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Introduction / Outline

Introduction / Outline

Since the discovery of hypervariable DNA fingerprints' by Jeffreys et al.[12] in 1985,
development and application of forensic DNA research has evolved rapidly. Over the
past two decades, investigation of Short Tandem Repeat (STR) loci has played a major
role in human identification.The implementation of short tandem repeat (STR) analysis
by capillary electrophoresis in forensic casework [15] and the establishments of large
STR databases [30] have provided crucial investigative leads or evidence in numerous
cases.

Short Tandem Repeats and Capillary Electrophoresis

STRs are DNA loci containing repeated sequence motifs of 2-6 bp in length. An
important feature of STRs is the high mutation rate caused by polymerase slippage [5]
which results in a high degree of variability between individuals. By analysing a relatively
small number of STRs, DNA profiles can be obtained with very high discriminatory
power. Unfortunately, STR slippage also occurs in the PCR amplification step resulting
in PCR artefacts known as stutter (discussed in more detail later in this thesis).

Routine analysis of STRs is a relatively straightforward process performed by size
separation of fluorescently labelled PCR fragments using Capillary Electrophoresis
(CE) [18]. Multiplexing of sufficient loci in one reaction for CE is achieved by labelling
loci with several fluorescent labels and PCR design of different loci for separated
fragment length ranges.

In addition to autosomal STR analysis, targets such as mitochondrial DNA [20],
Y chromosomal markers [|6], biogeographical informative markers [23] or tissue
informative RNA markers [3] have also been investigated. However, until recently,
application of DNA analyses in casework was performed almost exclusively by
capillary electrophoresis (CE) based methods such as fragment length analysis, Sanger
Sequencing [20] and SNaPshot single base extension [27].

Molecular genetics developments (non-forensic)

In the meantime, a major transition is taking place in the molecular and medical
genetic field where routine analysis by Sanger sequencing is being replaced by Massively
Parallel Sequencing (MPS), also known as Next Generation Sequencing (targeted or
whole exome / genome) [4]. This transition is initiated either to reduce cost or to
expand possibilities. The price per sequence for MPS is much lower than for Sanger
when sufficient targets / samples are analysed simultaneously. Expansion of possibilities
is achieved by analyses of more / larger genomic regions, or by a more quantitative
analysis (e.g. bisulphite sequencing [28] and low-level mixture analysis used for NIPT
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Chapter 1

[31).

Introduction of a new technique in the forensic field commonly happens in a later
stage than developments in the medical field since methods need to be optimised for
minute amounts of (often degraded) DNA. In addition, software needs to be optimised
to handle mixed DNA samples and answer specific forensically relevant questions.

Why use MPS in forensics?

MPS has some features which make these techniques interesting for application in

forensics.

* A sequence is generated separately for each DNA molecule, instead of a
consensus sequence as is generated by Sanger sequencing.

*  MPS can generate millions of sequence reads (hence, the name ‘massively’).

* Many different targets can be analysed simultaneously without the need of
separate sequence reactions, thereby expanding multiplex possibilities, even
allowing complete genome sequencing

* MPS data can be quantified by simply counting reads for every sequence
variant, thereby creating ‘discrete data’ in contrast to CE where interpretation
of the shape of peaks is an entity that is difficult to define using straightforward
parameters.

* The number of reads for a single sample can be increased almost indefinitely,
resulting in an unprecedented dynamic detection range.

*  Small and overlapping fragment sizes can be used for all loci since, during the
analysis, targets are recognised by sequence rather than by fragment size / label
as for CE which will benefit the analysis of degraded DNA samples.

Several commercial companies have developed an MPS platform [28], which
illustrates the large current and future market expected for these techniques, for
instance in the field of medical research. The early versions of MPS platforms (2005
—2010) were undergoing constant improvements in sequence data quality and read
output but since 201 | several platforms (such as MiSeq and lon Torrent) started to
focus on a more diagnostic application where data quality is relatively stable [11,31],
also opening opportunities for the forensic field.

Not every platform is suited for use in forensic research. The specifics are further
discussed below in the text box | ‘MPS platforms with forensic potential’

12



Introduction / Outline

MPS platforms with forensic potential

Several Massively Parallel Sequencing platforms are (or have been) available. Since
forensic DNA analysis is different from that in medical genetic research (where mostly
SNP genotyping is used) the forensic context has specific demands for MPS platforms.
Current forensic reference databases exist of STR-profiles and the ability to sequence
short tandem repeat is a prerequisite for the forensic community. To span the entire
repeat region for the majority of STRs, read lengths of at least 200 nt are required
which limits the choice to a few platforms. Current proven high quality MPS platforms
with the ability to sequence such read lengths are the 454 pyrosequencers (454 /
Roche, discontinued in 2017), lon Torrent semiconductor sequencers (lon Torrent /
Life Technologies), Solexa / lllumina sequencers and Pacific Biosystems / Roche SMRT
sequencers.

454 and lon Torrent are both based on one-by-one addition of unlabeled
nucleotides [REF Rothberg,Merriman].Afterincorporation of a nucleotide, the number
of incorporated nucleotides is detected via an enzymatic cascade (Pyrosequencing)
or by direct measurement of a pH-influx (semiconductor sequencing). lllumina
sequencers incorporate labeled blocked nucleotides and enzymatically remove the
label / block to incorporate one nucleotide during each sequencing cycle [7]. Pacific
Biosystems provides the only platform (at the time of this study) that performs single-
molecule sequencing reaching read-lengths of many kbs [24]. This platform is not
used for the projects used in this thesis but possible applications will be discussed
in the general discussion. From the tested platforms in this thesis, the lllumina Miseq
provided the most suitable and high-quality method (similar to the results shown by
Salipante et al. [26], therefore, most data discussed in this thesis is generated using
this system.

MPS data and data analysis

Since 2004, the read-output and sequence read length increased steadily (with
marked increases around 2007-2008 due to introduction and further expansion of the
capacity of the lllumina HiSeq systems) which resulted in a notable decrease of cost
per sequence. In the same time, more computer power is required to analyse the data.
Gordon Moore predicted in 1965 that the speed of computer chips doubles each year
while retaining the same costs. Figure | shows that MPS costs per megabase dropped
substantially faster than the costs for increasing computation power: As a result of this
increase of data, new approaches and tools needed to be developed to analyse the
data fast, efficiently and accurately.
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Cost per Raw Megabase of DNA Sequence
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Figure | — cost per raw megabase of DNA sequence in combination with Moore’s Law

This graph (source: National Human Genome Research Institute) displays the decrease of cost / Mbase of DNA sequence since 2001 in combi-
nation with Moore’s law (development in increased computer power). It is apparent that the sequencing costs dropped substantially faster than
the cost for the computer power required to perform the analysis.

Data analysis in forensics

Animportant aspect for forensics is robustness of the data (also known as sequencing
quality, see text box 2 ‘Sequencing quality’). The choice of a robust platform, that is no
longer undergoing continuous improvements, only prevents part of the challenges as
low-level sequencing errors are inevitable and need to be recognised and filtered
using appropriate data analysis tools. Thus, the development of software for analysis
of forensic MPS data is highly important [10,19] and will be a crucial part of the work
described and discussed in this thesis.
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Sequencing quality

Sceptics of MPS application in diagnostics or forensics are eager to bring up the
issue of sequencing errors 2]. Sequence errors occur and could compromise the
interpretation of MPS data. However, setting appropriate quality thresholds that
filter reads containing sequence errors will solve the issue, alike done for any other
technique, such as the filtering of baseline noise and stutter peaks in CE. In general,
the quality of a sequence read is highest at the beginning of the read and signal noise
slowly decreases as the read progresses as can be seen from the figure below [6].

000000000-BF38F Lane 1

Signal to Noise
@

N

00 500 00

700 200 3
Cycle

Figure 2 — Signal to noise ratio of an lllumina MiSeq® run.
The graph shows the signal to noise ratio over all data points in an lllumina MiSeq® run for nucleotide incorporation (Int / cycle).As can be
observed, the signal quality decreases as the read progresses for both, read | (cycle 1-300) and read 2 (cycle 321-620).

To compensate for a reducing quality in a progressing read, Paired End sequencing
can be applied which refers to sequencing a molecule from both the 5'and 3'end; the
low quality base calls at the end of one strand will be the high quality base calls in the
beginning of the read of the opposite strand.

For every base call the signal-to-noise ratio is translated to a quality score defining
the likelihood of erroneous base calling. Quality thresholds during MPS data analysis
usually involve coverage (number of reads covering a specific position), base quality
and mapping quality (when matching reads to a reference). When paired end
sequencing is applied, the length of the overlapping part between the reads in both
orientations can vary if the amplicon length exceeds the read lengths which can
impact sequence quality in the non-overlapped part.
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Public genome databases

The decrease in sequencing cost per nucleotide resulted first; in the (affordable)
possibility to generate an (almost) complete individual genome sequence and later; by
impressive collaboration efforts, to the generation of databases of complete genomes
[9, 8,33]. One of these projects, the 1000 genomes project, provides a public database
of variation observed in individuals of globally dispersed populations and is a powerful
tool for the selection of new (globally) informative forensic markers. Since different
genome projects are started for different goals and budgets for these projects are not
unlimited, there is a trade-off between quality in terms of per base sequence coverage
and the number of individuals included in the project.While publicly available databases
can drastically decrease the amount of wet lab work that is needed to reliably select
new markers, it should be taken into account that genome databases are not free of
errors.

Microhaplotypes

While STRs and SNPs are well-known loci in molecular genetics, the use of
microhaplotypes [14,17] is not common although they are potential forensic loci
without some of the disadvantages of STRs (discussed in more detail in the discussion).
Microhaplotypes are fragments that contain more than one SNP within a span of <200
bp. The combinations of the different alleles of the SNPs form multiple haplotypes
resufting in a higher number of alleles than the SNPs separately. In particular, the
fragments that contain more than two SNPs within a short sequence span can be
informative for forensic identification purposes, but might also serve as markers for
prediction of biogeographic origin. These loci are discussed in more detail later on in this
thesis.

Goal of this thesis

The research described in this thesis aimed to convert the power of MPS to
the forensic field. We developed a complete forensic research tool kit for human
identification by DNA analysis based on MPS. We focused on all the aspects that are
essential for development and optimisation of MPS assays and analysis tools with the
final goal of implementation in a forensic setup. MPS enables many more possibilities
besides identification, for example in providing investigative leads by analysis of human,
but also non-human DNA [ |]. Several of these upcoming methods, targets, technologies
and applications are briefly mentioned in the General Discussion to provide a more
complete picture of the expected impact of MPS on the forensic field in the near
future.
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Outline

The obvious application of MPS in forensics would be the sequencing of STRs as
forensic DNA databases are filled with data from this marker type and MPS can have
added value for the profiling of severely degraded DNA (all amplicons can be small-
sized) or discrimination of mixed samples (by adding sequence variants). However,
when this project started, tools for analysis of MPS STR data were absent since MPS
analysis outside the forensic field focussed almost exclusively on analysis of SNPs. In
Chapter 2: “TSSV: a tool for characterization of complex allelic variants in pure
and mixed genomes’, the development of the software TSSV is described, which
represents one of the first tools for analysis of MPS STR data. Since mapping of STRs to
a reference is complex and error-prone due to the repetitive nature of these loci, we
chose not to map the actual repeat region but instead map short parts of both flanking
regions (usually covering part of the primer binding sites). Any variation observed in
the sequence in between is reported as strings without comparison to a reference
thereby avoiding any mapping bias that may occur depending on the resemblance
of sequences to the reference. Repeated elements were abbreviated as a first step
towards a universal nomenclature.

Since CE allele calling for STRs does not provide information about the exact
sequence of an allele, nomenclature needed to be developed for describing the
additional variation typed by sequencing.In Chapter 3:‘Forensic nomenclature for short
tandem repeats updated for sequencing’; we provided the first recommendations for a
nomenclature system for forensic STR sequencing data. These recommendations were
largely incorporated in the ISFG recommendations for STR sequencing nomenclature
which were published later that year [22].

After collaborating with Promega®in the optimisation of an STR sequencing assay
for the commercial market, we performed a detailed in-house validation of a prototype
version of the Powerseq™ assay in preparation of ISO 17025 accreditation. The study
of the performance of this assay included analysis of STR stutters, sequence variation
in three distinct globally dispersed populations and analysis of mixtures is described in
Chapter 4:‘Massively parallel sequencing of short tandem repeats - Population data
and mixture analysis results for the PowerSeq™ system’.

In the study described in chapter 3 it was apparent that, not surprisingly, STR
stutter remained the limiting factor for analysis of mixtures. In Chapter 5:‘FDSTools: A
software package for analysis of massively parallel sequencing data with the ability to
recognise and correct STR stutter and other PCR or sequencing noise. we describe
a new software we developed namely FDSTools.While the software TSSV described in
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Chapter 2 was able to catalogue the variation observed in a sample, FDSTools can use
a set of training data to characterise structural PCR and sequencing noise including STR
stutter and use this information to correct noise in case samples. In this way, noise can
be reduced substantially to facilitate analysis of much lower contributions in mixtures.
This software was designed for application in forensic casework and includes many
features for visualisation, validation and quality filtering of all types of MPS data.

Although correction of noise improved the analysis of mixtures it can be debated
whether STRs are the ideal loci for the purpose of analysing complex mixtures since
the remaining levels of stutter after correction will still complicate analysis of highly in
unbalanced mixtures. In Chapter 6:‘Short hypervariable microhaplotypes: A novel set
of very short high discriminating power loci without stutter artefacts. we describe an
alternative set of loci for the analysis of mixtures namely microhaplotypes which are small
fragments containing several SNPs. Although these loci cannot be used for comparison
with the established databases (unless it is decided to type these loci routinely), they can
still be used for comparison with known references in a case. The concluding Chapter
7 discusses the potential of MPS in comparison with the currently used method CE
and the future steps needed to use the full potential of this new technique. Software
development is discussed including additional options to improve MPS data analysis in
order to deal with remaining PCR noise. Novel targets and applications are presented
that could provide new possibilities for forensic investigations concluded by suggestions
for implementation of MPS in a casework setting.
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TSSV: MPS Software for Targeted analysis of Short Structural Variation

Abstract

Motivation: Advances in sequencing technologies and computational algorithms
have enabled the study of genomic variants to dissect their functional consequence.
Despite this unprecedented progress, current tools fail to reliably detect and characterize
more complex allelic variants, such as short tandem repeats (STRs). We developed
TSSV as an efficient and sensitive tool to specifically profile all allelic variants present
in targeted loci. Based on its design, requiring only two short flanking sequences, TSSV
can work without the use of a complete reference sequence to reliably profile highly
polymorphic, repetitive or uncharacterized regions.

Results: We show that TSSV can accurately determine allelic STR structures in
mixtures with 10% representation of minor alleles or complex mixtures in which
a single STR allele is shared. Furthermore, we show the universal utility of TSSV in
two other independent studies: characterizing de novo mutations introduced by
transcription activator-like effector nucleases (TALENS) and profiling the noise and
systematic errors in an lon Torrent sequencing experiment. TSSV complements the
existing tools by aiding the study of highly polymorphic and complex regions and
provides a high-resolution map that can be used in a wide range of applications, from
personal genomics to forensic analysis and clinical diagnostics.

Availability and implementation: We have implemented TSSV as a Python package
that can be installed through the command-line using pip install TSSV command. Its
source code and documentation are available at https://pypi.python.org/pypi/tssv and
http://wwwilgtc.nl/tssv.

Introduction

As a consequence of various mechanisms such as DNA recombination, replication
and repair-associated processes, the spectrum of human genetic variation ranges from
single nucleotide differences to large chromosomal events. Among the different types
of genetic changes, repetitive DNA sequences show more polymorphism than single
nucleotide variants (Conrad et al., 20 10; Hinds et al., 2006; lafrate et al., 2004; Kidd et al,,
2008; Redon et al,, 2006; Sebat et al, 2004; Tuzun et al., 2005), and they are important
in human diseases (Conrad et al,, 2010; de Cid et al, 2009; Girirajan et al,, 201 |; Hollox
et al, 2008; McCarroll et al, 2009; Pinto et al, 2010), complex traits and evolution
(Mills et al,, 201 I; Stephens et al,, 201 I; Sudmant et al., 2010). In particular; microsatellite
variants, also known as short tandem repeats (STR), and their expansion/shortening
have been linked to a variety of human genetic disorders (Mirkin, 2007; Pearson et al,,
2005; Sutherland and Richards, 1995), and have been used in genotyping (Kimura et al,,
2009; Weber and May, 1989) and forensic DNA fingerprinting studies (Kayser and de
Knijff, 201 |; Moretti et al, 2001).
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Chapter 2

Because of the repetitive nature of STRs and often the low level of complexity of the
DNA sequences in which they occur (Treangen and Salzberg, 2012), characterization
of STR variability and understanding of their functional consequences are challenging
(Weischenfeldt et al, 2013). So far, sequencing-based strategies have focused on
reads mapped to the reference genome and subsequent identification of discordant
signatures and classification of associated STRs (Medvedev et al., 2009; Mills et al., 201 I).
Yet, the mainstream aligners, such as BWA (Li and Durbin, 2009) or Bowtie (Langmead
and Salzberg, 2012), do not tolerate repeats or insertions and deletions (indels) as a
trade-off of run time (Li and Homer, 2010).This limitation leads to ambiguities in the
alignment or assembly of repeats which, in turn, can obscure the interpretation of results
(Treangen and Salzberg, 2012). Moreover, the current human genome reference still
remains incomplete and provides only limited information on expected and potentially
uncharacterized STRs in different individuals (Alkan et al, 201 |; lafrate et al., 2004; Kidd
et al, 2008; Sebat et al, 2004). Consequently, STRs are not routinely analyzed in whole-
genome or whole-exome sequencing studies, despite their obvious applications and
their role in human diseases, complex traits and evolution.

