STRs (Medvedev et al., 2009; Mills et al., 2011). 
Yet, the mainstream aligners, such as BWA (Li and Durbin, 2009) or Bowtie (Langmead 
and Salzberg, 2012), do not tolerate repeats or insertions and deletions (indels) as a 
trade-off of run time (Li and Homer, 2010). This limitation leads to ambiguities in the 
alignment or assembly of repeats which, in turn, can obscure the interpretation of results 
(Treangen and Salzberg, 2012). Moreover, the current human genome reference still 
remains incomplete and provides only limited information on expected and potentially 
uncharacterized STRs in different individuals (Alkan et al., 2011; Iafrate et al., 2004; Kidd 
et al., 2008; Sebat et al., 2004). Consequently, STRs are not routinely analyzed in whole-
genome or whole-exome sequencing studies, despite their obvious applications and 
their role in human diseases, complex traits and evolution.

Here, we present a method for targeted profiling of STRs that reports a full 
spectrum of all observed genomic variants along with their respective abundance. 
Our tool, TSSV, can accurately profile and characterize STRs without the use of a 
complete reference genome, and therefore minimizes biases introduced during the 
alignment and downstream analysis. TSSV scans sequencing data for reads that fully 
or partially encompass loci of interest based on the detection of unique flanking 
sequences. Subsequently, TSSV characterizes the sequence between a pair of non-
repetitive flanking regions and reports statistics on known and novel alleles for each 
locus of interest. We show the performance of TSSV on robust characterization of all 
allelic variants in a given targeted locus by its application in several case studies: forensic 
DNA fingerprinting of mixed samples by STR profiling, characterization of variants 
introduced by transcription activator-like effector nucleases (TALENs) in embryonic 
stem (ES) cells and detailed characterization of errors derived from a next-generation 
sequencing (NGS) experiment. 
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Material and Methods
TSSV algorithm

The algorithm expects a FASTA file containing sequencing data and a library 
containing a list of loci of interest that are described by two unique sequences 
flanking a target locus in the form of a simple regular expression. The description of 
targeted loci consists of a series of triplets (i.e. CTTA 2 5), each containing a sequence 
followed by two integers that denote the minimum and maximum number of times 
the preceding sequence is expected. The notation of expected alleles is then compiled 
into a regular expression that is used to distinguish between known and new alleles. 
It is important that a library that contains a description of loci of interest according to 
the aforementioned instruction should be customized and provided. TSSV reports an 
overview of marker pair alignments and a detailed description of the identified alleles 
and their respective frequency per strand. TSSV also provides supporting reads of each 
locus of interest in separate FASTA files.

TSSV is an open source Python package that can be easily incorporated in any 
standard NGS pipeline. In addition, we have made the Python package fastools 
available at https://pypi.python.org/pypi/fastools. fastools offers a series of functions to 
manipulate, characterize, sanitize and convert FASTQ/FASTA files to other formats. 
Therefore, it can be used to convert FASTQ files to TSSV desired format (FASTA). For 
further information on usage and generated data see Supplementary Table S1.

Marker alignment

Each pair of markers (unique flanking sequences) is aligned to the reads by using a 
semi-global pairwise alignment, a modified version of the Smith–Waterman algorithm 
(Smith and Waterman, 1981). The alignment matrix is initialized with penalties only for 
the aligned sequence and not for the reference sequence. By using this approach, we can 
use the alignment matrix to calculate the edit distance between the aligned sequence 
and all substrings of the reference sequence. Finally, TSSV uses the alignment matrix to 
select the rightmost alignment with a minimum edit distance. To guarantee symmetry 
with regard to reverse complement sequences, TSSV aligns the reverse complement of 
the right marker to the reverse complement of the reference sequence.

Allele identification

Once TSSV successfully aligns a marker pair to either the forward or the reverse 
complement of the reference sequence, the region of interest is selected by extracting 
the sequence between the alignment coordinates, which is then converted to the 
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forward orientation. The target variable sequence is then matched to the regular 
expression of the corresponding marker pair for classification as either a known or a 
new allele. In case of partial identification of markers (i.e. only the left or right marker 
of the pair is identified), the input sequence is flagged as having either no beginning 
or no end. The assessment of required runtime for TSSV to identify alleles in datasets 
with different sequencing depth is provided in Supplementary Figure S1. Each dataset 
is profiled to characterize 16 allelic STR structures. It should be noted that currently 
TSSV uses a single processor for the analysis.

Annotations

Once a list of new alleles is constructed, TSSV uses a revised version of the 
Mutalyzer online service (Wildeman et al., 2008; https://mutalyzer.nl) to describe 
all observed variants compared with the reference sequence. Mutalyzer provides a 
description of observed variants according to the Human Genome Variation Society 
format for sequence variant description. This can be used to provide an overview of 
most frequent mutations that are observed within each locus of interest.

Interpretation guidelines

TSSV provides the frequency in which each allelic structure is observed on 
plus and minus strand. Based on the experimental design, the frequencies of allelic 
variants and the balance between supporting reads on the plus and minus strand 
can aid the identification of potential sequencing biases. Moreover, based on the 
choice of sequencing technology, homopolymers are prone to introducing artificial 
allelic structures, so it is advised, when possible, to allow for a tolerance of a few base 
difference in the homopolymer length while describing targeted loci. The estimation of 
a lower boundary for the identification of variant alleles is subject to the experimental 
design. Thus, sequencing of control samples, if possible, can aid a more reliable analysis 
by ruling out potential slippage and background noise. nce a list of new alleles is 
constructed, TSSV uses a revised version of the Mutalyzer

Availability

TSSV is available at http://www.lgtc.nl/tssv and https://pypi.python.org/pypi/tssv. It 
can also be installed through the command line: pip install tssv. All original datasets and 
the analysis results can be obtained from figshare (http://www.figshare.com): detection 
of STRs, SNPs and short indels (Anvar, 2013a), determining de novo structural 
variations (SVs) in TALEN-treated ES cells (Anvar, 2013b), characterization of STRs 
(Anvar, 2013c) and detection of systematic errors in PGM (Anvar, 2013c).
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Library preparations and sequencing

STR PCR products for sequencing were generated using the Powerplex® 16-kit 
from Promega (commercial assay designed and optimized for fluorescent dye-based 
fragment analysis of STR loci) and were purified with Ampure XP beads according to 
manufacturer’s protocol. Library preparation was performed using the Rapid Library 
Preparation Kit (Roche). Emulsion PCR and sequencing were performed on the 
FLX Genome Sequencer (454/Roche) according to the protocol provided by the 
manufacturer.

PCR products for sequencing of all other samples on the Personal Genome Machine 
(PGM, Ion Torrent) were prepared using the Ion Plus Fragment Library Kit or amplicon 
fusion primers. Emulsion PCR was performed using the OneTouch (OT1, Ion Torrent). 
Sequencing was performed according to LifeTech protocol using the Ion PGM™ 200 
Sequencing Kit. PCR reaction was done in 10 μl containing 1× FastStart High Fidelity 
reaction buffer (Roche), 1.8 mM MgCl2, 2% DMSO, 200 μM dNTPs, 0.5 U FastStart 
High Fidelity Enzyme Blend (Roche), 20 ng DNA, 300 nM universal barcoding primer, 
300 nM reverse target primer and 30 nM forward target primer. After 10 min of initial 
denaturation at 95°C, 30 PCR cycles were performed at 20s 95°C, 30s 60°C and 40s 
72°C. Primer sequences are provided in Supplementary Table S2.

TALEN design and transfection

The TALENs -pair targeting intron 52 of the human DMD gene (hDMD) was 
designed using the TALEN toolbox described by Cermak et al. (2011). Next, hDMD/
mdx ES cells (t Hoen et al., 2008; Veltrop et al., 2013) were transfected with the TALENs 
plasmids without any homologous recombination vector. ES cells were routinely cultured 
on murine embryonic fibroblast (MEF) feeder cells in knockout DMEM supplemented 
with 2 mM L-glutamine, 1 mM sodium pyruvate, non-essential amino acids, 50 units 
of penicillin as well as streptomycin, 1000 units of leukemia inhibitory factor and 10% 
fetal bovine serum (FBS Gold, all from Life Technologies Ltd). Per TALEN, total of 750 
ng in 1.5 μg of DNA was used to transfect 1 000 000 hDMD/mdx ES cells using 
Lipofectamin 2000 (Invitrogen). DNA-Lipofectamin 2000 suspension was prepared 
in serum and antibiotic-free medium according to the supplier’s manual Cells were 
incubated for 30 min in suspension with the DNA-Lipofectamine mixture and then 
plated in two 9 cm culture dishes coated with MEF in regular ES culture medium. ES 
cells were cultured for a week, and DNA was isolated from a pool of 1500 ES clones. 
This DNA was then prepared for sequencing using Ion Torrent PGM according to the 
instrument guidelines.
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Results
Characterization of STRs

We tested the performance of TSSV in characterizing known STRs from 
Roche/454 targeted sequencing data of 16 STR loci, amplified in a multiplex reaction. 
To demonstrate the added value of TSSV over mainstream aligners, we generated 
four sequencing libraries of which two consisted of pure individual samples and 
two mixtures in the ratios of 50:50 and 90:10 with comparable depth of coverage 
(Supplementary Table S3). A full spectrum of STR structures and their abundance was 
generated after a semi-global alignment of the 25 bp flanking regions adjacent to the 
STR structure, with tolerance of up to three mismatches (Fig. 1A). On average, 8% of 
reads remained uncharacterized, mostly because the sequences did not cover both 
flanking reference sequences or that sequences contained too many mismatches for 
regions that are required for identification of unique flanking reference sequences 
(Supplementary Table S3). The PCR product used for preparing the sequencing libraries 
were generated using the Powerplex 16-kit from Promega, which is an assay designed 
and optimized for fluorescent dye-based fragment analysis of STR loci. This resulted 
in a strong imbalance in sequencing yield between STR markers with different dyes 
in the fragment analysis (Supplementary Table S3). Thus, we restricted the analysis to 
the three markers with highest coverage (D3S1358, TH01 and D13S317). Frequencies 
of the observed alleles were interpreted to distinguish actual alleles from slippage 
artifacts (Supplementary Tables S4–S6).

For D3S1358 (TCTA1 TCTG1-3 TCTA12–13), TSSV robustly identified the STR 
structure associated with each of the samples, with >91% of reads supporting the 
presence of two STR alleles (Fig. 1B). In addition, TSSV could pick up a minor frequency 
(7.25%) for alternative STR structures, in which the DNA amplicons show false STR 
structures because of DNA polymerase slippage during the amplification (Ellegren, 
2004; Hauge and Litt, 1993). Despite the presence of PCR amplification artifacts, the 
major and minor STR structures in balanced and more extreme mixtures (50:50 and 
90:10, respectively) could accurately be identified by TSSV (Fig. 1B and Supplementary 
Table S4).

We next explored whether TSSV can correctly detect alleles of more complex 
cases differing based on STR length (ATCT12ATCA2 and ATCT11ATCA3) or 
composition (CATT9 and CATT3CAT1CATT6) as well as mixtures that shared one 
allelic STR structure (CATT3CAT1CATT6). Markedly, TSSV could correctly detect, 
characterize and quantify reads supporting all STR alleles, including mixtures with only 
10% representation of the minor alleles (i.e. D3S1358 markers) and more complex 
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mixtures (TH01 markers) where a single STR allele is shared (Fig. 1C, Supplementary 
Tables S4–S6 and Supplementary Figs S2–S4). Results of the remaining STR markers 
are provided in supplementary materials, Supplementary Tables S7–S17.

Fig.1. Characterization of allelic STR structures in samples and their mixtures of differing ratios (A) Schematic representation of STR structure 
identification and quantification. After proper alignment of two flanking sequences, TSSV performs a strand-specific classification and quanti-
fication of repetitive elements (RE) that constructs a given STR-structure. (B) The number of sequencing reads that support the presence of 
different allelic D3S1358 STR structures on both strands. Pure samples and their mixtures in two different ratios are presented separately. 
(C) The proportion of reads that support different allelic STR structures for three most abundant markers (D3S1358, D13S317 and TH01). 
STR markers differ in complexity based on STR length or composition as well as mixtures in which one allelic STR structure in shared.  
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Determining de novo structural variations in TALEN-treated cells

TALENs have shown promising potential in site-specific genome editing (Boch, 2011; 
Cermak et al., 2011; Miller et al., 2011; Zhang et al., 2011). Their modular structure 
enables simple construction of TALENs that can specifically recognize virtually any DNA 
sequence of interest. On delivery of a TALENs-pair, a double strand break is introduced 
that is repaired by non-homologous end-joining, introducing a large variety of mutations 
(Supplementary Fig. S5). Because the method lacks a positive selection procedure, the 
applicability depends largely on its efficacy. We used TSSV to estimate the efficiency of 
genome editing in ES cells from a mouse model with the hDMD, stably integrated in the 
mouse genome (t Hoen et al., 2008), and determine the utility of an assembled TALEN 
pair (Supplementary Table S18) in introducing mutations within targeted intron 52 of 
the hDMD (Supplementary Fig. S6).

For 100.000 TALENs-transfected and non-transfected (control) ES cells, a 135 bp 
fragment encompassing the entire targeted locus was PCR amplified and sequenced 
using the Ion Torrent PGM (Supplementary Table S19). The targeted locus was covered 
over 450 000 times, which allows for precise detection and characterization of any 
variant present. From the control ES cells, we determined a background of 3.1% of 
reads that contain at least one mismatch, derived from sequencing errors and potential 
spontaneous mutations (Fig. 2A and Supplementary Table S19). In TALENs-treated ES 
cells, the rate of sequencing reads that contain at least one mismatch was 11.4%, almost 
4-fold higher than controls (Fig. 2A). The majority of mutations introduced by TALENs 
pair were small insertions and deletions (75.6%; excluding duplications) (Fig. 2B), which 
is consistent with the expected type of variants introduced by TALENs (Cermak et 
al., 2011). The frequency in which individual variants occurred was specific to TALEN-
treated ES cells, even for those that were observed with very low frequency (Fig. 2C and 
D). However, we observed a few mutations that were not specific to TALEN-treated ES 
cells (Fig. 2D). These were mainly duplications that arose from inaccurate detection of 
homopolymer stretches. Overall, TSSV results indicate significant enrichment (P = 2.85E-
09; Kolmogorov–Smirnov test) of variants in TALEN-treated ES cells as compared with 
controls (Fig. 2E). Furthermore, TSSV reported a list of the most frequent variants and 
cleavage sites, majority of which were either exclusive to TALEN-treated ES cells or with 
over 3-fold higher frequency in TALEN-treated ES cells than controls (Supplementary 
Fig. S7). The Ion Torrent variant caller (version 3.2) did not report any variant because 
of the nature and frequency of variants introduced by TALENs.
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Fig. 2. Variant characterization and quantification of TALEN-treated and Control ES Cells. (A) Basic statistics of the TSSV analysis. Pie charts show 
the proportion of sequencing reads that support the presence of new alleles in TALEN-treated (outer circle) or control (inner circle) ES Cells. No 
Start and No End fragments represent reads in which one of the flanking sequences was not recognized. (B) Total number of variants in TALEN-
treated ES Cells and Controls, grouped by type. (C) Comparative analysis of the number of occurrences for individual variants in both samples. 
Data points are colored based on the type of variation. (D) Zoomed in scatter plot for variants with frequencies lower than 2000. (E) Empirical 
cumulative distribution of variant frequencies for TALEN-treated (red) and Control ES Cells (black). Kolmogorov–Smirnov test was performed to 
assess if two distributions are significantly different. 

Detection of systematic errors in PGM Ion Torrent 

During the targeted Ion Torrent resequencing of exon 19 of the DMD gene 
(X-chromosome) in five male patients and a female carrier, we observed a number of 
shared and unexplained heterozygous variants given that male patients have only one 
X-chromosome and DMD gene does not locate within pseudo-autosomal regions. 
We used TSSV to provide a high-resolution map of all sequence variants as a way to 
understand the origin of these artifacts (Fig. 3A). To assess the reproducibility of our 
findings, we performed two independent Ion Torrent PGM sequencing runs (PG090 
and PG109). Two different versions of the Ion Torrent base-calling algorithm were used 
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for PG090 (versions 2.2 and 3.0) while PG109 was only processed by version 3.0 
(sequencing run was carried out after the upgrade of the Ion Torrent Suit). The three 
datasets enabled us to investigate potential artifacts derived from sequencing and/or 
different base-calling algorithms. Our first observation indicated a significant decrease 
in the total number of reads (average of 11.3 and 13.3% in respective to different runs 
and base-calling algorithms) that were recognized per individual (Supplementary Table 
S20). We also noticed a significant difference in the fraction of reads per dataset (44.3, 
40.3 and 48.7%) that were reported as new alleles, having at least one mismatch with 
the reference sequence (Fig. 3B).

Fig. 3. Identification of mutations within exon 19 of DMD gene. (A) Schematic representation of the locus of interest for resequencing, the design 
of unique flanking sequences (blue), and the targeted region (red) to be profiled using TSSV. (B) Pie charts show the proportion of reads that 
support the presence of new alleles (red) in sequencing library of patient 1. Pie charts represent different sequencing runs (PG090 or PG109) 
or the base-calling algorithm used during the primary analysis (01 or 02). The two most outer pie charts are sequencing reads from the same 
PGM Ion Torrent run processed using two different versions of base-calling algorithm. The most inner pie chart represents an independent run 
of the same library. (C) Number of observed variants separated by variation type. Percentages show the proportion of insertion events from the 
total number of variants in each set. 

We observed a significant reduction of variants (36.2%) after adoption of the 
version 3.0 base-caller, mainly affecting the level of deletions and duplications calls 
(Fig. 3C). This prominent decrease (68.3 and 48.9%) arises from improvement of the 
algorithm in determining the length of homopolymer stretches. Notably, the majority of 
other variants were single nucleotide insertions (excluding duplications and indels) that 
remained at a comparable rate across different datasets (Fig. 3C). Next, we assessed 
the strand specificity of the variants based on the sequencing direction. Interestingly, 
while the majority of variants showed a similar frequency in both directions, the most 
frequent variants showed a clear imbalance between forward and reverse strand (Fig. 
4A and B). The observed strand-specific bias was reproducible and was not influenced 
by the software version, as it was observed in all three datasets (Fig. 4C and D and 
Supplementary Figs S8–S11).
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Fig.4. Comparative analysis of observed mutations. (A) The total number of occurrences for variants to be observed on plus or minus strands is 
compared. Data points are colored based on the variation type. (B) Zoomed in scatter plot for variants with strand-specific frequency <500. 
(C) Sequencing data from the same sequencing run (PG090) are assessed for frequency of observed variants after the use of two different 
versions of base-calling algorithm. (D) Zoomed in scatter plot for variants with frequency <500 compared between two datasets generated 
using different base-caller algorithms

To study the possible nucleotide-specific biases, we quantified the frequency of all 
calls that predominantly occurred on one strand. Despite slight variation, substitutions 
were observed on both strands at a comparable rate. However, in each dataset, the 
majority of substituted bases were ‘A’s (59.2, 61.3 and 64.9%) and ‘T’s (28.1, 23.0 
and 20.5%) that were predominantly substituted to ‘G’ and ‘C’, respectively (Fig. 5A). 
Insertions were primarily observed on the forward strand (94%, on average) while ‘A’ 
remained as the most affected base (77.7%, on average) across all samples (Fig. 5B and 
Supplementary Figs S9–S11).

We also observed a slight enrichment of deletions and duplications on the reverse 
strand that were more pronounced in PG109-02 (Fig. 5C and D). Consistently, the 
most affected base was ‘A’, which was mainly the result of under- or over-calling of 
‘A’ homopolymers. We used TSSV to report a list of most occurring variants across 
different samples. A single ‘A’ nucleotide insertion at cycle 52 was by far the most 
predominant variant that occurred exclusively on the forward strand (Fig. 6A). In 
fact, irrespective of co-occurrence of this insertion with any other variants, the new 
observed sequence remains strand specific (Fig. 6A). This cannot be explained from a 
biological standpoint and can only arise from a sequencing error. Moreover, we did not 
observe any variation after sequencing the same library with Sanger sequencing (Fig. 
6B), ruling out the possibility of artifacts introduced by sample preparation and PCR 
amplification.
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Fig. 5. Strand-specific and nucleotide-dependent variation patterns in targeted sequencing data. (A) Breakdown of substitution type frequencies 
across all samples. Pie charts depict substitution events per nucleotide (outer circle) and strand (inner circle) for each dataset. The outer pie 
charts illustrate the proportion of substitutions based on the preferred nucleotide to which substitutions are made. A, C, G and T nucleotides are 
reflected in red, yellow, green and blue colors, respectively. Black and gray colors represent the plus and minus strands, respectively. (B) Break-
down of insertion frequencies per nucleotide across all samples. Pie charts represent the proportion of insertion events per nucleotide (outer 
circle) and strand (inner circle) for each dataset. (C) The fraction of deleted bases is shown in pie charts based on the nucleotide (outer circle) 
and strand (inner circle) for each dataset. (D) The amount of duplications per nucleotide (outer circle) and strand (inner circle) is presented for 
three datasets used in this study. 
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Fig. 6. Most abundant sequences and validation by Sanger sequencing. (A) A list of most abundant sequences across different samples. The 
observed occurrence of each new allele is quantified per strand along with corresponding standard deviation. (B) The result of Sanger sequencing 
of the target locus is presented per sample. Arrows mark the location in which mutations are reported based on the PGM Ion Torrent sequenc-
ing data. 

Comparative analysis of TSSV performance

To our knowledge, lobSTR (Gymrek et al., 2012), STRait Razor (Warshauer et 
al., 2013) and RepeatSeq (Highnam et al., 2013) are currently the most recent and 
frequently used STR profiling tools. STRait Razor has limited functionality and only 
provides an estimated copy number of major STR units. Therefore, we could only 
compare the performance of TSSV only with lobSTR and RepeatSeq. As lobSTR 
relies on alignment of sequencing reads to the predefined and indexed STR reference 
sequences, lobSTR outperformed TSSV in recognizing partial reads, containing only one 
of the two flanking sites required by TSSV (Supplementary Table S21). Concordantly, 
lobSTR accepted 1288 reads for the D3S1357 STR locus that were not reported 
by TSSV. However, TSSV performed significantly better on more complex STR loci 
(Supplementary Tables S21–S22). Across all four datasets, TSSV identified on average 
2471 and 2353 reads in excess of what was recognized by lobSTR for the D13S317 
and TH01 STR loci, respectively. This difference is mainly derived from increasingly 
problematic alignments in lobSTR that is also reflected in inaccurate estimation of 
STR copy number for TH01 and D13S317 markers in pure samples (Supplementary 
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Table S22). In addition, lobSTR does not provide information on allelic STR structure, 
as it only reports the copy number of the major and uninterrupted STR unit and 
ignores the information from other variable elements or variants outside the STR itself. 
Consequently, lobSTR failed to accurately detect the presence of mixed simples even 
in cases in which samples were mixed 50:50 (Supplementary Table S22). Although 
the information on strand specificity of the aligned reads is present in the alignment 
file, unlike TSSV, lobSTR does not provide the frequency in which each STR structure 
is observed. This is an important measure to detect inconsistencies and to rule out 
potential artifacts. RepeatSeq requires aligned data and uses predefined regions to 
characterize observed STR alleles. Thus, reads were mapped to the reference genome 
(hg19) using GS mapper, specifically designed for 454 sequencing data. RepeatSeq 
reported results for only one STR locus (D8S1179), despite sufficient coverage for 
a number of STR loci in the BAM file. After manipulating the region descriptions, we 
could not improve the efficiency of RepeatSeq in identifying the targeted STR loci. 
Thus, the result of RepeatSeq could not be used for a conclusive comparison with 
TSSV.

Discussion
IIn the past decade, advances in sequencing technologies as well as computational 

analysis tools have enabled the study of genomic variations to dissect the mechanisms 
by which they exert their function in the case of human diseases, evolution and 
other complex traits. Despite this unprecedented progress, structural variations and 
repetitive DNA sequences (such as STRs) or coupling of de novo mutations present 
major obstacles for accurate and reliable allelic analysis (Alkan et al., 2011; Gymrek et 
al., 2012; Kidd et al., 2008; Treangen and Salzberg, 2012; Weischenfeldt et al., 2013). In 
particular, most computational tools are not ideal to identify STRs because of biases 
introduced during alignment as well as strong reliance of algorithms on coverage depth 
or the presence of split-reads. Here, we present a method (TSSV) that provides a high-
resolution map of allele-specific genomic variants within targeted loci of interest. Our 
approach does not rely on the use of a complete reference sequence to reliably profile 
highly polymorphic sequences (such as STRs) or uncharacterized variants at a single-
nucleotide resolution. However, it does require two unique flanking sequences that 
harbor the region of interest to identify supporting reads. We assess the performance 
of TSSV on profiling known allelic STR structures across pure samples from a single 
individual as well as mixed samples with variable abundance. Of 16 allelic STR structures 
that were targeted for sequencing, six STR loci were sufficiently covered so that the 
associated allelic STR structures could be reliably resolved. The strong imbalance 
between yield of STR markers is because of the assay (designed and optimized for 
fluorescent dye-based fragment analysis of STR loci) used for preparing the sequencing 
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library. We show that sensitivity of TSSV in determining allelic STR structures exceeds 
mixtures with only 10% representation of minor alleles and more complex mixtures 
in which a single STR allele is shared. The lower boundary of detecting minor allele 
frequencies is subject to experimental design and the complexity of the targeted locus 
that may result in variable rate of slippage and background noise. Our detailed analysis 
of three STR loci provides significant insights into forensic DNA fingerprinting of mixed 
samples while it confirms the feasibility of TSSV to profile causal allelic expansion 
of triplet, tetranucleotide or more complex repeat structures in variety of human 
disorders (Brook et al., 1992; Dere et al., 2004; Kremer et al., 1991; Mahadevan et al., 
1992; Mirkin, 2007; Pearson et al., 2002; Verkerk et al., 1991).

Second, we sought to profile and annotate the full spectrum of de novo mutations 
introduced by TALENs that specifically target intron 52 of hDMD in mouse ES cells. 
The applicability of designed TALENs to introduce mutations in a targeted locus largely 
depends on its efficacy because this method lacks a selection procedure. Detected 
TALEN-specific editing events were almost exclusively insertions and deletions that 
fit the expected mutation profile of TALENs (Cermak et al., 2011). Although it has 
recently been reported that TALENs induce insertions at a much lower frequency than 
deletions (Kim et al., 2013), we have observed an extremely balanced rate of insertion 
and deletion events (37.26% versus 37.20%, respectively). Nevertheless, TALENs-
induced deletions tend to affect more bases than insertions. We show that TSSV can 
resolve difficult-to-call editing events that affect the length of homopolymers based on 
the variant frequency in TALEN-treated ES cells versus controls. Moreover, the result 
of TSSV analysis of TALEN-treated and control ES cells suggests that observed de novo 
structural variants are predominantly caused by initiation of a double-strand break 
that is repaired by non-homologous end-joining mechanism and are not the result of 
sequencing errors. Notably, the Ion Torrent variant caller failed to identify any of the 
observed variants because of their complexity, and therefore does not provide any 
information on de novo allelic structures that were introduced.

As laboratories begin to generate deep coverage sequencing data to identify 
low frequent mutations (i.e. cancer genomics), the robustness and accuracy of NGS 
technology and library preparation methods has become vital (Costello et al., 2013). 
After running TSSV on a third dataset to identify potential causal mutations in samples 
from five DMD patients and one female carrier, we observed numerous systematic 
errors introduced by the Ion Torrent PGM sequencer or the base-calling algorithms. 
The number of sequencing reads that support the presence of a new allele was in 
excess of 45% while no mutation was found after Sanger sequencing of the same 
libraries. Moreover, the amount of allelic discordant reads were unexpected and 
could not be biologically explained as five out of six samples were derived from male 



Chapter 2

38

C
ha

pt
er

 2

patients who are expected to have only one copy of the X-chromosome. Across 
all samples, the majority of detected variations were single nucleotide insertions  
( 62%), excluding duplications, that were mostly the result of a single ‘A’ insertion 
(78%). Surprisingly, insertions were predominantly specific to the plus strand (94%) 
that can be the result of flow order in specific sequence contexts. Although the 
second base-caller improved the deletions and duplications rates that were derived 
from over- or under-calling of homopolymers, the insertion rates remained unchanged. 
We further observed a preference for erroneous substitution events that were more 
pronounced in the second base-caller. However, we were unable to identify motifs 
that may be associated with observed biases. We argue that the result of TSSV analysis 
and its ability to provide a high-resolution map of variants ever more highlights the 
importance of robust and vigorous assessment of downstream analysis as we generate 
volumes of sequencing data to identify rare mutations and in the advent of NGS in 
clinical diagnosis.

To demonstrate the added value of TSSV over mainstream STR profiling tools, 
we ran lobSTR (Gymrek et al., 2012) and RepeatSeq (Highnam et al., 2013) on four 
samples used for resolving allelic STR structures. Because RepeatSeq hardly reported 
any STR markers, the performance of TSSV could only be compared with that of 
lobSTR. We show that TSSV robustly and accurately resolved allelic STR structures 
with differing complexity. TSSV outperformed lobSTR in reporting the accurate copy 
number of major STR unit while it provides additional information on allelic STR 
structures and their strand-specific frequencies. Notably, TSSV excelled in resolving 
complex mixtures, whereas lobSTR failed to differentiate STR structures associated 
with different samples, and therefore produced unreliable and inaccurate estimations. 
Although lobSTR performs well on genotyping diploid samples, there is a clear need 
for tools to resolve mixtures with differing level of complexity and abundance.