Here, we present a method for targeted profiling of STRs that reports a full
spectrum of all observed genomic variants along with their respective abundance.
Our tool, TSSV, can accurately profile and characterize STRs without the use of a
complete reference genome, and therefore minimizes biases introduced during the
alignment and downstream analysis. TSSV scans sequencing data for reads that fully
or partially encompass loci of interest based on the detection of unique flanking
sequences. Subsequently, TSSV characterizes the sequence between a pair of non-
repetitive flanking regions and reports statistics on known and novel alleles for each
locus of interest. We show the performance of TSSV on robust characterization of all
allelic variants in a given targeted locus by its application in several case studies: forensic
DNA fingerprinting of mixed samples by STR profiling, characterization of variants
introduced by transcription activator-like effector nucleases (TALENS) in embryonic
stem (ES) cells and detailed characterization of errors derived from a next-generation
sequencing (NGS) experiment.
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Material and Methods

TSSV algorithm

The algorithm expects a FASTA file containing sequencing data and a library
containing a list of loci of interest that are described by two unique sequences
flanking a target locus in the form of a simple regular expression. The description of
targeted loci consists of a series of triplets (i.e. CTTA 2 5), each containing a sequence
followed by two integers that denote the minimum and maximum number of times
the preceding sequence is expected. The notation of expected alleles is then compiled
into a regular expression that is used to distinguish between known and new alleles.
It is important that a library that contains a description of loci of interest according to
the aforementioned instruction should be customized and provided. TSSV reports an
overview of marker pair alignments and a detailed description of the identified alleles
and their respective frequency per strand. TSSV also provides supporting reads of each
locus of interest in separate FASTA files.

TSSV is an open source Python package that can be easily incorporated in any
standard NGS pipeline. In addition, we have made the Python package fastools
available at https://pypi.python.org/pypi/fastools. fastools offers a series of functions to
manipulate, characterize, sanitize and convert FASTQ/FASTA files to other formats.
Therefore, it can be used to convert FASTQ files to TSSV desired format (FASTA). For
further information on usage and generated data see Supplementary Table S1.

Marker alignment

Each pair of markers (unique flanking sequences) is aligned to the reads by using a
semi-global pairwise alignment, a modified version of the Smith—\Waterman algorithm
(Smith and Waterman, 1981).The alignment matrix is initialized with penalties only for
the aligned sequence and not for the reference sequence. By using this approach, we can
use the alignment matrix to calculate the edit distance between the alighed sequence
and all substrings of the reference sequence. Finally, TSSV uses the alignment matrix to
select the rightmost alignment with a minimum edit distance. To guarantee symmetry
with regard to reverse complement sequences, TSSV aligns the reverse complement of
the right marker to the reverse complement of the reference sequence.

Allele identification

Once TSSV successfully aligns a marker pair to either the forward or the reverse
complement of the reference sequence, the region of interest is selected by extracting
the sequence between the alignment coordinates, which is then converted to the
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forward orientation. The target variable sequence is then matched to the regular
expression of the corresponding marker pair for classification as either a known or a
new allele. In case of partial identification of markers (i.e. only the left or right marker
of the pair is identified), the input sequence is flagged as having either no beginning
or no end.The assessment of required runtime for TSSV to identify alleles in datasets
with different sequencing depth is provided in Supplementary Figure SI. Each dataset
is profiled to characterize 16 allelic STR structures. It should be noted that currently
TSSV uses a single processor for the analysis.

Annotations

Once a list of new alleles is constructed, TSSV uses a revised version of the
Mutalyzer online service (Wildeman et al, 2008; https://mutalyzernl) to describe
all observed variants compared with the reference sequence. Mutalyzer provides a
description of observed variants according to the Human Genome Variation Society
format for sequence variant description. This can be used to provide an overview of
most frequent mutations that are observed within each locus of interest.

Interpretation guidelines

TSSV provides the frequency in which each allelic structure is observed on
plus and minus strand. Based on the experimental design, the frequencies of allelic
variants and the balance between supporting reads on the plus and minus strand
can aid the identification of potential sequencing biases. Moreover, based on the
choice of sequencing technology, homopolymers are prone to introducing artificial
allelic structures, so it is advised, when possible, to allow for a tolerance of a few base
difference in the homopolymer length while describing targeted loci. The estimation of
a lower boundary for the identification of variant alleles is subject to the experimental
design.Thus, sequencing of control samples, if possible, can aid a more reliable analysis
by ruling out potential slippage and background noise. nce a list of new alleles is
constructed, TSSV uses a revised version of the Mutalyzer

Auvailability

TSSV is available at http://www.lgtc.nl/tssv and https://pypi.python.org/pypi/tssv. It
can also be installed through the command line: pip install tssv. All original datasets and
the analysis results can be obtained from figshare (http://www.figshare.com): detection
of STRs, SNPs and short indels (Anvar, 2013a), determining de novo structural
variations (SVs) in TALEN-treated ES cells (Anvar, 2013b), characterization of STRs
(Anvar, 2013c) and detection of systematic errors in PGM (Anvar, 201 3¢).
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Library preparations and sequencing

STR PCR products for sequencing were generated using the Powerplex® |6-kit
from Promega (commercial assay designed and optimized for fluorescent dye-based
fragment analysis of STR loci) and were purified with Ampure XP beads according to
manufacturer’s protocol. Library preparation was performed using the Rapid Library
Preparation Kit (Roche). Emulsion PCR and sequencing were performed on the
FLX Genome Sequencer (454/Roche) according to the protocol provided by the
manufacturer.

PCR products for sequencing of all other samples on the Personal Genome Machine
(PGM, lonTorrent) were prepared using the lon Plus Fragment Library Kit or amplicon
fusion primers. Emulsion PCR was performed using the OneTouch (OT 1, lon Torrent).
Sequencing was performed according to LifeTech protocol using the lon PGM™ 200
Sequencing Kit. PCR reaction was done in |0 pl containing | x FastStart High Fidelity
reaction buffer (Roche), 1.8 mM MgCl2, 2% DMSO, 200 uM dNTPs, 0.5 U FastStart
High Fidelity Enzyme Blend (Roche), 20 ng DNA, 300 nM universal barcoding primer,
300 nM reverse target primer and 30 nM forward target primer. After 10 min of initial
denaturation at 95°C, 30 PCR cycles were performed at 20s 95°C, 30s 60°C and 40s
72°C. Primer sequences are provided in Supplementary Table S2.

TALEN design and transfection

The TALENSs -pair targeting intron 52 of the human DMD gene (hDMD) was
designed using the TALEN toolbox described by Cermak et al. (201 1). Next, hDMD/
mdx ES cells (t Hoen et al., 2008;Veltrop et al,, 20| 3) were transfected with the TALENs
plasmids without any homologous recombination vector. ES cells were routinely cultured
on murine embryonic fibroblast (MEF) feeder cells in knockout DMEM supplemented
with 2 mM L-glutamine, | mM sodium pyruvate, non-essential amino acids, 50 units
of penicillin as well as streptomycin, 1000 units of leukemia inhibitory factor and 0%
fetal bovine serum (FBS Gold, all from Life Technologies Ltd). Per TALEN, total of 750
ng in 1.5 pg of DNA was used to transfect | 000 000 hDMD/mdx ES cells using
Lipofectamin 2000 (Invitrogen). DNA-Lipofectamin 2000 suspension was prepared
in serum and antibiotic-free medium according to the supplier's manual Cells were
incubated for 30 min in suspension with the DNA-Lipofectamine mixture and then
plated in two 9 c¢cm culture dishes coated with MEF in regular ES culture medium. ES
cells were cultured for a week, and DNA was isolated from a pool of 1500 ES clones.
This DNA was then prepared for sequencing using lon Torrent PGM according to the
instrument guidelines.
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Results

Characterization of STRs

We tested the performance of TSSV in characterizing known STRs from
Roche/454 targeted sequencing data of 16 STR loci, amplified in a multiplex reaction.
To demonstrate the added value of TSSV over mainstream aligners, we generated
four sequencing libraries of which two consisted of pure individual samples and
two mixtures in the ratios of 50:50 and 90:10 with comparable depth of coverage
(Supplementary Table S3). A full spectrum of STR structures and their abundance was
generated after a semi-global alignment of the 25 bp flanking regions adjacent to the
STR structure, with tolerance of up to three mismatches (Fig. | A). On average, 8% of
reads remained uncharacterized, mostly because the sequences did not cover both
flanking reference sequences or that sequences contained too many mismatches for
regions that are required for identification of unique flanking reference sequences
(Supplementary Table S3).The PCR product used for preparing the sequencing libraries
were generated using the Powerplex | 6-kit from Promega, which is an assay designed
and optimized for fluorescent dye-based fragment analysis of STR loci. This resulted
in a strong imbalance in sequencing vield between STR markers with different dyes
in the fragment analysis (Supplementary Table S3). Thus, we restricted the analysis to
the three markers with highest coverage (D3S1358,THOI and D13S317). Frequencies
of the observed alleles were interpreted to distinguish actual alleles from slippage
artifacts (Supplementary Tables $4-S6).

For D3S1358 (TCTAI TCTGI-3 TCTAI2—-13), TSSV robustly identified the STR
structure associated with each of the samples, with >91% of reads supporting the
presence of two STR alleles (Fig. I B).In addition, TSSV could pick up a minor frequency
(7.25%) for alternative STR structures, in which the DNA amplicons show false STR
structures because of DNA polymerase slippage during the amplification (Ellegren,
2004; Hauge and Litt, 1993). Despite the presence of PCR amplification artifacts, the
major and minor STR structures in balanced and more extreme mixtures (50:50 and
90:10, respectively) could accurately be identified by TSSV (Fig. IB and Supplementary
Table 54).

We next explored whether TSSV can correctly detect alleles of more complex
cases differing based on STR length (ATCTI2ATCA2 and ATCTIIATCA3) or
composition (CATT9 and CATT3CATICATT6) as well as mixtures that shared one
allelic STR structure (CATT3CATICATT6). Markedly, TSSV could correctly detect,
characterize and quantify reads supporting all STR alleles, including mixtures with only
0% representation of the minor alleles (i.e. D3S1358 markers) and more complex
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mixtures (THO| markers) where a single STR allele is shared (Fig. | C, Supplementary
Tables S4-S6 and Supplementary Figs S2—54). Results of the remaining STR markers
are provided in supplementary materials, Supplementary Tables S7/-S17.
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Determining de novo structural variations in TALEN-treated cells

TALENs have shown promising potential in site-specific genome editing (Boch, 201 I;
Cermak et al, 201 1; Miller et al, 201 1; Zhang et al, 201 ). Their modular structure
enables simple construction of TALENSs that can specifically recognize virtually any DNA
sequence of interest. On delivery of a TALENSs-pair; a double strand break is introduced
that is repaired by non-homologous end-joining, introducing a large variety of mutations
(Supplementary Fig. S5). Because the method lacks a positive selection procedure, the
applicability depends largely on its efficacy. We used TSSV to estimate the efficiency of
genome editing in ES cells from a mouse model with the hDMD, stably integrated in the
mouse genome (t Hoen et al,, 2008), and determine the utility of an assembled TALEN
pair (Supplementary Table S18) in introducing mutations within targeted intron 52 of
the hDMD (Supplementary Fig. S56).

For 100.000 TALENSs-transfected and non-transfected (control) ES cells, a 135 bp
fragment encompassing the entire targeted locus was PCR amplified and sequenced
using the lonTorrent PGM (Supplementary Table S19).The targeted locus was covered
over 450 000 times, which allows for precise detection and characterization of any
variant present. From the control ES cells, we determined a background of 3.1% of
reads that contain at least one mismatch, derived from sequencing errors and potential
spontaneous mutations (Fig. 2A and Supplementary Table S19). In TALENSs-treated ES
cells, the rate of sequencing reads that contain at least one mismatch was | 1.4%, almost
4-fold higher than controls (Fig. 2A). The majority of mutations introduced by TALENSs
pair were small insertions and deletions (75.6%; excluding duplications) (Fig. 2B), which
is consistent with the expected type of variants introduced by TALENs (Cermak et
al, 201 1). The frequency in which individual variants occurred was specific to TALEN-
treated ES cells, even for those that were observed with very low frequency (Fig. 2C and
D). However, we observed a few mutations that were not specific to TALEN-treated ES
cells (Fig. 2D). These were mainly duplications that arose from inaccurate detection of
homopolymer stretches. Overall, TSSV results indicate significant enrichment (P = 2.85E-
09; Kolmogorov—Smirnov test) of variants in TALEN-treated ES cells as compared with
controls (Fig. 2E). Furthermore, TSSV reported a list of the most frequent variants and
cleavage sites, majority of which were either exclusive to TALEN-treated ES cells or with
over 3-fold higher frequency in TALEN-treated ES cells than controls (Supplementary
Fig. S7). The lon Torrent variant caller (version 3.2) did not report any variant because
of the nature and frequency of variants introduced by TALENS.
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Detection of systematic errors in PGM lon Torrent

During the targeted lon Torrent resequencing of exon 19 of the DMD gene
(X-chromosome) in five male patients and a female carrier, we observed a number of
shared and unexplained heterozygous variants given that male patients have only one
X-chromosome and DMD gene does not locate within pseudo-autosomal regions.
We used TSSV to provide a high-resolution map of all sequence variants as a way to
understand the origin of these artifacts (Fig. 3A). To assess the reproducibility of our
findings, we performed two independent lon Torrent PGM sequencing runs (PG090
and PG109).Two different versions of the lon Torrent base-calling algorithm were used
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for PGO90 (versions 2.2 and 3.0) while PGI09 was only processed by version 3.0
(sequencing run was carried out after the upgrade of the lon Torrent Suit). The three
datasets enabled us to investigate potential artifacts derived from sequencing and/or
different base-calling algorithms. Our first observation indicated a significant decrease
in the total number of reads (average of | 1.3 and 13.3% in respective to different runs
and base-calling algorithms) that were recognized per individual (Supplementary Table
S20).We also noticed a significant difference in the fraction of reads per dataset (44.3,
40.3 and 48.7%) that were reported as new alleles, having at least one mismatch with
the reference sequence (Fig. 3B).
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Fig. 3. Identification of mutations within exon |9 of DMD gene. (A) Schematic representation of the locus of interest for resequencing, the design
of unique flanking sequences (blue), and the targeted region (red) to be profiled using TSSV. (B) Pie charts show the proportion of reads that
support the presence of new alleles (red) in sequencing library of patient |. Pie charts represent different sequencing runs (PG0O90 or PG109)
or the base-calling algorithm used during the primary analysis (O or 02).The two most outer pie charts are sequencing reads from the same
PGM lon Torrent run processed using two different versions of base-calling algorithm. The most inner pie chart represents an independent run
of the same library. (C) Number of observed variants separated by variation type. Percentages show the proportion of insertion events from the
total number of variants in each set.

We observed a significant reduction of variants (36.2%) after adoption of the
version 3.0 base-caller, mainly affecting the level of deletions and duplications calls
(Fig. 3C). This prominent decrease (68.3 and 48.9%) arises from improvement of the
algorithm in determining the length of homopolymer stretches. Notably, the majority of
other variants were single nucleotide insertions (excluding duplications and indels) that
remained at a comparable rate across different datasets (Fig. 3C). Next, we assessed
the strand specificity of the variants based on the sequencing direction. Interestingly,
while the majority of variants showed a similar frequency in both directions, the most
frequent variants showed a clear imbalance between forward and reverse strand (Fig.
4A and B).The observed strand-specific bias was reproducible and was not influenced
by the software version, as it was observed in all three datasets (Fig. 4C and D and
Supplementary Figs S8-S11).
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To study the possible nucleotide-specific biases, we quantified the frequency of all
calls that predominantly occurred on one strand. Despite slight variation, substitutions
were observed on both strands at a comparable rate. However, in each dataset, the
majority of substituted bases were ‘A’s (59.2, 61.3 and 64.9%) and T's (28.1, 23.0
and 20.5%) that were predominantly substituted to ‘G’ and ‘C’, respectively (Fig. 5A).
Insertions were primarily observed on the forward strand (94%, on average) while ‘A’
remained as the most affected base (77.7%, on average) across all samples (Fig. 5B and
Supplementary Figs S9-SI 1).