Currently, the major limitation of TSSV is the sequencing read length because the 
detectable allelic structures are restricted to those that can entirely be covered by 
a single read. Thus, we envision that the immediate developmental outlook for TSSV 
can be the inference of allelic locus structure by local assembly of partial reads (reads 
with only one recognizable flanking region) combined with the comparative analysis 
of coverage of targeted loci and flanking regions. Furthermore, the promise of novel 
sequencing technologies (such as Pacific Biosciences RS II), and therefore significant 
increase in read length will aid the study of larger structural variations.

Advances in sequencing technologies and computational analysis algorithms 
in unraveling genetic variations from SNPs and indels to CNVs (Chen et al., 2009; 
DePristo et al., 2011; Goya et al., 2010; Koboldt et al., 2009; McKenna et al., 2010; 



TSSV: MPS Software for Targeted analysis of Short Structural Variation 

39

C
hapter 2

Ye et al., 2009) have facilitated the study of experimental data on an unprecedented 
scale to better understand the functional consequences of genetic variations. TSSV 
complements the existing tools by aiding the study of unknown, uncharacterized or 
highly polymorphic and repetitive short structural variations that can be used in a 
wide range of applications, from personal genomics to forensic analysis and clinical 
diagnostics.
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Supplementary materials
Methodology (extended)

We developed a method to characterise short structural variations (TSSV) which 
is made available online. In this section, we describe the functionality and design of this 
program. Calibration of the algorithm and the output is done with optional command 
line arguments. TSSV can be installed via pip install tssv command.

Input – Our method expects two input files: one file containing sequencing data 
in FASTA format and one file containing the library description. The format of this 
description is shown in Table S1. The last column of the description is compiled into a 
regular expression. This regular expression is used to distinguish between known and 
unknown alleles.

Marker Alignment – Each pair of flanking markers is aligned to each read by using 
semi- global pairwise alignment, a modified version of the Smith- Waterman algorithm. 
In this adaptation, the alignment matrix is initialised with penalties for the aligned 
sequence, but not for the reference sequence. By using this approach, we can use the 
alignment matrix for the calculation of the edit distance between the aligned sequence 
and all substrings of the reference sequence. Finally, we use the alignment matrix to 
select the rightmost alignment with a minimum edit distance. To guarantee that this 
method is symmetrical with regard to the reverse complement, we align the reverse 
complement of the right marker to the reverse complement of the reference sequence.

Allele Identification – If a marker pair can be aligned to either the forward or 
reverse complement of the reference sequence, we can select the area of interest 
by extracting the sequence between the alignment coordinates and by converting it 
into the forward orientation. This area of interest can then be matched to the regular 
expression of that marker pair. Depending on the match, we either classify the area of 
interest as a known or new allele.

Output – The output of the analysis consists of an overview report that contains 
general statistics (such as total number of reads, number of matched pairs, number of 
unique newly identified alleles, etc.), an overview of the marker pair alignment, and per 
marker a detailed list of identified alleles (both expected and new alleles). If an output 
directory is selected, a folder is created to store the marker table and, per marker, a 
subfolder containing the new alleles and split FASTA files for supporting reads.
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Table S1 - Full description of settings and generated files
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Figure S1 – The speed of TSSV in characterizing known and novel alleles. Four datasets with different number of reads were profiled for 16 STR 
loci. The analysis was performed on a desktop PC (Intel Core i7 860, 2.80GHz) and a cluster node (Intel Xeon E5- 2660, 2.20GHz). ost abun-
dant sequences and validation by Sanger sequencing. (A) A list of most abundant sequences across different samples. The observed

Table S2 - Description of primers used for targeting loci of interest.
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Table S3 - Basic statistics of STR datasets sequenced on 454/Roche.
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Table S4 - Sequence numbers and allele structure of D3S1358 Short Tandem 
Repeat.
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Table S5 - Sequence numbers and allele structure of D13S317 Short Tandem 
Repeat.
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Table S6 - Sequence numbers and allele  structure of TH01 Short Tandem 
Repeat.
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Table S7 - Sequence numbers and allele structure of D21S11 Short Tandem 
Repeat (6 most frequent alleles for every sample.)

Table S8 - Sequence numbers and allele structure of D16S539 Short Tandem 
Repeat (6 most frequent alleles for every sample.)
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Table S9 - Sequence numbers and allele structure of TPOX Short Tandem 
Repeat (6 most frequent alleles for every sample.)

Table S10 - Sequence numbers and allele structure of vWA Short Tandem 
Repeat (6 most frequent alleles for every sample.)



Chapter 2

52

C
ha

pt
er

 2

Table S11 - Sequence numbers and allele structure of D7S820 Short Tandem 
Repeat (6 most frequent alleles for every sample.)

Table S12 - Sequence numbers and allele structure of FGA Short Tandem 
Repeat (6 most frequent alleles for every sample.)
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Table S13 - Sequence numbers and allele structure of D8S1179 Short Tandem 
Repeat (6 most frequent alleles for every sample.)

Table S14 -  Sequence numbers and allele structure of CSF1P0 Short Tandem 
Repeat (6 most frequent alleles for every sample.)
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Table S15 - Sequence numbers and allele structure of D18S51 Short Tandem 
Repeat (6 most frequent alleles for every sample.)

   

Table S16 - Sequence numbers and allele structure of D5S818 Short Tandem 
Repeat (6 most frequent alleles for every sample.)
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Table S17 - Sequence numbers and allele structure of Penta E Short Tandem 
Repeat (6 most frequent alleles for every sample.)

    

Figure S2 – The percentage of reads supporting detected allele- structure of D3S1358 Short Tandem Repeat. Black bars depict reads supporting 
the forward strand and grey bars correspond to the proportion of reads supporting the reverse complement.
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Figure S3 – The percentage of reads supporting detected allele-structure of D13S317 Short Tandem Repeat. Black bars depict reads supporting 
the forward strand and grey bars correspond to the proportion of reads supporting the reverse complement.

 

Figure S4 – The percentage of reads supporting detected allele-structures of TH01 Short Tandem Repeat. Black bars depict reads supporting 
the forward strand and grey bars correspond to the proportion of reads supporting the reverse complement.
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Figure S5 - Schematic representation of TALEN design and targeted resequencing. TALEN-pairs were designed to specifically target intron 52 
of the hDMD in mouse ES Cells. The binding sites of TALEN-pairs are 21bp long (blue). After successful transfection, TALENs initiate a double 
strand break within the target locus of 19bp (red). The 135bp fragment encompassing the entire targeted region was PCR-amplified, sequenced, 
and analysed using TSSV.

Table S18 – Target sequence of the TALENS targeting intron 52 of the hDMD 
gene.
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Table S19 – Basic statistics on sequencing reads from TALEN-treated and 
control ES Cells.

Table S20 – Basic statistics on sequencing reads from 5 male patients and a 
female carrier.
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Figure S8 – Variant frequency comparison between two base-calling algorithms for all samples (A, B, C, D, E, F). For each panel, the first scatter 
plot shows all variants and the second zooms in to variants with frequency less than 500.



Chapter 2

60

C
ha

pt
er

 2

Figure S9 – Strand specificity of observed variants in dataset PG090-01 for all samples (A, B, C, D, E, F). For each panel, the first scatter plot 
shows all variants and the second zooms in to variants with frequency less than 500 on each strand.
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Figure S10 – Strand specificity of observed variants in dataset PG090-02 for all samples (A, B, C, D, E, F). For each panel, the first scatter plot 
shows all variants and the second zooms in to variants with frequency less than 500 on each strand.
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Figure S11 – Strand specificity of observed variants in dataset PG109-02 for all samples (A, B, C, D, E, F). For each panel, the first scatter plot 
shows all variants and the second zooms in to variants with frequency less than 500 on each strand.
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Table S21 – General statistics on identification of informative reads for STR 
profiling of samples using lobSTR.

 
    

Table S22 – lobSTR performance in identification and characterization of allele 
specific STR structures.
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Abstract
The introduction of Massive Parallel Sequencing (MPS) techniques enables 

sequencing of Short Tandem Repeats (STR) as a new tool for forensic research. In 
addition to variation in fragment-length, MPS also reveals allelic sequence-variation 
in STR-fragments. This additional variation demands a new way of describing allelic 
variants. Here we propose a nomenclature of MPS-derived STR alleles for use in 
forensic research.

Introduction
For over two decades, the analysis of Short Tandem Repeats (STRs) in forensics 

was routinely performed using Capillary Electrophoresis (CE). With CE, the length of a 
DNA fragment containing an STR is determined. STR alleles are identified by comparing 
unknown fragment lengths with a reference allelic ladder containing fragments with 
known repeat-lengths. The use of a simple number, representing the number of 
repeats was sufficient as nomenclature for STR allele variation. Recent developments 
in Massive Parallel Sequencing (MPS) technologies enable high-throughput sequencing 
of STRs, revealing additional sequence-variation in many of the STRs [1, 2]. A uniform 
nomenclature for MPS-STR alleles describing this additional variation still needs to 
be developed. Here, we propose a universal way of describing STR allele variation, 
specifically designed for use in forensic casework.

Material and Methods
Previously suggested ways of describing STR- and other genome-variation were 

compared. Based on published variation [2] and in-house available data for 22 STRs 
(van der Gaag et al., manuscript in preparation) Human genome coordinates were 
identified for the genomic regions containing STR-variation, and rules were developed 
to describe sequence allele-variation within STRs and in repeat-flanking regions. 
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Results
In several studies, MPS of STRs revealed substantial sequence variation in addition 

to that already described in STRbase [2, 4]. For comparison of published data and, 
more importantly, for comparison of profiles among databases, it is important that 
a uniform and straight-forward nomenclature is used. For this nomenclature several 
aspects should be taken into consideration:

• Different MPS assays will be used to analyse the same markers, introducing 
variation in the genome-coordinates of the analysed fragment containing an 
STR (fragments of different assays will not completely overlap). 

• Allele-nomenclature should be compact and readable. However, allele-
description should also contain all relevant information to reconstruct the 
original sequence.

• A direct comparison between CE- and MPS-results should be possible.

For CE-nomenclature, ranges have been determined in the past, defining the 
genomic coordinates of the STRs. For some STRs (like the example of D13S317 
discussed below), additional repeating elements adjacent to the defined STR turned 
out to vary in length resulting in a difference between the total number of variable 
repeat-units for sequencing and the CE allele-count. Here, we determined genomic 
coordinates for the region in which STR-variation has been observed for 22 commonly 
used autosomal STRs (Figure 1a) in the following way: 

The start-position of the STR-motif represents the first possible position while 
retaining maximum length for the longest repeated element. Any repeated elements 
directly adjacent to the STR of at least three repeats long was included as part of the 
STR-region. If a complex repeat consists of multiple blocks, interruptions were divided 
into blocks of the same length where possible (D2S1338, D21S11, FGA and vWA in 
figure 1a). 

For studies of genome variation, HGVS-nomenclature rules [5] describe almost any 
possible type of genomic variation including STRs. Based on the STR-variation analysed 
in this study we propose general rules for a straightforward forensic nomenclature that 
describes sequence-variation in STRs and flanking regions. We mostly follow HGVS-
guidelines but some specific rules are optimised for the intended use in forensics.  

Figure 1b shows an example of a hypothetical allele for marker D13S317.
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Figure 1, determined genome-coordinates for STR-variation and example 
of allele-description for an STR sequence-variant of D13S317 according to 
nomenclature rules
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From left to right, allele-description contains the following 4 elements:
1. Locus-name followed by “CE” and the allele-length (described as in current 

CE-nomenclature).
2. Chromosome-coordinates of the STR-motif in the reference sequence 

(including reference genome-version), representing the position of the first, 
and the last base of the STR-motif in the reference genome. If coordinates of 
the total analysed fragment (range between the used primers) are known, this 
information should always be provided (as a separate table).

3. STR-motif, described in the same orientation as the reference genome. For 
example: TATC[13]AATC[1]ATCT[3] (TATC repeated 13 times followed by 
AATC repeated 1 time and ATCT repeated 3 times). 

4. Variation outside the STR-region (but within the analysed fragment) is described 
relative to the reference by genome position. Variants are described in the 
following order: Genome coordinate, reference > variant. The long number of 
the genome coordinate can be shortened by a ‘x.’ followed by the last three 
numbers (since the total coordinates of the STR-motif are already described 
before). 

• A SNP of G>A on position 82.722.136 can be described as x.136G>A
• For a deletion of GC on position 82.722.136-82.722.137 we only write 

the starting-position of the deletion followed by the variation, for example: 
x.136GC>del.

• An insertion of AT after the same G is described as x.136.1–>insAT (‘–‘ before 
the ‘>’ is used since this position is absent in the reference).

Although we understand the suggested use of rs-nr.’s by Gelardi et al [1] to maintain 
a stable allele-name over different genome-versions, this will still result in different ways 
of describing variants within the same table because there can always be SNPs that 
are not listed in dbSNP. Rs-nr.s do not provide all the information that is needed to 
directly translate an allele-name back to the original sequence since the exact position 
of the SNP will need to be retrieved from dbSNP. Comparison of results from different 
assays (using different primers) is complicated if it is not directly visible from the name 
whether a SNP is within the range of both assays or not. Thereby, we prefer the use of 
genome-coordinates over rs-nr’s. However, it is essential that the version of the used 
reference genome is described.

In addition to the CE-fragment allele-name, our rules have some small deviations 
from the HGVS nomenclature. As in HGVS nomenclature, only the positions that differ 
from the reference are displayed, but they are described in the fixed order of ancestral 
> derived sequence. This is different from HVGS since deletions and insertions of 
one nt are described as delA (in our rules A>delA) and insA (in our rules x.1–>A). 
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This fixed order keeps the description directly translatable and is feasible for the use 
of computer-algorithms to automatically compare variants. To avoid accumulation of 
numbers, larger insertions and deletions are described in a more mtDNA-like fashion 
[3] displaying only the start-position of the variant followed by the ancestral > derived 
sequence. To combine all parts of the allele-name, an en-dash (long dash) was chosen 
as delimiter between the separate parts to leave an open space between the different 
parts and increase readability. Although we provide a method that can be used to 
describe variants without prior knowledge of the exact positions of the primers, we 
recognise that this is a suboptimal situation which limits possibilities in comparison of 
STR sequencing-results between different assays. 

Conclusion
Recommendations have been made for nomenclature of STRs in such a way to 

provide maximum information in the allele-name and help direct comparison of data 
from different assays and between CE- and sequencing-data.
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Abstract
Current forensic DNA analysis predominantly involves identification of human 

donors by analysis of short tandem repeats (STRs) using Capillary Electrophoresis 
(CE). Recent developments in Massively Parallel Sequencing (MPS) technologies offer 
new possibilities in analysis of STRs since they might overcome some of the limitations 
of CE analysis. In this study 17 STRs and Amelogenin were sequenced in high coverage 
using a prototype version of the Promega PowerSeq™ system for 297 population 
samples from the Netherlands, Nepal, Bhutan and Central African Pygmies. In addition, 
45 two-person mixtures with different minor contributions down to 1% were analysed 
to investigate the performance of this system for mixed samples. Regarding fragment 
length, complete concordance between the MPS and CE-based data was found, 
marking the reliability of MPS PowerSeq™ system. As expected, MPS presented a 
broader allele range and higher power of discrimination and exclusion rate. The high 
coverage sequencing data were used to determine stutter characteristics for all loci 
and stutter ratios were compared to CE data. The separation of alleles with the same 
length but exhibiting different stutter ratios lowers the overall variation in stutter ratio 
and helps in differentiation of stutters from genuine alleles in mixed samples. All alleles 
of the minor contributors were detected in the sequence reads even for the 1% 
contributions, but analysis of mixtures below 5% without prior information of the 
mixture ratio is complicated by PCR and sequencing artefacts. 

Introduction
Current forensic DNA analysis almost exclusively focuses on the identification of 

human sample donors using multiplex short tandem repeat (STR) genotyping with 
commercial kits based on polymerase chain reaction (PCR) and capillary electrophoresis 
(CE). Although this type of analysis has proven its value over the past decades, it is not 
without limitations. In CE, multiplexing of more than 5 loci in a single assay can only be 
achieved by using different fluorescent labels in the PCR and by using non-overlapping 
PCR fragment lengths for STRs with the same fluorescent label. Consequently, most 
commercial assays have a  PCR fragment range between 80-500 bp [20].

When analysing degraded DNA samples, this variation in fragment length frequently 
results in noticeable lower, or even absent, signals for the longer PCR fragments. As a 
consequence, profiles of degraded DNA often have a lower discriminating power. 

Another potential difficulty associated with the CE detection of STRs is the 
background signal arising from stutter peaks [19], caused by slippage of the polymerase 
in the PCR. In DNA samples from a single person, genuine alleles and stutter alleles can 
be easily distinguished. However, the analysis of unbalanced mixtures with low minor 
contributions is frequently complicated by stutter alleles that cannot be distinguished 
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from genuine alleles of the minor contributors [4].
In theory, these limitations can mostly be solved by the use of massively parallel 

sequencing (MPS) of STR loci. STR alleles can be identified by repeat number and 
sequence variation and primers can be designed in such a way that PCR fragments 
have similar size ranges for all loci. Moreover, many more loci can be multiplexed in 
the same reaction because the detection is no longer based on a limited number of 
fluorescent labels. A few studies have indicated the potential of MPS STR genotyping 
[6, 8, 15, 21]. They showed that, in addition to the variation in repeat number and 
repeat sequence, the repeat-flanking regions provide an additional source of variation 
and add to the discriminating power of the loci. However, the additional power of 
this new sequence variation cannot be fully used until sufficient population frequency 
data is available for all loci. We speculated that this additional information could help 
in distinguishing genuine alleles from stutter alleles although it is not likely that this 
problem will be completely overcome.

For this purpose, we assessed population data for 297 samples of three distinct 
populations (Dutch, Himalayan, and Central African Pygmies) for 17 STR loci included 
in a prototype version of the PowerSeq™ MPS STR assay [21]. These data were 
compared to the results of CE-based data from the PowerPlex® Fusion System [12]. 
We also present data from several series of mixed DNA samples in different ratios 
down to 1:99 to survey the possibilities and limits for this assay in analysis of mixed 
samples.

We examined the additional sequence variation of the loci, both within the STR 
motifs and in the flanking regions, and assessed the impact of this variation on the 
discriminating power of the loci. In addition, stutter ratios were studied and compared 
to those obtained with CE-based profiling. 

As a consequence of various mechanisms such as DNA recombination, replication 
and repair-associated processes, the spectrum of human genetic variation ranges from 
single nucleotide differences to large chromosomal events. Among the different types 
of genetic changes, repetitive DNA sequences show more polymorphism than single 
nucleotide variants (Conrad et al., 2010; Hinds et al., 2006; Iafrate et al., 2004; Kidd et al., 
2008; Redon et al., 2006; Sebat et al., 2004; Tuzun et al., 2005), and they are important 
in human diseases (Conrad et al., 2010; de Cid et al., 2009; Girirajan et al., 2011; Hollox 
et al., 2008; McCarroll et al., 2009; Pinto et al., 2010), complex traits and evolution 
(Mills et al., 2011; Stephens et al., 2011; Sudmant et al., 2010). In particular, microsatellite 
variants, also known as short tandem repeats (STR), and their expansion/shortening 
have been linked to a variety of human genetic disorders (Mirkin, 2007; Pearson et al., 
2005; Sutherland and Richards, 1995), and have been used in genotyping (Kimura et al., 
2009; Weber and May, 1989) and forensic DNA fingerprinting studies (Kayser and de 
Knijff, 2011; Moretti et al., 2001).
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Because of the repetitive nature of STRs and often the low level of complexity of the 
DNA sequences in which they occur (Treangen and Salzberg, 2012), characterization 
of STR variability and understanding of their functional consequences are challenging 
(Weischenfeldt et al., 2013). So far, sequencing-based strategies have focused on 
reads mapped to the reference genome and subsequent identification of discordant 
signatures and classification of associated STRs (Medvedev et al., 2009; Mills et al., 2011). 
Yet, the mainstream aligners, such as BWA (Li and Durbin, 2009) or Bowtie (Langmead 
and Salzberg, 2012), do not tolerate repeats or insertions and deletions (indels) as a 
trade-off of run time (Li and Homer, 2010). This limitation leads to ambiguities in the 
alignment or assembly of repeats which, in turn, can obscure the interpretation of results 
(Treangen and Salzberg, 2012). Moreover, the current human genome reference still 
remains incomplete and provides only limited information on expected and potentially 
uncharacterized STRs in different individuals (Alkan et al., 2011; Iafrate et al., 2004; Kidd 
et al., 2008; Sebat et al., 2004). Consequently, STRs are not routinely analyzed in whole-
genome or whole-exome sequencing studies, despite their obvious applications and 
their role in human diseases, complex traits and evolution.

Here, we present a method for targeted profiling of STRs that reports a full 
spectrum of all observed genomic variants along with their respective abundance. 
Our tool, TSSV, can accurately profile and characterize STRs without the use of a 
complete reference genome, and therefore minimizes biases introduced during the 
alignment and downstream analysis. TSSV scans sequencing data for reads that fully 
or partially encompass loci of interest based on the detection of unique flanking 
sequences. Subsequently, TSSV characterizes the sequence between a pair of non-
repetitive flanking regions and reports statistics on known and novel alleles for each 
locus of interest. We show the performance of TSSV on robust characterization of all 
allelic variants in a given targeted locus by its application in several case studies: forensic 
DNA fingerprinting of mixed samples by STR profiling, characterization of variants 
introduced by transcription activator-like effector nucleases (TALENs) in embryonic 
stem (ES) cells and detailed characterization of errors derived from a next-generation 
sequencing (NGS) experiment. 

Material and Methods
Population samples

To assess the potential genetic variation, 297 DNA samples were selected from a 
European population (101 Dutch samples [20]), an Asian population (97 samples from 
Nepal and Bhutan [10]) and an African population (99 Central African Pygmy samples 
[9]).



Chapter 4

78

C
ha

pt
er

 4

Capillary electrophoresis

PCR reactions were performed according to the protocol of the PowerPlex® Fusion 
System [14] using 0.5 ng of DNA and 30 amplification cycles using a GeneAmp® PCR 
System 9700 (Life Technologies). For every reaction, 2800M Control DNA (Promega) 
was included as a positive control and a water sample was included as negative control 
sample. CE was performed using an AB3500XL (Life Technologies) according to the 
PowerPlex® Fusion System protocol, data was analysed using GeneMarker® software 
v2.4.0 (Softgenetics).

Massively Parallel Sequencing

PCR reactions were performed with a prototype PowerSeq™ sequencing assay 
primer mix and master mix (Promega) amplifying 17 STR loci and Amelogenin. All PCRs 
were performed on a GeneAmp® PCR System 9700 using the following program: 96 
°C for 1 min, 30 cycles of 94 °C for 10s, 59 °C for 1 min, 72 °C for 30s and a final 
extension of 60 °C for 10 min, for every reaction 2800M Control DNA was included 
as a positive control and a water sample was included as negative control sample. 

Illumina sequencing libraries were prepared from the PCR products by ligating 
barcoded adapters using the KAPA Library Preparation kit (KAPA Biosystems) without 
additional amplification using 2.5 µl of PCR product directly in the end repair reaction 
(without prior purification) in a total volume of 35 µl. The A-tailing and ligation step 
were performed in a total volume of 25 µl. For ligation, a 10-fold dilution of a barcoded 
TruSeq adapter (Illumina) was used. To confirm successful ligation of the adapters, 1 µl 
of library was analysed on the Qiaxcel (Qiagen) for a selection of libraries. To enable 
balanced pooling, sequencing libraries were quantified in duplicate by real time PCR 
using the KAPA SYBR® FAST qPCR kit. Quantification reactions were performed on a 
LightCycler® 480 (Roche) or a 7500 Real Time PCR System (Life Technologies) using a 
dilution series of PhiX control library (Illumina) as standard. After pooling the libraries, 
the final pool was quantified again using the same method to enable optimal loading of 
the flow cell. Sequencing was performed on the MiSeq® sequencer (Illumina) using v3 
sequencing reagents according to the manufacturer’s protocol with approximately 5% 
of PhiX control library and 14-19 pM final library concentration.

Data analysis

For the analysis of STR sequences, the use of simple alignment-based methods 
could lead to errors. In the analysis pipeline, the first step is the alignment of both 
paired-end reads that are generated by the sequencer to obtain one high quality 
consensus read. We used the paired-end read aligner FLASH [11] that aims for a 
maximum overlap of both reads when creating one consensus read (matching any two 



STR sequencing validation of the Powerseq™ assay

79

C
hapter 4

paired reads with a mismatch ratio of under 0.33 in the overlapping part). If both reads 
end within a repeated element, the alignment could lead to a shortened repeated 
element in the consensus read. To be able to recognise possible misalignment of the 
reads we altered FLASH version 1.2.11 (this altered version is available via https://
github.com/Jerrythafast/FLASH-lowercase-overhang). We added an option to mark 
the bases that were not overlapped by both reads in small letters in the consensus 
read. Hereby, when all the bases of the flanking regions are in small letters (and thus the 
sequence reads ended within the repeated element), they can be filtered out in later 
analysis. When a difference occurred between the two reads, the base call with the 
highest quality value was used for the consensus. Analysis of the paired-end consensus 
reads was performed using TSSV [2] (install using: pip install tssv). A TSSV library was 
created based on all observed variants (Sup. File 1). In Figure 1, the analysis of STRs 
using TSSV is illustrated. To further support the interpretation of STR sequencing data, 
we developed Stuttermark (part of the Python package fdstools, for installation use: 
pip install fdstools); a Python script that marks possible stutter alleles based on the 
sequence structure. With this software a column is added to the table of ‘known alleles’ 
from TSSV where alleles that could be derived from an n-1, n-2 or n+1 stutter of an 
allele (based on the complete allele sequence) in the sample are marked. Thresholds 
for n-1 and n+1 stutter ratios (n-2 is considered as an n-1-1 using a squared value of 
the n-1 threshold) are used to decide whether a sequence is marked as an allele or 
as a possible stutter. A shell script (available upon request) was written to automate 
all the analysis steps in parallel on a computer cluster for large sample series. An Excel 
sheet (available upon request) was subsequently used to summarise the results and 
score variants according to a priori defined criteria for the number of reads per variant 
(total and per orientation) and a minimum percentage from the reads of the highest 
allele for every locus.



Chapter 4

80

C
ha

pt
er

 4

Figure 1. An overview of the TSSV analysis strategy of short tandem repeat 
sequences 

 
A. An example of the TSSV library entry for locus D2S1338 with from left to right the locus name, flanking 1, flanking 2 (in the same orientation 
as flanking 1) and the variant definition. Both flanking sequences usually represent the PCR primers. The numbers at the ends of the variant 
definition sequences (in this example “0 1”, “0 1”, “4 20”, “2 10”, and “0 1”) indicate how often (based on current knowledge) a sequence 
could be repeated. 
B. Both flanking sequences of the library are used to recognise which locus (in both orientations) any read represents. The observed sequence 
variation between the two flanking sequences will be reported by TSSV. In this example, some of the surrounding sequence of the STR is included 
to not only report the STR variation, but also the sequence variation in the surrounding region of the STR. 
C. The sequence between the flanking regions is compared to the variant definition of the library. A sequence that complies with the variant 
definition is reported and summarised (by counting the separate repeated motifs) in the ‘known alleles’ table and a sequence that doesn’t 
comply with the variant definition is reported in the ‘new alleles’ table.
D. A TSSV report summarising the displayed allele which was observed 96 times in the forward orientation and 102 times in the reverse orienta-
tion. The variant starts with AGCATGG... (not repeated), followed by GGAA (repeated 4 times), GGCA (repeated 2 times) and AGGCCAA... (not 
repeated). In addition to the tables, fasta files are generated containing the complete sequence reads for the known and new alleles at each 
locus, but also for the reads that are not recognised or in which only one of the flanking sequences of a locus is recognised. In this way, it is pos-
sible to keep track of the sequences that are not reported.

Analysis of single source samples

In every sequencing run for the population samples (7 runs in total), a maximum 
of 48 barcoded samples were sequenced aiming for a coverage of at least 1000 reads 
for every STR allele in each sample. After measuring concentrations of the sequencing 
libraries, all samples of a run were pooled in an equimolar fashion prior to sequencing. 
The output of TSSV was analysed with Stuttermark using two different threshold 
settings; first, n-1 position stutters with ratios below 10% of the genuine allele and 
n+1 position stutters below 2% of the genuine allele were marked while in the second 
analysis thresholds of respectively 20% and 3% were used. As a final step, a sequence 
read profile (see Figure 2) was generated showing all the alleles that have met defined 
thresholds for read coverage (further described in the Results section). In the sequence 
read profile, allele names for alleles marked as stutter for both settings of Stuttermark 
are automatically removed. As with CE analysis, remaining alleles with an assigned 
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allele name were inspected by a trained expert and alleles interpreted as stutter were 
removed. In this article, allele names are described according to the nomenclature 
described by van der Gaag and de Knijff [17]. In all figures, locus coordinates were 
removed to shorten the allele name.

Figure 2. An example of a PowerSeqTM MPS read profile and read statistics for 
all 18 loci in a single-source sample

A. An STR sequence read profile

B. Sample read statistics

        
A. An MPS-STR sequence read profile showing all observed alleles of a single-source reference  sample with the corresponding number of forward 
reads (blue bars) and reverse reads (red bars) for every allele. Only the observed variants with coverage of at least 5 reads and a within locus 
proportion of 2% of the highest allele are displayed in this profile. B. Read statistics of the displayed sample, all percentages are displayed as 
a proportion of the total passed filter reads. 94.9% of the reads of this sample were recognised for both flanking sequences (matched pairs) 
of a locus using TSSV. 75.6% of the total reads represented known alleles and after removing the stutter reads, 65.2% of the reads represent 
the genuine alleles of this sample. From the 19.3% of matched pairs that were marked as new alleles by TSSV, a large proportion (5.2% of the 
total reads) consisted of singletons. The remaining 5.1% of passed filter reads (not recognised as matched pairs) represented primer dimers.
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Analysis of mixed samples

For five two-person combinations selected from the Dutch population samples, 
mixtures were prepared in the ratios 1:99, 5:95, 10:90, 20:80, 50:50, 80:20, 90:10, 95:5 
and 99:1 by mixing the samples based on triplicate DNA quantifications acquired using 
the Quantifiler® Duo DNA Quantification Kit (Life Technologies). 

In the PCR reaction for STR amplification, DNA input amounts were adjusted to 
add at least 60 pg (≈ 10 cells) of the minor contributor. To achieve this, total DNA input 
varied from 0.5 ng – 6 ng. Samples were sequenced in two runs and pooling ratios were 
calculated to achieve a minimum of 20 reads for every allele of the minor contributor in 
each mixture. Analysis was performed in the same way as for the single source samples, 
but the threshold for the percentage of reads from the highest allele of a marker was 
lowered depending on the mixture ratio (further discussed in results and discussion). 
Based on the sequence variation and allele ratios, suspected stutter peaks were marked 
by an expert to distinguish genuine alleles from stutter peaks.

Analysis of stutter ratios

Stutter analysis of CE data

The sized output trace data (containing fluorescence intensity data for every 
position in the electropherogram) was exported from GeneMarker® to Excel. Using 
peak heights, the stutter ratios at n-1, n+1 and n-2 stutter positions, were determined 
for every allele. Peaks that may represent overlapping stutter events (e.g. stutters in 
between two genuine alleles that may represent both an n-1 and an n+1 stutter) 
were removed. Sup. Figure 1 illustrates which combinations of stutter peaks and alleles 
were used for analysis. Peaks with intensities below 30 rfu were discarded in order 
to avoid miscalled CE artefacts and to minimise the influence of run-to-run variation 
of the Genetic Analyser. For some loci, a large proportion of the peaks on stutter 
positions were lower than 30 rfu (because of the low stutter ratio and the limit in 
detection range), these peaks did not necessarily represent a zero stutter ratio and 
were therefore considered to miss a stutter value to avoid underestimation of the 
stutter ratio (resulting in a slight overestimation of low ratio stutter peaks). 

Stutter analysis of STR sequencing data

Stutter analysis was performed for all samples for which we obtained more than 
50.000 total reads (271 out of 297 samples) to avoid bias introduced by low coverage 
alleles. To check for possible differences in coverage between long and short alleles, 
the within locus allele balance was calculated for every marker. For the stutter analysis, 
sequence variants with coverage below 5 reads were discarded to minimise bias in the 
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stutter ratio. For every observed sequence allele, a table was generated with 6 possible 
stutter sequences; the two most likely stutter sequences for the n-1 stutter reads, the 
n+1 stutter reads and the n-2 stutter reads. The most likely stutter sequences were 
determined based on the length of the longest repeating element in the sequence 
assuming that longer repeats produce the most stutter [3]. For these 6 stutter alleles, 
the stutter percentage was determined by dividing the read count of the stutter allele 
by the read count of the genuine allele. Stutter alleles that could overlap with other 
alleles or stutter reads were removed taking sequence-specific differences into account 
as illustrated in Sup. Figure 1. 

Statistical Calculations

For all STRs in the assay, the match likelihood and power of exclusion were calculated 
for the alleles observed in CE and MPS for all three populations using the Powerstat 
excel spreadsheet [13].

Results and discussion
To assess sequence variation in STR loci and stutter characteristics of a prototype 

MPS STR sequencing assay (PowerSeq™), 297 samples from three globally dispersed 
populations were sequenced. To avoid the influence of possible somatic cell line 
mutations on the analysis of stutter characteristics, we preferred to use DNA samples 
derived from blood over the use of cell line material from worldwide panels like 
HapMap or the Human Genome Diversity Panel [1, 5]. 

In the PowerSeq™ assay, all PCRs are designed to amplify STR fragments which 
are around the same fragment length (shortest to longest allele: 180-310 bp, 180-280 
bp excluding the exceptionally long FGA-alleles). Figure 3 displays the fragment length 
distribution of the sequenced alleles in this study for all 17 STRs and Amelogenin.
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Figure 3. Overview of fragment range for all loci in the prototype PowerSeq™ 
assay

   

    
The prototype MPS PowerSeq™ multiplex assay used in this study contains 17 autosomal STR loci and Amelogenin. This figure shows the PCR 
fragment size variation of all alleles sequenced in this study.

Optimisation

Reliable quantification of the sequence libraries is an important step for optimal 
sequencing. It is used to achieve optimal balance for pooling different libraries in a run 
and it influences the number of molecules that are loaded on the sequencer. To assess 
whether equimolar pooling was achieved, the observed and expected proportion of 
sequences were compared for all samples in the 7 sequencing runs comprising the 
297 population samples (Figure 4). The majority of libraries are represented in 0.5-2 
times the expected proportion of reads in the sequencing run, which is sufficiently 
balanced for the current design. Thus, the quantitation method that was used (real time 
PCR) allows effective library pooling. Different loading concentrations were used on 
the MiSeq® sequencer to determine optimal cluster density on the flow cell (higher 
loading concentrations result in higher cluster densities). Higher cluster density results 
in a higher amount of unfiltered reads but decreases sequence quality (Sup. Figure 
2). We infer that a flow cell cluster density around 800-1000 K/mm2 may be most 
optimal (further discussed in the section ‘filtering noise from alleles’).
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Figure 4. Tukey boxplot of the ratio of observed versus expected read 
proportion of pooled samples over different sequencing runs

        
Tukey boxplot showing the ratio of observed versus expected read proportion of 297 pooled samples analysed in 7 sequencing runs. The box 
displays the interquartile range (IQR), the line in the box displays the median and the whiskers display the range until the last sample within 
1.5 IQR.

An example of a read profile is shown in Figure 2A. The sequence profile resembles 
a CE profile with the y-axis displaying the number of reads observed for every sequence 
variant, the labels on the x-axis display a more detailed description of the sequence 
for every allele. Note that the range of amplicon sizes is similar for all STRs (Figure 3) 
even though the loci are displayed next to each other on the x-axis. The number of 
reads is directly proportional to the number of actual molecules for every allele, which 
is distinct from CE profiles where peak height is influenced by the intensity of emission 
for different fluorescent labels.
Sequence efficiency

In Figure 2, we display the statistics of read counts and the sequencing profile for 
a typical sample which is prepared using the recommended input of 0.5 ng DNA 
in the PCR reaction for this assay. 65% of the reads represented the genuine allele 
sequences of the alleles, approximately 5% of the reads were occupied by stutter reads, 
the remaining 25% of recognised reads consisted of reads containing PCR and / or 
sequencing errors. The 5% of unrecognised reads consisted mostly of primer-dimers 
which is a well-known side effect when large multiplexes such as this 18-plex are 
used. Remaining primer-dimers could be minimised by purification steps involving size 
selection such as using a low bead-to-volume ratio for AMPure XP beads. However, 
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we chose to use the PCR product without purification before the library preparation 
and we used a 2:1 bead ratio in the purification steps of the library preparation to 
avoid size selection which may affect the balance in sequence reads between longer 
and shorter STR alleles.

Filtering noise from alleles

In order to be accepted as a reliable forensic diagnostic tool, MPS results should 
be retrieved and stored in much more detail compared to CE data. Processing of 
millions of reads involves complex bioinformatics. It is for this purpose that the tools 
we developed to analyse MPS reads not only report genuine alleles but also facilitate 
storing and screening those reads that do not represent genuine STR alleles. Detailed 
tables of read statistics are produced and checked before allele interpretation. These 
tables contain read counts for new alleles and for alleles that are only recognised 
for either one or none of the flanking sequences of the TSSV library. In case of high 
read numbers for these categories, fasta files containing the complete sequences of 
the reads can be checked for every locus and for each category (known alleles, new 
alleles, reads with only the start flanking sequence recognised, reads with only the end-
flanking sequence recognised and reads with no recognised flanking sequences at all) 
separately.

The frequency of sequencing errors varies per locus, but is also strongly influenced 
by the cluster density in the sequence run. A good indicator for sequence quality of a 
sequencing run is the balance between forward and reverse reads. Since read errors 
tend to be influenced by sequence content, the same error will usually not appear in 
both orientations [16]. For the longest alleles from PentaD, PentaE and FGA we noted 
that sequencing errors may accumulate in the end of the reads. As a consequence, the 
flanking sequences for that strand may no longer be recognised by TSSV, which could 
lead to strand bias of over five-fold differences between both orientations, even when 
analysing paired-end consensus reads. Thus, one should not straightforwardly aim for a 
high cluster density to retain the highest number of reads, as this may be accompanied 
with strong strand bias. We observed increased rates of sequence errors and strand 
bias for cluster densities over 1000 K/mm2 which is below the recommended cluster 
density of 1200-1500 K/mm2. When a cluster density of 800 K/mm2 is used, at least 
1.5x107 Passed Filter reads are retained (all sequenced for both read orientations) 
which is a sufficient read number to multiplex an effective number of libraries.

Quality filtering of the data was done in the following order:
1. Paired-end consensus alignment: the two paired-end reads of each cluster are 

combined. In case of discrepancies, the highest quality base call is used in the 
consensus read for further analysis. Parts of the read that are not overlapped 
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by both reads are marked in lower case (reads that have one of the library 
flanking sequences completely represented by lower case letters are later on 
moved to the TSSV category of reads recognised for only one of the flanking 
sequences).

2. Singletons are discarded during analysis using TSSV (TSSV option: ‘-a 2’). These 
reads can only be checked afterwards by restarting the analysis without this 
option. Discarding singletons significantly decreases the report file size and 
memory demand in the follow up analyses. Singletons will not meet forensic 
standards, but could be used to decide whether sequence coverage needs to 
be increased for a low coverage sample. New alleles (that do not match the 
variant description of the TSSV library) are reported in a separate table.

3. After performing TSSV analysis, the table of known alleles is filtered by a priori 
defined criteria in an Excel sheet while ensuring that the sequences, which are 
filtered out in these steps, can easily be retrieved and investigated. We used 
a minimum of 8 reads as allele coverage and a minimum of 2 reads for both 
sequence orientations which removed the majority of sequencing errors. These 
numbers may seem low, but it should be noted that we use ‘allele coverage’ (only 
including reads without errors) and not ‘total coverage’ (which would mean 
the sum of all reads for one locus and could include reads with errors). Since 
forensic samples often carry allele imbalance due to low amounts of template 
or multiple contributors to a sample, the use of total summed coverage of all 
alleles for a target can give a misleading sense of quality and should be avoided. 
The threshold of 2 reads for both sequence orientations is sufficient to remove 
the majority of sequence artefacts. A higher threshold could result in the loss of 
some (mostly longer) alleles that exhibit a strong strand-bias due to structural 
sequence errors. Retained alleles were interpreted before being reported.

4. In the same Excel sheet an additional criterion is a within-locus proportion 
(the read count of an allele divided by the read count of the highest allele of a 
locus) that is required for reporting an allele. This threshold is used to remove 
PCR errors and structural sequencing errors that may especially occur at high 
coverage. This value can be adjusted depending on the required detection of 
low percentage contributions.  When the input amount of DNA in the PCR is 
available, it can also be used to filter out unrealistic mixture contributions (for 
example: for a start amount of 60 pg in the PCR it is not realistic to look for 
a 1% contribution since this would represent the DNA equivalent of only 0.1 
cell). For single reference samples we used a threshold of 15%, for mixtures, this 
threshold was lowered to 1% except for mixtures with a minor contribution of 
1% in which this threshold was lowered to 0.25%. All retained alleles appear as 
a bar in the STR sequence profile (Figure 2).

5. Allele variants that are not represented in the TSSV library are added to the 
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table of new alleles. This table is filtered using the same settings as used for the 
known alleles. When a new allele is identified as a genuine allele, it is added 
to the TSSV library and samples are reprocessed using the new TSSV library 
which will move it to the known alleles category.

6. Stuttermark is used to mark alleles that could be (partly) derived from stutter 
(as described in the Materials and methods section). When interpreting the 
alleles that pass the filtering steps mentioned before, alleles at a stutter position 
of another allele (based on the sequence) and with less reads than an a priori 
defined percentage of the reads of a genuine allele are marked as stutter.

7. Interpretation of the retained alleles is done by inspection of the markings 
from Stuttermark in combination with the ratio between the retained alleles 
and the strand balance for every allele. In this step, the label of the alleles that 
are marked as stutter (or any other artefact) will be removed from the STR 
sequence profile. However, in the sequence profile, the bar representing the 
removed allele will remain without a label as is common practice for CE-based 
profiles. 

Sup. Figure 3 shows examples of STR sequencing profiles for a single and a mixed 
source sample after different filtering settings to illustrate the effect of the used 
parameters.

Concordancy

Reliability of sequencing results was assessed for the 297 population samples by 
comparison of CE data from the PowerPlex® Fusion System with the sequencing data. 
All STR alleles from the sequencing data were in concordance with CE analysis except 
for two alleles from PentaD. These alleles were missed when using the 15% within 
locus threshold (heterozygote balance), as they had a frequency of 8% and 12% of the 
highest allele (Sup. Figure 4). Since both samples are from the same population, and 
both alleles have the same repeat length and sequence, it is likely that this difference 
in read numbers is caused by a SNP under the PCR primer used in the PowerSeq™ 
sequencing assay as observed for rare null alleles in commercial CE-based assays [20].

Sequence variation

As was expected, MPS STR genotyping revealed substantial genetic variation in 
addition to the variation in repeat length that is detected using CE (Figure 5). Sup. 
Figure 5 displays the sequence of the genome reference (GRCh37/hg19) and of 
control sample 2800M (which is provided with the assay). Sup. Figure 6 displays the 
observed alleles for all loci and the frequencies of these alleles in the three tested 
populations. Since we describe our variants according to nomenclature rules [17] in 
which all variants are described in the forward orientation of the genome reference, 
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the start position and orientation of some of the alleles is slightly different than the 
reference alleles described by Gettings et al. [7]. Based on the observed variation in this 
study, the analysed STRs can be divided into four classes.

1. Simple STRs: Loci that only show variation in the number of repeats without 
additional sequence variation. CSF1P0 is the only simple STR locus.

2. Complex STRs: Loci where the repeat motif consists of several repeating blocks 
with a different sequence. D19S433, FGA and PentaE are complex STRs.

3. Simple STRs with SNPs in the flanking sequence of the repeat region. D7S820, 
D16S539, TPOX and PentaD are simple STRs with SNPs.

4. Complex STRs containing SNPs in the flanking sequence of the repeat region: 
D2S1338, D3S1358, D5S818, D8S1179, D13S317, D18S51, D21S11, TH01 and 
vWA (interestingly, for vWA, all SNPs are associated with specific repeat region 
variation) are complex STRs containing SNPs in the flanking sequence. 

Figure 5. STR sequence variation divided in length variation, complex STR 
variation and SNP variation

  
The stacked bar graph displays the number of different alleles observed in sequence analysis of 297 samples divided in three categories: In blue, 
the number of alleles observed when performing CE. In red, the additional alleles observed by sequencing when taking into account variation 
within the STR motif. In green, the additional alleles when taking into account variation flanking the STR motif. When the variation flanking the 
STR motif is linked with variation inside the STR motif, the green portion of the bar graph doesn’t display those alleles (they are included in the 
red portion of the bar graph).
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Table 1. Locus statistics for CE and MPS analysis of the same samples from 
three populations

                                      

Heterozygosity, Match Likelihood and Power of Exclusion for STR CE and sequence analysis for all 17 STRs as observed in the three tested 
populations.
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Using CE, uniquely identified alleles comprise only 48% of the total alleles observed 
using sequencing in these 17 STRs for the analysed set of 297 samples. However, 
the variation is not evenly dispersed over the loci (Table 1). Since not every available 
software tool for analysis of STRs capture the variation within the repeat structure 
and the flanking sequence [18] it is important to be aware of the information that 
is missed when variation outside the repeat structure is not reported. Obviously, the 
discriminating power of the loci is increased when all the variation on sequence level 
is taken into account. In Table 1 we display the match likelihood (ML) for every locus 
in all three populations for sequence analysis and for CE analysis in comparison. The 
additional sequence variation has the strongest effect on the discriminating power 
of D5S818 and D13S317 with an average three-fold difference in the ML over all 
populations between the two methods. D2S1338, D3S1358, D7S820, D8S1179, 
D16S539 and D21S11 exhibit more than a two-fold difference in the ML over all 
populations. When only taking into account the Dutch and Himalayan population, 
D5S818, D7S820, D13S317 and D21S11 still exhibit a greater than two-fold difference 
in match likelihood between length and sequence variation. 

Stutter analysis

Stutter ratios were determined when the CE signal intensity or MPS read coverage 
was sufficient for alleles which are not influenced by stutters from other alleles. An 
overview of the read coverage statistics and within locus allele balance of the samples 
used for this analysis is shown in Supplemental Figure 7. For each locus, dot plots were 
generated displaying the average stutter ratios for all STR alleles for which at least 
four stutter ratios could be calculated (Sup. Figure 8). In general, stutter ratios of both 
methods are very similar with the exception of PentaE where stutter ratios for CE 
are lower than for sequence data. Some sequence alleles correspond to the same CE 
allele (e.g. D2S1338 allele 21). For complex STRs, the longest uninterrupted repeat 
stretch determines the stutter ratio [19] which is confirmed by our data as illustrated 
in Figure 6. Here, detailed stutter graphs for D18S51 are shown for both methods; 
the dots of the alleles carrying an interrupted repeat motif (marked in red) tend to 
have lower stutter ratios than the uninterrupted alleles of the same length.. Because of 
the separation of these new sequence alleles it is expected that the stutter ratio per 
sequence allele would show less variation than the CE stutter ratio which represents 
several sequence variants. To test this, the Coefficient of Variance of the stutter ratio 
was determined for every allele with stutter data for at least four samples (Sup. Figure 
8). Most obtained CV values are either similar or lower for sequencing stutter ratios 
than for CE stutter ratios. As expected, the loci for which the CV of the stutter ratio 
is generally lower for sequencing data than for CE are all complex STRs (especially 
D5S818, D8S1179, D13S317, D21S11, FGA and vWA). In addition it was noted that 
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the CV of the stutter ratio for sequence data remains relatively stable for all alleles 
within the same locus (even though the stutter becomes higher for longer alleles). For 
CE-based stutter ratios, much more variation in CV is observed between different 
alleles within the same locus which is partly explained by alleles that are subdivided 
into different sequence alleles. For some STRs (in particular D2S1338, D3S1358, 
D7S820 and D18S51) the CV shows a downward trend for increasing allele length in 
CE data. An explanation for this decreasing CV could be that low percentage stutter 
peaks in a CE profile are often below the detection threshold (30 rfu in this analysis). 
Since a certain number (at least several thousand depending on the fluorescent label) 
of molecules is needed before a CE peak becomes visible, the signal intensity might not 
be linearly correlated with the number of molecules for alleles with low peak heights. 
This could contribute to an increased variation of stutter ratios.

Mixture analysis

A total of 45 two-person mixtures (from five donor combinations) were analysed 
with minor contributions of 1%, 5%, 10%, 20% and 50% using the PowerSeq™ 
sequencing assay. In every mixture, all alleles of both contributors were recovered 
in the sequence reads, mostly with allele ratios close to expected. Figure 7a displays 
the read percentage for each allele call of the minor contributor grouped by mixture 
ratio. Although there is variation, we found that the observed percentage of reads 
(per allele) from the total locus reads is a good indication of the ratio between two 
contributors in a mixture. For each of the 45 mixtures the minor contribution was 
estimated based on the read frequencies of the minor alleles that are not overlapping 
other alleles or stutter reads in the mixture (see Sup. Figure 9 for further explanation 
of this procedure for a hypothetical three locus mixture profile). Figure 7b shows the 
summary statistics for calculation of the minor contribution in the 10 mixtures (for 
the 50/50 mixtures, calculations were performed for both contributors) of each ratio. 
Since the total marker reads also contain reads representing stutter, the quantitative 
prediction of the minor contribution is expected to be slightly lower than the genuine 
contribution which is apparent for the mixtures with 50% and 20% minor contribution. 
Not surprisingly, a quantitative prediction of the minor contribution becomes less 
accurate (relative to the percentage of contribution) when the minor contribution 
decreases. It is apparent that the standard deviation is almost stable across all mixture 
ratios. 
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Figure 6. Comparison of stutter ratios for locus D18S51 analysed by CE and 
MPS

A. 

 

        

B. 

       
A. Dot plot displaying the distribution of stutter ratios for the locus D18S51 analysed by CE using the PowerPlex® Fusion System. Every dot 
represents the stutter ratio of one allele in a single sample, lines display the median and whiskers display 1.5 interquartile range. Red dots 
represent alleles in which the sequence revealed an interrupted repeat (resulting in a shorter length of the longest repeated motif). B. Dot plot 
displaying the distribution of stutter ratios for the locus D18S51 analysed by MPS using the prototype PowerSeq™ system. Red dots represent 
alleles in which the sequence revealed an interrupted repeat. It is apparent that the stutter ratio of the alleles carrying an interrupted repeat 
motif is generally lower than the alleles of the same length without interruption of the repeat motif.
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Figure 7. Tukey boxplot displaying the observed within locus read percentages 
of all minor alleles for 10 two-person mixtures for each of the five tested 
mixture ratios

A.

       

B. 

          
When analysing alleles with abundance below 5% of the highest allele of the locus, additional PCR/sequence error variants were observed for 
several loci which can complicate the interpretation of a DNA sample. Therefore, the analysis of minor contributions of 5% or less in a mixture 
without prior knowledge of the ratio between the different donors, remains difficult for some, but not all loci using the current experimental 
and analysis setup for this assay. Increasing the sequencing coverage increases the read counts of these artefacts as well and will not help to 
distinguish them from genuine alleles.
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Analysing an unknown trace

When unknown samples are analysed that could have more than one contributor, 
one needs to decide on the minimal allele coverage and level of minor allele detection 
prior to sequencing. The minimal allele coverage of 8 reads for every allele and 2 reads 
for both orientations used in this study was chosen for investigative purposes to get an 
indication of general sequence quality. Although in most cases these thresholds were 
sufficient to remove artefacts, some erroneous reads can still occur due to a relatively 
low sequence quality that may be caused by variation in cluster density or other factors 
yet unknown. In addition to a minimal read coverage to guarantee sequence quality, 
an additional threshold can be used for the minimal percentage of reads compared to 
the allele with the highest read count within a locus to filter out structural sequence 
errors. Below 0.5%, most STRs show a high amount of additional sequence artefacts 
that coexist with the genuine alleles at a relatively stable ratio. However, when using a 
high threshold, low percentage contributions might be missed.

Recommendations

In this study, the population samples were sequenced with an average allele 
coverage of over 800 reads (also including the samples that were not used for stutter 
analysis), which is crucial for a reliable characterisation of stutter reads and structural 
sequence errors in this stage of the development of this new technique. We assume 
that, eventually, for reliable MPS-STR genotyping of a single-source reference sample 
(e.g. for database purposes) a much lower coverage could be sufficient. To distinguish 
genuine allele sequences from errors, we recommend a coverage of at least 20 reads 
for every allele (sequences from both ends combined) with representation in both 
orientations. This means that, for the current assay, 5.000 reads per sample will probably 
be sufficient to achieve the recommended allele coverage. For evidentiary traces, more 
sequences will be needed since locus balance will be influenced by low template 
concentrations and low contributions can only be analysed reliably using sufficient 
reads for the alleles of the minor contribution. For example, when we want to retain 
sufficient data to detect a minor contribution of 5% we need at least (100/5) x 5000 
= 100.000 reads (meaning 100.000 reads for read1 and 100.000 reads for read2) for 
the current assay. This assumes that the sample is of sufficient quality to retain the same 
locus balance as a reference sample.
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Conclusion
The analysis of STRs by MPS using the MiSeq® provides several advantages over the 

routinely used CE. We observed full concordance between CE (Powerplex® Fusion) 
and MPS (PowerSeq™) based genotyping of STR loci among 297 individuals.

We observed substantial sequence variation within the repeat motifs of STR loci 
and their immediate flanking regions, in addition to the length variation of the STR-
motifs. Since design of a multiplex assay for MPS is no longer limited by the number of 
different fluorescent labels, PCR primers can be designed to amplify all STR loci within 
a much more similar fragment size range. This offers advantages for degraded DNA 
samples and reduces some of the amplification bias due to length variation among 
the various PCR-templates in a single multiplex PCR reaction. In addition, the exact 
nature of MPS data (which is as simple as sequence-specific read counts for every 
allele) provides opportunities for a more standardised follow-up analysis. The study of 
stutter in MPS data shows that the highest stutter artefact is determined by the longest 
repeated element in the STR. STR stutter ratios in MPS data are generally similar to 
those of CE data except for many of the complex STRs since those CE alleles can 
be differentiated into separate MPS alleles with their own respective stutter profile. 
Mixture analysis down to a minor contribution of 5% is routinely feasible for most 
STR loci. Even sequence reads representing a minor contribution down to 1% can be 
recovered, although here, obviously, reads representing stutters still cause interpretation 
problems in the reads. 
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Supplementary materials
Supplemental Figure 1, four examples of allele combinations to illustrate the 
criteria used for inclusion of stutters for the calculation of stutter ratios

The peak profiles display which stutter peaks are included and excluded for analysis of stutter ratios. In all four examples, the blue peaks 
represent the genuine alleles, the green peaks represent stutters that are included in the calculation of stutter ratios and the red peaks represent 
stutters that are excluded for the calculation of stutter ratios. Example A.: Both alleles have no overlapping stutters, all the stutter peaks are 
included for calculation of stutter ratios. Example B.: Allele 14 is overlapping with the n-1 stutter of allele 15. For this allele 15, the n-1 stutter 
cannot be used for calculation of the stutter ratio. The n-1 stutter of allele 14 overlaps the n-2 stutter of allele 15 but is still included in the 
calculation of the stutter ratio for allele 14 since the contribution of the n-2 stutter to the peak height is considered to be negligible. Example 
C.: The n+1 stutter of allele 14 is overlapping with the n-2 stutter of allele 17. This stutter position is removed from the analysis of the stutter 
ratio. Example D.: The n-1 stutter of allele 16 overlaps with the n+1 stutter of allele 14 and is excluded from the analysis of the stutter ratio. 
For the sequencing data, the same criteria were used but sequence variation was considered resulting in fewer alleles to be excluded from the 
calculation of the stutter ratios.
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Supplemental Figure 2. Overview of sequence efficiency for MiSeq® sequencing 
runs with different cluster density

Scatterplot displaying the yield of sequence reads after different filtering steps in the analysis from signal on the MiSeq® until the reads retained 
in the fastq files after demultiplexing for runs with different levels of cluster density. In red, the initial number of reads are displayed before any 
filtering took place on the MiSeq®. In purple, remaining reads after MiSeq® quality filtering are displayed. In orange, the reads are displayed in 
which a barcode is recognised during de-multiplexing.
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Supplemental Figure 3. Overview of analysis filtering / interpretation steps of a 
sequence DNA profile for a single source sample and a mixture

A.
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B.
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A. Sequence profiles showing allele names after separate filtering steps used in the analysis for a single source sample with the final table used 
for interpretation to call genuine alleles in a reference sample. B. Sequence profiles showing allele names after separate filtering steps used in 
the analysis for a mixed sample with the final table used for interpretation to call genuine alleles in a mixed sample.
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Supplemental Figure 4. Sequence read profile for the two samples where 
PentaD showed a strong allelic imbalance

    

This figure displays the sequence read profile for PentaD for the two samples where a strong allelic imbalance was observed. For these samples, 
the number of reads for the allele with CE-length 11 was only observed for 8% and 12% of the reads of the second allele.
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Supplemental Figure 5. STR sequence alleles for the reference genome and 
2800M Control DNA

Description of the coordinates of the STR motif for each STR and the alleles represented in the reference genome (hg38) and in 2800M 
Control DNA.
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Supplemental Figure 6. Observed sequence variation in 297 analysed samples 
from three populations
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For every locus the table displays the observed sequence alleles and respective allele frequencies for the three populations tested.
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Supplemental Figure 7. Coverage and within locus allele balance for the samples 
used for stutter analysis
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Dot plots for each locus displaying the ratio of the reads of the shortest and longest allele in each sample grouped by the STR length difference 
of the two alleles. In general, the shorter allele has a slightly higher number of reads than the longer allele (on average 1.2 times higher). For 
some loci, large length differences between the two alleles can result in stronger within marker allele inbalance.