We also observed a slight enrichment of deletions and duplications on the reverse
strand that were more pronounced in PG109-02 (Fig. 5C and D). Consistently, the
most affected base was ‘A, which was mainly the result of under- or over-calling of
‘A" homopolymers. We used TSSV to report a list of most occurring variants across
different samples. A single ‘A’ nucleotide insertion at cycle 52 was by far the most
predominant variant that occurred exclusively on the forward strand (Fig. 6A). In
fact, irrespective of co-occurrence of this insertion with any other variants, the new
observed sequence remains strand specific (Fig. 6A). This cannot be explained from a
biological standpoint and can only arise from a sequencing error. Moreover, we did not
observe any variation after sequencing the same library with Sanger sequencing (Fig.
6B), ruling out the possibility of artifacts introduced by sample preparation and PCR
amplification.
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Comparative analysis of TSSV performance

To our knowledge, lobSTR (Gymrek et al, 2012), STRait Razor (Warshauer et
al, 2013) and RepeatSeq (Highnam et al, 2013) are currently the most recent and
frequently used STR profiling tools. STRait Razor has limited functionality and only
provides an estimated copy number of major STR units. Therefore, we could only
compare the performance of TSSV only with lobSTR and RepeatSeq. As lobSTR
relies on alignment of sequencing reads to the predefined and indexed STR reference
sequences, lobSTR outperformed TSSV in recognizing partial reads, containing only one
of the two flanking sites required by TSSV (Supplementary Table S21). Concordantly,
lobSTR accepted 1288 reads for the D3S1357 STR locus that were not reported
by TSSV. However, TSSV performed significantly better on more complex STR loci
(Supplementary Tables 52 1-522). Across all four datasets, TSSV identified on average
2471 and 2353 reads in excess of what was recognized by lobSTR for the D13S317
and THOI STR loci, respectively. This difference is mainly derived from increasingly
problematic alignments in lobSTR that is also reflected in inaccurate estimation of
STR copy number for THOI and D13S317 markers in pure samples (Supplementary
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Table S22). In addition, lobSTR does not provide information on allelic STR structure,
as it only reports the copy number of the major and uninterrupted STR unit and
ignores the information from other variable elements or variants outside the STR itself.
Consequently, lobSTR failed to accurately detect the presence of mixed simples even
in cases in which samples were mixed 50:50 (Supplementary Table S22). Although
the information on strand specificity of the aligned reads is present in the alignment
file, unlike TSSV, IobSTR does not provide the frequency in which each STR structure
is observed. This is an important measure to detect inconsistencies and to rule out
potential artifacts. RepeatSeq requires aligned data and uses predefined regions to
characterize observed STR alleles. Thus, reads were mapped to the reference genome
(hg19) using GS mapper, specifically designed for 454 sequencing data. RepeatSeq
reported results for only one STR locus (D8SI179), despite sufficient coverage for
a number of STR loci in the BAM file. After manipulating the region descriptions, we
could not improve the efficiency of RepeatSeq in identifying the targeted STR loci.
Thus, the result of RepeatSeq could not be used for a conclusive comparison with
TSSV.

Discussion

lIn the past decade, advances in sequencing technologies as well as computational
analysis tools have enabled the study of genomic variations to dissect the mechanisms
by which they exert their function in the case of human diseases, evolution and
other complex traits. Despite this unprecedented progress, structural variations and
repetitive DNA sequences (such as STRs) or coupling of de novo mutations present
major obstacles for accurate and reliable allelic analysis (Alkan et al,, 201 |; Gymrek et
al, 2012; Kidd et al,, 2008; Treangen and Salzberg, 2012; Weischenfeldt et al., 2013). In
particular, most computational tools are not ideal to identify STRs because of biases
introduced during alignment as well as strong reliance of algorithms on coverage depth
orthe presence of split-reads. Here, we present a method (TSSV) that provides a high-
resolution map of allele-specific genomic variants within targeted loci of interest. Our
approach does not rely on the use of a complete reference sequence to reliably profile
highly polymorphic sequences (such as STRs) or uncharacterized variants at a single-
nucleotide resolution. However, it does require two unique flanking sequences that
harbor the region of interest to identify supporting reads.VWe assess the performance
of TSSV on profiling known allelic STR structures across pure samples from a single
individual as well as mixed samples with variable abundance. Of | 6 allelic STR structures
that were targeted for sequencing, six STR loci were sufficiently covered so that the
associated allelic STR structures could be reliably resolved. The strong imbalance
between yield of STR markers is because of the assay (designed and optimized for
fluorescent dye-based fragment analysis of STR loci) used for preparing the sequencing
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library.We show that sensitivity of TSSV in determining allelic STR structures exceeds
mixtures with only 0% representation of minor alleles and more complex mixtures
in which a single STR allele is shared. The lower boundary of detecting minor allele
frequencies is subject to experimental design and the complexity of the targeted locus
that may result in variable rate of slippage and background noise. Our detailed analysis
of three STR loci provides significant insights into forensic DNA fingerprinting of mixed
samples while it confirms the feasibility of TSSV to profile causal allelic expansion
of triplet, tetranucleotide or more complex repeat structures in variety of human
disorders (Brook et al., 1992; Dere et al,, 2004; Kremer et al, 1991; Mahadevan et al,
1992; Mirkin, 2007; Pearson et al,, 2002;Verkerk et al., 1991).

Second, we sought to profile and annotate the full spectrum of de novo mutations
introduced by TALENSs that specifically target intron 52 of hDMD in mouse ES cells.
The applicability of designed TALENSs to introduce mutations in a targeted locus largely
depends on its efficacy because this method lacks a selection procedure. Detected
TALEN-specific editing events were almost exclusively insertions and deletions that
fit the expected mutation profile of TALENs (Cermak et al., 201 1). Although it has
recently been reported that TALENSs induce insertions at a much lower frequency than
deletions (Kim et al, 2013), we have observed an extremely balanced rate of insertion
and deletion events (37.26% versus 37.20%, respectively). Nevertheless, TALENs-
induced deletions tend to affect more bases than insertions. We show that TSSV can
resolve difficult-to-call editing events that affect the length of homopolymers based on
the variant frequency in TALEN-treated ES cells versus controls. Moreover, the result
of TSSV analysis of TALEN-treated and control ES cells suggests that observed de novo
structural variants are predominantly caused by initiation of a double-strand break
that is repaired by non-homologous end-joining mechanism and are not the result of
sequencing errors. Notably, the lon Torrent variant caller failed to identify any of the
observed variants because of their complexity, and therefore does not provide any
information on de novo allelic structures that were introduced.

As laboratories begin to generate deep coverage sequencing data to identify
low frequent mutations (i.e. cancer genomics), the robustness and accuracy of NGS
technology and library preparation methods has become vital (Costello et al., 201 3).
After running TSSV on a third dataset to identify potential causal mutations in samples
from five DMD patients and one female carrier; we observed numerous systematic
errors introduced by the lon Torrent PGM sequencer or the base-calling algorithms.
The number of sequencing reads that support the presence of a new allele was in
excess of 45% while no mutation was found after Sanger sequencing of the same
libraries. Moreover, the amount of allelic discordant reads were unexpected and
could not be biologically explained as five out of six samples were derived from male
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patients who are expected to have only one copy of the X-chromosome. Across
all samples, the majority of detected variations were single nucleotide insertions
(~62%), excluding duplications, that were mostly the result of a single ‘A’ insertion
(78%). Surprisingly, insertions were predominantly specific to the plus strand (94%)
that can be the result of flow order in specific sequence contexts. Although the
second base-caller improved the deletions and duplications rates that were derived
from over- or under-calling of homopolymers, the insertion rates remained unchanged.
We further observed a preference for erroneous substitution events that were more
pronounced in the second base-caller. However, we were unable to identify motifs
that may be associated with observed biases.We argue that the result of TSSV analysis
and its ability to provide a high-resolution map of variants ever more highlights the
importance of robust and vigorous assessment of downstream analysis as we generate
volumes of sequencing data to identify rare mutations and in the advent of NGS in
clinical diagnosis.

To demonstrate the added value of TSSV over mainstream STR profiling tools,
we ran lobSTR (Gymrek et al, 2012) and RepeatSeq (Highnam et al,, 2013) on four
samples used for resolving allelic STR structures. Because RepeatSeq hardly reported
any STR markers, the performance of TSSV could only be compared with that of
lobSTR. We show that TSSV robustly and accurately resolved allelic STR structures
with differing complexity. TSSV outperformed lobSTR in reporting the accurate copy
number of major STR unit while it provides additional information on allelic STR
structures and their strand-specific frequencies. Notably, TSSV excelled in resolving
complex mixtures, whereas lobSTR failed to differentiate STR structures associated
with different samples, and therefore produced unreliable and inaccurate estimations.
Although lobSTR performs well on genotyping diploid samples, there is a clear need
for tools to resolve mixtures with differing level of complexity and abundance.

Currently, the major limitation of TSSV is the sequencing read length because the
detectable allelic structures are restricted to those that can entirely be covered by
a single read. Thus, we envision that the immediate developmental outlook for TSSV
can be the inference of allelic locus structure by local assembly of partial reads (reads
with only one recognizable flanking region) combined with the comparative analysis
of coverage of targeted loci and flanking regions. Furthermore, the promise of novel
sequencing technologies (such as Pacific Biosciences RS II), and therefore significant
increase in read length will aid the study of larger structural variations.

Advances in sequencing technologies and computational analysis algorithms

in unraveling genetic variations from SNPs and indels to CNVs (Chen et al, 2009;
DePristo et al, 201 1; Goya et al, 2010; Koboldt et al,, 2009; McKenna et al,, 2010;
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Ye et al, 2009) have facilitated the study of experimental data on an unprecedented
scale to better understand the functional consequences of genetic variations. TSSV
complements the existing tools by aiding the study of unknown, uncharacterized or
highly polymorphic and repetitive short structural variations that can be used in a
wide range of applications, from personal genomics to forensic analysis and clinical
diagnostics.
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Supplementary materials

Methodology (extended)

We developed a method to characterise short structural variations (TSSV) which
is made available online. In this section, we describe the functionality and design of this
program. Calibration of the algorithm and the output is done with optional command
line arguments. TSSV can be installed via pip install tssv command.

Input — Our method expects two input files: one file containing sequencing data
in FASTA format and one file containing the library description. The format of this
description is shown inTable SI.The last column of the description is compiled into a
regular expression. This regular expression is used to distinguish between known and
unknown alleles.

Marker Alignment — Each pair of flanking markers is aligned to each read by using
semi-global pairwise alignment, a modified version of the Smith-Waterman algorithm.
In this adaptation, the alignment matrix is initialised with penalties for the aligned
sequence, but not for the reference sequence. By using this approach, we can use the
alignment matrix for the calculation of the edit distance between the aligned sequence
and all substrings of the reference sequence. Finally, we use the alignment matrix to
select the rightmost alignment with a minimum edit distance. To guarantee that this
method is symmetrical with regard to the reverse complement, we align the reverse
complement of the right marker to the reverse complement of the reference sequence.

Allele Identification — If a marker pair can be aligned to either the forward or
reverse complement of the reference sequence, we can select the area of interest
by extracting the sequence between the alignment coordinates and by converting it
into the forward orientation. This area of interest can then be matched to the regular
expression of that marker pair Depending on the match, we either classify the area of
interest as a known or new allele.

Output — The output of the analysis consists of an overview report that contains
general statistics (such as total number of reads, number of matched pairs, number of
unique newly identified alleles, etc.), an overview of the marker pair alignment, and per
marker a detailed list of identified alleles (both expected and new alleles). If an output
directory is selected, a folder is created to store the marker table and, per marker, a
subfolder containing the new alleles and split FASTA files for supporting reads.
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Table S| - Full description of settings and generated files

Command Line Optional Arguments

-h Show a description of the usage

-d MName of the output directory

.—a Minimum count per allele to be reported (default: 0}

Library Definition

Column 1 Mame of the marker pair
Culum.n stq-UEHEEgth Iﬁtll;.nkl ng markEl ..................................................
mlun;n ssm.uenoeonhe rlsm.ﬂ.anklnsmarker ................................................
“Coumn4  Descptonoftheewectedaleles

General Output Files per Marker

known.fa Reads classified as kinown allele
new.fa Reads classified as new alleles
unknown.fa Reads classified as unrecognized

newallels.csv Table of new alleles

Marker Overview

name Name of the marker pair
rpa”e.dNu;merOfpalrmamh.e.slnfmwardmm:l.auon .....................................
“ared  Numberofpairmatchesnreverseoriematon
fl.Nu;nhernflEftmarkEl..matChesmforwa;;Drlema“un .............................
rl.Nu;nhernfleﬁmarkz;.matm!smreuer;mlenmmn ..............................
E.Nu;nber ofleﬂmarke:.ma lchesm Furwa;;lonentmmn .............................
rz.Nu;nberofleﬂmarke:.mamheslnrever;oﬂenm“on ..............................

Allele Overview

allele Sequence of the area of interest
T bt e T
forward Number of times the allele was found in forward crientation
e Nowbaeof rathe dlais wes found o eevarsg oot
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TSSV Profiling Speed
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Figure S —The speed of TSSV in characterizing known and novel alleles. Four datasets with different number of reads were profiled for 16 STR
loci. The analysis was performed on a desktop PC (Intel Core i7 860, 2.80GHz) and a cluster node (Intel Xeon E5-2660, 2.20GHz). ost abun-
dant sequences and validation by Sanger sequencing. (A) A list of most abundant sequences across different samples. The observed

Table S2 - Description of primers used for targeting loci of interest.

Name Forward Primer Reverse Primer

hDMD-int52 gggaaagtgaaagagtaaccagag ACACACCATCTAATGCTTATGAGG

hDMD-exnl9 ccttgtattgaattactcatc cctaagaagattatctaaatcaactcgt
hDMD-exn21  acgigttacttactttccatact  cosgttagecattttaggett
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Table S3 - Basic statistics of STR datasets sequenced on 454/Roche.

46

Reference Reference  Mixture 1 Mixure 2
sample 1 sample 2 (50%/50%)  (90%/10%)

Total sequences 146968 178282 33127 32201
Sequences recognized as known alleles 75837 78228 16954 16425
Sequences recognized as new alleles 15622 17887 4660 3arao
Sequences only recognized for the beginning 35154 106253 16204 16526
Sequences only recognized for the end 75110 69957 9990 8782
Unknown sequences 11478 22153 2108 2260
Sequences Recognized / locus

D138317  13g31.1 15361 11473 3069 3712
D21511 219211 13290 18477 2544 3218
Amel Xy 159 114 37 35
D381358  3p21.31 19822 25590 5507 4893
D16S538  16g24.1 82 a7 26 19
TPOX 2p25.3 29 80 27 13
VWA 12p13.31 189 215 34 32
D75820 7921.11 10998 7339 2626 1975
FGA 4q28 14 28 9 6
THO1 11p15.5 19657 17204 4664 3956
Das1179  8g24.13 66 a0 23 18
CSF1PO 5g33.1 81 291 21 27
D18551 18g21.33 128 247 38 46
D5S818 5923.2 11523 14628 2983 2184
PentaD 21g22.3 25 36 6 5
PentaE 15026.2 35 216 0 6
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Table S4 - Sequence numbers and allele structure of D3S1358 Short Tandem

Repeat.

Total # of Forward Reverse Total # of Repeat Repeat Repeat Mintura
repeats Matif 1 Motif 2 Matif 3 interpratation
sample 1 12 14 2 16 TCTAfL) TCTG(L) TCTAjL)
1 " 17 8 TCTALl  TCTG(l)  TCTAILL)
13 1 16 30 TCTAIL TCTG)  TETA(D)
14 365 244 s TCTAL)  TOTe(l)  TCTAILZ)
14 403 us s48  TCTALl TCTe()  TCTAIL)
15 ABEL 3111 7792 TCTAL) TOTGL) TCTA{LE)
15 4774 211 7985 TCTAL]  TCTelZ)  TCTAILZ)
15 12 8 0 TCTMl TeTel  TETAlLL)
16 ) 18 57 TCTA(1) TCTG(1)  TCTA{14)
16 1 n 59 TCTAI TCTG)  TCTAN)
Sample 2 1 7 2 3 TCIAl ToTelZl  TCTAND)
13 9 1 10 TCTAfL) TCTG(3) TCTA[D)
14 £t 13 a6 TCTAL) TCTGR)  TCTALY
1 7 18 45 TCTAL) TeTel)  TETAlL)
15 562 241 833 TCTA(L) TCTGZ)  TCTALZ)
15 496 14 70 TCTALl TCTGE) TCTAIL)
16 7 6 33 TCTALl TCTe(l)  TETAIL)
16 7484 2602 10086  TCTAI)  TCTGZ)  TCTAN)
16 6898 a2 9340 TCTAL) TCTE(3)  TCTAIL2)
17 70 bLY 99 TCTA(1) TCTG(Z)  TCTA{14)
7 15 25 s TCTALl  ToTelal TCTAL)
 50:50 Mixture 13 3 7 10 TCIML)  TCTG)  TCTAIY)  <1%of highest alicle
13 4 s 13 TCTAI TCTG(2) TCTAMO) -2 stutter Al 15b
1 52 1 84 TCTAL)  TCTG()  TCTAUIZ) -1 stutterAllSa
1 51 3 83 TCTA(L]  TCTGQ)  TCTAIL)  -1stutterdl16b
1 23 a 27 TCTAfL TCTG3)  TCTA{10) -2 stutter Al 16¢
15 612 520 132 TCTAI) TCTGH) TCTAU3)  Allele15a
15 536 494 1030 TCTAIL)  TCTG(2)  TCTA2)  Allele 15k
15 B8 63 151 TCTAfL) TCTG3)  TCTA{LL) -1 stutter Al 16¢
16 9 n 0 TCTAL] TCTG()  TCTAIL4) 1 stutter Al15a
16 666 139 105 TCTAIL) TCTG(2)  TCTA3)  Allele6h
16 650 431 141 TCTAI) TCTGE3)  TCTAU2)  Allede 6c
17 1 1 15 TCTAILl  TCTG(2)  TCTAIL4)  +1stutter Al 6b
' 90:10 Mixture Iy 5 a0 11 TCTAIL)  TCTG()  TCTAILl)  <1%of highestaliele
1 17 8 01 TOA TCTGH)  TCTAUZ) -4 stutter Al 15a
14 7 45 121 TCTAI) TCTG() TCTAML) L stutter Al 155
15 a4 BOE 1732 TCTAf) TCTG{L)  TCTA{13)  Allele 158
15 78 566 1544 TCTAQ)  TCTG)  TCTAUZ)  Allele15b
15 70 1 8  TCTAI) TG TCTAILY) -1 stutterAllac
16 23 3 26 TCTA(1) TCTG(1)  TCTA{14)  +1 stutter Al 15a
16 110 &5 175 TCTAI TCTG) TCTAU3)  Allele 16b
16 177 102 79 TCIMI) TGS TCTAILZ)  Allele 16c
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Table S5 - Sequence numbers and allele structure of D 135317 Short Tandem
Repeat.