Supplemental Figure 8. Stutter characteristics for the 17 STRs of the prototype 
Powerseq™ system and the Powerplex® Fusion system
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Comparison of stutter characteristics for the MPS-based PowerseqTM system and the CE-based Powerplex® Fusion system. For every marker, 
two graphs display the average stutter ratio for every allele and the Coefficient of Variance (CV) for the stutter ratio of each allele. Since for 
MPS-based analysis some alleles of the same CE-length are represented by distinct sequence alleles, the stutter ratios and CV of these alleles 
are displayed separately. It is apparent that in general, stutter ratios of the MPS-based analysis are similar to the CE-based stutter ratios except 
for CE-alleles that are subdivided into several sequence alleles. The subdivided sequence alleles of the same total CE-length often have different 
stutter ratios which results in a lower variation of stutter ratio per allele compared to the combined CE-allele. This can be observed from the 
generally lower values for the CV of the stutter ratio for the sequence alleles.
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Supplemental Figure 9.  A three locus hypothetical example illustrating our 
method for the calculation of the proportion of a minor contribution in a 
mixture
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Abstract
Massively parallel sequencing (MPS) is on the advent of a broad scale application in 

forensic research and casework. The improved capabilities to analyse evidentiary traces 
representing unbalanced mixtures is often mentioned as one of the major advantages 
of this technique. However, most of the available software packages that analyse forensic 
short tandem repeat (STR) sequencing data are not well suited for high throughput 
analysis of such mixed traces. The largest challenge is the presence of stutter artefacts 
in STR amplifications, which are not readily discerned from minor contributions. 
FDSTools is an open-source software solution developed for this purpose. The level of 
stutter formation is influenced by various aspects of the sequence, such as the length 
of the longest uninterrupted stretch occurring in an STR. When MPS is used, STRs 
are evaluated as sequence variants that each have particular stutter characteristics 
which can be precisely determined. FDSTools uses a database of reference samples to 
determine stutter and other systemic PCR or sequencing artefacts for each individual 
allele. In addition, stutter models are created for each repeating element in order 
to predict stutter artefacts for alleles that are not included in the reference set. This 
information is subsequently used to recognise and compensate for the noise in a 
sequence profile. The result is a better representation of the true composition of a 
sample. Using Promega Powerseq™ Auto System data from 450 reference samples 
and 31 two-person mixtures, we show that the FDSTools correction module decreases 
stutter ratios above 20% to below 3%. Consequently, much lower levels of contributions 
in the mixed traces are detected. FDSTools contains modules to visualise the data in 
an interactive format allowing users to filter data with their own preferred thresholds.

Introduction
Analysis of Short Tandem Repeats (STRs) has been a successful forensic tool in 

the past two decades. The comparison of STR profiles from forensic DNA evidentiary 
traces with reference samples and DNA databases has provided essential information 
in many forensic cases. [1] Standard practice is to use Capillary Electrophoresis (CE) to 
analyse STR length variation. In recent years, Massively Parallel Sequencing (MPS) was 
introduced as a new method to analyse STRs and other forensic DNA markers [2,3]. 
MPS enables the simultaneous detection of both length and sequence variation of STRs, 
which increases the discriminatory value substantially [4,5,6]. The output of CE consists 
of peaks reflecting fluorescent signal intensities with their own respective shapes and 
peak heights. The output of MPS data analysis consists simply of read counts of the 
observed sequences. Both methods can suffer from the occurrence of PCR artefacts 
such as STR stutters [7]. This especially complicates the analysis of STR profiles coming 
from multiple contributors, which is common in forensic evidentiary traces. [8] The 
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level of stutter formation depends on a number of distinct aspects of the sequence, 
including the A/T content of the repeat unit and the number of consecutive repeat 
units occurring in an STR [9]. Since any specific STR length identified by CE can consist 
of multiple different sequences, these CE-identified length variants show a larger 
variation in measured stutter percentage than individual sequences analysed through 
MPS. This decreased variation in stutter percentage for MPS STR data may aid in the 
interpretation of mixtures [2], as it allows for a better prediction of stutter behaviour, 
which can be used to filter the data for stutter products. Existing software packages for 
the analysis of STR sequencing data [10,11,12] do not support extensive filtering and 
correction of systemic PCR and/or sequencing errors and therefore seem less suited 
for analysis of mixed DNA samples. This prompted us to develop a software package 
that harbours the following features: 1) characterisation and correction of noise in 
the sequencing data caused by PCR stutter or other systemic PCR and/or sequencing 
errors; 2) visualisation of sequencing data as comprehensive profiles; 3) filtering of data 
in graphs and tables with user definable thresholds and 4) open-source accessibility. 
Forensic DNA Sequencing Tools (FDSTools) is available via the Python Package Index 
(either by manual installation or by using the command ‘pip install fdstools’). We assess 
the performance of FDSTools on 31 two-person mixtures genotyped via the Promega 
Powerseq™ Auto System for which we first generated a reference dataset of 450 
samples.

Material and Methods
Sample preparation

PCR products and sequencing libraries were prepared as described previously 
[2] using a prototype Promega Powerseq™ Auto System containing 23 STRs and 
amelogenin. A set of 450 Dutch samples [13] and 31 two-person mixtures were 
amplified and sequenced. The mixtures consisted of three combinations of two donors 
selected randomly from a pool of unrelated individuals, which were mixed in different 
ratios. The minor components in the mixtures contributed 0.5% (six mixtures), 1% (six 
mixtures), 5% (four mixtures), 10% (six mixtures), 20% (six mixtures) and 50% (three 
mixtures).

Since the mixtures were used to test the performance of the software and also 
to determine analysis thresholds that are fit for purpose, we balanced the influence 
of varying DNA inputs in the PCR and increased drop-out due to low DNA input. 
This was achieved by the use of a minimum of the minor component of 60 pg in the 
0.5%, 1% and 5% mixtures, resulting in a total DNA input of 12 ng, 6 ng and 1.2 ng, 
respectively (60 pg resulted in less than 20% drop-out in the validation of Powerplex 
6C [14]). The same total DNA input of 1.2 ng was used for the 5%, 10%, 20% and 
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50% mixtures (resulting in 120 pg and 240 pg of the minor components in the 10% 
and 20% mixtures, respectively). The DNA input was 0.5 ng for single donor samples.

The genotypes of the donors used in the mixtures were known, which enables 
the identification of drop-in and drop-out allele calls. Paired-end sequencing data of all 
amplicons was generated using the MiSeq® Sequencer (Illumina).

Initial data processing

In Figure 1, the main tools of the FDSTools package and their role in the data 
analysis pipeline are displayed. The tools can be split into three functional groups: tools 
for reference database creation, tools for reference database curation (data quality 
assessment) and tools for case sample filtering and data interpretation. In addition, the 
package contains initial data processing tools such as TSSV [10] that are common to 
reference database samples and case samples.

Figure 1. Flow chart of the analysis process, showing the main tools of FDSTools

Flow chart showing the main tools (blue rectangles) of the FDSTools package and their roles in the data analysis pipeline. The output of each 
tool can be visualised using the Vis tool (not shown).
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Paired-end read merging

Using paired-end sequencing, forward and reverse strand molecules of each 
amplicon were sequenced from both ends. The first ~300 nucleotides from either end 
were obtained. These read pairs were merged into a consensus read by aligning the 
read pair such that the largest possible overlap is obtained while allowing for up to 
33% mismatches in the overlapped region. Most amplicons were about 300 base pairs 
in length and provided fully complementary read pairs.

With STR amplicons that are longer than 300 bp, a problem may occur when 
both reads end in the middle of the STR structure and the pair may be merged into 
a truncated STR sequence. A modified version of FLASH 1.2.11 [15] (available via 
github.com/Jerrythafast/FLASH-lowercase-overhang) was used to mark the bases that 
were not in the overlapped region in lower case in the consensus read. This enables 
detection of truncated STR sequences in downstream analysis.

Linking reads to loci and alleles

The merged reads are linked to specific loci and alleles by the TSSV tool, which is a 
wrapper around a simplified version of the TSSV [10] program called TSSV-Lite. TSSV 
links reads to loci by scanning the reads for the sequences flanking the STR loci used. 
The flanking sequences of each locus, that usually represent the most 5’ nucleotides 
of the primers, are provided to FDSTools in a library file, together with various other 
details about the loci used. Supplementary File 1 represents the library file used in this 
study. The file contains a description for the contents of each section.

Each read is scanned for these flanking sequences by computing alignments. In 
this study, the flanking sequences were 18 nucleotides in length and two substitutions 
(or two inserted or deleted bases) per flank were allowed in the alignment. Reads 
are categorised as ‘unrecognised’ if no flanking sequence is found. Furthermore, both 
flanking sequences are required to have at least one upper case letter, which ensures 
that overlapped reads that are potentially truncated are categorised as ‘unrecognised’ 
as well. Reads in which only one flanking sequence is found with at least one upper 
case letter get linked to a locus but flagged as ‘no start’ or ‘no end’ depending on 
whether the left or right flank is missing, respectively (optionally, these reads can be 
written to separate fasta or fastq files).

The main output of TSSV is a text file with tab-separated values. The file contains 
one line for every unique sequence of each locus. The columns include the name of the 
locus, the sequence, and the number of reads carrying this particular sequence. Read 
counts are given separately for the forward and reverse strand.
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TSSV includes additional options for filtering sequences that are seen too few 
times and sequences with a length outside a given range (e.g., primer-dimers). This 
range can be specified separately for each locus. Furthermore, filtered sequences can 
be aggregated into a single ‘other sequences’ category for each locus. In this project, 
only singletons (i.e., sequences with only one read) were aggregated to the ‘other 
sequences’ category.

Building a reference database

One function of FDSTools is the building of a reference database. Such a database 
can be used to obtain estimates of recurring allele-specific systemic noise. Here, ‘noise’ 
refers to the complete collection of sequences observed in a sample, except the 
sample’s true allelic sequences. Noise includes any artefact deriving from the PCR as 
well as the sequencing (such as PCR stutter or single-nucleotide errors). Additionally, 
based on the reference data a statistical model can be derived that aims to predict 
stutter ratios for alleles not present in the reference set.

The creation of a reference database involves various tools included in the FDSTools 
package, which will be discussed in the next sections. In addition to these separate 
tools, FDSTools offers the Pipeline tool, which conveniently integrates the entire data 
analysis pipeline. Users are advised to use Pipeline as it removes the complexity of 
having to run several separate tools and to combine their output. Pipeline takes a 
simple configuration file containing the analysis parameters and automatically runs the 
appropriate tools.

Building a reference database is a two-phase process. In the first phase, the 
reference samples are analysed in a global manner to identify their alleles and reject 
those samples in which the alleles are not readily identified. In the second phase, the 
systemic noise of each of these alleles is analysed in detail.

Allele calling for reference samples

Determining the alleles of single donor reference samples is a fairly straightforward 
process because these generally represent the one or two most abundant sequences 
for any locus. FDSTools includes Allelefinder to call alleles this way. It is applied after 
Stuttermark, which is described below. A number of thresholds are used to guard against 
including alleles of potential low-level contaminations, which are outlined in Figure 2. 
For heterozygous loci, a second allele is only called if it passes the allele threshold, 
which is defined in this project as 30% of the read count of the most frequent allele at 
the same locus. As we expect no stutter above 30% [2], this threshold separates the 
alleles from noise. No alleles are called at a locus when additional sequences occur that 
have a read count below the allele threshold but above the noise threshold (which is 
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defined as 15% of the most frequent allele in this project) or if a third sequence passes 
the allele threshold. If more than two loci in the same sample fail to give a result for 
these reasons, the overall quality of the sample is considered too poor to report any 
alleles. Additionally, Allelefinder can be configured to call at most one allele at haploid 
loci.

Figure 2. Thresholds used by Allelefinder to call alleles in reference samples

      
Sequence variants with a read count above the allele threshold are called as alleles. The four lighter-shaded bars represent stutter variants (as 
recognised by Stuttermark), which are ignored by Allelefinder.

 

The three potential pitfalls are 1) PCR stutter artefacts that exceed the noise 
threshold; 2) strong read count imbalance for heterozygous alleles, which may be the 
result of e.g., primer-site sequence variants and 3) autosomal trisomy, which is rare. To 
deal with the problem of stutter, each sample was analysed with Stuttermark [2] before 
calling alleles. With Stuttermark, sequences that are in a stutter position of another 
sequence while having a read count below a user-supplied percentage with respect to 
the other sequence are marked as ‘stutter’. Sequences that have a read count that is 
too high to be explained by stutter alone will not be marked as ‘stutter’, as they may 
coincide with a genuine allele. The thresholds used here were 30% for −1 stutter (loss 
of a repeat unit) and 10% for +1 stutter (gain of a repeat unit). For −2 stutter products, 
a 30% threshold of the −1 stutter product is used. Sequences that are marked as 
‘stutter’ are completely ignored by Allelefinder.

Allelefinder produces the list of alleles and a report detailing for which samples and 
loci allele calling is rejected and for which reasons.

Estimating average allele-specific systemic noise

For each allele, a profile of recurring systemic noise, including PCR stutter products 
as well as any other ‘side products’, can be generated based on the reference data. 
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Noise profiles are always computed separately for forward and reverse reads, because 
strand bias may exist in the sequencing technology used. Profiles are also computed 
separately for each locus, under the assumption that noise production is not influenced 
by alleles of other loci. The level of noise is expressed as the number of noise reads as 
a percentage of the number of reads of the parent allele. In the context of PCR stutter 
analysis, this quantity is often referred to as the ‘stutter ratio’, despite the representation 
as a percentage of the parent allele. We use the generalised term ‘noise ratio’ (also 
represented as a percentage of the parent allele) to account for all other systemic 
noise as well.

       
In homozygous samples, the noise ratio can be calculated by dividing the number 

of reads of a non-allelic sequence by the number of reads of the allele. Allele-specific 
noise profiles are readily computed from homozygous samples carrying this allele by 
scaling the read counts in each sample such that the parent allele is 100 and averaging 
the noise ratios for each noise sequence. These per-allele noise statistics and other 
statistics, such as the standard deviations of the noise ratios can be obtained using 
BGHomStats. In heterozygous samples the extraction of noise sequences is more 
complex, because it has to be determined which proportions each allele contributed 
to the observed noise sequences. We assume that noise in heterozygous samples 
corresponds to the sum of the noise profiles of the two alleles, after the application of 
a scaling correction to account for differences in the amount of each allele amplified. 
This is needed as even for heterozygous allele pairs, PCR efficiency may vary due 
to primer binding site sequence variation or STR length. [16] To extract noise from 
heterozygous reference samples an iterative approach was taken and implemented in 
the BGEstimate tool in FDSTools.

In essence, the algorithm, which is discussed in more detail in Supplementary Text 
1, seeks a non-negative least squares solution to the matrix equation A P = C. In this 
equation, C is an N × M matrix of constants derived from the read counts in the 
reference samples, A is an N × N matrix summarising the allele balance in the samples, 
and P is an N × M matrix containing the estimated profiles of systemic noise. N is 
the number of unique genuine alleles among the reference samples and thus also the 
number of profiles produced and M is the total number of unique sequences observed.

Matrix C is computed once at the start of the algorithm. Each row in C corresponds 
to one allele and contains the sum of the read counts of all samples that have that 
particular allele, after scaling the allele to 100 reads for homozygous samples and 50 
reads for heterozygotes. The noise profiles in P are initialised with the assumption that 
no systemic noise is present, i.e., all elements are set to 0, except for the elements that 
correspond to the actual alleles, which are set to 100.
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The algorithm then proceeds by repeatedly re-estimating the allele balance matrix 
A while reading cross-contributions between the alleles from the current profiles P and 
subsequently re-estimating P by finding a non-negative least squares optimal solution 
to A P = C. The values thus obtained in P are the average noise ratios of all observed 
systemic noise for all alleles (i.e., each row in P contains the noise profile of one allele).

To avoid noise from one allele being incorporated in the noise profile of another 
allele, a minimum of three different heterozygous genotypes per allele was used in this 
study. A threshold can be set for the minimal read count of noise to consider and the 
minimal percentage (we used 80%) of reference samples with the same allele which 
should contain the same noise before it is included in the noise profile. Each of these 
parameters can be set using various options of the ‘fdstools bgestimate’ command.

Relating the amount of stutter to repeat length
With the methods outlined above, profiles of systemic noise were obtained for each 

allele present in the reference set. However, one would also like to be able to filter and 
correct the noise originating from alleles that are not (yet) included in the reference set, 
as case samples may be encountered that contain alleles for which no reference sample 
was available. For this purpose, we developed a method to predict the sequence and 
corresponding amount of PCR stutter artefacts that would be produced for any allele 
of a given locus. Note that this method does not predict noise other than noise resulting 
from STR stutter or single nucleotide stretches.

Previous studies have shown that the amount of stutter is strongly correlated with 
the length of the repeated sequence [17] and even more so with the number of 
consecutive repeat units [2,18]. The FDSTools tool Stuttermodel seeks to fit polynomial 
functions to the repeat length and stutter ratio in homozygous reference samples. 
Stuttermodel scans each of the alleles for all positions where a particular repeat unit 
(e.g., the sequence ‘AGAT’) is repeated and records the length of this repeat, as the 
number of nucleotides, including incomplete repeats at the beginning or end of the 
repeated stretch. For each sample with this allele, the number of noise reads that lack 
exactly one repeat is counted. Reads that combine the loss of one repeat with one or 
more other differences (e.g., substitutions, or stutter in another stretch of repeats in the 
same allele) are included in this count. The counts thus obtained are used to compute 
the noise ratios of individual stutter sites and a polynomial function is fitted to quantify 
the relationship between the length of the repeat and the stutter ratio.

This analysis is repeated for each unique repeat unit of a length between one and a 
configurable maximum number of nucleotides (inclusive), treating cyclically equivalent 
units (e.g., ‘ATAG’ and ‘AGAT’) and their respective reverse complements (e.g., ‘CTAT’ 
and ‘ATCT’) synonymously. The amount of +1 stutter, −2 stutter etc. is analysed the 
same way.

Because different loci behave different in stutter formation, a separate function is 
fitted for each locus. Additionally, a polynomial function is fitted to all data at once, 
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which is used to predict stutter in alleles of loci for which insufficient reference data was 
available to fit a locus-specific function. Separate functions are fitted for the forward 
and reverse strands.

For each fitted function, Stuttermodel also determines the lower bound of the 
repeat length for which the function gives meaningful results. This lower bound is 
defined as the lowest repeat length for which the function produces a nonnegative 
result and the function is non-decreasing. Below this threshold, and in any other points 
where the function value would be negative, the function value is set to zero.

 
The quality of fit is assessed by computing the coefficient of determination,

where

           
with yi the noise ratios of the reference samples,  the mean, fi the polynomial 

function’s estimate of the noise ratio of sample i, and  the modified function value. 
The R2 score will be close to one when the function is a good fit and lower otherwise.

Stuttermodel supports fitting polynomial functions of any degree. To prevent over-
fitting while still allowing a non-linear relationship, second-degree polynomials (with a 
minimum R2 score) were used. In cases where the fit for one strand has an R2 score 
above the threshold while the fit for the other strand scores below the threshold, both 
fits are rejected to prevent unintended introduction of strand bias by filtering stutter 
on only one strand.

Curating the reference database

To make sure all reference samples were of good quality and all alleles were called 
correctly, they were put through the same analysis pipeline as case samples, thereby 
performing noise filtering and correction on the reference samples. It is important to 
note that these reference samples were previously genotyped by us in great detail 
using CE [13]. The remaining amounts of noise in each sample were assessed using 
BGAnalyse (described below) to identify potentially unsuitable reference samples that 
still passed the thresholds of Allelefinder. Any sample with a notably higher amount of 
remaining background was manually removed from the set of reference samples to 
prevent pollution of the noise profiles.

BGAnalyse was developed and employed to analyse the remaining noise after 
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correction. For each locus and each sample, this tool calculates the least frequent (this 
can be a negative value because of over-correction), most frequent, and total noise as 
a percentage of the number of reads of the highest allele at each locus. These results 
are subsequently visualised to easily identify potentially problematic samples. In the 
visualisation, samples can be sorted by any of the calculated values or by coverage 
(total number of reads). Samples were subjected to manual inspection and any sample 
that exhibited non-stutter products with corrected read counts above 4% of the most 
frequent allele or above 2% of the total reads was rejected.

Analysing case samples 

The analysis of mock case samples was performed in a three-step process which is 
described in the following sections.

1. A prediction was made for the amount of stutter for each sequence in the sample, 
using the fitted polynomial functions obtained from running Stuttermodel on 
the reference samples. These predictions are used to extend the allele-specific 
noise profiles obtained from running BGEstimate on the reference samples.

2. The extracted noise profiles are used to filter and correct the noise in the case 
sample.

3. Alleles are called and the sample is subjected to manual interpretation.

Similar to the creation of a reference database, analysing case samples involves 
multiple tools discussed in the following sections. Pipeline offers a convenient way to 
automatically analyse a case sample with all tools discussed.

Predicting stutter amounts for unknown alleles

Because case samples may contain alleles that are not present in the reference 
samples, noise profiles for these alleles need to be predicted. FDSTools includes the 
BGPredict tool, which uses a previously created Stuttermodel file to predict the 
amounts of stutter artefacts for alleles not present in the reference data. BGPredict 
finds all sequences in the analysed case sample in which a particular repeat unit is 
repeated. The expected amount of stutter in this repeat is then computed using the 
corresponding fitted polynomial function from the Stuttermodel file. All possible 
combinations of stutter are taken into consideration when the frequencies of each 
stutter artefact are computed. The noise profiles created in this way are used to extend 
the noise profiles in the previously created BGEstimate file (a tool called BGMerge is 
included in FDSTools for this purpose).
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Noise filtering and correction in case samples 

To be able to filter systemic noise in case samples, one first needs to determine 
which alleles are likely present in the sample. To this end, the algorithm of BGEstimate is 
essentially reversed, i.e., the goal is now to solve for a in a P = c, where c is a row vector 
with the sample’s read counts for the M sequences in the noise profiles and a is a row 
vector with the estimated amount of each of the N profiles in the sample. P is the  
N × M matrix of noise profiles obtained from BGEstimate, extended with the 
predictions obtained from BGPredict. Solving for a is done in a non-negative least 
squares sense as before, giving estimated allele contributions that best fit the various 
sequences – alleles as well as noise – present in the sample.

Background-corrected read counts can then be computed by first subtracting the 
scaled profiles from the sample’s read counts

    
and then adding the total size of each profile to the corresponding allele, i.e.,

         
Note that d may have negative elements if the sample contains a lower amount of 

a certain sequence than was predicted by the profiles of its dominant alleles.

FDSTools offers BGCorrect to filter and correct background noise following the 
procedure outlined above. Given a sample data file (obtained from TSSV for example) 
and a file containing noise profiles, BGCorrect produces a copy of the sample data with 
additional columns giving the amounts of each sequence attributed to noise and the 
amounts of each sequence that would be recovered by noise correction (i.e., adding 
the noise to the originating allele). These values are given separately for the forward 
and reverse strand. Although the method by which BGCorrect computes them results 
in non-integer values, it was decided not to round these numbers to avoid unnecessary 
loss of precision. If necessary, these numbers can be rounded to integer values, thereby 
easing the interpretation as ‘read counts’ when presented in a graph or table in a 
report.

Allele calling for case samples

The naïve method of calling alleles that Allelefinder uses is not appropriate for case 
samples, since these may contain alleles of multiple contributors in different quantities. 
Therefore, calling alleles in case samples is done by computing various statistics based 
on the information of the detected sequences and subsequently setting interpretation 
thresholds on these statistics. For this, Samplestats was developed, which operates on 
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and adds various columns to the output of BGCorrect. Samplestats automatically marks 
sequences as ‘allele’ using the thresholds outlined in Table 1.

Alleles can also be called while visualising the sample data, hence, FDSTools 
includes the Samplevis visualisation. By means of the interactive graphical user interface 
of Samplevis, the same set of thresholds as depicted in Table 1 are available to filter 
the visible sequences and to automatically call alleles. Thresholds can be specified 
separately for the graphs and for the tables. While the table displays the called alleles, 
less conservative settings may be used for the filtering of the corresponding graph to 
ensure visibility of alleles just below the allele-calling threshold. The results of changing 
the thresholds are immediately visible. Clicking a sequence in any of the graphs toggles 
its ‘allele’ status. This allows the user to manually add alleles to and remove alleles from 
the profile. A note is added to manually added alleles, stating that the allele is ‘User-
added’. Similarly, if the user removes any alleles, the allele remains visible but a ‘User-
removed’ note is added. In this way it remains easy to trace back exactly which alleles 
meet the thresholds and which ones were manually added and removed.

Samplestats can also be used to filter sequences using the same types of thresholds 
(albeit with more stringent threshold values than used for allele calling, as potential 
alleles should not be filtered out) and (optionally) aggregate the filtered sequences per 
locus to a single line categorised ‘other sequences’.
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Table 1. Interpretation thresholds for case samples in Samplestats and Samplevis.

Sequences that meet either the ‘Percentage correction’ or ‘Percentage recovery’ threshold (or both) as well as all the other thresholds will be 
marked as ‘allele’. These threshold values are evaluated after noise correction. The ‘Allele calling default’ column lists the default threshold values 
for calling alleles. The ‘Filtering default’ column lists the default values used for filtering displayed sequences in Samplevis graphs.
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Visualisation

For visualisation of the data, FDSTools makes use of the JavaScript graphing library 
Vega [19]. Vega graphs can be embedded on a web page, exposing a JavaScript 
programming interface that allows for updating the graphs based on the user’s 
interaction with the web page. Vega can also run on Node.js, which allows it to be 
included in automated analysis pipelines to generate (static) image files.

FDSTools comes with Vega graph specifications and accompanying interactive web 
pages (HTML files) to visualise the output of each tool. The Vis tool can be used 
to obtain self-contained HTML files containing visualisations of various types of data 
files generated by the other tools. For example, Samplevis visualises a sample data 
file as a sequence profile and Profilevis visualises background noise profiles obtained 
from BGEstimate or BGPredict. A description of each visualisation can be found 
in Supplementary Table 1. When viewed in a web browser, the web page provides 
additional controls that allow the user to filter the data, switch between linear and 
logarithmic scales, or select different subsets of the data to visualise. The default values 
for the settings on the web page can be set when the HTML file is generated by the 
Vis tool.

The web pages also offer the option to save the displayed graphs as a Scalable 
Vector Graphics (SVG) or rasterised Portable Network Graphics (PNG) image, so 
that they can be imported into documents. Alternatively, the Vis tool can supply a raw 
Vega graph specification file (either with or without embedded data), which can then 
be used by Vega to generate SVG or PNG images directly on the command line.

Results and discussion
We developed FDSTools, a software package containing a suite of tools that can be 

used for the analysis of forensic MPS data. With these tools, FDSTools provides detailed 
insight in the quality of a sample and the noise profile of a certain allele (or sequence 
variant). In Supplementary Table 1, an overview of all tools currently available in the 
package is provided, of which a selection was described in more details in Section 2.

To enhance the analysis of mixed samples, FDSTools identifies, extracts and corrects 
for PCR or sequencing noise such as stutter from a reference database with the aim 
to discern low mixture proportions. Different STR amplification assays and different 
amplification protocols could result in different noise. It is therefore important to 
base the database for noise correction on references generated by a method that is 
representable for the casework samples to be analysed.

Note that it is not possible to correct all noise completely as the level of noise 
shows variation between samples.
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Reference database

Our reference samples were sequenced with an average coverage of 65,000 reads 
and a mode of about 45,000 reads. For the present study, a minimum coverage of 
6,000 reads per sample was required, which relates to an average of 250 reads per 
locus as 24 loci were co-amplified. For heterozygous loci, less than 250 reads per locus 
is not sufficient to quantify low amounts of noise accurately.

Reference sample curation

Since the reference database is used to filter and correct noise in case samples, it is 
essential that the reference samples contain no contaminants and reference alleles are 
called correctly. Although all other steps can be performed automatically by FDSTools, 
a manual curation of samples in the reference database is needed. BGAnalyse was 
developed to facilitate this process by visualising potential outliers.

Allelefinder automatically rejected two out of the initial 450 samples which were 
clearly contaminated and three samples that had too low coverage to detect alleles 
reliably. Manual inspection of samples with a notably higher amount of remaining noise 
after correction in BGAnalyse resulted in the rejection of an additional 16 samples. 
Reasons for rejection were low-level contamination, low coverage and low sequencing 
quality. The interactive BGAnalyse visualisations displaying the remaining noise for the 
reference samples are available in Supplementary File 2a (before database curation) 
and 2b (after curation). For the majority of samples, the highest remaining noise variant 
in the complete profile did not exceed 3% of the number of reads of the highest allele 
at the locus while without correction STR stutters can represent over 20%. For the 
remaining 429 samples, no drop-in or drop-out was observed when calling alleles using 
Allelefinder with the settings described in Section 2.3.1.

Extending noise profiles for noise correction

As described in Section 2.4.1, case samples may contain alleles which are not present 
in the reference database. In such cases, FDSTools resorts to noise prediction instead 
of noise estimation. A column in the output file of BGCorrect marks if correction has 
been performed using data obtained from BGEstimate (if the allele was available in the 
reference database) or by using BGPredict (if not available in the reference database).