Cepestssoquonces _soquamces _soquences Mo o2 Maoars  Miture mterpretation

Sample 1 11 5 [ 11 ATCT(9) ATCA(Z)

12 210 192 402 ATCT(10) ATCA(2)

12 7 10 17 ATCT(9) ATCA(3)

13 3061 3039 6100 ATCT(11) ATCA(Z)

13 249 222 471 ATCT(10) ATCA(3)

14 59 59 118 ATCT(12) ATCA(2)

14 3218 2864 6082 ATCT(11) ATCA(3)

14 53 49 102 ATET(10) ATCA(4)

15 14 30 44 ATCT(12) ATCA(3)
Sample 2 12 7 13 20 ATCT(10) ATCA(2)

13 182 160 342 ATCT(11) ATCA(2)

13 8 10 18 ATCT(10) ATCA(3)

14 2495 1982 4477 ATCT(132) ATCA(2)

14 151 181 332 ATCT(11) ATCA(3)

15 a7 a2 89 ATCT(13) ATCA(2)

15 2409 2014 4423 ATCT(12) ATCA(3)

15 22 29 51 ATCT(11) ATCA(4)

16 24 21 45 ATCT(13) ATCA(3)
50:50 Mixture 12 35 38 73 ATCT(10) ATCA(Z) -1 swtter Al 13b

13 525 467 992 ATCT(11) ATCA(2) Allele 13b

13 30 32 62 ATCT(10) ATCA(3) -1 stutter Al 14c

14 191 235 426 ATCT(12) ATCA(Z) Allele 14b

14 327 324 651  ATCT(11) ATCA(3) Allele 14c

14 3 1 7 ATCT(10) ATCA(4) < 1% of highest allele

15 4 4 8 ATCT(13) ATCA(2) < 1% of highest allele

15 160 229 389 ATCT(12) ATCA(Z) Allele 15¢

15 2 4 & ATCT(11) ATCA() +1 stutter Allde
90:10 Mixture 12 104 58 162 ATCT(10) ATCA(2) -1 stutter Al 13b

13 751 589 1340 ATET(11) ATEA(2) Allele 13b

13 48 43 91 ATCT(10) ATCA(3) -1 stutter Al 14c

14 66 41 107 ATET(12) ATEA(2) Allele 14b

14 691 546 1237 ATCT(11) ATCA(3) Allele 14c

14 4 5 9 ATCT(10) ATCAI4) <1% of highest allele

15 28 71 99 ATCT(12) ATCA(3) Allele 15¢
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Table S6 - Sequence numbers and allele structure of THOI Short Tandem

Repeat.
Cepests  supoenees _ seuerces _ sequences  Would  Monfz  woura | Miture nterpretation
Sample 1 8 233 112 345 CATT(8)
8.3 3 22 25 CATT(4) CAT(1) CATT(4)
83 91 34 125  CATT(3) CAT(1) CATT(S)
9 5280 2526 7806 CATT(9)
2.3 4626 2417 7043 CATT(3) CAT(1) CATT(8)
10 24 12 36 CATT(10)
Sample 2 [ 14 34 148 CATT(E) .
6.3 8 4 12 CATT(5) CAT(1) CATT(1)
6.3 18 2 20 CATT(4) CAT(1) CATT(2)
7 5435 1412 6847 CATT(7)
8.3 70 24 94 CATT(3) CAT(1) CATT(S)
9.3 5789 1507 7296 CATT(3) CAT(1) CATT(6)
50:50 Mixture 6 20 23 43 CATT(G) -1 stutter Al 7
7 514 494 1008  CATT(7) Allele 7
8 5 14 19 CATT(8) -1 stutter Al 9
8.3 E] 4 13 CATT(3) CAT(1) CATT(S) -1 Stutter Al 9.3
9 239 235 474 CATT(9) Allele 9
9.3 671 591 1262 CATT(3) CAT(1) CATT(6)  Allele9.3
90:10 Mixture 7 95 - 60 . 155 . CATT(7) . Allele 7
8 29 23 52 CATT(8) -1 stutter Al 8
8.3 0 11 11 CATT(4) CAT(1) CATT(4)  <1% of highest allele
83 16 7 23 CATT(3) CAT(1) CATT(5)  -1stutter Al9.3
9 873 404 1277 CATT(9) Allele 9
9.3 1044 584 1628  CATT(3) CAT(1) CATT(6)  Allele 9.3
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Table S7 - Sequence numbers and allele structure of D21SI| Short Tandem
Repeat (6 most frequent alleles for every sample.)

TUA  orward  Mavarse  Totalfof Rapeat Aepeat Repast  Repeat  Repeat eie  fepear  Repeat  Aspeat

[eup seguences  seguences  sequences  Motif 1 Motif2 Mot 3 Motif 4 Motil 5 5 Motif 7 Motif 8 Motil 3

Sample 1 3 1593 2968 4561 TCTA(G)  TCTG(S)  TCTA(3) TATCTA(L} TCTA(Z) TCA{1) TCTA(2] TCOCATA[L)  TCTA[12)
30 1527 2443 3970 TCTA{4) TCTG(E) TCTA(3) TATCTA(L) TCTA(Z)  TCA{1)  TCTA(2]  TCCATA[L)  TCTA(1Z)

30 151 261 412 TCTAI6) TCTG(S) TCTA[3) TATCTA(1] TCTA{Z) TCa{l) TCTA(2] TCCATA[l]  TCTA(11)

2 167 169 336 TCTAlS) TCTG(E) TCTA[3) TATCTAML TCTAR)  TCAI) TCTA] TCCATAL  TCTA(L1)

30 2B 102 130 TCTAJS) TCTG(S) TCTA(3)  TATCTA{L} TCTA{Z)  TCA{1) TCTA[Z] TOCATA[1)  TCTA[1Z)

1 6 a0 116 TCTA4) TCTG(6) TCTA[3) TATCTA() TCTAZ) TcA{l) TCTAZ] TCCATA[) TCTA[13)

Sample 2 . m umr 2645 5827 T&Na; . TCTG(E) . n:rlnlz; TATCTA{L) . TCTAZ)  TCA{L) ) TCTA(2) . TCCATA[L]  TCTA(11)
3 1275 3041 4316 TCTAIS) TCTG(6) TCTA[3) TATCTAL TCTAIZ) TCA[L) TCTA(Z] TCCATAL  TCTA(12)

30 200 2B6 4B6 TCTAJS) TCTG(E) TCTA(3) TATCTA(L} TCTA{Z)  TCA{1) TCTA[Z] TOCATA[1)  TCTA[L1)

26 65 252 317 TCTA{4) TCTGIE) TCTA(3) TATCTA(] TCTA(Z) TCA{l) TCTA(Z] TCCATA(L) TCTA(10)

30 130 158 288 TCTAlS) TCTG(E) TCTAI3) TATCTAML TCTARZ)  TCAIL) TCTAZ TCCATA[L  TCTA(12)

i 2 26 298 550 TCTAl4) TCTG(S)  TCTAIS)  TATCTA(LL TCTAIZ) TCAIL)  TCTA(I  TCCATA[L  TCTA(LL)
30 208 264 473 TCTA{8) TCTGIE) TCTA(3) TATCTA(] TCTA(Z) TCA{1) TCTA(Z) TCCATA[L) TCTA(12)

3 156 186 342 TCTAlG) TCTG(S) TCTA[3) TATCTA(L] TCTA{Z)  TCA{l)  TCTA[Z]  TCCATA[1)  TCTA[12)

31 115 177 292 TCTA|S) TCTGIE)  TCTA(3)  TATCTA(L} TCTAZ)  TCA{1)  TCTA[Z]  TOCATA[L)  TCTA[1Z)

30 17 15 32 TCTA|S) TCTG(E) TCTA[3) TATCTA() TCTA(Z) TCa{l) TCTAZ] TCCATA[L) TCTA(11)

8 14 17 31 TCTAl4) TCTG(B)  TCTA[3)  TATCTA(L] TCTA{Z)  TCA{l)  TCTA(2]  TOCATA[L)  TCTA[1O)

e B an 634 1055 TCTAS) TCTG(S) TCTA(S) TATCTA(L) TCTAZ) TCAIL) TCTARZ) TCCATA[L  TCTA(12)
30 77 550 927 TCTA{4) TCTG(E) TCTA[3) TATCTA(] TCTA(Z) TCA{l) TCTA(Z] TCCATA[L) TCTA[12)

2 20 58 s TCTAI4) TCTG(l TCTA[Z) TATCTA(L TCTARZ) TCA[l) TCTARZI TCCATA[L) TCTA(LL)

30 34 47 Bl TCTAJG) TCTG(S) TCTA(3)  TATCTA{L} TCTA{Z) TCA{1)  TCTA(Z] TOCATA(L)  TCTA[11)

31 24 46 70 TCTA|S) TCTG(E}) TCTA[3) TATCTA() TCTAIZ) TCA{l) TCTA(Z] TCCATA[L) TCTA(12)

32 37 10 47 TCTAlS) TCTG(S) TCTA[Z)  TATCTA(L TCTARZ) TCA[l) TCTARZI TCCATA[L] TCTA(3)

Table S8 - Sequence numbers and allele structure of D 165539 Short Tandem
Repeat (6 most frequent alleles for every sample.)

Taotal ¥ of Forward Reverse Total il of Repeat Repeat Repeat
P QuUEnces q BF  BOQUENCES Motif 1 Motif 2 Motif 3
Sample 1 12 12 57 69 GATA(12)
11 1 1 T GATA[11)
Sample 2 13 3 34 37 GATA(13)
12 [} 27 T GATA(L2)
S0:50
R 12 ] 8 13 GATA[L2)
13 a B E  GATA(13)
11 i 1] 1 GATA(LL)
10
Minture 12 7 8 15  GATA(12)
1 a 1 1 GATA(L1)
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Table S9 - Sequence numbers and allele structure of TPOX Short Tandem
Repeat (6 most frequent alleles for every sample.)

Total # of Forward Reverse Tatal & of Repeat Repeat Repeat

repeats SEQUENCES  SEQUENCES  Sequences Matif 1 Motif 2 Motif 3
sample 1 11 3 3 11 AATG(11)
-] & 2 8 AATG(Y)
10 o 1 1 AATG[10)

ez n e w mmeny

8 24 2 26 AATG(B)
10 1 2 3 AATG(10)
::‘::.II’D 1 1 2 3 AATG(11)
10 1 1 2 AATG(10)
9 2 [} 2 AATGID)
8 1 o 1 AATG(S)
::;z:m 1 3 4 7 AATG(1Y)
9 1 0 4 AATG(9)
B aQ 1 1 AATG(E)

Table SI0 - Sequence numbers and allele structure of VWA Short Tandem
Repeat (6 most frequent alleles for every sample.)

Total # of Forward Reverse Total # of Repeat Repeat Repeat Repeat Repeat
repeats SEQUENCES  SEQUENcEs  Sequences Motif 1 Maotif 2 Motif 3 Motif 4 Motif 5
sample 1 16 67 £ 153 TCTA(L) TCTG(4) TCTA{11)
15 3 5 & TCTA(L) TCTG(4) TCTA(1D)
16 [\ 5 5 TCTA(L) TCTG(S) TCTA(g) TCTG(L)
" sample 2 v 34 50 81 TCTA(L) TCTGI4) ez
16 g 42 81 TCTA(L) TCTG|4) TCTA{11)
15 5 i & TCTAL) TCTG() TCTA{10)
15 0 1 1 TCTA(L) TCTG(3) TCTA{11)
14 a 1 1 TCTA{L) TCTG|4) TCTA(D)
17 1 o 1 TCTA{L) TCTG(4) TCTA{10) TCCA(L) TCTA(L)
:?::I e 16 14 5 19 TCTA(L) TCTGI4) TCTAIL1)
17 3 6 9 TCTAL) TCTG(4) TCTA(12)
17 ] 1 1 TCTAZ) TETG{3) TCTA{L2)
::’i’:“:m 16 12 15 27 TCTAQL) TCTG4) TCTA{11)
16 1 1 2 TCTA(L) TCTG4) TCTA{L0) TCCA(L)
16 1 [i} 1 TCTA{L) TETG(S) TCTA{10)
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Table SI'| - Sequence numbers and allele structure of D75820 Short Tandem
Repeat (6 most frequent alleles for every sample.)

Total # of Forward Reverse Total # of Repeat Repeat Repeat
repeats Motif 1 Motif 2 Motif 3
sample 1 7 3268 3037 6305 GATA(T)
12 1535 1847 3382 GATA(12)
1 130 102 232 GATA[11)
6 75 63 144 GATAIS)
“samplez g 2927 3561 G488 GATA(9)
] 140 170 310 GATA(8)
::i’::. e 7 584 454 1038 GATA{7)
5 326 R 643 GATA(9)
12 31 289 600 GATA[12)
8 28 22 50 GATA(8)
1 24 15 43 GATA[11)
6 1 17 28 GATAIG)
::’i::m 7 548 474 1022 GATA(T)
12 284 333 617 GATA[12)
9 28 42 70 GATA9)
1 15 29 44 GATA(11)

Table S12 - Sequence numbers and allele structure of FGA Short Tandem
Repeat (6 most frequent alleles for every sample.)

Totalfof  Forward Reverse Totallof  Repeat Repeat Repeat Repeat Repeat Repeat Repeat
repeats  sequences  segquences  sequences  Motif 1 Motif 2 Motif 3 Motif 4 Motif 5 Maatif & Batif ¥

Sample 1 21 7 o TOTITEN  TITWNCTIY) CTTTiAR) CTCOE) TTEdid)
17 1 o 1 TITCIS  TITINCTIY) CTTT9F  CTCO) TTeC)
" sample 2 20 5 o 5 TITG)  TEWERET(R)  CTTT(A2p  CTOO) TR
24 5 o 5 TTTC|3) TITTITCT(L) CTTT(16) CTooi1) TTCC(z)
19 1 o 1 TITG3) TOEETE) oIy £TECy  TTeCiR)
2 1 ] 1 TITCIE)  TATETCTIN) CTTTA3 CTCOi) TTOCi)
:lnl-_:ln 17 F o F3 TTTC(3) TITITCTIL) CTTTia) CTEO|L) TTCCz)
20 1 o 1 TTTCi3)  TITITCTY)  CTTT(Ep  COTWY)  CTTTI3) CTCC(1) TTCol)
0 1 o 1 TTTC(3) TITTTCT{L) CTTTI12) CTCO{L) TTCCZ)
m‘:ﬂ 21 2 o T TTTOY)  TEWEET(R)  CTTT(A3)  €TOO)  TTECi]
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Table S13 - Sequence numbers and allele structure of D8SI1 179 Short Tandem
Repeat (6 most frequent alleles for every sample.)

Tatal & of [Farsand Reverse: Total & of Repeat Repeat Repeat Repeat
repeats SEQUEMCES  SEQUENCES  SEQUERKES Matif 1 Matif 2 Maatif 3 Motif 4
Sample 1 10 12 13 Fd TCTAfI0)
13 18 3 1 TCTAIL TCTEL) TETAIL1]
1z z a z TCTAlY TCTEL) TCTAL]
“sample 2 13 13 17 0 TCTAl)
14 1o 1 71 TLTALL4)
12 ] 4 4 TCTALY
14 1 L} 1 TCTAlY) TCTG() TCTA[10)
14 1 L] 1 TCTGIL] TETA[LZ]
i 13 % 2 & TCTAI TETGL  TCTAILL
10 1 ] 3 TCTAlG)
14 a 1 z TCTAlR4)
13 1 1 2 TCTAlLY)
:::m ] 1 5 &  TCTA[IO)|
13 1 3 4 TCTAIN TCTG() TCTA[1]
14 1 [ 1 TCTA[M4)
13.1 [ 1 1 TLTAIL TETGELL TCTALL0) TCTATL)

Table S14 - Sequence numbers and allele structure of CSFIPO Short Tandem
Repeat (6 most frequent alleles for every sample.)

Total # of Forward Revarse Total & of Repaat Repaat Repeat
repeats e ser Matif 1 Matif 2 Matif 3
Sample 1 10 7 26 13 AGATIID)
13 [5 10 16 AGATIL3)
12 1 1 2 AGATILZ)
9 0 1 1 AGATIS)
a 1 0 1 AGATIE)
" sample 2 12 I*H 06 125 AGATIZ)
13 b5 &7 95 AGATILI)
1 1 4 5 AGATILL)
10 0 1 1 AGAT]IO)
e 13 1 7 8 AGATI13)
12 2 1 3 AGATILZ)
10 0 2 2 AGATIID)
1 (4] 1 1 AGAT[11)
:‘n::m 10 1 E 9 AGATIIO)
13 0 3 3 AGAT]LI)
P 0 1 1 AGATIS)
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Table SI5 - Sequence numbers and allele structure of D18S51 Short Tandem
Repeat (6 most frequent alleles for every sample.)

Total i of Foraard Reverse Total i of Repeat Repeat Repeat

repeats S8 1 o Matif 1 Maotif 2 Mot 3
Sample 1 14 a a5 35 AGAALLY)
15 a 19 19 AGAALLS)
13 a 1 1 AGAA(LE]

_ﬁﬁlez_- o F o _I:I o _5? o _ST_MF[IJI _____

14 a L 15 AGAALY]
12 a 2 a8 AGAA[LZ)
15 a 2 2 AGAA[LE)
E-:.::lm 14 a 13 13 AGAA[L4]
13 a 2 2 AGAA(3)
15 a 1 1 AGAALS)
?dul;::lm 14 a 10 10 AGAALY|
13 a 4 4 AGAA(13)
15 a 3 3 AGAALE

Table S16 - Sequence numbers and allele structure of D55818 Short Tandem
Repeat (6 most frequent alleles for every sample.)