From the results from Stuttermodel it becomes evident that for simple STRs consisting 
of a single repeating element or for long stretches of a specific repeating element 
within a complex STR, only few reference samples are needed to reliably fit a stutter 
model. However, when complex repeats consist of several repeating elements of which 
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some show little length variation, correction using the stutter model is suboptimal as 
exemplified by the predictions for D12S391. This STR locus consists of two repeat 
units; an AGAT repeat stretch of highly variable length and an ACAG repeat that is 
repeated 6 to 8 times for most individuals. Since Stuttermodel predicts the amount of 
stutter based on the repeat length, at least four different repeat lengths need to be 
available in homozygous reference samples to obtain a reliable fit. However, the set of 
reference samples used in this study only contained homozygotes with 6 to 8 repeats 
of ACAG, which is not sufficiently variable to obtain a reliable fit. Consequently, ACAG 
is omitted from the stutter model for D12S391, even though this repeat stutters up to 
9% for the longer repeats (8 repeat units, data not shown). When BGEstimate does not 
obtain a background noise profile, BGPredict will not correct stutter in this repeat and 
thus stutters will remain present. As a last resort, BGPredict offers the possibility to use 
a stutter model based on data from all loci that have the same repeat unit sequence 
if no locus-specific fit is available. Supplementary Figure 1 displays the stutter model 
obtained from the set of 429 reference samples, including the individual observations 
on which the model was based.

Combining BGEstimate and BGPredict (by using BGMerge) instead of using BGPredict 
alone is expected to reduce the noise remaining after correction, as the combined 
correction also corrects for noise other than stutters . This is confirmed when we 
determine the percentage of remaining noise (the reads representing remaining noise 
as a percentage of the reads for the most frequent allele at the locus) and plot the 
highest percentage and various percentiles (90th, 95th and 99th) (Supplementary Figure 
2a–b). The percentiles illustrate how often samples exhibit outlying noise sequence 
variants and when the 99th percentile is regarded, BGPredict alone retains on average 
2.6% noise and the combined correction 2.4%. Also, the combined correction results 
in less overcorrected variants.

Thus, BGPredict can be used without BGEstimate with a slightly reduced accuracy 
in correction. Note that BGEstimate should not be used without BGPredict since 
alleles not included in the reference database will not be corrected, which can result 
in a combination of corrected and uncorrected alleles and remaining noise for the 
uncorrected alleles.

Reference database size and coverage

To test the effect of the sample size and type from which the reference database is 
built, we used the complete curated reference database of 429 samples and a random 
selection of 100 samples (both with combined BGEstimate and BGPredict correction, 
which was found to be slightly better as described in Section 3.1.2). Supplementary 
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Figures 2c–d display an overview of the most frequent and the total remaining noise at 
each locus after correction. The different percentiles of the reference samples are given 
to illustrate how often samples exhibit outlying noise sequence variants.

When comparing the results for the complete database with the results for the 
subset of 100 samples, the difference in remaining noise seems surprisingly small 
(Supplementary Figure 2c–d). However, with a smaller database, less alleles will fit the 
criteria to create a BGEstimate noise profile and more alleles rely on noise prediction 
by BGPredict. Indeed, for the reference set of 429 samples, only 3.5% of the alleles are 
corrected using BGPredict. This percentage increases to 10.2% when the correction is 
based on the subset of 100 samples. 

In a larger reference database more alleles will be observed. Supplementary Figure 
3 displays the alleles observed in the reference databases of 429 and 100 samples. 
To fit the criteria to create a BGEstimate noise profile, alleles need to be present as 
a homozygous genotype or be available as part of shared genotypes with at least 
three other alleles that must also fit these criteria. For the stutter model, only the 
homozygous genotypes are used. In the larger 429 database, more alleles fit these 
criteria than in the smaller 100 sample set database.

To examine the effect of read coverage of the reference samples on noise profile 
analysis, we generated two subsets comprising samples with high or low coverage, 
which is specified as a total read count between 82,000 and 350,000 or 8,000 and 
44,000 respectively. The high coverage set comprised 71 samples; the low coverage set 
70. We noticed that in the low-coverage noise profiles, strand bias can occur especially 
for the low-percentage noise that is due to single-strand drop-out of this noise. This 
is illustrated by the BGEstimate noise profiles for the CE10_TCTA[10]_-20T>A allele 
for locus D7S820 in Supplementary Figure 4, in which forward and reverse reads 
are in good or reasonable balance for all seven noise sequences in the high coverage 
sample set while good balance is only seen for the two main noise sequences in the 
low coverage set.

Since the most abundant noise after correction in a sample is usually in the range 
of 0.5–3% (for STR analysis), we recommend a coverage of at least 1,000 reads per 
locus (which relates to a 24,000 total read coverage for our 24 loci amplification kit) 
for the samples of the reference database to obtain the most accurate noise estimates.

Infrequent alleles

Depending on the composition of the reference database, occasionally alleles will 
be encountered that are not included in the database. BGPredict can predict the noise 
from stutter or other repeating elements but correction of other types of noise (like 
low level SNPs caused by sequence errors) is not possible for these infrequent alleles.
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We therefore recommend to obtain BGEstimate noise profiles for as many alleles 
as possible, while retaining good quality of these noise profiles. Several filtering criteria 
can be applied, such as the minimum number of different heterozygous genotypes 
per allele, the minimum number of samples per allele and the minimum number of 
homozygous samples per allele. The effect of increasing the stringency on the filtering 
criteria on the number of retrieved BGEstimate noise profiles for our 429 reference 
set is shown in Supplementary Table 2. The settings selected for use in this study are: 
at least two samples per allele (which ensures noise is not based on a single sample as 
that could be an outlier) that present at least three different heterozygous or at least 
one homozygote genotype (i.e., the samples can be three different heterozygotes or 
two homozygotes or one homozygote and one heterozygote).

When an allele at a heterozygous locus fails the criteria, the complete locus carrying 
this allele cannot be used for establishment of a noise profile since the noise cannot 
be attributed to any of the two alleles. Thus, for both alleles at a heterozygous locus no 
noise profile is extracted.

Accuracy of noise reference database and stutter model

To verify the accuracy of the noise profiles obtained through BGEstimate and 
BGPredict, it can be useful to compare the average noise ratios with the noise 
ratios observed in individual homozygous samples. The noise ratios of all noise in all 
homozygous reference samples can easily be collected using the BGHomRaw tool. 
These data points can be plotted on top of a noise profile to inspect the consistency 
and variation in the noise ratios of various types of noise for each allele. In Figure 3, 
the noise profile of the most frequent allele of D7S820 (CE10_TCTA[10]_-20T>A ) 
is displayed, which has foremost a –1 stutter (CE10_TCTA[9]_-20T>A) in addition to 
a –1 nt slippage product at the A-stretch (CE9.3_TCTA[10]_-20T>-). The individual 
observations for the homozygous samples coincide nicely with the estimated noise 
profile ratios.
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Figure 3. Noise profile of D7S820 allele CE10_TCTA[10]_-20T>A

The noise ratio is shown for each systemic noise sequence observed with a noise ratio of 0.1% or higher. Individual observations in homozygous 
samples (above 0.5%) are displayed as circles. As expected, the most frequently observed noise sequence is the −1 stutter, but since the allele 
contains a single-nucleotide stretch of 9 A nucleotides, a considerable portion of the noise consists of sequences with slippage at this A-stretch 
(or a combination of the two).

Similarly, it is useful to compare the functions fitted by Stuttermodel to the data 
points to which they were fitted. Stuttermodel includes an option to write the raw 
data points to a separate output file, which can be visualised together with the fitted 
model as shown in Figure 4 for D7S820. This example shows that the homozygous 
calls and the Stuttermodel estimation follow the same trend and that there is no 
discrepancy between forward and reverse reads. The same holds for the A-stretch 
(data not shown).

In the stutter model, fits with an R2 score below 0.75 were rejected. Although this 
may seem a very low R2 score, we obtained better results by including more fits than 
by excluding them, which would result in the inability of the stutter model to be used 
to filter and correct stutter for the respective repeat units at all.
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Figure 4. Stutter model for the –1 stutter of D7S820

On the x-axis the length of the repeat is displayed (in nucleotides) and on the y-axis the –1 stutter noise ratio (as percentage of reads of the 
parent allele) is displayed. Each homozygous reference sample is displayed as a dot and the lines display the fitted functions used for calculating 
the expected stutter of each allele.

Sample analysis
Allele calling, interpretation and visualisation

When a reference database has been created, one can proceed with the analysis 
of samples. FDSTools analyses sequencing data, calls alleles and interprets the data 
by correction for noise as inferred from the reference database. Results can be 
represented as a graphical sequence profile output and as an interactive profile report.

In Figure 5, an example of a sequence profile of two loci of a single-source sample 
is displayed (generated by the command ‘fdstools vis sample’). A sequence profile 
displays the read counts before and after correction and visualises the effects of noise 
filtering and noise correction. A more detailed explanation of the interpretation of a 
sequence profile can be found in Supplementary Figure 5.

The interactive sequence profile reports provide separate filtering options for the 
graphs and tables displayed (see Section 2.4.3). In the graphs, all alleles that are hidden 
by the filtering options are (optionally) aggregated as a separate bar (displaying the 
cumulative numbers of reads) with the label ‘other sequences’. In addition, we aggregate 
all singleton reads into ‘other sequences’ already in the first step of the analysis (using 
‘fdstools tssv --minimum 2 --aggregate-filtered’) which has the additional benefits of 
speeding up subsequent analysis and decreasing data storage demand.
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Figure 5. Sequence profile of a single-source sample

Sequence profile of loci D18S51 and D19S433 of a single-source sample. A sequence profile displays the read count before correction (in purple 
bars) and shows the effects of noise filtering (light purple for the reads that are removed) and noise correction (with the noise reads added to 
the parent alleles in dark orange). When performing correction, it is possible that an allele gains reads because the noise reads originating from 
this allele are added, but loses reads at the same time since the noise of another allele in the profile includes reads of this allele. This overlapping 
part of added and removed reads is marked separately in light orange. This means that the original read count of an allele before correction is 
the combination of the purple and the light orange bar. The lines in the bars indicate the strand balance; the line is drawn near the top of the 
bar if the majority of reads of a sequence is on the forward strand, near the bottom of the bar if the majority of reads is on the reverse strand, 
and in the middle of the bar in the absence of strand bias. Sequences displayed in green in the graphs are the alleles that the software infers 
to be genuine alleles in the sample. These are also displayed in the table.

Improving heterozygote balance through noise correction

The amplification of long STR alleles in the PCR is generally less efficient than 
shorter alleles and, in addition, long STR alleles suffer from a higher degree of stutter 
resulting in reduced heterozygote balance between the two alleles. [2] Since FDSTools 
determines which ‘noise reads’ are derived from which parent alleles, these reads can 
(optionally) be added to the read counts of the parent alleles, which theoretically 
will improve the heterozygote balance. When we examine the heterozygote allele 
balance in the 429 single-source reference samples, an improved heterozygote balance 
is indeed observed when the stutter reads are added to the read counts of the parent 
alleles (Table 2). Heterozygote balance was determined per locus by dividing the read 
counts for the less frequent alleles by those for the more frequent alleles, and taking 
the average of all 429 samples.
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Table 2. Heterozygote balance for original, filtered and corrected datasets

The read counts for the less frequent alleles are divided by those for the more frequent alleles, and the average for all 429 single-source refer-
ence samples is taken.

Mixture analysis 

For the analysis mixtures, noise correction may assist in identifying the alleles of a 
low minor contributor. We used 31 two-person mixtures with minor contributions of 
50%, 20%, 10%, 5%, 1% and 0.5% to assess this expectation.

We varied the ‘percentage of locus’ threshold (Table 1) for calling alleles, which 
sets a limit to the mixture proportion. When no noise correction was applied the 
threshold was varied between 5.0% and 1.5%; when noise correction was applied, 
a lower threshold could be used, varying between 3.0% to 0.5%. We compared 
the various methods by calculating percentage missed alleles (a.k.a. drop-out) and 
the number of erroneous allele calls (a.k.a. drop-in). The percentage drop-out was 
calculated by dividing the number of donor alleles not called by the total number of 
possible alleles (homozygous and shared alleles are counted as one, Amel is included), 
and the percentage was averaged for the mixtures with the same mixture ratio. Drop-
in is presented in the average number occurring in profiles with the same mixture 
ratio. In Table 3, the results of these analyses are displayed and it is obvious that without 
correction more drop-in alleles occur that mostly represent stutters. Consequently, the 
threshold for calling an allele can be lower when correction is applied, as less stutters 
remain in the corrected profile that can be wrongfully called as an allele. As expected, 
the percentage of drop-out depends largely on the ‘percentage of locus’ threshold 
for allele calling (and hardly on the application of noise correction); drop-out is more 
frequent with a higher (more stringent) threshold. When the threshold for corrected 
data is decreased below 1.5%, the number of drop-ins rapidly increases for all ratios. 
Not surprisingly, the drop-out percentage for the mixtures with 1% and 0.5% is very 
high when using a threshold that is higher than the minor component. Therefore, the 
data from the 5% and 10% minor contribution was used to determine the optimal 
threshold for allele calling.

In Figure 6, we show the relation between the ‘percentage of locus’ allele-calling 
threshold, drop-out and drop-in for the mixtures with a 5% or 10% minor contribution. 
In the used dataset, a threshold of 1.5% appears to be the most effective for calling 



FDSTools – Forensic DNA Sequencing Tools for MPS data analysis

153

C
hapter 5

genuine alleles in mixtures with minimal erroneous calling of remaining noise in the 
mixtures. With mixture ratios down to 10%, no drop-out and only minimal drop-in is 
observed with this threshold, whereas with contributions smaller than 10% an optimal 
balance between drop-out and drop-in is achieved (Table 3). When investigating the 
noise that is erroneously called using this threshold it is apparent that the drop-in alleles 
are rarely resulting from stutter but almost exclusively consist of PCR hybrids [20]. In 
Table 3b, the percentage of drop-out when using the 1.5% allele-calling threshold is 
categorised and illustrates that drop-out alleles consist mostly of heterozygous minor 
alleles. Most of these drop-out alleles represent minor contributions on stutter positions 
(where stutter ratio of the major contributor was lower than the average observed 
in the set of reference samples, thereby causing over-correction) and long alleles that 
suffer from heterozygote imbalance. In Figure 6 the trends from Table 3 are confirmed: 
drop-out is hardly and drop-in is largely affected by the use of noise correction. Thus, 
calling of genuine alleles is not negatively influenced by noise correction.

Note that the number of drop-ins may be reduced further by applying additional 
thresholds from Table 1, but the effects of varying additional threshold values were not 
studied in depth.

Table 3. Average number of drop-in alleles and average drop-out percentage 
per sample for different ‘percentage of locus’ allele-calling thresholds

a) Summary of drop-in and drop-out rates for various allele-calling thresholds

b) Categorised drop-out rates when using 1.5% allele-calling threshold (with 
correction)
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Figure 6. Average number of drop-in and percentage of drop-out per sample 
for different ‘percentage of locus’ allele-calling thresholds

Effect of different ‘percentage of locus’ allele-calling thresholds on the drop-in and drop-out rates. The numbers next to the points display allele-
calling thresholds. The position of each point illustrates the number of drop-ins and percentage of drop-out for the corresponding threshold in 
mixtures with a ratio of 90:10 (orange) and 95:5 (blue). Points connected by dashed lines correspond to results obtained without noise correc-
tion, points connected by solid lines correspond to results obtained after noise correction. The 1.5% ‘percentage of locus’ allele-calling threshold 
that appears most optimal is indicated in bold.

In Figure 7a–b, the effect of noise correction on allele calling is shown for a highly 
unbalanced mixture (95:5 mixture ratio) in which the alleles of the minor contributor 
have a similar or lower read count than the stutter products of the alleles of the major 
contributor. Without noise correction the four most frequent sequence variants are 
the major contributor’s alleles and the corresponding –1 stutters and interpretation 
of the less frequent sequence variants becomes intractable; after noise correction, the 
stutter products and other PCR artefacts are filtered out and four sequence variants 
meet the ‘percentage of locus’ allele-calling threshold of 1.5%, which correspond to the 
four alleles of the two heterozygous donors. Also, the alleles of both the major and 
minor contributor have gained recovered reads.
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Figure 7. Interpretation of a mixed sequence profile before and after correction

a) Sequence profile of locus D12S391 of a mixed sample with a ratio of 95:5, 
without noise filtering and correction

b) Sequence profile of locus D12S391 of a mixed sample with a ratio of 95:5, 
with noise filtering and correction applied

c) Noise profile of D12S391 allele CE21_TAGA[15]CAGA[6]

Sequence profile of locus D12S391 of a mixed sample with a ratio of 95:5, A without and B with applying noise filtering and correction. The 
table displays all sequence variants with at least 1.5% of the reads of the locus (the ‘percentage of locus’ allele-calling threshold used), which 
are also marked in green in the graph. A note in the table in panel B warns that no noise profile was available for the major CE22_TAGA[16]
CAGA[6] allele and a stutter prediction has been used instead. An additional variant CE22_TAGA[17]CAGA[5], which is derived from the major 
CE22 allele, remains visible in the sequence profile (although not marked green as it does not meet the 1.5% threshold). C Noise profile of a 
similar allele, showing a non-stutter PCR artefact with a noise ratio of about 2%.
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This example also displays a pitfall of the interpretation of a mixed DNA profile 
where the major contributor has an infrequent allele for which no BGEstimate noise 
profile is available. The noise correction of allele CE22_TAGA[16]CAGA[6] is only 
based on the stutter model (using BGPredict), which fails to correct for the CE22_
TAGA[17]CAGA[5] PCR artefact. Looking at the noise profile of the most resembling 
allele in the reference database, CE21_TAGA[15]CAGA[6], we find a similar PCR 
artefact CE21_TAGA[16]CAGA[5] that represents a C to T substitution at the first 
CAGA repeat unit , with a noise ratio of about 2% (Figure 7c). This suggests that the 
CE22_TAGA[17]CAGA[5] artefact would be properly corrected if a noise profile for 
the CE22_TAGA[16]CAGA[6] allele would be available. Thus, additional inspection 
of the applied method of correction (BGPredict or BGEstimate) may be useful when 
infrequent alleles occur.

Analysis time and computer demand

To indicate the required time and computer memory demand, five samples with 
different numbers of reads (15,169–318,403 total read pairs) were analysed and the 
time and peak memory usage for each separate tool was registered (Supplementary 
Figure 6). With the used 2.0 GHz processor, the analysis time is mostly consumed by 
TSSV (≈75% of the total analysis time) and the complete analysis only takes up to 
13:30 minutes for a sample with 318,403 reads. BGCorrect shows the highest peak 
memory usage but does not exceed 200 MB for the largest sample (of the five tested 
samples). Both the required time and memory increase more or less linearly when the 
read count of the analysed samples is increased.

Conclusions
We developed FDSTools for the analysis of forensic MPS data. FDSTools can 

determine systemic PCR and/or sequencing noise from the data of reference samples, 
build a database from this data and use it to correct for systemic noise in case samples. 
The software is also able to predict the noise caused by stutter for alleles not included 
in the reference database and uses this information in the correction of case samples.

With automatic threshold-based allele calling, noise correction reduces the 
occurrence of drop-in and drop-out substantially and improves the balance between 
alleles of a heterozygote pair. This decreases the detection limits of minor contributions 
in mixtures. STR stutter variants are no longer the most frequent remaining noise as 
PCR hybrid artefacts now generally exceed the corrected read counts of stutters.

Although reliable noise correction can already be obtained from a database of 100 
samples, a larger database is preferred as a larger number of alleles can be corrected by 
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the use of a complete noise profile instead of relying on noise predictions based on the 
stutter model. This will also reduce manual inspection of retained non-stutter noise for 
infrequent alleles. When building the database, it is important to use an amplification 
kit representative for the kit used for the samples. Although not extensively tested, 
we anticipate that noise prediction will be less precise when less DNA is used and 
more stochastic PCR effects occur. Also, more strand bias will occur during the 
massively parallel sequencing. These effects are intrinsic to low-level DNA typing and 
probabilistic genotyping software have been developed that accommodate drop-in 
and dropout during profile interpretation [21,22,23,24,25,26,27,28]. Such software are 
not yet straightforwardly able to deal with MPS data, but the necessary adaptations are 
feasible and include nomenclature for sequence variants, allele frequencies databases 
and  read counts replacing peak heights in continuous models (not required for semi-
continuous models) . In CE-based analysis, PCR replicates are often used to reduce 
profiling uncertainty [7]; replicates can be entered in probabilistic genotyping software 
or used to prepare a consensus profile [7,8]. A future version of FDSTools will feature 
a consensus-based analysis method alike those used with CE data [8]. Besides,  export 
options for DNA database systems such as CODIS will be added. 

FDSTools has been validated following recommendations for software validation 
[29,30] and is already implemented in the ISO17025 certified environment of the 
LUMC for forensic casework. The validation for use and performance of the software 
in casework was a separate study which was not based on the data described in this 
manuscript. By providing tools to evaluate the performance of noise correction in 
reference samples FDSTools facilitates the determination of analysis thresholds that 
are fit for purpose.

The application of FDSTools is not limited to the analysis of STRs. FDSTools has 
already been applied successfully to the analysis of multiplex assays of SNP fragments 
(manuscript in preparation) and complete mtDNA data (Weiler et al., submitted). 
Note that the minimum number of required reference samples for loci other than 
STRs will depend on the amount of variation observed in these loci.
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Supplementary materials
Supplementary Text 1 - Allele-centric systemic noise estimation (BGEstimate)

The BGEstimate tool of FDSTools does the computation of a background noise 
profile for each allele found among a set of reference samples. Computing background 
noise profiles from a set of homozygous samples is straightforward, whereas for 
heterozygous samples this becomes more complicated as the alleles of one sample in 
general appear in different amounts, thereby systematically contributing to a different 
amount of the same background noise sequence. 

Algorithm 1, which enables the computation of these background noise profiles 
from heterozygous samples, is implemented in BGEstimate. In testing, the best results 
were obtained if for each allele at least one homozygous sample or at least three 
different heterozygous samples were available. With default settings, BGEstimate will 
ensure these conditions are met before executing Algorithm 1. 

In essence Algorithm 1 seeks a non-negative least squares solution to the matrix 
equation AP = C. In this equation, C is an N×M matrix of constants derived from the 
observed read counts in the reference samples (see Figure 1), A is an N×N matrix 
in which the estimated allele balance in the samples is summarised and P is an N×M 
matrix containing the estimated profiles of systemic noise. N is the number of unique 
alleles among the observed reference samples and therefore also the number of 
profiles produced and M is the number of unique sequences observed. It is possible 
to include additional sequences beyond the N alleles of the samples if this is deemed 
appropriate. With default settings, BGEstimate will include all sequences that appear 
in at least 80% of the samples with any particular allele, since these sequences are 
probably the result of systemic noise. In any case, the first N columns in P and C 
correspond to the N alleles of the samples and the order of the rows and columns is 
the same (i.e., row n and column n in both P and C correspond to the same sequence).

The input of Algorithm 1 consists of a K×M matrix S which contains the observed 
number of reads of each of the M sequences in each of the K samples. The genotype 
of each sample is provided as a set of indices gk, gk ≤ N. 

Any element Pn,m of P can be interpreted as the amount of sequence m that is 
observed, on average, for every 100 reads of sequence n. Therefore, the algorithm 
initialises P to a diagonal N×M matrix with the elements on its major diagonal set to 
100. The number 100 was chosen for practical reasons since it directly results in noise 
ratios expressed as percentages of the actual allele. 



FDSTools – Forensic DNA Sequencing Tools for MPS data analysis

161

C
hapter 5



Chapter 5

162

C
ha

pt
er

 5

Figure 1. Construction of matrix C in Algorithm 1 by summing scaled read counts of the samples that share the same alleles. Left: Samples 1 
and 2 are homozygous for the third and fifth allele respectively. The read counts of both samples are scaled such that their true allele is equal 
to 100, after which they are added to the third and fifth row of matrix C respectively. Right: Sample 3 is heterozygous, having both the third 
and fifth allele. Therefore, it is added to both the third and fifth row of matrix C, with its read counts scaled such that the third or fifth allele is 
equal to 50 respectively. 

Similarly, the elements Cn,m of C can be interpreted as the total amount of 
sequence m that is observed in all samples with allele n. Line 6 in Algorithm 1 initialises 
C. For homozygous samples, it scales the read counts of each sample Sk such that 
its allele Sk,i,i gk is equal to 100 and then adds the scaled counts to row Ci of C. 
Heterozygous samples are treated likewise twice — once for each of their alleles — 
except that the allele is scaled to 50 instead of 100 to compensate for the fact that the 
sample is added to two rows in C, as compared to just one for homozygous samples.1 

Each row Ci of C thus contains the sum of the read counts of all samples that 
have allele i, with the read counts of each sample scaled such that allele Sk,i,i gk 
becomes 100/|gk|.2 After matrices P and C are initialised, the algorithm enters its main 
loop wherein it alternately estimates the allele balance in the samples (matrix A) and 
refines the least squares fit of the profiles P. The main loop is exited and the profiles 
are returned when the sum of the squared errors,

is reduced by less than 0.01% in one iteration. This stopping condition is generally 
met within 20 iterations.

1 One may also say that the samples are added once for each allele, adding them to the same row twice
2 Interestingly, because Algorithm 1 scales read counts to 100 divided by the number of alleles in the sample, it handles samples with more 
than two alleles without problems. Since Algorithm 1 makes no assumptions about the number of alleles each sample can have, it is possible to 
use mixed samples to compute systemic noise profiles as well. This has not been tested, however.
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Estimation of the allele balance is done for every sample in isolation. At line 11, the 
elements in P that correspond to cross-contributions between the alleles i,j [1...|gk|] 
of sample k are extracted. Similarly, the corresponding elements from Sk are extracted 
at line 12. For heterozygous samples, this expands to (shortening gk,i to i for brevity):

 

At line 13, a non-negative least squares algorithm is employed to estimate the allele 
balance within the sample. The nnls function can be any algorithm that solves JK = L 
for K subject to K≥0 in the least squares sense, e.g., [1]. Line 13 of Algorithm 1 uses this 
function to solve bQ = r for b (by solving QTbT = rT), which gives an estimation of 
the proportions in which the alleles are present in the sample. The resulting row vector 
b isleft-multipliedbyacolumnvectorwiththesamescalingfactorsaspreviously calculated at 
line 6. The result is, for heterozygotes, a 2×2 matrix B.3 Finally, at line 14, the elements 
of B are added to their corresponding elements of A.

With the allele balance estimates all added to A, the second step in the main loop 
of Algorithm 1 is to update the profiles P such that they form a non-negative least 
squares solution to the equation AP = C subject to the additional requirement that the 
elements on the diagonal of P must be 100. Lines 16–24 implement nnls(A, C) with this 
additional requirement enforced on line 22. Indeed, with the omission of line 22, lines 
16–24 are a general purpose implementation of the nnls function. This implementation 
is based on [1].

Separate profiles for the numbers of forward and reverse reads can be constructed 
by doubling the number of columns in P and C, where the left half corresponds to the 
forward stand and the right half to the reverse strand. This ensures that the same allele 
balance matrix A is used for both strands.
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Supplementary Figure 1 – Stutter model based on a reference database of 429 
samples
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Supplementary Figure 2 – Comparison of remaining noise using different 
correction settings

a) Most frequent noise variant for each locus after correction in 429 reference 
samples, BGPredict correction vs combined BGEstimate and BGPredict 
correction
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b) Total remaining noise for each locus after correction in 429 reference samples, 
BGPredict correction vs combined BGEstimate and BGPredict correction

c) Most frequent noise variant for each locus after combined correction in 429 
reference samples, correction based on 100 vs 429 reference samples

d) Total remaining noise for each locus after correction in 429 reference sam-
ples, correction based on 100 vs 429 reference samples

a) The dotplot displays the most frequently observed noise that remained after correction in any of the 429 analysed reference samples when 
performing the correction using BGPredict only (based on the stutter model) or a combination of BGEstimate and BGPredict. In addition, the 
99th and the 95th percentile are plotted to illustrate the variation in remaining noise.
b) The dotplot displays the highest total observed noise (cumulative percentage of the reads of the most frequent allele) that remained after 
correction in any of the 429 analysed reference samples when performing the correction using BGPredict only (based on the stutter model) or a 
combination of BGEstimate and BGPredict. In addition, the 99th and the 95th percentile are plotted to illustrate the variation in remaining noise.
c) The dotplot displays the most frequently observed noise that remained after correction in any of the 429 analysed reference samples when 
performing the correction based on all 429 samples or only 100 randomly selected samples from this database. In addition, the 99th, 95th, and 
90th percentile are plotted to illustrate the variation in remaining noise.
d) The dotplot displays the highest total observed noise (cumulative percentage of the reads of the most frequent allele) that remained after cor-
rection in any of the 429 analysed reference samples when performing the correction based on all 429 samples or only 100 randomly selected 
samples from this database. In addition, the 99th and 95th percentile are plotted to illustrate the variation in remaining noise.
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Supplementary Figure 3 - Visualisation of the frequency of each allele and the 
frequency of co-occurence with other alleles as heterozygous genotypes

The graphs depict every allele among the reference samples as a circle. The size 
of the circle corresponds to the number of samples with that particular allele. 
A black inner circle depicts the number of homozygotes.

The circles of two alleles are connected by a line whenever samples exist that 
have a combination of the two connected alleles. The thickness of the line cor-
responds to the number of heterozygotes with that particular combination of 
alleles.