Total # of Fomaard Rewvarsa Total & af Repeat Repeat Repeat
repeats SCQUETICES  SOQUENDES  SEQUENCES Matif 1 Matif 2 Motif 3
Sample 1 14 2048 35 4074 AGAT[11)  AGAG[1}
17 1626 2140 66 AGATII4)  AGAGIL)
16 118 21 159 AGAT[13)  AGAGIL
12 106 152 58 AGAT[10)  AGAG[1}
Sample 2 14 Hig 4512 6630 AGAT[1L)  AGAG[L)
15 1708 3351 5050 AGAT[1Z]  AGAG[1}
13 114 261 375 AGATIID)  AGAG(1}
::':;" 14 517 765 1282 AGAT(1L)  AGAG(1}
15 58 313 571 AGAT[1Z)  AGAG[1}
17 156 169 325 AGATIIA)  AGAG[L
13 b ET) T OAGATIIO)  AGAG(L)
16 & 16 44 AGATY)  AGAG(L)
:';::n 14 340 529 BB AGATILL)  AGAG[1}
17 262 354 636 AGAT[14)  AGAG[1)
16 24 56 B0 AGAT1Y)  AGAG(1)
15 27 12 58 AGAT[12)  AGAG[1)
12 19 1 S8 AGATI0)  AGAG(L)
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Table S17 - Sequence numbers and allele structure of Penta E Short Tandem
Repeat (6 most frequent alleles for every sample.)

Total # of Foraard Rewerse Total & of Repeat Repeat Repeat

repeats SR N CES SEUBNCES P L Matif 1 ot 2 Miotif
Sample 1 17 ] 6 6 AAAGA[1T)
12 a H T ARAGA[1Z)
Sample 2 7 a 139 139 AARGA(T)

a0:10
A 13 0 2 P ARAGA[13)
Sample 1 Sample 2

TCTAN)-TCTG()-TCTAD)
TCTAN)-TCTG)-TCTA( 1)
TCTAN)-TCTEETCETAND)
TCTAM)-TCTGH)-TCTAN1Z)
TCTAN)-TCTGRFTCTA[ 1)
TCTAM)-TCTE)-TCTA3)
TCTAN)-TCTGEFTCTANZ)
TCTAN)-TCTEETCTAN 1)
TCTAH)-TCTGH-TCTA 4)
TCTAM)-TCTEE)TCTA(S)

0 10 20 30

1::T.u[1: TCTG-I:‘I FTCTA(11)

TCTAM)-T TCTA[
TCTAN)- Tcm.;u-mrm
TCTAN)-TCTE{EFTCTA( 1)
TCTAN)-TCTG{3-TCTANC)
TCTAM)-TCTE)-TCTA(13) ——

TETAN - TOTGELTCTAN 1)1

TCTAM)- TCTG.;'u—ICrA[mn
TCTAN)-TCTGEZ)-TCTAN 3) —
TCTA1}-TCTGE-TCTA(2)
TCTA1)-TCTGZ)-TCTA14)}

40 50
b
I.
L
n
I
0 10 20 30 40 50

TCTAMTETE()-TCTA{D)
TCTAN-TCTEE)-TCTADD)
TCTA(FTCTGZ)-TCTA[)
TCTA()-TCTG)-TCTA[D)
TCTA(-TCTG(2)-TCTA[12)
TCTAMTETGE-TCTA[1)
TCTA{1}-TCTE(1)-TCTA[14)
TCTA(TCTGZ)-TCTAD)
TCTA(TCTG)-TCTA[12)
TCTA()-TCTG()-TCTA[14)
TCTAMTETG(E)-TCTAS)

o 10 20 30

40 50

90:10 Mixture

TCTA(-TETE()-TCTA[11)
TCTA{FTCTG()-TCTANZ)
TCTAMTCTG()-TCTA[11)
TCTMH—I'CTGU]-TCTN‘I:]F
TCTAFTCTER)-TGTA[12Z)
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TCTAFTCTG(R)-TCTA{T)
TCTARTCTGH-TCTA12)
[1] 10 20

30 40 50

Figure S2 —The percentage of reads supporting detected allele-structure of D35 1358 Short Tandem Repeat. Black bars depict reads supporting
the forward strand and grey bars correspond to the proportion of reads supporting the reverse complement.
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Sample 1
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ATCT(11)-ATGARZ)

ATCT{0)-ATCAR)
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ATCTH Dﬁ-ATGAJEjm
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aTcTiZ-ATCARZ ]
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ATCTY10}-ATCARM) |

ATCT<12:.-ATGAJ;33[| )
o o 20 30 40 50

Figure S3 —The percentage of reads supporting detected allele-structure of D 135317 Short Tandem Repeat. Black bars depict reads supporting
the forward strand and grey bars correspond to the proportion of reads supporting the reverse complement.
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Figure S4 — The percentage of reads supporting detected allele-structures of THO| Short Tandem Repeat. Black bars depict reads supporting
the forward strand and grey bars correspond to the proportion of reads supporting the reverse complement.
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TALEN DESIGN
e i
N _—r
“;_.J.LLI.I.LLLLIJ.I.I_I.LLI_L].I_LI_'.._J_I.’.
] s DNABinding Domain | &«
_nlln-l:--w-wuln;munr.umri:-r-;c--lc-nlonll-ruw-'r_nﬁ'
AT T AGTEATACT TCCALATAT

W= TTITTTTEITITITEE T M-

L3 ]

L |
TRANSFECTION
EXON 52 INTROM 5353 EXON 53
B e Rt st s e (W
1
R Y 007 T

¥, 740 508
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Figure S5 - Schematic representation of TALEN design and targeted resequencing. TALEN-pairs were designed to specifically target intron 52
of the hDMD in mouse ES Cells. The binding sites of TALEN-pairs are 2 1bp long (blue). After successful transfection, TALENS initiate a double

strand break within the target locus of | 9bp (red).The |35bp fragment encompassing the entire targeted region was PCR-amplified, sequenced,
and analysed using TSSV.

Table S18 — Target sequence of the TALENS targeting intron 52 of the hDMD
gene.

TAL1 TALZ
Nucleotide Sequence ATTAGTCATACTTCCACATAT AATAGCTAGTATTTATTCAGT
R\.I'Dsequenoe e P T
NIEHD NG NG HD HD WEHDNE NENG NEHD NG NENNHD NG
NG NI NG NI NG NG
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Table SI9 — Basic statistics on sequencing reads from TALEN-treated and
control ES Cells.

Table S19 - Basic statistics on sequencing reads from TALEN-treated and control ES Cells.

ﬁ# Reads # Unique # Reads for # Reads with # Reads # Unrecognized
New Alleles New Alleles no Start with no End Reads
TALEN-treated ES Cells 466,633 3,868 46,337 4,225 2,861 7,229
Control ES Cells 423,674 1,458 12,317 3,614 5,756 7,414

Table S20 — Basic statistics on sequencing reads from 5 male patients and a
female carrier.

# Reads # Unique # Reads with  # Reads with
New Alleles no Start no End
PG090-01
Sample 1 16,346 1,214 2,304 673
Sample 2 15,588 1,161 2,215 2,208
Sample 3 22,397 1,593 3,533 3387
Sample 4 12,773 1,000 1,867 2,004
Sample 5 14,834 1,083 2,206 2,581
Sample & 20,599 1,307 2,626 3,241
“pGoso-02 T S

Sample 1 14,337 458 1,536 620
Sample 2 13,420 511 1251 2,085
Sample 3 18,881 504 2,004 3,008
Sample 4 10,595 4721 1,040 2,004
Sample 5 12,768 420 1,266 2,483
Sample 6 18,488 571 1,599 3,237
Sample 1 11,612 447 1,411 81
Sample 2 11,857 350 1,253 2484
Sample 3 17,386 510 1,964 4,018
Sample 4 9,849 351 974 2407
Sample 5 11,545 365 1,200 2,549
Sample 6 16,816 507 1,637 4,164
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Figure S8 — Variant frequency comparison between two base-calling algorithms for all samples (A, B, C, D, E, F). For each panel, the first scatter
plot shows all variants and the second zooms in to variants with frequency less than 500.
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Figure S9 — Strand specificity of observed variants in dataset PGO90-01 for all samples (A, B, C, D, E, F). For each panel, the first scatter plot
shows all variants and the second zooms in to variants with frequency less than 500 on each strand.
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Figure S10 — Strand specificity of observed variants in dataset PG090-02 for all samples (A, B, C, D, E, F). For each panel, the first scatter plot
shows all variants and the second zooms in to variants with frequency less than 500 on each strand.
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Figure SI | — Strand specificity of observed variants in dataset PG 109-02 for all samples (A, B, C, D, E, F). For each panel, the first scatter plot
shows all variants and the second zooms in to variants with frequency less than 500 on each strand.
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Table S21 — General statistics on identification of informative reads for STR
profiling of samples using lobSTR.

Sample 1 Sample 2 50:50 Mixture 20:10 Mixture

Total number of resds 146,968 178,282 33,127 32,201
MNumber of aligned resds 114,122 127327 25,339 24,379
MNumber of stitehed reads 0 o o 0
MNumber of single-end resds 114,122 127327 25,339 24,379
MNumber of supporting end reads (1] o o o
Percent of partially aligned reads 20.03% 37.90% 30.42% 31.26%
Percent of reverse strand reads 53.07% 50.95% 5334% 51.73%
Percent of non-unit sllele reads 14.00% 18.71% 16.02% 51.73%

Table S22 — obSTR performance in identification and characterization of allele
specific STR structures.

Supporting Reads Validation

Official Chr. STR Ref. Copy  lobSTR

Name Position  Repeat Number  Callss  Coverage  Total Allelel  Allele2 | CopyNumber  Structure
Samplel  D351358  3p2131  TCTA 16 4.4 23,661 20,810 NA NA Yes No

D135317 139311 ATCT 11 0,0 14,536 13,228 NA NA Yes No

THOL 11p155  CATT 7 0,11 19,072 16,828 9,038 7,790 No No
Sample 2 0351358 3p21.31 TCTA 16 0,0 21,535 18,668 NA NA Yes No

D135317 139311 ATCT 11 05 10,588 9,594 5738 4,256 No No

THOL 11p155  CATT 7 11,0 16,802 15353 7973 7,380 Yes No
50:50 D3S1358  3p2131  TCTA 16 40 4,769 4,340 2,754 1,586 No No
Mixture

0135317 13g31.1 ATCT 11 0,0 2,913 2,227 NA NA No No

THOL 11p155  CATT 7 0,11 3,935 3,642 1,887 1,755 No No
st S — R SR B . . .

: D351358  3p2131  TCTA 16 4,4 5,262 4327 NA NA No No

Mixture

D135317 139311 ATCT 11 0.0 3.264 2822 NA NA No No

THOL 11p15.5 CATT 7 11,0 3,720 3,391 1,755 1,636 No No

# lobSTR calls calumn represents the number of nucleotide differences between the calied alleles and the length of the reference STR (STR lengt]
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Forensic nomenclature for STRs updated for sequencing

Abstract

The introduction of Massive Parallel Sequencing (MPS) techniques enables
sequencing of Short Tandem Repeats (STR) as a new tool for forensic research. In
addition to variation in fragment-length, MPS also reveals allelic sequence-variation
in STR-fragments. This additional variation demands a new way of describing allelic
variants. Here we propose a nomenclature of MPS-derived STR alleles for use in
forensic research.

Introduction

For over two decades, the analysis of Short Tandem Repeats (STRs) in forensics
was routinely performed using Capillary Electrophoresis (CE).With CE, the length of a
DNA fragment containing an STR is determined. STR alleles are identified by comparing
unknown fragment lengths with a reference allelic ladder containing fragments with
known repeat-lengths. The use of a simple number, representing the number of
repeats was sufficient as nomenclature for STR allele variation. Recent developments
in Massive Parallel Sequencing (MPS) technologies enable high-throughput sequencing
of STRs, revealing additional sequence-variation in many of the STRs [I, 2]. A uniform
nomenclature for MPS-STR alleles describing this additional variation still needs to
be developed. Here, we propose a universal way of describing STR allele variation,
specifically designed for use in forensic casework.

Material and Methods

Previously suggested ways of describing STR- and other genome-variation were
compared. Based on published variation [2] and in-house available data for 22 STRs
(van der Gaag et al, manuscript in preparation) Human genome coordinates were
identified for the genomic regions containing STR-variation, and rules were developed
to describe sequence allele-variation within STRs and in repeat-flanking regions.
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Results

In several studies, MPS of STRs revealed substantial sequence variation in addition
to that already described in STRbase [2, 4]. For comparison of published data and,
more importantly, for comparison of profiles among databases, it is important that
a uniform and straight-forward nomenclature is used. For this nomenclature several
aspects should be taken into consideration:

* Different MPS assays will be used to analyse the same markers, introducing

variation in the genome-coordinates of the analysed fragment containing an
STR (fragments of different assays will not completely overlap).

* Allele-nomenclature should be compact and readable. However, allele-
description should also contain all relevant information to reconstruct the
original sequence.

* A direct comparison between CE- and MPS-results should be possible.

For CE-nomenclature, ranges have been determined in the past, defining the
genomic coordinates of the STRs. For some STRs (like the example of DI3S317
discussed below), additional repeating elements adjacent to the defined STR turned
out to vary in length resulting in a difference between the total number of variable
repeat-units for sequencing and the CE allele-count. Here, we determined genomic
coordinates for the region in which STR-variation has been observed for 22 commonly
used autosomal STRs (Figure Ia) in the following way:

The start-position of the STR-motif represents the first possible position while
retaining maximum length for the longest repeated element. Any repeated elements
directly adjacent to the STR of at least three repeats long was included as part of the
STR-region. If a complex repeat consists of multiple blocks, interruptions were divided
into blocks of the same length where possible (D2S1338, D21S11, FGA and VWA in
figure la).

For studies of genome variation, HGVS-nomenclature rules [5] describe almost any
possible type of genomic variation including STRs. Based on the STR-variation analysed
in this study we propose general rules for a straightforward forensic nomenclature that
describes sequence-variation in STRs and flanking regions. We mostly follow HGVS-
guidelines but some specific rules are optimised for the intended use in forensics.

Figure Ib shows an example of a hypothetical allele for marker D 13S317.
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Figure |, determined genome-coordinates for STR-variation and example
of allele-description for an STR sequence-variant of DI3S317/ according to
nomenclature rules

Reference-sequence (GRCh37:g.82.722.130-82.711.225)

Range STR-structure in CE-
Locus Reference-sequence length STR description refseq:
(GRCh37/hg19)
D1S1656 | chrl:g.230905351-230905426 16 | AC[6]CTAT[16]
TPOX chr2:g.1493423-1493454 8 | TGAA[8]
D251338 | chr2:g.218879582-218879673 23 | GGAA[2]GGAC[1]GGAA[13]GGCA[7]
D25441 | chr2:g.68239079-68239126 12 | TCTA[12]
D3S1358 | chr3:g.45582231-45582294 16 | TCTA[LITCTG[1]TCTA[14]
FGA chré:g.155508886-155508973 22 | AAGG[3]AGAA[14]AGAG[1]AAAA[L]AAGA[3]
D55818 | chr5:g.123111246-123111293 11 | CTCT[1]ATCT[11]
CSF1PO chr5:g.149455885-149455936 13 | CTAT[13]
D75820 | chr7:g.83789540-83789591 13 | TCTA[13]
D8S1179 | chr8:g.125907107-125907158 13 | TCTA[LITCTG[1]TCTA[11]
D10S1248 | chr10:g.131092508-131092559 13 | GGAA[13]
THO1 chr11:g.2192316-2192343 7 TGAA[7]
D125391 | chrl2:g.12449953-12450028 18 | TAGA[12]CAGA[7]
VWA chr12:g.6093125-6093208 17 | GATG[2]GATA[1]GATG[1]GATA[11]GACA[S]GATA[1]
D13S317 | chrl13:g.82722160-82722223 11 | TATC[11]AATC[2]ATCT[3]
Pentak chr15:8.97374242-97374266 5 TTTTC[5]
D16S539 | chrl6:g.86386308-86386351 11 | GATA[11]
D18S51 | chrl8:g.60948900-60948981 18 | AGAA[18]AA[LIAG[S]
D195433 | chr19:g.30417141-30417204 14 | TCCT[13]ACCT[LITCTT[L]TCCT[1]
D21S11 | chr21:g.20554291-20554419 29 | TCTA[4ITCTGI6ITCTA[3]TATCI4]A[LITCTA[2]TCCA[LITATC[12]
PentaD chr21:g.45056086-45056155 13 | AAAGA[13]AAAAA[1]
D2251045 | chr22:g.37536327-37536377 17 | ATT[14]ACT[LIATT[2]
a) Genomic coordinates and variant-description of the reference for 22 STRs
b) Example of the reference and variant-sequence with description of the allele

tctaacgcctatctgtatttacaaatacat

Variant-sequence:

TCTAACIC CTATCTGTATTTACAAATACAT
AATC TT

Allele-description following suggested nomenclature:

D13$317-CE12—chr13-GRCh37-5.82.722.160:82.722.223-TATCIESIAATC | ATCTIS] - ISEEEA

batc tate fate tate fatc tato tatc tate

aatc aatc
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From left to right, allele-description contains the following 4 elements:

I. Locus-name followed by “CE" and the allele-length (described as in current
CE-nomenclature).

2. Chromosome-coordinates of the STR-motif in the reference sequence
(including reference genome-version), representing the position of the first,
and the last base of the STR-motif in the reference genome. If coordinates of
the total analysed fragment (range between the used primers) are known, this
information should always be provided (as a separate table).

3. STR-motif, described in the same orientation as the reference genome. For
example: TATC[ I 3]JAATC[ I JATCT[3] (TATC repeated |3 times followed by
AATC repeated | time and ATCT repeated 3 times).