To fit the criteria to create a BGEstimate noise profile, alleles need to be pre-
sent as a homozygous genotype (displayed as a black circle) or be connected 
with at least three other alleles that must also fit these criteria.
These figures were generated using the command ‘fdstools vis allele’.

a) Allele visualisation of 429 reference samples
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b) Allele visualisation of 100 reference samples

c) Allele visualisation of 429 reference samples after removing alleles that do 
not meet thresholds for determining a reliable noise profile
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d) Allele visualisation of 100 reference samples after removing alleles that do 
not meet thresholds for determining a reliable noise profile
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Supplementary Figure 4 – Noise profiles of D7S820 allele CE10_TCTA[10]_-
20T>A estimated from high and low-coverage samples

a) Noise profile of D7S820 allele CE10_TCTA[10]_-20T>A estimated from 
high-coverage samples

b) Noise profile of D7S820 allele CE10_TCTA[10]_-20T>A estimated from 
low-coverage samples

Noise profiles created with BGEstimate based on a selection of a) 71 high-coverage samples (82,000–350,000 total reads) and b) 70 
low-coverage samples (8,000–44,000 total reads). The noise ratio is shown for each systemic noise sequence observed. It is clear that for the 
low-percentage noise in the low-coverage noise profile, more strand bias is introduced due to single-strand drop-out of this noise caused by 
insufficient coverage of the reference samples.
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Supplementary Figure 5a – Explanation of a sequence profile for raw, filtered 
and corrected data

Raw data

Noise reads filtered out

Noise reads added to the parent alleles

Sequence profiles for three different stages of the analysis for a simple reference sample without overlap between stutter and genuine alleles.

On top, raw read counts are displayed for each observed variant. 
In the middle, noise reads are filtered out (based on the observed reproducible noise for each allele in the reference database). Filtered noise 
reads are displayed in light purple. 
At the bottom, filtered reads are added to the parent allele (as determined by the noise profiles) as recovered reads marked in dark orange. The 
lines in the bars indicate the strand balance; the line is drawn near the top of the bar if the majority of reads of a sequence is on the forward 
strand, near the bottom of the bar if the majority of reads is on the reverse strand, and in the middle of the bar in the absence of strand bias. 
Sequences displayed in green in the graphs are the alleles that the software infers to be genuine alleles in the sample, based on a threshold of 
1.5% of the total number of reads of the locus. 
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Supplementary Figure 5b – Explanation of a sequence profile for raw, filtered 
and corrected data

Sequence profiles for three different stages of the analysis for a reference sample with overlap between stutter and genuine alleles.
On top, raw read counts are displayed for each observed variant. 
In the middle, noise reads are filtered out (based on the observed reproducible noise for each allele in the reference database). Filtered noise 
reads are displayed in light purple. Note that part of allele CE10 is filtered out as noise from allele CE11. 
At the bottom, filtered reads are added to the parent allele (as determined by the noise profiles) as recovered reads marked in dark orange. For 
allele CE10, part of the reads are removed as noise, but some reads are recovered as well. The overlap of this filtered noise and recovered reads 
is marked in light orange. The lines in the bars indicate the strand balance; the line is drawn near the top of the bar if the majority of reads of 
a sequence is on the forward strand, near the bottom of the bar if the majority of reads is on the reverse strand, and in the middle of the bar 
in the absence of strand bias. Sequences displayed in green in the graphs are the alleles that the software infers to be genuine alleles in the 
sample, based on a threshold of 1.5% of the total number of reads of the locus.
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Supplementary Figure 6 – Required time and memory for the analysis of case 
samples

The dot plots display the registered time (a) and the peak memory usage (b) of analysis for five samples for each tool of the standard casework 
analysis pipeline. The analysis was performed using a single core of an Intel(R) Xeon(R) E5-2620 processor at 2.00 GHz. The analysis time is 
mostly consumed by TSSV and the highest memory demand is measured for the tool BGCorrect . Both the analysis time and memory increase 
more or less linearly when the coverage of a sample is increased.
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Supplementary Table 1 – Currently available tools and visualisations in 
FDSTools
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Supplementary Table 2 – Effects of criteria for admission of alleles to noise 
profile estimation

Number of alleles for which a BGEstimate noise profile can be obtained in our 429 sample 
reference set when applying different criteria. These comprise the minimum number of different 
heterozygous genotypes per allele, minimum number of samples per allele and minimum num-
ber of homozygous samples per allele. When a criterion is varied, the other criteria are kept at 
the minimum value possible which is at least 1 heterozygous genotype per allele, 1 sample per 
allele and 0 homozygous samples per allele. The criterion of the minimum number of different 
heterozygotes per allele does not apply if the allele is present in at least one homozygote.

When the settings are more stringent, BGEstimate noise profiles are obtained for fewer alleles. 
The results for the settings selected for this study are indicated in the rightmost column label-
led ‘used settings’ and represent at least 3 different heterozygous genotypes per allele or, if a 
homozygote is available, at least 2 samples per allele.
Note that three different alleles have been detected for the gender locus Amel, which is due to 
the detection of 2 sequence variants for the X allele.
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Abstract
Since two decades, short tandem repeats (STRs) are the preferred markers for 

human identification, routinely analysed by fragment length analysis. Here we present 
a novel set of short hypervariable autosomal microhaplotypes (MH) that have four or 
more SNPs in a span of less than 70 nucleotides (nt). These MHs display a discriminating 
power approaching that of STRs and provide a powerful alternative for the analysis 
of forensic samples that are problematic when the STR fragment size range exceeds 
the integrity range of severely degraded DNA or when multiple donors contribute to 
an evidentiary stain and STR stutter artefacts complicate profile interpretation. MH 
typing was developed using the power of massively parallel sequencing (MPS) enabling 
new powerful, fast and efficient SNP-based approaches. MH candidates were obtained 
from queries in data of the 1000 Genomes, and Genome of the Netherlands (GoNL) 
projects. Wet-lab analysis of 276 globally dispersed samples and 97 samples of nine 
large CEPH families assisted locus selection and corroboration of informative value. 
We infer that MHs represent an alternative marker type with good discriminating 
power per locus (allowing the use of a limited number of loci), small amplicon sizes 
and absence of stutter artefacts that can be especially helpful when unbalanced mixed 
samples are submitted for human identification.

Introduction
Short Tandem Repeats (STRs) have been the preferred marker for human 

identification for over two decades. Although the high degree of variation at STR-
loci [1] provides useful discriminatory power for forensic and paternity cases, STRs 
are not the ideal marker type when degraded or mixed samples are involved. The 
interpretation of samples that have multiple contributors (and especially those 
with unequal contributions) can be complicated by the effects of slippage of DNA 
polymerases at the repeat stretches, resulting in stutter peaks that reside foremost 
at the n-1 position (representing products of one repeat unit less than the original 
allele length) [2]. Also, STR fragments with higher repeat numbers can be too long to 
allow amplification in severely degraded DNA samples [3]. The ideal forensic marker 
has a high degree of variation per fragment, allows for the design of small amplicons 
and is devoid of the production of stutter artefacts. In 1999, Jin et al. [4] published 
such a marker: a hypervariable fragment close to the MX1 gene on chromosome 21 
containing several single nucleotide polymorphisms (SNPs) within a stretch of 100 
nucleotides that proved to be informative in population genetics. However, at that time, 
the full power of such loci could not be exploited since routine analysis performed 
by Sanger sequencing only provides consensus information for each position without 
revealing how the variants of different SNPs within a fragment are connected (as a 
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microhaplotype).  
The development of massive parallel sequencing (MPS) platforms has provided 

promising new possibilities, especially for marker types that reveal their discriminatory 
value upon sequencing analysis. For STRs, MPS reveals substantial sequence variation 
in addition to repeat length, thereby increasing the discriminatory power of STRs 
compared to conventional fragment analysis [5,6]. However, even with MPS, the 
complication of stutter formation in the interpretation of complex mixtures remains. 
MPS also allows for the analysis of large panels of SNPs when severely degraded DNA 
is involved [7,8]. Recently, microhaplotypes (MH) or fragments with two to four SNPs, 
within a 200 nucleotide (nt) stretch, have been described [9] as an alternative for STR 
typing of mixtures. Note that both SNPs and MHs do not allow for searches in DNA 
databases that are generally built from STR data and that relevant reference samples 
need to be available. Here we examine a new set of short hypervariable haplotypes, 
consisting of four or more SNPs contained in genomic fragments of less than 70 nt. 
We indicate that these MHs represent a discriminating power close to that of STR 
loci and facilitate mixture analysis without the hindrance of stutter. The data of the 
1000 genome [10] and the GoNL projects [11] were used to identify potentially 
useful MHs. To confirm the genetic variation of these loci, data from 276 individuals 
of three globally distinct populations and 97 DNA samples from nine large families 
were analysed using MPS. Variant data of the most promising MHs was made publically 
available via the Leiden Open (source) Variation Database (LOVD) [12,13].

Material and Methods
Marker selection

We screened the Variant Call Format (VCF) files of the African samples of the 
1000 Genome and all of the GoNL project samples (Dutch selected for European 
ancestry) for genome fragments spanning 100 nt containing six SNPs with Minor Allele 
Frequencies (MAFs) in the relevant population ≥ 0.1. To select a subset of fragments for 
wetlab confirmation from the total set (which was >100,000 fragments), filtering was 
performed using the following criteria: 

• At least four out of six SNPs need to occur in both the 1000 Genomes and 
the GoNL projects, we do this for both validation purposes, but also to confirm 
that the variants are present in samples from different ancestry;

• All six SNPs should be within 70 nt to maximise possibilities for small amplicon 
design (the number of fragments from the 100 nt interval search allowed us to 
further reduce the fragment size);

• At least five of the six SNPs should not share the same MAF to maximise the 
number of possible haplotypes (many identical frequencies suggests perfect 
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linkage and lack of variation);
• One of the SNPs should have a MAF of at least 0.4 to avoid overrepresentation 

of one haplotype. 
• The highest and the lowest MAF of the SNPs within a fragment should have 

a difference of at least 0.2 to maximise variation in frequencies between 
haplotypes.

• The genomic distance to the nearest fragment should be at least 100,000 nt. 

For the remaining fragments, the MH sequence spanning all SNPs plus 60 nucleotides 
up- and downstream was checked for homology in the genome using BLAST. Fragments 
with multiple hits (both within one chromosome and on different chromosomes) were 
discarded. For the remaining fragments, primer design was performed using primer3 
v4.0.0 allowing a Tm of 57-63 °C, a primer length of 18-27 nt and amplicon sizes of 
80-120 bp. Fragments containing repeating elements (repeated four or more times) 
or single nucleotide stretches over 8 nt were discarded. After primer design, the 
complete amplicon was checked again for homology using BLAST to achieve the final 
set of fragments for wet-lab testing. The set was completed by designing an amplicon 
representing the most variable part of the fragment described in Jin et al. [4] which 
includes seven of the nine SNPs excluding the last SNP of the 248 bp fragment and 
the SNP in the additional 227 bp fragment.

Microhaplotype selection by monoplex PCR and Ion PGM analysis 

To confirm the sequence variation for the selected candidates, 92 MHs were 
sequenced in 15 samples using the Ion PGM™ System according to the manufacturer’s 
procedures. Five Dutch, three Bhutanese, two Ghanese, two Pygmy and three 
Amerindian samples from the HGDP CEPH-panel [14] were amplified in monoplex 
reactions. PCRs were performed using a 10µl reaction containing PCR buffer (Life 
Technologies), 3mM MgCl2, 0.2µM dNTPs, primer concentrations of 0.1-0.8µM, 0.6 
units Amplitaq Gold (Life Technologies) and 1.5ng DNA. PCR specificity was checked 
using the Qiaxcel system (Qiagen) according to the manufacturer’s procedures and 
MHs for which additional bands were visible in eight or more samples were discarded. 
All monoplex PCR products of the same sample were pooled and adapters were 
ligated to the amplicon pool using the IonXpress library preparation kit according to the 
manufacturer’s procedures (Ion Torrent / Thermo Fisher). Sequencing was performed 
using the PGM™ System according to the manufacturer’s procedures (Thermo Fisher) 
and data analysis was performed using FDSTools [5].
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MH confirmation by multiplex PCR and MiSeq analysis

A multiplex PCR was designed (amplicon sizes 87-126bp including primers) to 
examine the most informative 16 MHs in more detail. To test for global variation, 99 
samples from the Netherlands [15], 87 Asian samples of the Han Chinese and Japan 
HapMap panel [16], and 90 African samples of the Luhya (Kenya), Yoruba (Kenya / Nigeria) 
and Maasai (Kenya) HapMap panel were analysed. To confirm stable transmission of the 
variants, nine CEPH families (family 12, 66, 1328, 1347, 13281, 13291, 13292, 13293 and 
13294; 97 samples in total) were analysed. Multiplex PCR was performed using a total 
volume of 12.5µl containing PCR buffer (Life Technologies), 4mM MgCl2, 0.4µM dNTP, 
primer concentrations of 0.03-0.35µM, 2.5 units Amplitaq Gold (Life Technologies) 
and 1.5ng DNA. Adapters were ligated using the KAPA HTP Library Preparation Kit 
for Illumina® platforms according to the manufacturer’s procedures (KAPA Biosystems 
/ Roche) and sequencing was performed using the MiSeq® Sequencer according to 
the manufacturer’s procedures (Illumina, v3 chemistry). Data analysis was performed 
using FDSTools [5]. Data for all observed sequence variants of the final set of MHs was 
submitted to LOVD (http://databases.lovd.nl/DNA_profiles/) [12,13].

Statistical analysis

All statistic calculations were performed on haplotype data (not separately for each 
SNP). Population statistics were calculated for all populations (Chinese / Japanese and 
Kenyan / Nigerian were respectively grouped together) using Powerstats [17] and 
Genalex [18]. The power to detect mixtures (chance to observe a third allele for at 
least one locus) was calculated as described by Phillips et al. [19] by adding an extra 
sheet to the Powerstats Excel sheet (file available upon request). An Excel sheet was 
used to check for correct transmission of variants in the CEPH families. Neighbour 
joining networks were drawn for the 16 MHs of the final multiplex using Network 
5 and Network Publisher [20] using the homologous sequence of a Chimpanzee 
as out-group. Recombination rates were retrieved for all MHs from the HapMap 
recombination maps [21] and the average number of meioses for recombination to 
occur within the fragment was calculated considering the fragment lengths. To test the 
potential of these fragments to inform about geographic ancestry, STRUCTURE [22] 
was run 100 times with a K-value of 2, 3 and 4. CLUMPAK [23] was used to combine 
and visualise the data of the repeated runs.
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Results
MH candidate selection

A search in the VCF files for genomic intervals of 100 nt containing at least six SNPs 
with a MAF of at least 0.1 resulted in 14,890 potential MHs in the African samples 
of the 1000 Genomes project and 105,129 MH candidates in the GoNL dataset. An 
overview of the number of remaining fragments for each chromosome after applying 
several filtering criteria is shown in Table 1. After checking the remaining 410 fragments 
for homologous regions in the genome and the possibility for PCR design, 92 fragments 
dispersed over the genome remained and amplicons were prepared for wet-lab testing.

Table 1 - Numbers of remaining short hypervariable microhaplotypes after 
applying several filtering criteria for selection of potentially informative fragments

*percentages are calculated as proportion of the GoNL candidate fragments

MH candidate testing  

From the 92 MH candidates amplified for the first set of 15 samples, 83 MHs passed 
the selection criterion regarding PCR specificity (no differently sized amplification 
products in at least eight of the 15 samples) and were subjected to sequence analysis. 

The sequence variation observed for these 83 candidates was generally very low: 
in most cases only a single haplotype was observed. In addition, several fragments 
showed more than two alleles in the same sample reflecting multiple genomic copies 
of different sequence. Using these results as a selection criterion, 29 fragments 
remained with more than two haplotypes in 15 samples and no indication of fragment 
amplification from homologous loci based on the available data.
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Performance of MH set

A multiplex PCR was designed and 23 of the 29 fragments were successfully 
amplified and sequenced in 276 population samples and 97 CEPH family samples. 
Three of the 23 fragments revealed multiple amplification products suggesting more 
than one genomic location. Four fragments showed insufficient sequence variation. 
Thus, 16 fragments remained for which the genome positions and primer sequences 
are displayed in Sup. Table 1a. Microhaplotpes were named according to the suggested 
names by Kidd et al. [24]. 

The observed number of variable SNP-positions within a MH varied from four to 
22 and the number of unique haplotypes varied from 4-26 as displayed in Table 2. 

A sequence alignment of the observed haplotypes of each MH is displayed in Sup. 
Figure 1 and Sup. Table 2 displays the allele frequencies in each of the three tested 
populations. 

Networks were drawn from the population samples for each MH to visualise 
the SNP-distance between the separate haplotypes and the observed number 
of haplotypes for each population. An example of the network of mh07PK-38311 
is displayed in Figure 1. For this figure, an illustration of the fragment was included 
connecting the position of the SNPs with the branches in the network. Sup. Figure 
2 displays the networks for each of the 16 MHs, statistics of the Chi-Square tests for 
Hardy-Weinberg Equilibrium are displayed in Sup. Table 3. 

The observed degree of variation is different for each MH. 13 of the 16 loci result in 
a simple network with either no or one reticulation. The MH with the most haplotypes 
(mh17PK-86511) has a slightly more complex structure with a few low-frequency 
haplotypes that result in reticulations. MHs mh11PK-62906 and mh14PK-72639 result 
in complex web-like structure. mh11PK-62906 is the only fragment located in a region 
with a substantially elevated recombination rate. For the tested allele transfers of the 
selected 16 MHs in the CEPH families (144 allele transfer events for each locus in 
total), no inconsistent haplotype inheritance was observed. As an example, Sup. Figure 
3 displays the joined family tree for CEPH family 1328, 13281, 13291, 13292, 13293 
and 13294 (50 individuals in total) with the corresponding genotypes and read counts 
of each haplotype for mh16PK-83544.
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Table 2 - Overview of the observed variation for each Microhaplotype

*Each haplotype is defined as a unique observed combination of the SNP-variants within a fragment (in the tested human samples). 
** For mh06PK-25713, mh10PK-62104, mh14PK-72639, mh15PK-75170, mh16PK-83544 and mh17PK-86511, one of the SNPs is tri-
allelic. For each fragment, the number of observed unique haplotypes is displayed and the number of SNP-positions in the fragment from which 
these haplotypes are comprised.
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Figure 1 – Illustration of the fragment of mh07PK-38311 and the corresponding 
network of the haplotypes

On top, the fragment of mh07PK-38311 is displayed with the observed SNP positions indicated by vertical lines. Below, the network displays the 
distribution of each haplotype over the different tested populations and the SNP-distance between each haplotype. The circles are sized by the 
number of haplotypes observed in each population with colours representing the haplotypes of each analysed population. Each branch of the 
network is connected to the corresponding SNP in the fragment by a dotted line. 

Forensic and paternity statistics are summarised for each tested population in Sup. 
Table 4. The random match probability (RMP) of the total set of 16 MHs is 9.2×10-13 for 
the African population, 4.4×10-11 for the Dutch population and 1.0×10-9 for the Asian 
population. In comparison, Table 3 displays the RMP for several panels of different kind 
of loci and Table 4 displays the power to detect a mixture (PMD) for the MHs and the 
tri-allelic [25] and tetra-allelic SNPs [19].
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Table 3 - Overview of the Random Match Probability for different panels of 
forensic loci

* the boundary of 200 nt is within the range of some loci, on average 9 loci determine the RMP
** abbreviations: RMP = Random Match Probability
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Table 4 - Overview of the Power of Mixture Detection for different panels of 
forensic loci

       

* abbreviations: PMD = Power of Mixture Detection

To test the power of the 16 MHs to differentiate populations of different ancestry, 
100 Structure runs were performed using two to four groups (K=2, K=3 and K=4, 
Figure 2). A major cluster (76 of the 100 runs) and a minor cluster (12 of the 100) was 
obtained for K=2 separating the African or the Asian samples respectively from the 
other two populations. For K=3, 98 of the 100 runs resulted in an almost complete 
separation of all three populations involved. For K=4, a major and a minor fourth 
cluster were obtained resulting in a poor differentiation of either the African or the 
Dutch population (data not shown).
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Figure 2 - STRUCTURE / CLUMPAK population differentiation for 16 MHs in 
the tested populations

The figure displays the CLUMPAK results of 100 STRUCTURE runs, every bar displays one individual. On top, the major mode is displayed of 
STRUCTURE runs with K=2 derived from 76/100 repeated analyses where the African samples are mostly differentiated from Europe and Asia. 
In the middle, the minor K=2 mode is displayed derived from 12/100 repeated analyses where most Asian samples are differentiated from 
Africa and Europe. At the bottom, the results for K=3 are displayed derived from 98/100 repeated analyses where most of the samples of the 
three continents are properly differentiated.

Discussion
Detection of degraded DNA and of minor contributions in mixed samples is often 

complicated when conventional forensic STR typing is applied. Due to the large range 
of amplicon sizes for some loci and the occurrence of stutter products, it can be 
difficult to generate reliable and reproducible STR profiles. It would therefore be ideal 
to use a marker type of small amplicon sizes with a discriminating power equivalent to 
STRs but without the burden of stutter artefacts.

We selected hypervariable micro haplotype loci with at least six SNPs within a 
range of 100 nt from genomic reference data of a European and African populations 
and tested the final set on additional populations (including Asian samples)  in order 
to provide a set of markers which is likely to be informative in the majority of global 
populations. Since the data available to us consisted merely of SNP-frequencies and 
did not contain any information about haplotype frequencies of the combined SNPs 
within a fragment, we used variation of SNP allele frequencies within each fragment as 
a means to maximise haplotype variation. 

BLAST results of the first selection of 410 fragments exposed that many (≈25%) 
of the hypervariable fragments contained homologous regions in the genome, which 
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suggested that part of the variation in the databases might have resulted from 
something else than actual SNP variation. After discarding those fragments, sequencing 
of the remaining fragments still revealed much less variation than we observed in the 
data of the two genome projects. Since most of such reference data is derived from 
alignment of short reads (for these projects reads of mostly ≤150 nt) to a reference 
sequence, there are two likely issues that could cause discrepancy in the estimated 
frequencies for these hypervariable fragments:

1. Homologous fragments may map to the same position, falsely suggesting a 
heterozygous genotype.

2. Fragments with many SNPs in a short range may exceed the number of allowed 
mismatches for mapping reads to the reference during analysis, meaning that 
only the reads that overlap part of the SNPs and haplotypes that are most 
similar to the reference sequence will be mapped to the correct location.

In combination with relatively low coverage, these two issues can result in erroneous 
variant calling for separate SNP positions within one (heterozygous) sample. An 
extensive wet-lab confirmation of new possibly hypervariable loci is therefore essential. 
Testing of samples from globally dispersed populations will not only give information 
about discriminating power in different populations, but also increase the chance to 
find different heterozygous allele combinations that can help to identify possible co-
amplified homologous regions. Testing of samples from large families will confirm 
correct inheritance of the haplotypes and assist the internal validation of genotyping 
results.

Although many of the initial candidate loci were rejected, a final set of 16 MHs 
remained with expected inheritance of the haplotypes in the tested families and a high 
degree of variation in the population samples. With a varying number of haplotypes 
for each MH (2-19) and corresponding haplotype frequencies, the discriminating 
power is not as strong as STRs but the set of 16 loci still reaches strong random 
match probabilities (RMP) of: 1.0x10-9 in the Asian population, 4.4x10-11 in the Dutch 
population and 9.2x10-13 in the African population. For identification purposes, our 
set of loci proved to be more informative than other alternative non-STR loci as can 
be observed from Table 3. Since the populations tested for the different loci are not 
exactly the same, a direct comparison of the RMP should be interpreted carefully. 
Notwithstanding, the discriminating power of the 16 short hypervariable MHs roughly 
resembles that of nine STRs [26], 25 tri-allelic SNPs [25], 21 tetra-allelic SNPs [19] or 
23 of the earlier described MHs [9]. 

An important advantage of the use of MHs for mixture analysis is the number of 
hap-lotypes that is observed for several loci. The statistical power (likelihood ratio) of 
matching a person with a two-person mixture is substantially increased when more 
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than two alleles are present for a specific locus. The power to detect a third allele for 
a two-person mixture in at least one of the 16 loci ranges from 0.995 in the Asian 
population to 0.9989 in the Dutch population and even 0.99992 in African population. 
For detecting additional contributors in mixtures, the assay outperforms the published 
sets of tetra-allelic and tri-allelic SNPs (Table 4). For the 130 MHs of Kidd et al [27], 
the average PMD is estimated based on the top 28 loci for different numbers of 
loci divided in ranges of effective number of alleles (3-4, 4-5 and >5). These 28 loci 
together reach a PDM of 0.9999999875 from which 16 loci contain all SNPs within a 
150 nt span. However, only three these 28 loci contain all SNPs within a 100 nt span as 
is the case for the loci described in this paper. The two sets together could complete 
an even more optimal set of loci for mixture detection. 

Observed variation

Reticulations in a neighbour joining network can be caused by either recombination 
or by recurrent mutations. The only fragment located in a region with exceptionally 
high recombination rate is mh11PK-62906, but considering the small fragment length, 
recombination would only be expected to occur within the fragment once every 
5.5x104 meioses. This might suggest that the web-like networks of mh11PK-62906 
and mh14PK-72639 (and in lower extent mh17PK-86511) are more likely to be 
explained by mutation hotspots concentrated on a few specific positions rather than 
by recombination. Indeed, in none of the tested allele transfers of the CEPH families 
(144 allele transfer events for each locus in total), recombination has occurred in such 
a way that the allele inheritance of any of the loci was impacted. When using these loci 
for paternity cases, it should be considered that mh11PK-62906 and mh14PK-72639 
are more likely to display mutations than an average fragment. 

For the network of mh06PK-25713, a fairly even distribution of the haplotype 
frequencies was observed for all populations but for most of the loci, several haplotypes 
vary substantially in frequency between the tested populations. This suggests that the 
MHs provide ancestry information although the design and selection of the loci was 
not intended for this purpose. STRUCTURE analysis indeed showed that the three 
analysed populations are differentiated almost completely based on the data of these 
16 MHs. Data from a larger set of samples with a more global representation would 
be needed to test the full potential of these MHs as ancestry informative markers. 
From the 16 MHs that remained after all selection criteria, several of the loci failed 
Hardy-Weinberg equilibrium test since the frequency of some homozygous genotypes 
(usually with low frequency) is higher than would be expected. 

 None of the fragments is located in gene regions, so strong natural selection is not 
expected for these fragments. An explanation for this could be that some samples in the 
tested populations are somewhat genetically distinct from the rest of the population, 
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which is not unlikely since we grouped samples of two Asian populations and of three 
African populations in order to achieve comparable sample sizes. It also cannot be 
excluded that some fragments could have occasional SNPs under the primer binding 
sites although we did not observe any discrepancy of inheritance in the nine CEPH 
families.

Sequence data analysis

It should be noted that not every software for sequence data analysis is capable to 
analyse single-fragment haplotype data. When using an analysis software that maps the 
complete sequences to a reference, results are often summarised by SNP instead of 
haplotypes. In this study we used FDSTools [5] since variant frequencies in the data are 
always reported for the complete sequence between two flanks instead of a summary 
for each position.

Conclusions
A new set of short hypervariable microhaplotypes were selected as potential loci 

for application in forensic DNA analysis. For 16 MFs, confirmation of the variation 
and inheritance was performed by analysing 276 samples of three globally dispersed 
populations and 97 samples of nine large families. MHs provide an alternative type of loci 
for cases where STR stutter or degradation of DNA limits or complicates the analysis. 
Since the discriminating power of the selected hypervariable MHs is larger than other 
published non-STR loci, they provide a practical and financially advantageous method 
with a relatively small number of loci. For the purpose of increased discriminating 
power and ancestry informative information, a combination of these loci with (part of) 
the loci of Kidd et al [21] could provide an even more powerful tool.

The selection of short hypervariable MHs from genomic reference data is 
complicated since the generally short read length of reference data is not ideal to 
resolve the exact variation in short range hypervariable fragments. Since the read 
length of most MPS platforms is increasing, future reference data will most likely be 
better suited for selection and analysis of additional MHs.

National forensic DNA databases currently consist of STR data. Although it is not 
expected that all database samples will be typed for new loci in the near future, loci 
such as MHs could provide a powerful tool in cases where reference samples are 
available for comparison.
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Supplementary materials
Supplementary Figure 1 – Alignments of the observed microhaplotype variation
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For each MH, the alignment of all observed variants is displayed sorted (top to bottom) by the overall frequency (of all tested populations 
combined). When chimpanzee sequence data is available, the sequence is displayed at the bottom of the alignment. The haplotype with the 
sequence of GRCh38 is marked as (hg38).
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Neighbour joining networks are displayed for each of the final 16 MHs. The total number of haplotypes in each circle is displayed and the size 
of each coloured circle displays which number of alleles of the specific haplotype was present in each population. Every number on a branch 
displays a SNP that separates one haplotype from another.
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Supplementary Figure 3 – Joined family tree of six CEPH families displaying the 
observed haplotypes and read counts for mh16PK-83544 for each individual 

The joined family tree is displayed of CEPH family 1328, 13281, 13291, 13292, 13293 and 13294 (50 individuals in total) with the observed 
haplotypes for mh16PK-83544. In the tree, different haplotypes are marked in different colours with the read numbers of each haplotype 
displayed below. Parents are connected in the tree with double lines and to their respective offspring with single lines.
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Supplementary Table 1 - Primer details, genome locations and recombination 
rate for the 16 selected microhaplotypes

Supplementary Table 1a - Primer details of the 16 selected short hypervariable 
microhaplotypes
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Supplementary Table 1b - Genome locations, distance to the closest 
microhaplotypes of Kidd et al. 2017 and recombination rate (from HapMap) 
for the 16 selected microhaplotypes

  

Primer details, genome locations and recombination rate of the MHs distance to the closest microhaplotypes of Kidd et al 2017.
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Supplementary Table 2 - Allele frequencies of MH haplotypes for the analysed 
populations
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General Discussion
Short tandem repeat (STR) analysis by capillary electrophoresis (CE) has provided 

important investigative leads and crucial evidence in numerous forensic cases requiring 
human identification all over the world. While CE analysis of STRs has been the golden 
standard in forensic DNA evidence for over two decades this method is not without 
limitations. Parts of these limitations are caused by the analysis method CE and parts 
by the nature of the chosen DNA marker: STRs. Several of these limitations may be 
overcome by using Massively Parallel Sequencing (MPS) and the limits of the marker 
may minimised by developing new software tools for MPS data, or by selecting new 
markers with sufficient discriminating power.