4. Variation outside the STR-region (but within the analysed fragment) is described
relative to the reference by genome position. Variants are described in the
following order: Genome coordinate, reference > variant. The long number of
the genome coordinate can be shortened by a . followed by the last three
numbers (since the total coordinates of the STR-motif are already described
before).

* A SNP of G>A on position 82.722.136 can be described as x.136G>A

e For a deletion of GC on position 82.722.136-82.722.137 we only write
the starting-position of the deletion followed by the variation, for example:
x.136GC>del.

* Aninsertion of AT after the same G is described as x.|36.1—>insAT (‘- before
the ">'is used since this position is absent in the reference).

Although we understand the suggested use of rs-nr's by Gelardi et al [ 1] to maintain
a stable allele-name over different genome-versions, this will still result in different ways
of describing variants within the same table because there can always be SNPs that
are not listed in dbSNP Rs-nrs do not provide all the information that is needed to
directly translate an allele-name back to the original sequence since the exact position
of the SNP will need to be retrieved from dbSNPE. Comparison of results from different
assays (using different primers) is complicated if it is not directly visible from the name
whether a SNP is within the range of both assays or not. Thereby, we prefer the use of
genome-coordinates over rs-nr's. However it is essential that the version of the used
reference genome is described.

In addition to the CE-fragment allele-name, our rules have some small deviations
from the HGVS nomenclature. As in HGVS nomenclature, only the positions that differ
from the reference are displayed, but they are described in the fixed order of ancestral
> derived sequence. This is different from HVGS since deletions and insertions of
one nt are described as delA (in our rules A>delA) and insA (in our rules x.|—>A).
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This fixed order keeps the description directly translatable and is feasible for the use
of computer-algorithms to automatically compare variants. To avoid accumulation of
numbers, larger insertions and deletions are described in a more mtDNA-like fashion
[3] displaying only the start-position of the variant followed by the ancestral > derived
sequence.To combine all parts of the allele-name, an en-dash (long dash) was chosen
as delimiter between the separate parts to leave an open space between the different
parts and increase readability. Although we provide a method that can be used to
describe variants without prior knowledge of the exact positions of the primers, we
recognise that this is a suboptimal situation which limits possibilities in comparison of
STR sequencing-results between different assays.

Conclusion

Recommendations have been made for nomenclature of STRs in such a way to
provide maximum information in the allele-name and help direct comparison of data
from different assays and between CE- and sequencing-data.
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STR sequencing validation of the Powerseq™ assay

Abstract

Current forensic DNA analysis predominantly involves identification of human
donors by analysis of short tandem repeats (STRs) using Capillary Electrophoresis
(CE). Recent developments in Massively Parallel Sequencing (MPS) technologies offer
new possibilities in analysis of STRs since they might overcome some of the limitations
of CE analysis. In this study |7 STRs and Amelogenin were sequenced in high coverage
using a prototype version of the Promega PowerSeq™ system for 297 population
samples from the Netherlands, Nepal, Bhutan and Central African Pygmies. In addition,
45 two-person mixtures with different minor contributions down to 1% were analysed
to investigate the performance of this system for mixed samples. Regarding fragment
length, complete concordance between the MPS and CE-based data was found,
marking the reliability of MPS PowerSeq™ system. As expected, MPS presented a
broader allele range and higher power of discrimination and exclusion rate. The high
coverage sequencing data were used to determine stutter characteristics for all loci
and stutter ratios were compared to CE data. The separation of alleles with the same
length but exhibiting different stutter ratios lowers the overall variation in stutter ratio
and helps in differentiation of stutters from genuine alleles in mixed samples. All alleles
of the minor contributors were detected in the sequence reads even for the 1%
contributions, but analysis of mixtures below 5% without prior information of the
mixture ratio is complicated by PCR and sequencing artefacts.

Introduction

Current forensic DNA analysis almost exclusively focuses on the identification of
human sample donors using multiplex short tandem repeat (STR) genotyping with
commercial kits based on polymerase chain reaction (PCR) and capillary electrophoresis
(CE). Although this type of analysis has proven its value over the past decades, it is not
without limitations. In CE, multiplexing of more than 5 loci in a single assay can only be
achieved by using different fluorescent labels in the PCR and by using non-overlapping
PCR fragment lengths for STRs with the same fluorescent label. Consequently, most
commercial assays have a PCR fragment range between 80-500 bp [20].

When analysing degraded DNA samples, this variation in fragment length frequently
results in noticeable lower, or even absent, signals for the longer PCR fragments. As a
consequence, profiles of degraded DNA often have a lower discriminating power.

Another potential difficulty associated with the CE detection of STRs is the
background signal arising from stutter peaks [19], caused by slippage of the polymerase
in the PCR.In DNA samples from a single person, genuine alleles and stutter alleles can
be easily distinguished. However, the analysis of unbalanced mixtures with low minor
contributions is frequently complicated by stutter alleles that cannot be distinguished
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from genuine alleles of the minor contributors [4].

In theory, these limitations can mostly be solved by the use of massively parallel
sequencing (MPS) of STR loci. STR alleles can be identified by repeat number and
sequence variation and primers can be designed in such a way that PCR fragments
have similar size ranges for all loci. Moreover, many more loci can be multiplexed in
the same reaction because the detection is no longer based on a limited number of
fluorescent labels. A few studies have indicated the potential of MPS STR genotyping
[6, 8, I5, 21]. They showed that, in addition to the variation in repeat number and
repeat sequence, the repeat-flanking regions provide an additional source of variation
and add to the discriminating power of the loci. However, the additional power of
this new sequence variation cannot be fully used until sufficient population frequency
data is available for all loci. We speculated that this additional information could help
in distinguishing genuine alleles from stutter alleles afthough it is not likely that this
problem will be completely overcome.

For this purpose, we assessed population data for 297 samples of three distinct
populations (Dutch, Himalayan, and Central African Pygmies) for |7 STR loci included
in a prototype version of the PowerSeq™ MPS STR assay [21]. These data were
compared to the results of CE-based data from the PowerPlex® Fusion System [12].
We also present data from several series of mixed DNA samples in different ratios
down to 1199 to survey the possibilities and limits for this assay in analysis of mixed
samples.

We examined the additional sequence variation of the loci, both within the STR
motifs and in the flanking regions, and assessed the impact of this variation on the
discriminating power of the loci. In addition, stutter ratios were studied and compared
to those obtained with CE-based profiling.

As a consequence of various mechanisms such as DNA recombination, replication
and repair-associated processes, the spectrum of human genetic variation ranges from
single nucleotide differences to large chromosomal events. Among the different types
of genetic changes, repetitive DNA sequences show more polymorphism than single
nucleotide variants (Conrad et al., 20 10; Hinds et al., 2006; lafrate et al., 2004; Kidd et al,,
2008; Redon et al,, 2006; Sebat et al,, 2004; Tuzun et al., 2005), and they are important
in human diseases (Conrad et al, 2010; de Cid et al,, 2009; Girirajan et al., 201 |; Hollox
et al, 2008; McCarroll et al, 2009; Pinto et al, 2010), complex traits and evolution
(Mills et al,, 201 I; Stephens et al,, 201 I; Sudmant et al., 2010). In particular; microsatellite
variants, also known as short tandem repeats (STR), and their expansion/shortening
have been linked to a variety of human genetic disorders (Mirkin, 2007; Pearson et al,,
2005; Sutherland and Richards, 1995), and have been used in genotyping (Kimura et al,,
2009; Weber and May, 1989) and forensic DNA fingerprinting studies (Kayser and de
Knijff, 201 |; Moretti et al., 2001).
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Because of the repetitive nature of STRs and often the low level of complexity of the
DNA sequences in which they occur (Treangen and Salzberg, 2012), characterization
of STR variability and understanding of their functional consequences are challenging
(Weischenfeldt et al, 2013). So far, sequencing-based strategies have focused on
reads mapped to the reference genome and subsequent identification of discordant
signatures and classification of associated STRs (Medvedev et al., 2009; Mills et al., 201 I).
Yet, the mainstream aligners, such as BWA (Li and Durbin, 2009) or Bowtie (Langmead
and Salzberg, 2012), do not tolerate repeats or insertions and deletions (indels) as a
trade-off of run time (Li and Homer, 2010).This limitation leads to ambiguities in the
alignment or assembly of repeats which, in turn, can obscure the interpretation of results
(Treangen and Salzberg, 2012). Moreover, the current human genome reference still
remains incomplete and provides only limited information on expected and potentially
uncharacterized STRs in different individuals (Alkan et al,, 201 [; lafrate et al., 2004; Kidd
et al, 2008; Sebat et al, 2004). Consequently, STRs are not routinely analyzed in whole-
genome or whole-exome sequencing studies, despite their obvious applications and
their role in human diseases, complex traits and evolution.

Here, we present a method for targeted profiling of STRs that reports a full
spectrum of all observed genomic variants along with their respective abundance.
Our tool, TSSV, can accurately profile and characterize STRs without the use of a
complete reference genome, and therefore minimizes biases introduced during the
alignment and downstream analysis. TSSV scans sequencing data for reads that fully
or partially encompass loci of interest based on the detection of unique flanking
sequences. Subsequently, TSSV characterizes the sequence between a pair of non-
repetitive flanking regions and reports statistics on known and novel alleles for each
locus of interest. We show the performance of TSSV on robust characterization of all
allelic variants in a given targeted locus by its application in several case studies: forensic
DNA fingerprinting of mixed samples by STR profiling, characterization of variants
introduced by transcription activator-like effector nucleases (TALENS) in embryonic
stem (ES) cells and detailed characterization of errors derived from a next-generation
sequencing (NGS) experiment.

Material and Methods

Population samples

To assess the potential genetic variation, 297 DNA samples were selected from a
European population (101 Dutch samples [20]), an Asian population (97 samples from
Nepal and Bhutan [10]) and an African population (99 Central African Pygmy samples

D
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Capillary electrophoresis

PCR reactions were performed according to the protocol of the PowerPlex® Fusion
System [14] using 0.5 ng of DNA and 30 amplification cycles using a GeneAmp® PCR
System 9700 (Life Technologies). For every reaction, 2800M Control DNA (Promega)
was included as a positive control and a water sample was included as negative control
sample. CE was performed using an AB3500XL (Life Technologies) according to the
PowerPlex® Fusion System protocol, data was analysed using GeneMarker® software
v2.4.0 (Softgenetics).

Massively Parallel Sequencing

PCR reactions were performed with a prototype PowerSeq™ sequencing assay
primer mix and master mix (Promega) amplifying | 7 STR loci and Amelogenin. All PCRs
were performed on a GeneAmp® PCR System 9700 using the following program: 96
°C for | min, 30 cycles of 94 °C for 10s, 59 °C for | min, 72 °C for 30s and a final
extension of 60 °C for 10 min, for every reaction 2800M Control DNA was included
as a positive control and a water sample was included as negative control sample.

[llumina sequencing libraries were prepared from the PCR products by ligating
barcoded adapters using the KAPA Library Preparation kit (KAPA Biosystems) without
additional amplification using 2.5 pl of PCR product directly in the end repair reaction
(without prior purification) in a total volume of 35 ul. The A-tailing and ligation step
were performed in a total volume of 25 pl. For ligation,a | 0-fold dilution of a barcoded
TruSeq adapter (lllumina) was used.To confirm successful ligation of the adapters, | pl
of library was analysed on the Qiaxcel (Qiagen) for a selection of libraries. To enable
balanced pooling, sequencing libraries were quantified in duplicate by real time PCR
using the KAPA SYBR® FAST gPCR kit. Quantification reactions were performed on a
LightCycler® 480 (Roche) or a 7500 Real Time PCR System (Life Technologies) using a
dilution series of PhiX control library (lllumina) as standard. After pooling the libraries,
the final pool was quantified again using the same method to enable optimal loading of
the flow cell. Sequencing was performed on the MiSeq® sequencer (lllumina) using v3
sequencing reagents according to the manufacturer's protocol with approximately 5%
of PhiX control library and 14-19 pM final library concentration.

Data analysis

For the analysis of STR sequences, the use of simple alignment-based methods
could lead to errors. In the analysis pipeline, the first step is the alignment of both
paired-end reads that are generated by the sequencer to obtain one high quality
consensus read. We used the paired-end read aligner FLASH [I 1] that aims for a
maximum overlap of both reads when creating one consensus read (matching any two

78



STR sequencing validation of the Powerseq™ assay

paired reads with a mismatch ratio of under 0.33 in the overlapping part). If both reads
end within a repeated element, the alignment could lead to a shortened repeated
element in the consensus read. To be able to recognise possible misalignment of the
reads we altered FLASH version [.2.1| (this altered version is available via https://
github.com/Jerrythafast/FLASH-lowercase-overhang). We added an option to mark
the bases that were not overlapped by both reads in small letters in the consensus
read. Hereby, when all the bases of the flanking regions are in small letters (and thus the
sequence reads ended within the repeated element), they can be filtered out in later
analysis. When a difference occurred between the two reads, the base call with the
highest quality value was used for the consensus. Analysis of the paired-end consensus
reads was performed using TSSV [2] (install using: pip install tssv). ATSSV library was
created based on all observed variants (Sup. File ). In Figure [, the analysis of STRs
using TSSV is illustrated. To further support the interpretation of STR sequencing data,
we developed Stuttermark (part of the Python package fdstools, for installation use:
pip install fdstools); a Python script that marks possible stutter alleles based on the
sequence structure.With this software a column is added to the table of ‘known alleles’
from TSSV where alleles that could be derived from an n-1, n-2 or n+1 stutter of an
allele (based on the complete allele sequence) in the sample are marked. Thresholds
for n-1 and n+1 stutter ratios (n-2 is considered as an n-1-1 using a squared value of
the n-1 threshold) are used to decide whether a sequence is marked as an allele or
as a possible stutter A shell script (available upon request) was written to automate
all the analysis steps in parallel on a computer cluster for large sample series. An Excel
sheet (available upon request) was subsequently used to summarise the results and
score variants according to a priori defined criteria for the number of reads per variant
(total and per orientation) and a minimum percentage from the reads of the highest
allele for every locus.
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Figure 1. An overview of the TSSV analysis strategy of short tandem repeat
sequences

TSSV-library

Locus | Flankingl Flanking2 Variant definition
i (5’ of variant) (3’ of variant )

D251338 GTTCATGCCTACATCCCTAGTACCT AGCTGGATTATGGGCCAGTAGGAAT AGCATGGTACCTGCAGGTGGCCCATAATCATGAGTTATTCAGTAAGTTAAAGGATTGCAGGAG 0 1
AGCATGGTACCTGCAGGTGGCCT GTTATTCAGTAAGTTAAAGGATTGCAGGAG 0 1
GGAA420GGCA2 10
AGGCCAAGCCATTTCTGTTTCCAAATCCACTGGCTCCCTCCCAC 01

Flanking sequences in TSSV-library are used torecognise the locus
(usually primer-regions, both flanking sequences are in the same strand orientation)

P e M ] [coan][ceAx ] [Gan] [GeAa ] [Goca|[GocA | ARG CCARGCCATTTCTG T CARATCCACTGGCTCCCTCCCACAGCTGGATT ATGGGCCAG TAGG AT
:

Analysis of seq b flanki gions of TSSV library by variant definition in the library
¢ [T o ] 2x(E) | o]
This sequence was found for 96 forward reads and 102 reverse reads

TSSV report
Locus Forward | Reverse | Total Variant
reads reads reads
D. D251338 | 96 102 198 c \TTGCAGGAG(1)
‘GGAA(4)GGCA(2) AGGCCAAGCCATTTCTGTTTCCAAATCCACTGGCTCCCTCCCAC()

A. An example of the TSSV library entry for locus D25 1338 with from left to right the locus name, flanking 1, flanking 2 (in the same orientation
as flanking ) and the variant definition. Both flanking sequences usually represent the PCR primers. The numbers at the ends of the variant
definition sequences (in this example “0 17, “0 1", *4 20", "2 10", and “0 |") indicate how often (based on current knowledge) a sequence
could be repeated.

B. Both flanking sequences of the library are used to recognise which locus (in both orientations) any read represents. The observed sequence
variation between the two flanking sequences will be reported by TSSV. In this example, some of the surrounding sequence of the STR is included
to not only report the STR variation, but also the sequence variation in the surrounding region of the STR.

C. The sequence between the flanking regions is compared to the variant definition of the library. A sequence that complies with the variant
definition is reported and summarised (by counting the separate repeated motifs) in the ‘known dlleles’ table and a sequence that doesn't
comply with the variant definition is reported in the new dlleles’ table.

D. ATSSV report summarising the displayed allele which was observed 96 times in the forward orientation and 102 times in the reverse orienta-
tion. The variant starts with AGCATGG... (not repeated), followed by GGAA (repeated 4 times), GGCA (repeated 2 times) and AGGCCAA... (not
repeated). In addition to the tables, fasta files are generated containing the complete sequence reads for the known and new alleles at each
locus, but also for the reads that are not recognised or in which only one of the flanking sequences of a locus is recognised. In this way, it is pos-
sible to keep track of the sequences that are not reported.

Analysis of single source samples

In every sequencing run for the population samples (7 runs in total), a maximum
of 48 barcoded samples were sequenced aiming for a coverage of at least 1000 reads
for every STR allele in each sample. After measuring concentrations of the sequencing
libraries, all samples of a run were pooled in an equimolar fashion prior to sequencing.
The output of TSSV was analysed with Stuttermark using two different threshold
settings; first, n-1 position stutters with ratios below 10% of the genuine allele and
n+ | position stutters below 2% of the genuine allele were marked while in the second
analysis thresholds of respectively 20% and 3% were used. As a final step, a sequence
read profile (see Figure 2) was generated showing all the alleles that have met defined
thresholds for read coverage (further described in the Results section).In the sequence
read profile, allele names for alleles marked as stutter for both settings of Stuttermark
are automatically removed. As with CE analysis, remaining alleles with an assigned
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allele name were inspected by a trained expert and alleles interpreted as stutter were
removed. In this article, allele names are described according to the nomenclature
described by van der Gaag and de Knijff [17]. In all figures, locus coordinates were
removed to shorten the allele name.

Figure 2. An example of a PowerSeq™ MPS read profile and read statistics for
all 18 loci in a single-source sample

A. An STR sequence read profile

O oA AN

B. Sample read statistics

Read-category Read-counts Proportion of
total reads

Total passed filter reads 537665 100,0%
Matched pairs 510409 94,9%
Known alleles (including stutters) 406437 75,6%
Genuine alleles (excluding stutter) 350294 65,2%
Reads with errors in the variant region

(new alleles in TSSV analysis) 103972 19,3%
(Singletons) (27973) 52%
Reads representing stutters 56143 10,4%
Primer dimers 27256 5,1%

A.An MPS-STR sequence read profile showing all observed alleles of a single-source reference sample with the corresponding number of forward
reads (blue bars) and reverse reads (red bars) for every allele. Only the observed variants with coverage of at least 5 reads and a within locus
proportion of 2% of the highest allele are displayed in this profile. B. Read statistics of the displayed sample, all percentages are displayed as
a proportion of the total passed filter reads. 94.9% of the reads of this sample were recognised for both flanking sequences (matched pairs)
of a locus using TSSV. 75.6% of the total reads represented known alleles and after removing the stutter reads, 65.2% of the reads represent
the genuine alleles of this sample. From the 19.3% of matched pairs that were marked as new dlleles by TSSV, a large proportion (5.2% of the
total reads) consisted of singletons. The remaining 5.1% of passed filter reads (not recognised as matched pairs) represented primer dimers.
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Analysis of mixed samples

For five two-person combinations selected from the Dutch population samples,
mixtures were prepared in the ratios 1:99, 5:95, 10:90, 20:80, 50:50, 80:20, 90:10, 95:5
and 99:1 by mixing the samples based on triplicate DNA quantifications acquired using
the Quantifiler® Duo DNA Quantification Kit (Life Technologies).

In the PCR reaction for STR amplification, DNA input amounts were adjusted to
add at least 60 pg (= 10 cells) of the minor contributor.To achieve this, total DNA input
varied from 0.5 ng — 6 ng. Samples were sequenced in two runs and pooling ratios were
calculated to achieve a minimum of 20 reads for every allele of the minor contributor in
each mixture. Analysis was performed in the same way as for the single source samples,
but the threshold for the percentage of reads from the highest allele of a marker was
lowered depending on the mixture ratio (further discussed in results and discussion).
Based on the sequence variation and allele ratios, suspected stutter peaks were marked
by an expert to distinguish genuine alleles from stutter peaks.

Analysis of stutter ratios
Stutter analysis of CE data

The sized output trace data (containing fluorescence intensity data for every
position in the electropherogram) was exported from GeneMarker® to Excel. Using
peak heights, the stutter ratios at n-1, n+1 and n-2 stutter positions, were determined
for every allele. Peaks that may represent overlapping stutter events (e.g. stutters in
between two genuine alleles that may represent both an n-1 and an n+1 stutter)
were removed. Sup. Figure | illustrates which combinations of stutter peaks and alleles
were used for analysis. Peaks with intensities below 30 rfu were discarded in order
to avoid miscalled CE artefacts and to minimise the influence of run-to-run variation
of the Genetic Analyser. For some loci, a large proportion of the peaks on stutter
positions were lower than 30 rfu (because of the low stutter ratio and the limit in
detection range), these peaks did not necessarily represent a zero stutter ratio and
were therefore considered to miss a stutter value to avoid underestimation of the
stutter ratio (resulting in a slight overestimation of low ratio stutter peaks).

Stutter analysis of STR sequencing data

Stutter analysis was performed for all samples for which we obtained more than
50.000 total reads (271 out of 297 samples) to avoid bias introduced by low coverage
alleles. To check for possible differences in coverage between long and short alleles,
the within locus allele balance was calculated for every marker. For the stutter analysis,
sequence variants with coverage below 5 reads were discarded to minimise bias in the
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stutter ratio. For every observed sequence allele, a table was generated with 6 possible
stutter sequences; the two most likely stutter sequences for the n-| stutter reads, the
n+ 1| stutter reads and the n-2 stutter reads. The most likely stutter sequences were
determined based on the length of the longest repeating element in the sequence
assuming that longer repeats produce the most stutter [3]. For these 6 stutter alleles,
the stutter percentage was determined by dividing the read count of the stutter allele
by the read count of the genuine allele. Stutter alleles that could overlap with other
alleles or stutter reads were removed taking sequence-specific differences into account
as illustrated in Sup. Figure |.

Statistical Calculations

Forall STRs in the assay, the match likelihood and power of exclusion were calculated
for the alleles observed in CE and MPS for all three populations using the Powerstat
excel spreadsheet [|3].

Results and discussion

To assess sequence variation in STR loci and stutter characteristics of a prototype
MPS STR sequencing assay (PowerSeq™), 297 samples from three globally dispersed
populations were sequenced. To avoid the influence of possible somatic cell line
mutations on the analysis of stutter characteristics, we preferred to use DNA samples
derived from blood over the use of cell line material from worldwide panels like
HapMap or the Human Genome Diversity Panel [, 5].

In the PowerSeq™ assay, all PCRs are designed to amplify STR fragments which
are around the same fragment length (shortest to longest allele: 180-310 bp, 180-280
bp excluding the exceptionally long FGA-alleles). Figure 3 displays the fragment length
distribution of the sequenced alleles in this study for all 17 STRs and Amelogenin.
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Figure 3. Overview of fragment range for all loci in the prototype PowerSeq™
assay
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The prototype MPS PowerSeq™ multiplex assay used in this study contains |7 autosomal STR loci and Amelogenin. This figure shows the PCR
fragment size variation of all alleles sequenced in this study.

Optimisation

Reliable quantification of the sequence libraries is an important step for optimal
sequencing. It is used to achieve optimal balance for pooling different libraries in a run
and it influences the number of molecules that are loaded on the sequencer.To assess
whether equimolar pooling was achieved, the observed and expected proportion of
sequences were compared for all samples in the 7 sequencing runs comprising the
297 population samples (Figure 4). The majority of libraries are represented in 0.5-2
times the expected proportion of reads in the sequencing run, which is sufficiently
balanced for the current design.Thus, the quantitation method that was used (real time
PCR) allows effective library pooling. Different loading concentrations were used on
the MiSeq® sequencer to determine optimal cluster density on the flow cell (higher
loading concentrations result in higher cluster densities). Higher cluster density results
in a higher amount of unfiltered reads but decreases sequence quality (Sup. Figure
2). We infer that a flow cell cluster density around 800-1000 K/mm2 may be most
optimal (further discussed in the section ffiltering noise from alleles”).
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Figure 4. Tukey boxplot of the ratio of observed versus expected read
proportion of pooled samples over different sequencing runs
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Tukey boxplot showing the ratio of observed versus expected read proportion of 297 pooled samples analysed in 7 sequencing runs.The box
displays the interquartile range (IQR), the line in the box displays the median and the whiskers display the range until the last sample within
1.5 1QR.

An example of a read profile is shown in Figure 2A. The sequence profile resembles
a CE profile with the y-axis displaying the number of reads observed for every sequence
variant, the labels on the x-axis display a more detailed description of the sequence
for every allele. Note that the range of amplicon sizes is similar for all STRs (Figure 3)
even though the loci are displayed next to each other on the x-axis. The number of
reads is directly proportional to the number of actual molecules for every allele, which
is distinct from CE profiles where peak height is influenced by the intensity of emission
for different fluorescent labels.
Sequence efficiency

In Figure 2, we display the statistics of read counts and the sequencing profile for
a typical sample which is prepared using the recommended input of 0.5 ng DNA
in the PCR reaction for this assay. 65% of the reads represented the genuine allele
sequences of the alleles, approximately 5% of the reads were occupied by stutter reads,
the remaining 25% of recognised reads consisted of reads containing PCR and / or
sequencing errors. The 5% of unrecognised reads consisted mostly of primer-dimers
which is a well-known side effect when large multiplexes such as this |8-plex are
used. Remaining primer-dimers could be minimised by purification steps involving size
selection such as using a low bead-to-volume ratio for AMPure XP beads. However,

85



Chapter 4

we chose to use the PCR product without purification before the library preparation
and we used a 2:| bead ratio in the purification steps of the library preparation to
avoid size selection which may affect the balance in sequence reads between longer
and shorter STR alleles.

Filtering noise from alleles

In order to be accepted as a reliable forensic diagnostic tool, MPS results should
be retrieved and stored in much more detail compared to CE data. Processing of
millions of reads involves complex bioinformatics. It is for this purpose that the tools
we developed to analyse MPS reads not only report genuine alleles but also facilitate
storing and screening those reads that do not represent genuine STR alleles. Detailed
tables of read statistics are produced and checked before allele interpretation. These
tables contain read counts for new alleles and for alleles that are only recognised
for either one or none of the flanking sequences of the TSSV library. In case of high
read numbers for these categories, fasta files containing the complete sequences of
the reads can be checked for every locus and for each category (known alleles, new
alleles, reads with only the start flanking sequence recognised, reads with only the end-
flanking sequence recognised and reads with no recognised flanking sequences at all)
separately.

The frequency of sequencing errors varies per locus, but is also strongly influenced
by the cluster density in the sequence run. A good indicator for sequence quality of a
sequencing run is the balance between forward and reverse reads. Since read errors
tend to be influenced by sequence content, the same error will usually not appear in
both orientations [ 16]. For the longest alleles from PentaD, Pentak and FGA we noted
that sequencing errors may accumulate in the end of the reads. As a consequence, the
flanking sequences for that strand may no longer be recognised by TSSV, which could
lead to strand bias of over five-fold differences between both orientations, even when
analysing paired-end consensus reads. Thus, one should not straightforwardly aim for a
high cluster density to retain the highest number of reads, as this may be accompanied
with strong strand bias. We observed increased rates of sequence errors and strand
bias for cluster densities over 1000 K/mm? which is below the recommended cluster
density of 1200-1500 K/mm? When a cluster density of 800 K/mm? is used, at least
|.5x107 Passed Filter reads are retained (all sequenced for both read orientations)
which is a sufficient read number to multiplex an effective number of libraries.

Quality filtering of the data was done in the following order:

|. Paired-end consensus alignment: the two paired-end reads of each cluster are
combined. In case of discrepancies, the highest quality base call is used in the
consensus read for further analysis. Parts of the read that are not overlapped
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by both reads are marked in lower case (reads that have one of the library
flanking sequences completely represented by lower case letters are later on
moved to the TSSV category of reads recognised for only one of the flanking
sequences).

Singletons are discarded during analysis using TSSV (TSSV option:‘-a 2'). These
reads can only be checked afterwards by restarting the analysis without this
option. Discarding singletons significantly decreases the report file size and
memory demand in the follow up analyses. Singletons will not meet forensic
standards, but could be used to decide whether sequence coverage needs to
be increased for a low coverage sample. New alleles (that do not match the
variant description of the TSSV library) are reported in a separate table.

After performing TSSV analysis, the table of known alleles is filtered by a priori
defined criteria in an Excel sheet while ensuring that the sequences, which are
filtered out in these steps, can easily be retrieved and investigated. We used
a minimum of 8 reads as allele coverage and a minimum of 2 reads for both
seguence orientations which removed the majority of sequencing errors. These
numbers may seem low, but it should be noted that we use ‘allele coverage’ (only
including reads without errors) and not ‘total coverage’ (which would mean
the sum of all reads for one locus and could include reads with errors). Since
forensic samples often carry allele imbalance due to low amounts of template
or multiple contributors to a sample, the use of total summed coverage of all
alleles for a target can give a misleading sense of quality and should be avoided.
The threshold of 2 reads for both sequence orientations is sufficient to remove
the majority of sequence artefacts.A higher threshold could result in the loss of
some (mostly longer) alleles that exhibit a strong strand-bias due to structural
sequence errors. Retained alleles were interpreted before being reported.

In the same Excel sheet an additional criterion is a within-locus proportion
(the read count of an allele divided by the read count of the highest allele of a
locus) that is required for reporting an allele. This threshold is used to remove
PCR errors and structural sequencing errors that may especially occur at high
coverage. This value can be adjusted depending on the required detection of
low percentage contributions. When the input amount of DNA in the PCR is
available, it can also be used to filter out unrealistic mixture contributions (for
example: for a start amount of 60 pg in the PCR it is not realistic to look for
a 1% contribution since this would represent the DNA equivalent of only O.|
cell). For single reference samples we used a threshold of 5%, for mixtures, this
threshold was lowered to 1% except for mixtures with a minor contribution of
1% in which this threshold was lowered to 0.25%. All retained alleles appear as
a bar in the STR sequence profile (Figure 2).

Allele variants that are not represented in the TSSV library are added to the

87



Chapter 4

table of new alleles. This table is filtered using the same settings as used for the
known alleles. When a new allele is identified as a genuine allele, it is added
to the TSSV library and samples are reprocessed using the new TSSV library
which will move it to the known alleles category.

6. Stuttermark is used to mark alleles that could be (partly) derived from stutter
(as described in the Materials and methods section). When interpreting the
alleles that pass the filtering steps mentioned before, alleles at a stutter position
of another allele (based on the sequence) and with less reads than an a priori
defined percentage of the reads of a genuine allele are marked as stutter.

7. Interpretation of the retained alleles is done by inspection of the markings
from Stuttermark in combination with the ratio between the retained alleles
and the strand balance for every allele. In this step, the label of the alleles that
are marked as stutter (or any other artefact) will be removed from the STR
sequence profile. However, in the sequence profile, the bar representing the
removed allele will remain without a label as is common practice for CE-based
profiles.

Sup. Figure 3 shows examples of STR sequencing profiles for a single and a mixed

source sample after different filtering settings to illustrate the effect of the used
parameters.

Concordancy

Reliability of sequencing results was assessed for the 297 population samples by
comparison of CE data from the PowerPlex® Fusion System with the sequencing data.
All STR alleles from the sequencing data were in concordance with CE analysis except
for two alleles from PentaD. These alleles were missed when using the 5% within
locus threshold (heterozygote balance), as they had a frequency of 8% and 12% of the
highest allele (Sup. Figure 4). Since both samples are from the same population, and
both alleles have the same repeat length and sequence, it is likely that this difference
in read numbers is caused by a SNP under the PCR primer used in the PowerSeq™
sequencing assay as observed for rare null alleles in commercial CE-based assays [20].

Sequence variation

As was expected, MPS STR genotyping revealed substantial genetic variation in
addition to the variation in repeat length that is detected using CE (Figure 5). Sup.
Figure 5 displays the sequence of the genome reference (GRCh37/hgl9) and of
control sample 2800M (which is provided with the assay). Sup. Figure 6 displays the
observed alleles for all loci and the frequencies of these alleles in the three tested
populations. Since we describe our variants according to nomenclature rules [17] in
which all variants are described in the forward orientation of the genome reference,
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the start position and orientation of some of the alleles is slightly different than the
reference alleles described by Gettings et al. [7]. Based on the observed variation in this
study, the analysed STRs can be divided into four classes.
I. Simple STRs: Loci that only show variation in the number of repeats without
additional sequence variation. CSFIPO is the only simple STR locus.
2. Complex STRs: Loci where the repeat motif consists of several repeating blocks
with a different sequence. D195433, FGA and Pentak are complex STRs.
3. Simple STRs with SNPs in the flanking sequence of the repeat region. D75820,
D 165539, TPOX and PentaD are simple STRs with SNPs.
4. Complex STRs containing SNPs in the flanking sequence of the repeat region:
D2S1338,D351358,D55818,08S1179,D13S317,D18551,D21S1'1,THOI and
VWA (interestingly, for VWA, all SNIPs are associated with specific repeat region
variation) are complex STRs containing SNPs in the flanking sequence.