Strengths and limits of routine CE STR-analysis

CE analysis is an easy operable, fast running and relatively cheap method; all three 
very good arguments for routine use in a high throughpu¬t workflow such as forensic 
DNA analysis. A drawback is that CE can only make use of a limited number of 
fluorescent dye labels (currently 5-6 labels; soon up to eight labels [21]) which means 
that each label needs to accommodate several STR loci of different fragment sizes to 
enable the multiplex range of current STR typing systems that is 16 to 27 loci. The 
commonly used size range of the most recent CE STR assays is around 75-450 bp 
(enabling 3-7 loci distributed over the range for each label). In forensic traces, DNA 
is often fragmented which can result in imbalance of the smaller and longer loci of a 
DNA profile (as shown in figure 1). Since the excitation spectra of the used fluorescent 
labels are partly overlapping and the used detectors in a CE system do not have an 
unlimited detection range, strong imbalance of loci can lead to either allelic drop-out 
for the longer loci or off-scale signals for the shorter loci. Off-scale signal can lead 
to bleed through signal in adjacent colour channels which complexes profile analysis 
as these artefact signals need to be differentiated from genuine alleles to prevent 
apparent allelic drop-in signals as shown in figure 1.
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Figure 1 – Capillary Electrophoresis STR profile of a degraded sample

The figure displays a profile (Powerplex Fusion© 6C) of a severely degraded DNA sample. The signal drops as the length of alleles increases 
resulting in drop-out of many long alleles while the signal is off-scale for the shortest loci. The signal is so high for the short loci that bleed through 
signal is observed from the highest peaks to other colors.
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Strengths and limits of STRs as marker for human identification 

STRs have a high mutation rate. This is the very reason that these loci show a 
lot of variability between individuals thereby providing a strong discriminating power. 
The high mutation rate is most likely caused by slippage of polymerase [10] when 
it encounters stretches of repeated sequence motifs. Unfortunately, the process of 
generating a DNA profile involves an amplification step by PCR where slipping of the 
polymerase results in PCR stutter artefacts that can reach intensities of over 20% of 
the original allele (chapter 4). In imbalanced mixtures, minor contributions with alleles 
at stutter position of the major contributor can be overshadowed by PCR stutters 
resulting in allelic drop-out of (part of) the minor contributor.

Potential of Massively Parallel Sequencing (MPS) of STRs

Even though STRs have the drawback of stutter formation during amplification, the 
forensic DNA databases consist almost exclusively of STRs. It therefore makes sense to 
start the implementation of MPS in forensics by analysis of STRs (chapter 4). This can 
also aid in a stepwise training of experts for court, lawyers and judges to present and 
explain MPS data in criminal cases.

Although noise from stutter will remain as long as sample preparation for STR 
analysis contains an amplification step, MPS does provide some advantages over CE. 

• Loci are recognised by sequence rather than by length and fluorescent label
• All amplicons can have overlapping sizes (see section  ‘recognition of loci by 

sequence rather than length and fluorescent label’)
• MPS is not limited by the detection range for fluorescence signal as for CE
• Sequencing of STRs reveals additional variation that is not visible by performing 

CE analysis
• MPS data is more straightforward (digital) than CE data

Recognition of loci by sequence rather than length and fluorescent label

During MPS data analysis, fragments are recognised by sequence so there is no 
need to design consecutive size ranges for STR loci. Design of all amplicons in a 
multiplex in a narrow size window will improve the within-sample locus balance for 
degraded samples. The only remaining fragment size variation will derive from limits 
for successful primer design and the variation in repeat length. As long as loci can be 
separated by sequence, an almost indefinite number of loci can be multiplexed in one 
reaction. Increased numbers of loci open up new options for answering other forensic 
questions; this will be discussed later in ‘potential new forensic markers’.
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Analysis with an almost indefinite dynamic range

Off-scale signal no longer exists in MPS data so bleed through signal can no longer 
complicate the interpretation for other loci. A single PCR product yields sufficient 
material for more than one run on the MiSeq sequencer so even in case of strong 
locus imbalance, the number of reads per sample can be increased in a rerun with 
more input so that coverage is sufficient at all loci. In principal, multiplexes do not need 
to be optimally balanced but for cost effectiveness, a balanced assay is opportune as 
it allows for a higher number of samples per run. The MPS PCR primers are much 
cheaper than those used in combination with CE analysis that have a fluorescent label, 
but sequencing costs are substantially higher than the costs of an electrophoresis run. 
For a routine application of MPS analysis in forensic casework, cost will be an important 
factor which can be achieved with a well-balanced assay for which many barcoded 
samples can be combined in a single sequencing run. 

STR sequence variation in addition to length

On the sequence level, many of the STRs exhibit more variation than repeat length 
only (chapter 4). By using a reference database which includes sequence variation, 
the discriminating power of the same loci increases substantially. The additional 
information also aids in differentiating genuine alleles from PCR noise such as stutter 
since overlapping alleles on stutter positions may differ in sequence, which is either due 
to the repeat structure (in case of complex STRs that exist of more than one repeat 
motif) or to the presence of SNPs in the repeat or flanking regions. Figure 2 shows part 
of a CE and MPS profile of the same two-person mixture with a ratio of 95:5.

As can be observed from the example of figure 2 the additional discriminatory 
power gained by sequence variation can be substantial already for a single locus when 
comparing genotype frequencies, but will be even larger when analysing mixtures.

The sequence variation is likely to also provide additional information for the 
genetic biogeographic ancestry of a person. Already with CE STR data [1], it is possible 
to make a prediction of the biogeographic ancestry of a person, but the additional, 
often less variable, sequence variation will likely increase the accuracy of biogeographic 
ancestry prediction. 
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Figure 2 – Illustration of the influence of additional sequence variation for a 
mixed profile of D3S1358 for CE and MPS 

CE and MPS allele frequencies D3S1358 

CE and MPS genotype frequencies of observed alleles D3S1358

Match probability for the major and the minor for CE and MPS

On top, the CE and MPS profile are illustrated for a two person mixture (5% minor). For the MPS 
profile, the stutters (recognised by sequence) are marked in red. The middle two tables display 
the (Dutch) allele and genotype frequencies for the called alleles. At the bottom, the match 
probability is calculated for both contributors based on the frequencies of the deconvoluted 
genotypes for the major and the minor for CE and MPS.
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When evaluating the MPS based PowerseqTM assay more insight was obtained 
in the formation of stutter artefacts as, for complex STRs, the abundance of stutter 
artefacts of the same length depended largely of the repeat length of the longest 
uninterrupted stretch. Although additional stutter artefacts (and PCR hybrids which 
will be discussed later on) might provide a total profile which is more complex. Many 
of the complexity can now be much better explained than all the piled up artefacts 
that are visible as a single peak of the same length in a CE profile. This will be further 
addressed in the software part later on.

STR sequence nomenclature

Alleles generated by CE are named based on their fragment length which is 
assumed to correspond to a certain repeat length and this repeat length is simply used 
as the CE allele name. (Massively parallel) sequenced STR alleles will require a new 
way of describing variation. Currently available databases that describe STR sequence 
variation have followed the convention of describing the sequence in accordance with 
length variation observed using CE and using the predominant repeat motif(s) in the 
variable region as basis. This procedure does not always make sense when the actual 
sequence is regarded as shown below in two examples of sequences from allele CE12.

D13S317-CE12-TATC[12]AATC[2]ATCT[3] 
and
D13S317-CE12-TATC[13]AATC[1]ATCT[3]

The observed sequence variation for this locus as displayed in Sup. Figure 6 of 
chapter 4 shows that the AATC motif adjacent to the predominant TATC motif is 
common and variable while it is originally not used in calling the CE allele length. 
Comparing CE allele names and descriptions of the complete sequence variation may 
therefore cause confusion. It should be noted that for comparison of CE data and 
sequence data in a casework setting, the CE allele length is the only relevant detail. 

Much insight for sequence description can be obtained from already existing 
nomenclature used in human genome projects [28]. For clarity, and because the 
number of loci constantly increases (and is likely to increase further with the use of 
MPS in forensics), it makes sense to use general and fixed rules for describing sequence 
variation for the STR motifs as well as in the flanking sequences. In chapter 3 we 
suggested a general way to describe sequence variation in detail in accordance with the 
HGVS recommendation except for a few adjustments that derive from the targeted 
approach (instead of whole genome) that is common in forensics. We manually applied 
these rules to a first set of autosomal loci for which data was present at that time 
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(a prototype version of the PowerseqTM assay). These rules should be assessed for a 
larger number of loci and should preferably be integrated in an automated and freely 
available software tool to allow a general format for exchanging sequence results.

Because of the international debate on the nomenclature of forensic STR sequencing 
data, the ISFG prepared a set of recommendations accommodating the points that 
most groups agreed on in an attempt to harmonise forensic STR sequence variation 
naming in literature [16]. Notably, the name should include a reference to the CE allele 
designation to avoid incorrect comparison with data in old cases or with existing CE 
DNA databases. Also it was recommended to describe all sequences in the forward 
orientation of the genome reference. This point opposes some existing STR sequence 
databases (most importantly the NIST STRBase [22]) in which some STRs follow the 
reverse orientation. Unfortunately, several articles published since then disregard this 
ISFG recommendation and use the original orientation. Until a general nomenclature 
consensus is accepted, the ISFG recommendation to include the complete sequence 
string for exchanging STR sequencing data remains even more important to avoid 
wrongful comparison of deviant allele calling systems.

Forensic MPS data analysis

A new type of data requires new software to handle the data. For CE data, companies 
that provided the analysers provided software to translate the electrophoresis data to 
either an STR profile (describing the number of repeats of each allele plus the observed 
fluorescence intensity) or a consensus sequence when applying Sanger sequencing. 
When needed, results could be checked manually. For MPS however, the initial output 
files were huge fastq files and very limited possibilities for further data processing were 
provided. Nowadays, the companies provide tools that are capable of doing many of 
the basic analyses, although for many applications and data interpretation additional 
third-party tools are still required.

Early users of MPS applications benefit greatly from the help of bioinformaticians. 
Although some basic knowledge of programming is acquired more easily than most 
people would expect, data analysis from MPS is too massive and complex for most 
biologist to handle completely on their own in an efficient way. It is therefore not 
surprising that a large part of the work in this thesis is done in close collaboration 
with bioinformaticians and focusses on development of specific software with tools for 
forensic MPS analysis.
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Analysing STRs and investigation of STR stutter 

Repeating sequences such as STRs pose a challenge for most alignment algorithms 
[30]. Since STRs were an important target of interest, we developed the software 
TSSV using a new approach for analysis of fixed targets containing repeated sequence 
motifs by only mapping small parts in both the flanking, non-repetitive sequences and 
reporting all variation between those two flanks. In this way, mapping bias of repeating 
motifs was avoided. To achieve a readable output, repeated motifs were summarised 
(chapter 2). While TSSV was a good solution for analysing the first experiments, it was 
still lacking many of the functionalities needed for a forensic casework setting. Then, one 
needs to apply filters using quality thresholds, differentiate the genuine allele calls from 
artefacts, and visualise data to explain your sequence profiles in court. The output of 
such software could subsequently be used to perform statistical calculations on the data 
for further interpretation of the context and provide information for the evidentiary 
value/ weight of evidence in a case.

Once the evaluation of the Powerseq assay showed that the majority of observed 
stutter followed clear patterns in relation to the length of the longest uninterrupted 
stretch of repeats, a concept was developed to recognise stutter patterns based on a 
set of training data. This concept was included in the development of FDSTools (chapter 
5) combined with all the needed data analysis functions intended for implementation in 
forensic casework. Although this concept could potentially be used for CE as well, it is 
not likely that it will ever perform as well as for sequencing data since the level of the 
most abundant stutter depends primarily on the longest uninterrupted repeated motif 
which varies for alleles of the same CE length.

FDSTools

While the initial concept for reduction of noise in STR sequencing data was only 
focussed on developing a model for STR stutter correction, one of the implemented 
approaches for noise correction was able to characterise not only STR stutter, but any 
systemic allele related noise in the set of training data. An example of this is noise on a 
SNP positions as shown for D13S317 and PentaD in Figure 3.
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Figure 3 – Distribution of different types of noise for the three most 
common alleles of D13S317 and PentaD

  

Systemically observed noise for the references in the FDSTools training set that carry the three 
most frequent alleles for D13S317 and PentaD is shown divided in noise caused by stutter, 
slippage in a single nucleotide stretch and errors on specific nt positions (noted in the figure as 
‘SNPs’) as a percentage of the reads of the corresponding allele. As can observed, the stutter 
increases for the longer alleles of both loci and while D13S317 noise consists almost exlusively 
of stutter, PentaD shows substantial levels of noise from single nucleotide slippage but also of 
errors on specific nt positions.

 

In accordance with CE data, we see that alleles with longer uninterrupted stretches 
of repeats ‘loose’ more of their original intensity to stutter events and other PCR noise 
than smaller alleles (also see Sup. figure7 of chapter 4). Once noise sequences can 
be attributed to the respective genuine alleles based on the knowledge gained in the 
training data, there is no reason why the noise reads can’t be added to their respective 
genuine allele. In chapter 5: table 2 we show that the within locus balance of single 
source samples is substantially improved when noise is not only filtered, but also added 
to the respective alleles. After applying the noise correction to mixtures it was shown 
that noise was substantially reduced and the performance of analysis of unbalanced 
mixtures was substantially improved. It was even shown that, after allele related noise 
correction, stutter is no longer the limiting factor for analysis of unbalanced mixtures. 
The most abundant noise that is still complicating mixture analysis is now caused by 
PCR hybrids.
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PCR hybrids, the next generation of PCR noise

For MPS, sequence reads are generated for each molecule separately. Therefore, 
linkage of variants can now be monitored in detail as linked variants occur within one 
read. While this provides opportunities for the analysis of microhaplotypes (discussed 
in more detail later on) it also reveals a type of PCR noise that could not be seen 
by Sanger sequencing. Figure 4 shows an illustration of our theory on PCR hybrid 
formation (also referred to as jumping PCR).  Although PCR hybrids are a new type 
of noise for the forensic community, they were already described in 1989 [25]) and 
are well known in the field of metagenomics (also known as PCR chimeras or jumping 
PCR artefacts) where the hybrids are visible when performing Sanger sequencing after 
cloning of PCR products.
 

Figure 4 – Illustration of the formation of PCR hybrids

On top, two ‘parent’ alleles are displayed that can form PCR hybrids during the PCR. In this 
example, the primer binds to allele 2 and is only partially extended. In a later cycle (displayed in 
the middle), the partially extended primer hybridises to allele 1 and is again extended, thereby 
creating a hybrid PCR product with part of allele 1 and part of allele 2. Depending on the posi-
tion until where the primer is extended and the fragment / orientation where the extension 
starts, four different hybrids (displayed on bottom) can be derived from these two alleles.

The formation of PCR hybrids is not allele specific but depends on the combination 
of alleles in a sample. Hybrids are currently not recognised and corrected by FDSTools 
(since it corrects systemic allele dependant and not genotype dependant noise). 
In metagenomics, tools are available that completely filter out alleles that could, by 
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sequence, reside from PCR hybrids [13,14]. However, in the forensic setting, many 
of the PCR hybrids result in a sequence that also exists as genuine alleles in the 
population. Therefore, discarding any possible hybrid would result in regular drop-out 
of genuine alleles in mixed samples. Since the level of hybrid formation seems to be 
sequence dependant [24], setting a common threshold for hybrid removal would be 
a suboptimal solution too. Therefore, further investigation of the dynamics of hybrid 
formation might improve analysis of low level mixture contributions and increase the 
possible level of automated allele calling for STR sequencing data.

How to further reduce ‘MPS’ noise

The noise discussed before represents noise created during the PCR. Besides, 
sequencing errors occur, but this is only a small minority of the noise. Although a lot 
of the noise can be recognised and corrected during MPS data analysis, ideally noise 
is prevented to arise at all, which would mean working without PCR. With the minute 
amounts of cell material in forensic cases, this seems unrealistic for now. Probably it 
would be possible to reduce the number of PCR cycles, but this decreases inputs in the 
adapter-ligation step (of the libraryprep) which is shown to increase adapter dimers 
(as described in chapter 4),. Adapter dimers could be prevented by using new library 
prep methods such as the NEBNext Ultra II FS DNA library prep kit, but this protocol 
includes an additional amplification step to generate the complete sequencing adapters 
as required for sequencing.

Random barcodes

Another solution for reducing both, STR stutter and PCR hybrids, is the use of 
random barcodes (also referred to as unique molecule identifiers: UMIs) [8]. By 
performing a two-step nested PCR, UMIs can be included in the primers used for the 
first few cycles of step 1 to be amplified with the target (and remain stable) in step 
2 of the PCR. In this way, by counting the number of UMIs for each variant instead of 
the total number of reads, any noise resulting from the PCR can be reduced to the 
noise that is generated in the cycles of step 1. The use of UMIs is further explained in 
figure 5. Although the use of UMIs seems like an excellent solution to reduce noise 
and authenticate genuine alleles in samples, our first tests (unpublished data) were not 
very successful. The inclusion of UMIs in the primers for the cycles of step 1 of the PCR 
resulted in highly increased primer-dimers which were amplified preferentially in step 2 
of the PCR, thereby decreasing the sensitivity essential for forensic DNA analysis. So far, 
published methods using UMIs were all using large amounts of DNA (>20 ng).
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Figure 5 – Using random barcodes to trace back PCR noise

On top, the design of a primer from PCR step 1 is displayed including a piece of random nucleo-
tides (UMI) that are integrated in the primer. During the cycles of PCR 1 (middle part) PCR-
products are generated that each contain their own unique molecule identifier (UMI). In PCR 
step 2, the complete molecules are amplified by targeting the tail 5’ of the UMI thereby copying 
the UMI from PCR step 1 without generating new UMIs. During the analysis, results can be sum-
marised by UMI rather than by read to reduce PCR noise to the the cycles performed in PCR1.

Alternative MPS methods

Target enrichment by DNA capture methods

Target enrichment is essential for forensics since most countries have legal 
restrictions in the features and thus genomic regions that can be analysed without 
informed consent (as is generally the case with crime scene investigations).

Target enrichment in forensics is commonly achieved by PCR, but an alternative 
approach would be to use capture methods using probes to fish out the targets 
of fragmented DNA and get rid of PCR bias before sequencing. However, current 
MPS methods still require a substantial number of input molecules. For the MiSeq, 
one sequencing run requires around 3 – 9 fmol (equalling 1,8 – 5,4 * 109 molecules) 
meaning that a substantial number of PCR cycles is needed to achieve sufficient 
material even if DNA capture methods would be 100% efficient (which they probably 
are not). Still, it would be worth investigating these methods since new platforms such 
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as single molecule sequencing (also referred to as third generation sequencing) might 
need less material.

Single molecule sequencing

Single molecule sequencing platforms such as Pacific Biosystems and Nanopore 
(minion) sequencing are currently mostly known for being able to sequence long 
DNA fragments. While long DNA fragments are often not available in forensic DNA 
research, this new type of technology can provide opportunities for forensics once 
small amounts of material can be used and sequence read quality is increased to a level 
to a level such as current MPS methods. Unfortunately both of these requirements are 
not yet achieved for single molecule sequencing (to my knowledge). Still, developments 
in this field should be closely monitored by the forensic field since analysis without PCR 
could reduce bias, substantially increase the speed of sample preparation and might 
facilitate possibilities such as on-site preparation of samples at a crime scene or mobile 
labs.

Potential ‘new’ forensic markers

Although MPS increases the evidential value that can be gained by analysing STRs, it 
also enables the application of new types of markers for forensics. It would be possible 
to simply sequence high numbers of SNPs until the same discriminating power of STRs 
is reached (which will require >60 SNPs [37]), but an increased number of loci will 
substantially increase sequence demand and cost. One type of potential target that 
could allow forensic analysis using a limited number of loci is microhaplotypes.

Microhaplotypes 

Since MPS generates sequence reads separately for each molecule, the linkage of 
all the observed variation within a read (also referred to as microhaplotype) can be 
monitored in detail. In chapter 6 we used genome data from two large genome projects 
[12,29] to select potential microhaplotypes dispersed over the human genome. While 
this seemed a straightforward analysis, this project revealed the risk of using data from 
genome projects (derived from short read data) since they are not without error. 
Apparently, mapping of multicopy fragments sometimes results in wrongful calling of 
SNPs in a small region which is exactly the criteria that we used to select potential 
microhaplotypes. Genome data derived from long reads (the longer the better!) would 
probably be a much better source for selecting these loci. Unfortunately, this kind of 
data was not yet available at the time that this research was conducted. A large part of 
this part of our project focussed on selection of fragments that showed actual variation, 
and wet lab validation is essential. Surprisingly, many studies still publish new potential 
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loci (including microhaplotypes). It would be beneficial for the scientific community if 
respected journals would demand wet lab validation for appointing new loci. Analysis 
of samples from families aids in authenticating genuine SNPs from the inheritance 
patterns (SNPs that derive from mapping errors will have deviating patterns). Using 
sample from globally dispersed populations minimise the chance of fixed combinations 
of common haplotypes and are immediately useful to assess global variation.

After discarding the majority of originally selected loci that did not show the expected 
variation, a final set of 16 loci remained with a discriminating power comparable to 
nine STRs. However, in the current format, also the microhaplotypes are not the ideal 
markers since, as with STRs, PCR hybrids were observed as a complicating factor 
for interpretation. Like as with STRs, PCR hybrids often result in sequences that also 
exist as genuine alleles and cannot be simply filtered out. It is surprising that PCR 
hybrids are still hardly mentioned in forensic MPS publications since they are likely to 
become the next limiting factor for mixture analysis. Despite the issue of PCR hybrids, 
microhaplotypes are still potentially interesting loci for forensic DNA analysis since 
they provide a high discriminating power for a small number of loci and also provide 
information for prediction of biogeographic ancestry [5].

Increased numbers of loci

Because, during the analysis, different loci are recognised by sequence, the number 
of loci that can be analysed in one reaction can be increased almost indefinitely for 
MPS as long as the PCR remains sufficiently sensitive for all the loci. This opened many 
new possibilities for potential forensic application. Many SNP panels have recently been 
developed for different purposes:

• Identification
• Prediction of geographic ancestry
• Prediction of external  visual characteristics (EVCs)
• Analysis of SNPs on the RNA level

SNP panels for identification

When analysing a large number of SNPs, the same discriminating power can be 
reached as for the currently used sets of STRs without the burden of STR stutter 
[37]. Although the current forensic DNA databases consist exclusively of STRs, SNP 
panels for identification can be used for comparison of known references with forensic 
evidentiary material and can provide better means for analysing more distant kinships. 
The only disadvantage of these panels is the bi-allelic nature of most SNPs which is 
suboptimal for analysis of mixtures containing DNA of more than two contributors. Tri-
allelic and tetra-allelic SNPs [18,34] could provide a potential solution to this, but the 
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numbers of available SNPs for these types of markers in the genome are limited. When 
using panels of large numbers of SNPs, one can choose to use SNPs dispersed over 
the genome, but for kinship analysis, panels that contain dense coverage of SNPs over 
a genomic region can provide information about the number of recombinations that 
occurred which can help distinction between kinships such as cousins or grandparent 
– grandchildren [38].

Investigative leads

 While the most commonly known application of forensic DNA analysis is human 
identification, DNA can also provide investigative leads. While this application is not 
restricted to MPS, the possibility of analysing more markers certainly facilititates more 
options.

SNP panels for geographic biogeographical ancestry

Biogeographical ancestry prediction has recently become a hot item in forensic DNA 
analysis [19]. When there are no leads available but sufficient perpetrator material is 
available, biogeographical ancestry information can limit the pool of potential suspects 
and provide investigative leads. In case of the discovery of unidentifiable human remains 
or body parts, information on biogeographical ancestry can also be useful to narrow 
down where to look for a missing person. While SNP analysis on the Y chromosome 
and mitochondrial DNA are important markers for predicting the biogeographical 
ancestry in the maternal and paternal linage [31], the use of autosomal markers for this 
purpose is becoming increasingly important since numbers of persons with admixed 
biogeographical ancestry are constantly increasing. For the use of biogeographical 
ancestry prediction in forensic cases it should be noted that the prediction will never 
be a hundred percent accurate and should be interpreted carefully. Current application 
in casework is extra complicated by the way of presenting the data which usually 
consists of principal component analysis (PCA) or structure plots [6,23]. While this 
way of presenting the data is a neat way of visually presenting the data, the reliability 
of the prediction is probably interpreted in a less biased way by using likelihood ratios 
[19] while strong guidance of a trained expert will remain essential for application of 
biogeographical ancestry prediction in a forensic case.

SNP panels for prediction of external visible characteristics

In addition to biogeographical ancestry prediction, SNP panels have been published 
in the last decade for prediction of EVCs such as eye colour, hair colour / structure, 
early onset baldness (alopecia) [15] and skin colour [26]. While the initially published 
traits such as eye colour and hair colour can be predicted with substantial reliability, 
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EVCs such as alopecia and skin colour often do not reach probabilities over 80% which 
can easily be misinterpreted by policemen in the field who will use the information 
for selection of potential suspects. This and the limited number of visible traits that is 
reliably analysed may be why prediction of EVCs is currently hardly applied in forensic 
casework. Once prediction of more visual traits is possible and the reliability is increased 
for several of the traits (i.e. by using a high number of SNPs which is now possible using 
MPS) prediction of EVCs in forensic cases will probably be more informative.

Analysis of SNPs on the RNA level

Analysis of specific RNA targets has been presented in many publications for 
identification of the origin of the organ or body fluid of cell material in an evidentiary 
trace [3]. This can provide important context information for interpretation of the 
related DNA profile. However, when a sample is mixed, the organ or body fluid 
type cannot be attributed to the donors by using conventional techniques since 
the expression level of the different RNA targets varies (except for gender related 
markers). Thereby the highest RNA signal is not necessarily from the donor with the 
highest signal in the DNA profile. However, by typing SNPs in body fluid or tissue type 
related RNA loci, SNPs where the donors carry a different variant can be used to 
attribute the tissue type or body fluid to a donor. It should be noted however, that the 
number of SNPs in cell- or tissue type related loci will not be sufficient to reach the 
same level of discriminating power as is common for routine STR analysis. However, by 
combining RNA-SNP and STR results, one could simply look for cell type related SNPs 
of references discriminate the observed donors (deducted from the STR profile) [35].

Quantitative analysis by MPS 

In the analysis of mixtures performed in this thesis (chapter 4 and 5) it was indicated 
that the dynamic nature of MPS data (numbers of sequence reads in contrast to rfus) 
provides a way to perform a quantitative analysis of the contributors in a mixture. 
While this aids the interpretation of mixtures, it also provides opportunities for other 
quantitative analyses such as the epigenetic marker methylation which can be measured 
by bisulphite sequencing [32]. By treating DNA by bisulphite, non-methylated Cytosines 
(Cs) are converted to Uracil (U) which is translated to a T during PCR and methylated 
Cs are protected from conversion. By comparing the levels of Cs and Ts the level of 
methylation can be quantified.

Several studies [32] have recently addressed estimation of age based on MPS 
analysis of methylation levels of specific CpG sites. Age is a very interesting forensic 
trait since age is searchable in genealogical databases. It can provide an investigative 
lead in case of an unknown perpetrator, assist in familial searches (search the family 



General Discussion

239

C
hapter 7

tree where individuals of corresponding age occur) and provide additional information 
for kinship analyses (i.e. a boy of 18 years old cannot be the grandson of a reference 
of 25 years old but could be a cousin).

Vidaki et al. [32] recently published a review suggesting numerous potential forensic 
applications of methylation-based epigenetic studies that we might expect in the near 
future, such as:

• Tissue identification; if no RNA is present, tissue specific methylation can still 
be assessed. 

• Differentiating monozygotic twins; currently only possible by looking for de 
novo mutations using deep complete genome sequencing. Analysis of levels of 
methylation in only a few loci might provide a much cheaper and straightforward 
method

• Information on alcohol / drug abuse, body size and shape might be of great 
importance for investigative purposes.

The accuracy of quantitative analyses using MPS can probably be increased by using 
UMIs (as discussed before), since this will reduce bias introduced during the PCR by 
preferential amplification.

Combining different forensic loci

The possibility to analyse numerous markers in one analysis provides new 
opportunities for forensic samples with limited sample material. If a sufficiently balanced 
assay can be designed, in principle, autosomal, Y and X chromosomal STRs could be 
analysed at once in combination with SNPs on the autosomes, Y chromosome and 
mtDNA for identification purposes and for prediction of biogeographical ancestry 
and prediction of EVCs, all in one reaction. The first commercial assays have been 
developed already by Promega and Illumina / Verogen [20] that combine different 
types of loci. However, for many cases it will depend on the research question to 
be answered if all these loci are actually needed. Only if all loci can be combined in 
one assay for a price that is not substantially higher than the current routine analysis, 
a combined analysis will be implemented for routine work. In general, the level of 
implementation of MPS as routine tool or as a tool for exceptional cases will depend 
on the cost of the commercially available assays in the near future.

Metagenomics

Metagenomics (analysing not only human but also microbial and any other 
DNA) is a long existing research field with many applications in the medical field 
[2] but is currently only applied occasionally in forensics [9]. Once more extended 
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(preferably curated) reference databases become available and specific analysis tools 
are developed for this application there is an immense potential for this type of analysis. 
The first studies have already indicated the possibility of attributing a sampling to 
a donor by analysing skin microbial sequence variation [11] although studies using 
considerable numbers of references and traces still need to be performed. Since the 
amount of microbial that we leave behind in a trace can be much higher than the 
amount of human material (on average, only half of the DNA in saliva is of human 
origin [27], forensic metagenomics can probably yield a sensitivity beyond the most 
sensitive forensic method ever available targeting human DNA. In addition, a lot of 
investigative information can probably be retrieved such as geographic location (based 
on databases of earth metagenomics).

Ethics related to new MPS data

In most countries, the allowed forensic investigations are bound by law. While the 
possibilities for e.g. prediction of EVCs is progressing rapidly, it will still take some time 
before the developed methods can be put into practice. In the Netherlands, additional 
forensic DNA analyses next to the routine STR profiles are described in detail [4]. 
For example, since 2007, it is allowed to predict biogeographical ancestry, in 2012, eye 
colour was added to the list of allowed EVCs and it took until 2017 until hair colour 
was allowed as well while the methods to predict hair colour were already published 
2013 [33]. However, any additional EVCs need to be mentioned separately in the law 
which is a political process that usually takes several years. STR sequencing is allowed 
within the current documentation of the Dutch law since no visible traits or diseases 
can be deducted from the non-coding sequences surrounding the STRs. However, 
several foreign laws (such as in Belgium) do not allow any expansion of the region 
that is routinely analysed at the moment unless specifically stated in the law. This might 
delay the possibility to exchange sequence-based allele information between countries 
on short term. However, if big successes are achieved in forensic cases using this extra 
information, it is likely that the political system will pick this up and will work on new 
legislation. Perhaps this would be a topic that would benefit from European legislation 
rather than country-based legislation.

Application of forensic MPS tools for non-forensic purposes

The development of Forensic DNA tools largely follows on initially developed 
techniques for the medical field. In return, tools specifically designed for forensics 
often find applications in other fields. In the medical field, cell lines are now regularly 
authenticated using forensic assays [7,36] and FFPE samples with limited cell material 
can be analysed using forensic assays because of the high sensitivity. Techniques that 
will be applied for forensic mixture analysis might find an application in Non-invasive 
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prenatal testing (or the other way around) and prediction of biogeographical ancestry 
and EVCs find a use in ancient DNA research as well as a commercial application for 
people who are curious to find out more about their roots.

Implementation and accreditation of MPS in a forensic setting

Before implementation of a new method in forensics, detailed validation studies 
need to be performed, the method needs to be ISO-accredited and experts for court 
need to be trained to be able to integrate results in a report and explain the data in 
court. While this is relatively straightforward (although still a tremendous amount of 
work) for established routine techniques such as CE analysis it is more challenging for 
a new method such as MPS. Since general scientifically accepted thresholds for allele 
calling are lacking, detailed testing was required to support the new interpretation 
guidelines. After writing detailed documentation and validation, one can apply for ISO 
accreditation and is visited by an expert to judge whether the presented method is fit 
for accreditation.

At the moment, very few forensic laboratories are using MPS for forensic casework 
and even less groups do so under accreditation but the number of groups that are 
investigating the method is increasing rapidly. At the LUMC, accreditation was achieved 
in September 2015 for using MPS in forensic casework as one of the first laboratories 
in the world and at the NFI (my current employer) we received accreditation for MPS 
early 2018 (still as one of the first labs to completely implement MPS for a casework 
setting). While there isn’t any lab that is currently using MPS as the routine method 
in forensic DNA analysis, this might change in a few years. However, this is unlikely to 
happen if the costs for sample preparation and/ or sequencing do not decrease further. 
For application in high profile cases MPS will probably applied regularly in the coming 
years, especially for analysis of unbalanced mixtures and for analysis of EVCs in order 
to gain investigative leads to limit the pool of suspects.
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This thesis focusses on the development, application and validation of new forensic 

methods bases on recently developed techniques referred to as Massively Parallel 
Sequencing (MPS, also known as Next Generation Sequencing).

In chapter 1 the background of the currently used methods is discussed and the 
basics and challenges of MPS methods are discussed.

The development and application of forensic DNA research has evolved rapidly 
since the discovery of hypervariable DNA ‘fingerprints’ by Jeffreys et al. (1985) leading 
to the powerful tool that is currently referred to as genetic ‘human identification’.

Over the past two decades, investigation of Short Tandem Repeat (STR) markers 
has played a major role in human identification. STRs are pieces of DNA that contain 
a repeated sequence of 2-6 nucleotides. The length of this repeated sequence can vary 
between people and by analysing a number of these STRs, a practically unique DNA 
profile can be generated. An example of a DNA sequence containing an STR is shown 
below.

Figure 1, DNA sequence containing an AGAT-repeat

ATCCGA AGAT AGAT AGAT AGAT AGAT AGAT AGAT AGAT TGGACCAG

Conventional analysis of DNA profiles

Conventionally, STRs are analysed by the technique ‘capillary electrophoresis’ (CE) 
which basically means that fixed fragments containing the STRs are amplified and 
tagged with a (fluorescent) label and separated by length. By comparing the obtained 
fragment lengths to a known ladder, the number of STR repeats is deduced for each 
marker, resulting in a DNA profile.

While CE is a relatively easy and straightforward technique, it is not without 
limitations. During the amplification of STRs, so-called stutter artefacts emerge that 
can complicate the interpretation of a DNA profile. In addition, analysing sufficient 
STRs in one reaction to obtain a ‘unique’ DNA profile results in sub-optimal conditions 
for samples where DNA is degraded as is often the case for forensic samples. Figure 2 
shows an example of (part of) a conventional DNA profile.
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Figure 2, example of a DNA profile

Part of a DNA profile from a single person. The peaks are shown for five loci separated by length (in the same colour) and by fluorescent label.

New technologies: Massively Parallel Sequencing

New DNA analysis techniques have recently been developed that are capable of 
analysing millions of DNA molecules in parallel in a highly automated fashion. While 
these ‘Massively Parallel Sequencing’ (MPS) techniques are already being implemented 
in the medical and other molecular analysis fields, MPS is still relatively new to forensic 
DNA analysis.

In principle, MPS could overcome some of the limitations of CE analysis. However, 
some of these limitations are caused rather by the nature of the STR marker than 
by the technique that is used to analyse it. Since the type, and especially the amount, 
of data for MPS are very different from conventional DNA analysis techniques, 
development of specialised forensic software to properly handle this data is crucial for 
implementation of MPS in actual casework.

In this thesis we explore the applications of MPS for human forensic DNA analysis, 
not only focussing on the lab-related practical work, but also on the development of 
specialised forensic software for MPS data analysis. In addition, we survey alternative 
DNA markers to STRs with the goal to further expand the application of DNA analysis 
in forensic cases in the near future.



Epilogue

253

EpilogueMassively Parallel Sequencing vs Capillary Electrophoresis

The expected potential of MPS in forensic DNA analysis relies on the following 
differences between CE and MPS.

• While CE only analyses the fragment length MPS determines the exact DNA 
sequence. Sequence variation (in addition to length only) increases the statistical 
power of each locus. In addition, sequence variation can help to differentiate 
stutter artefacts from genuine alleles.

• The detection range of CE is limited while the MPS detection range is almost 
unlimited. For CE, too much signal results in artefacts in a DNA profile while very 
low signal cannot be separated from noise. For MPS, the number of sequence 
reads for a sample can be increased almost indefinitely without interfering with 
other markers (although not without cost) 

• CE is limited in multiplex capacity while MPS can potentially analyse thousands 
of markers at once. Since currently, no more than six fluorescent labels can be 
used, multiplexing for CE is achieved by designing the amplification in fragments 
of different lengths. For MPS, all markers can be designed in the same fragment 
range since markers are distinguished by sequence during the analysis rather 
than by length.

Massively Parallel Sequencing of Short Tandem Repeats

Most of the work discussed in this thesis focusses on MPS analysis of STRs. Since 
forensic DNA databases consist of STR data, it makes sense to start by analysing this 
marker using MPS so the resulting data can still be used to perform searches in the 
DNA databases.

Basic analysing of MPS STR data: TSSV

While STRs are the common markers for forensic DNA research they are not 
used very often in other fields of DNA analysis. As a result, initial software packages 
for MPS data analysis were performing poorly when it comes to handling repeating 
sequences. In chapter 2 of this study, a new (open source) software tool, TSSV, was 
designed as one of the first data analysis packages that focusses on these markers. By 
using two anchor sequences (on either side of the STR), markers are recognised and 
the variation observed between these anchor sequences is summarised by counting 
the reads for each variant and abbreviating repeated sequences. This software also 
turned about to be useful in assessing sequence errors in MPS data.
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Sequencing data requires sequencing nomenclature

Alleles from CE are described as allele numbers that represent the number of 
repeats in the allele. Since sequencing reveals additional variation on the sequence 
level, a new nomenclature is required that allows for a more detailed description of 
the allele sequence composition. In chapter 3, we described the first recommendations 
for forensic STR sequencing nomenclature attempting to reveal all relevant sequence 
information for reconstructing the underlying sequencing while aiming for a description 
as short and readable as possible.

Validating a (prototype) commercial assay for sequencing of STRs 

In collaboration with the company Promega©, a prototype version of a commercial 
assay, designed for sequencing of STRs, was tested. With this assay, 17 STRs and 
Amelogenin (a sex typing marker) were amplified in one reaction and, after further 
preparation of the amplified product, sequenced using the Miseq™ system. Chapter 
4 describes a detailed assessment of the performance of the assay and the observed 
variation in each locus.

To calculate how ‘unique’ a DNA profile is, the frequencies of each sequence variant 
in the population must be determined. When these frequencies are known, a statistical 
calculation can be used to estimate how likely it is by chance for a person to have 
that exact profile. 297 samples from a European, Asian and African population were 
sequenced in order to assess the additional variation that is obtained compared to CE 
and to get an idea of the allele frequencies in these three populations. For most of the 
tested markers, a substantial increase of alleles was observed on the sequence level 
compared to the CE length alleles in the same individuals.

When analysing STRs, the amplification reaction needed to visualise the variation, 
results in so called stutter artefacts caused by slippage of the enzyme Polymerase. STR 
stutter is a complicating factor for interpretation of imbalanced mixtures since peaks of 
the minor contributor to the mixture cannot always be differentiated from stutter. The 
additional information gained by sequencing also provides inside in the occurrence of 
stutter. It was determined that the proportion of stutter relative to the corresponding 
allele is mainly determined by the length of the longest interrupted stretch of a repeat. 
This information presented new opportunities for interpreting mixtures when using the 
exact sequence of each allele in the sample.
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In chapter 5, the bioinformatics software FDSTools is described as the first software 
to actually correct PCR- and sequencing artefacts in MPS data. Based on a set of 
training data it characterises systemic noise. This information can subsequently be used 
to correct the noise in an unknown sample, thereby substantially reducing the baseline 
for analysis. 

The software also contains tools to perform quality control on the samples used in 
the reference data and to determine analysis thresholds after performing correction. 
Using these thresholds data of unknown case samples can be filtered and alleles passing 
the determined thresholds are called and visualised in an interactive format.

It was shown that alleles of the minor contribution in unbalanced mixtures were 
recovered after performing correction while they could not be differentiated from 
stutter peaks before performing correction.

Alternative forensic markers to STRs

While bioinformatics tools can improve analysis for STRs, it remains clear that STRs 
are not the ideal forensic markers for all purposes. While the high variability of STRs 
helps to obtain a practically unique profile from a limited number of markers, stutter 
artefacts and allelic length variation can increase the level of complexity of interpreting a 
DNA profile.  In chapter 6, hypervariable microhaplotypes are selected from publically 
available genome data that contain four or more SNPs within a fragment of 70 bp. 
These markers can almost reach the same variability as STRs without the disadvantage 
of stutter artefacts and variation in length. 

The study revealed that the vast majority of fragments containing this number of 
SNPs within a small sequence span resided from erroneous reported variation in the 
publically available genomes. However, a subset of 16 microhaplotypes was successfully 
selected and validated in the lab with a discriminating power that roughly resembles 
9 STRs. In addition to the high discriminating power, data from these microhaplotypes 
could also be used to separate the samples from the tested European, Asian and 
African population suggesting that they also provide ancestry informative information.

Conclusions and future perspectives

In chapter 7, the overall performed studies and future perspectives are discussed. 
MPS is now ready to be applied in forensic casework (and is already being applied in 
some cases). While MPS is currently still a relatively expensive method, it is not unlikely 
that this might change in the near future and CE could be gradually replaced by MPS 
once it is used in a more automated high throughput fashion. MPS seems a promising 
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method for the analysis of mixtures, either by sequencing STRs or other markers, such 
as microhaplotypes. There are many other applications for MPS that are not (or only 
limited) possible using CE, mostly because the number of markers that can be analysed 
simultaneously is much higher for MPS than for CE. Currently, ancestry prediction and 
prediction of a few externally visible characteristics are already feasible, but for many 
other characteristics more basic knowledge needs to be acquired before the analysis 
can be applied in casework. Many studies are currently ongoing to acquire the basic 
knowledge for predicting more phenotypic characteristics.
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Dit proefschrift richt zich op de ontwikkeling, toepassing en validatie van nieuwe 

forensische methoden gebruik makend van nieuwe beschikbare technieken bekend 
als ‘Massively Parallel Sequencing’ (afgekort MPS, ook bekend onder de naam ‘Next 
Generation Sequencing’).

In hoofdstuk 1 wordt de achtergrond beschreven van MPS zelf en de verschillende 
methoden die verder in het proefschrift worden besproken.

De ontwikkeling en toepassing van forensisch DNA onderzoek heeft zich snel 
ontwikkeld sinds de ontdekking van zeer variabele ‘DNA vingerafdrukken’ door Jeffreys 
et al. (1985). 

De laatste ca. twintig jaar heeft de analyse van ‘Short Tandem Repeats’ (STRs) een 
grote rol gespeeld in identificatie m.b.v. DNA onderzoek. STRs zijn stukjes DNA die 
een herhaalde sequentie bevatten van 2-6 nucleotiden. Het aantal herhalingen van 
deze sequentie kan variëren tussen personen en door het analyseren van meerdere 
van deze STRs kan een vrijwel uniek DNA profiel worden vastgesteld. Een voorbeeld 
van een stukje DNA sequentie met daarin een STR wordt hieronder weergegeven.

Figuur 1, DNA sequentie die een AGAT-herhaling bevat

ATCCGA AGAT AGAT AGAT AGAT AGAT AGAT AGAT AGAT TGGACCAG

Conventionele DNA profielen

Capillaire elektroforese (CE) is de conventionele methode voor het analyseren 
van STRs. Voor analyse d.m.v. CE worden fragmenten die een STR bevatten eerst 
vermeerderd en gelabeld m.b.v. de zogenaamde polymerase chain reaction (PCR). 
Vervolgens worden de fragmenten op lengte van elkaar gescheiden en vergeleken met 
een ladder van fragmenten met een bekende lengte om zo het aantal herhalingen van 
elke STR vast te stellen in een DNA profiel.

Hoewel CE analyse van STRs een vrij eenvoudige techniek is, heeft het ook zijn 
limieten. Tijdens de amplificatie van STR-fragmenten ontstaan zgn. stutter-artefacten die 
vooral de interpretatie van een ongebalanceerd gemengd DNA profiel ingewikkelder 
kunnen maken. Daarnaast zijn er, om een voldoende uniek DNA profiel te verkrijgen, 
suboptimale condities nodig voor de analyse van gedegradeerd DNA. Figuur 2 geeft 
een voorbeeld van een (deel van een) DNA profiel.
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Figuur 2, Voorbeeld van een DNA profiel

Deel van een DNA profiel van een (enkele) persoon. De pieken zijn weergegeven voor vijf markers die gescheiden zijn bij lengte (in hetzelfde 
kleurkanaal) of fluorescent label.

Nieuwe technologieën: Massively Parallel Sequencing

Recent zijn er nieuwe DNA analyse technieken ontwikkeld die parallel de sequentie 
kunnen bepalen van miljoenen DNA moleculen. Terwijl deze MPS-technieken 
al toegepast worden in het medische DNA onderzoek en andere moleculaire 
onderzoeksgebieden zijn ze nog relatief nieuw in het forensische werkveld.

In principe zou MPS een aantal beperkingen van CE moeten kunnen voorkomen. 
Enkele beperkingen in CE STR analyse worden echter veroorzaakt door het type DNA 
marker en niet door de gebruikte techniek. Aangezien het type data, maar vooral de 
hoeveelheid data voor MPS anders is dan bij CE, is het cruciaal dat er gespecialiseerde 
forensische software ontwikkeld wordt om goed met deze data om te gaan en MPS 
toepassing in zaakwerk te implementeren.

In dit proefschrift wordt de toepassing van MPS in humaan forensisch DNA 
onderzoek verkend en wordt niet enkel het lab-gerelateerde praktische aspect 
onderzocht, maar ook de ontwikkeling van gespecialiseerde forensische software voor 
analyse van MPS data. Daarnaast verkennen we nieuwe niet-STR DNA markers als 
alternatief voor de huidige analyse om de toepassing van DNA analyse in de nabije 
toekomst nog verder uit te breiden.

Massively Parallel Sequencing vs Capillaire Elektroforese

De verwachte perspectieven van MPS in forensisch DNA onderzoek zijn gebaseerd 
op de volgende verschillen tussen CE en MPS.

• Terwijl CE enkel fragmentlengte analyseert, typeert MPS de exacte sequentie. 
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Sequentie variatie (bovenop lengtevariatie) verhoogt de statistische kracht van 
een STR. Daarnaast kan sequentie-variatie helpen om stutter artefacten en 
echte allelen van elkaar te onderscheiden.

• De detectierange van CE is beperkt terwijl MPS een vrijwel ongelimiteerde 
detectierange heeft. Voor CE zorgt te hoog signaal voor extra artefacten (in 
andere kleuren) terwijl erg laag signaal niet van ruis onderscheiden kan worden. 
Voor MPS kan het aantal uitgelezen sequenties vrijwel oneindig worden 
verhoogd zonder dat er artefacten ontstaan bij andere STRs (al stijgen de 
kosten mee met het aantal sequenties).

• De capaciteit van CE om meerdere markers tegelijk te analyseren is beperkt 
terwijl MPS in principe duizenden markers tegelijk kan analyseren. Aangezien er 
momenteel niet meer dan zes fluorescente labels gebruikt kunnen worden 
met CE, wordt het gewenste aantal markers in een reactie verkregen door 
de lengte van verschillende markers niet te laten overlappen. Voor MPS 
kunnen alle markers in dezelfde fragment-range ontworpen worden omdat ze 
onderscheiden worden op sequentie in plaats van kleur en lengte.

Massively Parallel Sequencing van Short Tandem Repeats

Het meeste werk dat beschreven wordt in dit proefschrift richt zich op MPS analyse 
van STRs. Aangezien forensische DNA databanken zijn opgebouwd met STR data is 
het logisch om te beginnen met de analyse van deze zelfde markers zodat er nog altijd 
zoekingen uitgevoerd kunnen worden in de DNA databank.

Basale analyse van MPS STR data: TSSV

Terwijl STRs de gebruikelijke markers zijn voor forensisch DNA onderzoek, worden 
ze niet heel veel gebruikt in andere DNA onderzoeksgebieden. De initieel beschikbare 
software pakketten voor MPS data analyse konden dan ook slecht om gaan met 
herhalende sequenties. In hoofdstuk 2 van dit proefschrift wordt de (open-source) 
software TSSV beschreven. Dit was een van de eerste software pakketten vooral 
gericht op STR analyse. Door het gebruik van twee anker sequenties (aan beiden 
kanten van de STR) worden markers herkend en vervolgens wordt de waargenomen 
variatie tussen deze anker sequenties samengevat en worden herhaalde sequenties 
afgekort. Naast de analyse van STRs bleek deze software ook goed toepasbaar voor 
de analyse van errors in sequentie-data.

Voor sequentie data is ook sequentie nomenclatuur nodig

Allelen van CE worden benoemd als een nummer wat het aantal herhalingen in 
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de STR weergeeft. Aangezien het bepalen van de exacte sequentie extra variatie aan 
toont, is er een nomenclatuur nodig die ook deze variatie kan beschrijven. In hoofdstuk 
3 beschrijven we de eerste aanbevelingen voor een forensische STR sequentie 
nomenclatuur met het doel om alle relevante sequentie informatie weer te geven in 
een zo kort en leesbaar mogelijke naam.

Validatie van een (prototype) commerciële methode voor STR sequentie-
analyse 

In samenwerking met het bedrijf Promega© werd een prototype van een 
commerciële methode, ontwikkeld voor sequentie-analyse van STRs, getest. Met 
deze methode werd het DNA van 17 STRs en een marker voor geslachtstypering 
vermenigvuldigd in een reactie en werd, na verdere voorbereiding, de sequentie 
bepaald met behulp van de Miseq™ sequencer. Hoofdstuk 4 is een gedetailleerde 
beschrijving van de analyse van de prestaties van deze methode en de waargenomen 
sequentie-variatie van elke STR.

Om te berekenen hoe uniek een DNA profiel is, moeten eerst de frequenties 
vastgesteld worden van elke sequentie-variant in de populatie. Wanneer deze 
frequenties bekend zijn kan er een statistische kansberekening gebruikt worden om in 
te schatten hoe groot de kans is dat een willekeurig persoon een bepaald DNA profiel 
heeft. De STR-sequenties van 297 DNA-monsters van personen uit een Europese, 
Aziatische en Afrikaanse populatie werden bepaald. Zo werd inzicht verkregen in de 
extra sequentie-variatie t.o.v. de CE lengte-variatie van de STRs en de frequenties van 
deze sequentie-varianten. Voor de meeste STRs werden substantieel meer sequentie-
varianten waargenomen dan CE lengte varianten.

Bij de analyse van STRs resulteert de PCR in het vormen van zogenaamde stutter-
artefacten die veroorzaakt worden door een ‘slippend’ enzym (Polymerase). STR 
stutter bemoeilijkt de interpretatie van ongebalanceerde mengsels aangezien pieken 
van de lager bijdragende donor niet altijd onderscheiden kunnen worden van stutter. 
De extra sequentie-informatie levert meer inzicht in deze stutter. Het bleek dat de 
hoeveelheid stutter bepaald wordt door de lengte van de langste ononderbroken 
herhaling in de STR. Deze informatie gaf nieuwe mogelijkheden voor de interpretatie 
van gemengde profielen op basis van sequentie-data.

Correctie van stutter in een monster m.b.v. bioinformatica tools

In hoofdstuk 5 is de bioinformatica software FDSTools beschreven als de eerste 
software die werkelijk PCR- en sequentie-artefacten kan corrigeren in MPS data. Op 
basis van een training dataset wordt systematische ruis vastgesteld en deze informatie 
wordt vervolgens gebruikt om in een onbekend monster de ruis te corrigeren zodat 
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de basislijn van de data substantieel wordt gereduceerd.
De software bevat ook tools om kwaliteitscontrole uit te voeren op de referentie 

data en om analysegrenzen vast te stellen na het uitvoeren van de correctie. Met 
behulp van deze vastgestelde grenzen kan data van onbekende monsters worden 
gefilterd en wordt de data weergegeven in een interactieve format.

Analyse van ongebalanceerde mengsels toonde aan dat allelen van de laag 
bijdragende donor vaker werden teruggevonden na correctie terwijl deze zonder 
correctie niet herkend konden worden.

Alternatieve forensische markers voor STRs

Ook met de verbeterde analyses m.b.v. bioinformatica tools blijft het duidelijk dat 
STRs niet voor alle toepassingen ideale forensische markers zijn. Terwijl de hoge mate 
van variatie helpt om een zo uniek mogelijk profiel te verkrijgen met een beperkt 
aantal markers zorgen stutter artefacten en lengte-variatie voor beperkingen in de 
interpretatie van mengsels en de analyse van afgebroken DNA. In hoofdstuk 6 zijn 
microhaplotypes geselecteerd uit publiek beschikbare genoom data die vier of meer 
SNPs (DNA verschillen op een enkele positie) bevatten in een fragment van 70 
baseparen. Deze markers kunnen bijna net zo variabel zijn als STRs zonder het nadeel 
van stutter artefacten en variatie in lengte.

De studie toonde aan dat het merendeel van deze geselecteerde fragmenten 
voortkwamen uit verkeerd gerapporteerde variatie in de publiek beschikbare genoom 
data maar er werd toch een subset van 16 microhaplotypes geselecteerd met een 
discriminerend vermogen dat ongeveer overeen komt met negen STRs. Naast 
het hoge discriminerende vermogen lijkt de data ook informatie te geven over de 
biogeografische afkomst van een persoon. Het was namelijk mogelijk om aan de hand 
van de data de drie geteste populaties vrijwel compleet van elkaar te scheiden.

Conclusies en toekomstperspectieven

In hoofdstuk 7 wordt het geheel van de uitgevoerde studies besproken in combinatie 
met de toekomstperspectieven. MPS is nu klaar om toegepast te worden in forensisch 
zaken en wordt ook al in enkele zaken toegepast. Terwijl MPS nu nog een relatief dure 
methode is, is het niet onmogelijk dat dit in de nabije toekomst verandert en dat 
CE geleidelijk vervangen kan worden door MPS wanneer het in een gestroomlijnde 
geautomatiseerde manier toegepast kan worden. MPS lijkt een veelbelovende tool 
voor de analyse van mengsels, die mogelijk is door het sequencen van STRs, maar 
ook door het sequencen van andere markers zoals microhaplotypes. Er zijn veel 
andere toepassingen voor MPS die niet (of beperkt) mogelijk zijn met CE, vooral 
door het hogere aantal markers dat in een keer geanalyseerd kan worden. Momenteel 
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zijn er al toepassingen voor voorspelling van biogeografische herkomst en een aantal 
uiterlijke kenmerken op basis van SNP. Voor een meer gedetailleerde voorspelling van 
biogeografische herkomst, maar ook voor veel andere uiterlijke karakteristieken moet 
nog meer basale kennis verzameld worden voor het toegepast kan worden in zaken. Bij 
verschillende instituten worden momenteel studies uitgevoerd om deze basale kennis 
uit te breiden.
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meegenieten van alle geduld die er nodig was om zo ver te komen. Mijn beste vrienden 
Gideon, Marco en Reinout en in het bijzonder natuurlijk Melanie hebben me gesteund 
en me zo sterk geholpen tot deze afronding. Mel, het is heerlijk om hier nu met jou, 
maar ook met Owen, Gwen en Jill van te kunnen genieten.
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Kristiaan (Johannes) van der Gaag was born on the 5th of June 1980 in Vlaardingen, 
the Netherlands. He completed primary school in Vlaardingen and graduated from 
high school in 1997 in Vlaardingen (HAVO, CSG Aquamarijn). In 1997 Kris started a 
Bachelor of Biomedical Science in Rotterdam (Hogeschool Rotterdam). In 2002 he 
started an internship at the Forensic Laboratory for DNA Research (FLDO, LUMC, 
Leiden the Netherlands) focussing on the validation of  Y chromosome SNP typing by 
Pyrosequencing in order to obtain information on the geographic ancestry of a donor 
of a forensic trace and later on using MALDITOF (Matrix-Assisted Laser Desorption 
/ Ionisation Time-Of-Flight mass spectrometry) as an alternative method for forensic 
SNP-typing. He started a position as laboratory technician at the same department 
in 2002 and received his Bachelor degree in 2003. During his period as technician, 
he performed laboratory and analysis work on STRs and SNPs in many population 
genetic projects, developed many SNP genotyping assays (mostly SNaPshot assays for 
Y-chromosome and mtDNA) and later on also performed forensic casework. 

When the Forensic Genomics Consortium Netherlands (FGCN) was founded in 
2009, Kris started to focus more on the application of Massively Parallel Sequencing and 
the corresponding analysis and software development, initially using the 454-sequencer 
and the PGM Ion Torrent, but later mostly using the Miseq platform namely focussing 
on forensics. In addition, many projects were conducted collaborating with partners 
from the medical and evolutionary genetic field. As part of the FGCN consortium 
(Forensic Genomics Consortium Netherlands), he started a PhD position at the FLDO 
in 2010 focussing on development of forensic genomics toolkits by the use of Massively 
Parallel Sequencing (as described in this thesis). Since 2015, Kristiaan is employed at 
the Netherlands Forensic Institute as a scientist in the Research team of the Division 
Biological Traces implementing MPS applications in casework where he will continue 
to conduct research after completing his PhD.
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