Figure 5. STR sequence variation divided in length variation, complex STR
variation and SNP variation
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The stacked bar graph displays the number of different alleles observed in sequence analysis of 297 samples divided in three categories: In blue,
the number of alleles observed when performing CE. In red, the additional alleles observed by sequencing when taking into account variation
within the STR motif. In green, the additional alleles when taking into account variation flanking the STR motif. When the variation flanking the
STR motif is linked with variation inside the STR motif, the green portion of the bar graph doesn't display those alleles (they are included in the
red portion of the bar graph).
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Table |. Locus statistics for CE and MPS analysis of the same samples from

three populations

Total Alleles Heterozygous % Match Likelihood Power of Exclusion
Netherlands Nepal + Buthan Biaka Pygmees Netheriands Nepal + Buthan Biaka Pygmees
Fragment- Sequence- |Fragment- Sequence- [Fragment- Sequence- Fragment- Sequence- (Fragment- Sequence- [Fragment- Sequence- (Fragment- Sequence- iFragment- Sequence-
Marker |length variation length variation length variation length variation ‘length variation |length variation length variation :length variation
CSF1PO 10 10 75.8% 75.8% 0.12 0.12 0.12 0.12 0.15 0.15 0.57 0.57 045 045 0.56 0.56
D2S1338 12 55 83.6% 90.6% 0.04 0.03 0.04 0.03 0.04 0.01 0.82 0.82 057 069 061 0.92
D3S1358 9 21 73.8% 87.2% 0.07 0.04 0.11 0.06 0.14 0.05 0.48 0.66 0.50 0.75 0.49 0.81
D58818 7 23 725% 84.9% 0.16 0.04 0.09 0.05 013 0.02 0.54 0.80 043 051 0.44 0.77
D7s820 10 32 81.9% 87.9% 0.07 0.03 0.08 0.03 0.09 0.03 064 0.70 048 063 079 0.94
D8s1179 1" 27 80.2% 86.9% 0.07 0.04 0.06 0.03 0.09 0.03 061 0.76 065 075 0.56 0.69
D138317 8 31 725% 85.6% 0.09 0.03 0.07 0.03 017 0.05 0.57 0.74 055 069 0.31 0.69
D16S539 9 17 75.5% 81.2% 0.10 0.07 0.09 0.05 0.08 0.03 0.48 0.55 0.50 0.55 0.58 0.77
D18851 15 19 83.9% 85.2% 0.04 0.04 0.04 0.04 0.05 0.04 0.70 0.72 069 069 063 0.69
D198433 17 20 836% 83.6% 0.09 0.08 0.06 0.06 0.03 003 057 057 067 067 077 0.77
D21811 25 63 842% 88.3% 0.05 0.03 0.06 0.02 0.04 0.02 0.70 0.78 069 079 065 071
FGA 23 35 86.2% 86.2% 0.05 0.05 0.03 0.03 0.04 0.04 0.82 0.82 075 075 0.60 0.60
PentaD 18 24 83.2% 84.2% 0.06 0.05 0.06 0.06 0.04 0.04 0.62 0.66 057 0.59 0.79 0.79
PentaE 18 19 85.2% 85.2% 0.03 0.03 0.03 0.03 0.04 0.04 0.66 0.66 0.75 0.75 0.69 0.69
THO1 8 14 70.8% 72.5% 0.10 0.10 0.16 0.16 013 0.08 061 0.61 033 033 0.41 0.49
TPOX 7 12 65.4% 711% 0.20 0.20 021 0.19 013 0.05 0.38 0.38 031 033 0.39 0.67
VWA 9 24 785% 83.6% 0.07 0.05 008 0.07 0.06 0.02 0.62 0.70 046 050 063 081
Amel 2 3
_O<mwm__ 5.3E-20 8.6E-23 22E-20 4.6E-23] 4.1E-20 5.2E-25

Heterozygosity, Match Likelihood and Power of Exclusion for STR CE and sequence analysis for all 17 STRs as observed in the three tested

populations.
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Using CE, uniquely identified alleles comprise only 48% of the total alleles observed
using sequencing in these 17 STRs for the analysed set of 297 samples. However,
the variation is not evenly dispersed over the loci (Table |). Since not every available
software tool for analysis of STRs capture the variation within the repeat structure
and the flanking sequence [18] it is important to be aware of the information that
is missed when variation outside the repeat structure is not reported. Obviously, the
discriminating power of the loci is increased when all the variation on sequence level
is taken into account. In Table | we display the match likelihood (ML) for every locus
in all three populations for sequence analysis and for CE analysis in comparison. The
additional sequence variation has the strongest effect on the discriminating power
of D5S818 and DI13S317 with an average three-fold difference in the ML over all
populations between the two methods. D2S1338, D3S1358, D75820, D8SI179,
D16S539 and D2ISI | exhibit more than a two-fold difference in the ML over all
populations. When only taking into account the Dutch and Himalayan population,
D55S818,D75820,D 135317 and D21S1 | still exhibit a greater than two-fold difference
in match likelihood between length and sequence variation.

Stutter analysis

Stutter ratios were determined when the CE signal intensity or MPS read coverage
was sufficient for alleles which are not influenced by stutters from other alleles. An
overview of the read coverage statistics and within locus allele balance of the samples
used for this analysis is shown in Supplemental Figure 7. For each locus, dot plots were
generated displaying the average stutter ratios for all STR alleles for which at least
four stutter ratios could be calculated (Sup. Figure 8). In general, stutter ratios of both
methods are very similar with the exception of PentakE where stutter ratios for CE
are lower than for sequence data. Some sequence alleles correspond to the same CE
allele (e.g. D2S1338 allele 21). For complex STRs, the longest uninterrupted repeat
stretch determines the stutter ratio [19] which is confirmed by our data as illustrated
in Figure 6. Here, detailed stutter graphs for DI8S51 are shown for both methods;
the dots of the alleles carrying an interrupted repeat motif (marked in red) tend to
have lower stutter ratios than the uninterrupted alleles of the same length.. Because of
the separation of these new sequence alleles it is expected that the stutter ratio per
sequence allele would show less variation than the CE stutter ratio which represents
several sequence variants. To test this, the Coefficient of Variance of the stutter ratio
was determined for every allele with stutter data for at least four samples (Sup. Figure
8). Most obtained CV values are either similar or lower for sequencing stutter ratios
than for CE stutter ratios. As expected, the loci for which the CV of the stutter ratio
is generally lower for sequencing data than for CE are all complex STRs (especially
D5S818,D8SI179,D13S317,D21SI 1, FGA and VWA). In addition it was noted that
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the CV of the stutter ratio for sequence data remains relatively stable for all alleles
within the same locus (even though the stutter becomes higher for longer alleles). For
CE-based stutter ratios, much more variation in CV is observed between different
alleles within the same locus which is partly explained by alleles that are subdivided
into different sequence alleles. For some STRs (in particular D2S1338, D3S1358,
D75820 and D18S51) the CV shows a downward trend for increasing allele length in
CE data. An explanation for this decreasing CV could be that low percentage stutter
peaks in a CE profile are often below the detection threshold (30 rfu in this analysis).
Since a certain number (at least several thousand depending on the fluorescent label)
of molecules is needed before a CE peak becomes visible, the signal intensity might not
be linearly correlated with the number of molecules for alleles with low peak heights.
This could contribute to an increased variation of stutter ratios.

Mixture analysis

A total of 45 two-person mixtures (from five donor combinations) were analysed
with minor contributions of 1%, 5%, 10%, 20% and 50% using the PowerSeq™
sequencing assay. In every mixture, all alleles of both contributors were recovered
in the sequence reads, mostly with allele ratios close to expected. Figure 7a displays
the read percentage for each allele call of the minor contributor grouped by mixture
ratio. Although there is variation, we found that the observed percentage of reads
(per allele) from the total locus reads is a good indication of the ratio between two
contributors in a mixture. For each of the 45 mixtures the minor contribution was
estimated based on the read frequencies of the minor alleles that are not overlapping
other alleles or stutter reads in the mixture (see Sup. Figure 9 for further explanation
of this procedure for a hypothetical three locus mixture profile). Figure 7b shows the
summary statistics for calculation of the minor contribution in the |0 mixtures (for
the 50/50 mixtures, calculations were performed for both contributors) of each ratio.
Since the total marker reads also contain reads representing stutter, the quantitative
prediction of the minor contribution is expected to be slightly lower than the genuine
contribution which is apparent for the mixtures with 50% and 20% minor contribution.
Not surprisingly, a quantitative prediction of the minor contribution becomes less
accurate (relative to the percentage of contribution) when the minor contribution
decreases. It is apparent that the standard deviation is almost stable across all mixture
ratios.
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Figure 6. Comparison of stutter ratios for locus D18S51 analysed by CE and
MPS

A. D18S51 CE n-1 stutter
0.20-
0.154 g ° o
e {» %
5 0104 & % -
32
E 113
O .
0.05- *
000lfr+——F—F—+—F+—+—+—"T+—+——
NIENEN NN IR SR SR
Stutter of Allele
B. D18S51 Sequencing n-1 stutter
0.20
0.15- N i ‘IT -
2 ) . o5 B ;iji ok
= o o° - -
e . . . ‘% &
T o10] : _} b
= o % 0
2 o S
IR D
0.05 % % T
— F o
R S S S A N S S P P
N S N » % Q) A ) O N D 0
R R R S R R R O R R R R AR
» Al R A s
FF T F L& T F o @ FF G T
7 N7 N7 \ﬁxov,\\ RaNXe v‘,\\' \g/vy,\\ ,{\/evy\ KXY '19/ ‘1:‘/ ,Q/ ,ig,/ ,f;/
\\?' '3’»\?' 7'0 b-\c’
N N Nid N
Ca G G
A \a ¥
© © ©
N7 o/ D7
Stutter of Allele
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displaying the distribution of stutter ratios for the locus D18S51 analysed by MPS using the prototype PowerSeq™ system. Red dots represent
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Figure 7. Tukey boxplot displaying the observed within locus read percentages
of all minor alleles for 10 two-person mixtures for each of the five tested

mixture ratios
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50% 45,33% 0,28% 0,6%

When analysing alleles with abundance below 5% of the highest allele of the locus, additional PCR/sequence error variants were observed for
several loci which can complicate the interpretation of a DNA sample. Therefore, the analysis of minor contributions of 5% or less in a mixture
without prior knowledge of the ratio between the different donors, remains difficult for some, but not all loci using the current experimental
and analysis setup for this assay. Increasing the sequencing coverage increases the read counts of these artefacts as well and will not help to

distinguish them from genuine alleles.
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Analysing an unknown trace

When unknown samples are analysed that could have more than one contributor,
one needs to decide on the minimal allele coverage and level of minor allele detection
prior to sequencing. The minimal allele coverage of 8 reads for every allele and 2 reads
for both orientations used in this study was chosen for investigative purposes to get an
indication of general sequence quality. Although in most cases these thresholds were
sufficient to remove artefacts, some erroneous reads can still occur due to a relatively
low sequence quality that may be caused by variation in cluster density or other factors
yet unknown. In addition to a minimal read coverage to guarantee sequence quality,
an additional threshold can be used for the minimal percentage of reads compared to
the allele with the highest read count within a locus to filter out structural sequence
errors. Below 0.5%, most STRs show a high amount of additional sequence artefacts
that coexist with the genuine alleles at a relatively stable ratio. However, when using a
high threshold, low percentage contributions might be missed.

Recommendations

In this study, the population samples were sequenced with an average allele
coverage of over 800 reads (also including the samples that were not used for stutter
analysis), which is crucial for a reliable characterisation of stutter reads and structural
sequence errors in this stage of the development of this new technique. We assume
that, eventually, for reliable MPS-STR genotyping of a single-source reference sample
(e.g. for database purposes) a much lower coverage could be sufficient. To distinguish
genuine allele sequences from errors, we recommend a coverage of at least 20 reads
for every allele (sequences from both ends combined) with representation in both
orientations.This means that, for the current assay, 5.000 reads per sample will probably
be sufficient to achieve the recommended allele coverage. For evidentiary traces, more
sequences will be needed since locus balance will be influenced by low template
concentrations and low contributions can only be analysed reliably using sufficient
reads for the alleles of the minor contribution. For example, when we want to retain
sufficient data to detect a minor contribution of 5% we need at least (100/5) x 5000
= 100.000 reads (meaning 100.000 reads for read| and 100.000 reads for read?) for
the current assay. This assumes that the sample is of sufficient quality to retain the same
locus balance as a reference sample.
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Conclusion

The analysis of STRs by MPS using the MiSeq® provides several advantages over the
routinely used CE.We observed full concordance between CE (Powerplex® Fusion)
and MPS (PowerSeq™) based genotyping of STR loci among 297 individuals.

We observed substantial sequence variation within the repeat motifs of STR loci
and their immediate flanking regions, in addition to the length variation of the STR-
motifs. Since design of a multiplex assay for MPS is no longer limited by the number of
different fluorescent labels, PCR primers can be designed to amplify all STR loci within
a much more similar fragment size range. This offers advantages for degraded DNA
samples and reduces some of the amplification bias due to length variation among
the various PCR-templates in a single multiplex PCR reaction. In addition, the exact
nature of MPS data (which is as simple as sequence-specific read counts for every
allele) provides opportunities for a more standardised follow-up analysis. The study of
stutter in MPS data shows that the highest stutter artefact is determined by the longest
repeated element in the STR. STR stutter ratios in MPS data are generally similar to
those of CE data except for many of the complex STRs since those CE alleles can
be differentiated into separate MPS alleles with their own respective stutter profile.
Mixture analysis down to a minor contribution of 5% is routinely feasible for most
STR loci. Even sequence reads representing a minor contribution down to 1% can be
recovered, although here, obviously, reads representing stutters still cause interpretation
problems in the reads.

Acknowledgements

This study was supported by a grant from the Netherlands Genomics Initiative /
Netherlands Organization for Scientific Research (NWO) within the framework of
the Forensic Genomics Consortium Netherlands. The authors wish to thank Titia Sijen
(Netherlands Forensic Institute) for carefully reviewing the manuscript and Martin
Ensenberger and Cynthia Sprecher (Promega Corporation) for their contributions to
the design of the prototype PowerSeq™ System.

Reference List

I, Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis
E, Schaffner SFYu F, Peltonen L, Dermitzakis E, Bonnen PE, Altshuler DM, Gibbs RA, de
Bakker PI, Deloukas P, Gabriel SB, Gwilliam R, Hunt S, Inouye M, Jia X, Palotie A, Parkin M,
Whittaker PYu F, Chang K, Hawes A, Lewis LR, RenY,Wheeler D, Gibbs RA, Muzny DM,
Barnes C, Darvishi K, Hurles M, Korn JM, Kristiansson K, Lee C, McCarrol SA, Nemesh
], Dermitzakis E, Keinan A, Montgomery SB, Pollack S, Price AL, Soranzo N, Bonnen PE,

96



STR sequencing validation of the Powerseq™ assay

3.

Gibbs RA, Gonzaga-Jauregui C, Keinan A, Price AL, Yu F, Anttila V, Brodeur W, Daly M|,
Leslie S,McVean G, Moutsianas L, Nguyen H, Schaffner SF, Zhang Q, Ghori M), McGinnis
R, Mclaren W, Pollack S, Price AL, Schaffner SF, Takeuchi F, Grossman SR, Shlyakhter |,
Hostetter EB, Sabeti PC, Adebamowo CA, Foster MW, Gordon DR, Licinio ], Manca
MC, Marshall PA, Matsuda I, Ngare D, Wang VO, Reddy D, Rotimi CN, Royal CD, Sharp
RR, Zeng C, Brooks LD, McEwen JE. Integrating common and rare genetic variation in
diverse human populations. Nature 2010; 467:52-58

Anvar SY, van der Gaag K], van der Heijden JWV,Veltrop MH,Vossen RH, de Leeuw RH,
Breukel C, Buermans HE Verbeek |S, de KP, den Dunnen T, Laros JF. TSSV: a tool for
characterization of complex allelic variants in pure and mixed genomes. Bioinformatics.
2014;30:1651-1659

Brookes C, Bright JA, Harbison S, Buckleton J. Characterising stutter in forensic STR
multiplexes. Forensic Sci.lnt.Genet. 2012; 6:58-63

Budowle B, Onorato A), Callaghan TF, Della MA, Gross AM, Guerrieri RA, Luttman |C,
McClure DL. Mixture interpretation: defining the relevant features for guidelines for the
assessment of mixed DNA profiles in forensic casework. J.Forensic Sci. 2009; 54:810-
821

Cann HM,deTC, Cazes L, Legrand MF, MorelV, Piouffre L, Bodmer |, BodmerWF Bonne-
Tamir B, Cambon-Thomsen A, Chen Z, Chu J, Carcassi C, Contu L, Du R, Excoffier L,
Ferrara GB, Friedlaender S, Groot H, Gurwitz D, Jenkins T, Herrera R|, Huang X Kidd
J, Kidd KK, Langaney A, Lin AA, Mehdi SQ, Parham B, Piazza A, Pistillo MP, Qian'Y, Shu Q,
Xu |}, Zhu S,Weber JL, Greely HT, Feldman MW, Thomas G, Dausset J, Cavalli-Sforza LL.
A human genome diversity cell line panel. Science 2002; 296:261-262

Gelardi C, Rockenbauer E, Dalsgaard S, Borsting C, Morling N. Second generation
sequencing of three STRs D3S1358, D12S391 and D2ISI1 in Danes and a new
nomenclature for sequenced STR alleles. Forensic Scilnt.Genet. 2014; 12:38-41
Gettings KB, Aponte RA, Vallone PM, Butler JM. STR allele sequence variation: Current
knowledge and future issues. Forensic SciInt.Genet. 2015; 18:118-130

Kline MC, Hill CR, Decker AE, Butler JM. STR sequence analysis for characterizing
normal, variant, and null alleles. Forensic Sci.nt.Genet. 201 1; 5:329-332

Knijff, P and Pijpe, J. Population genetics of African Pygmies. 2015. (GENERIC). Ref Type:
Unpublished Work

Kraaijenbrink T, van der Gaag K], Zuniga SB, Xue Y, Carvalho-Silva DR, Tyler-Smith C,
Jobling MA, Parkin EJ, Su B, Shi H, Xiao CJ, Tang WR, Kashyap VK, Trivedi R, Sitalaximi
T, Banerjee ], Karma Tshering of Gaselo, Tuladhar NM, Opgenort |R, van Driem GL,
Barbujani G, de KPA linguistically informed autosomal STR survey of human populations
residing in the greater Himalayan region. PLoS.One. 2014; 9:e91534

. MagocT, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome

assemblies. Bioinformatics. 201 |; 27:2957-2963

Oostdik K Lenz K, Nye |, Schelling K, Yet D, Bruski S, Strong |, Buchanan C, Sutton |,
Linner J, Frazier N,Young H, Matthies L, Sage A, Hahn |, Wells R Williams N, Price M,
Koehler J, Staples M, Swango KL, Hill C, Oyerly K, Duke W, Katzilierakis L, Ensenberger
MG, Bourdeau JM, Sprecher CJ, Krenke B, Storts DR. Developmental validation of
the PowerPlex((R)) Fusion System for analysis of casework and reference samples: A
24-locus muttiplex for new database standards. Forensic Scilnt.Genet. 2014; 12:69-76
Promega Corporation. Powerstats vI2. 2015. (GENERIC). Ref Type: Unpublished Work
Promega Corporation. TECHNICAL MANUAL, PowerPlex® Fusion System. 1-3-2015.

97



Chapter 4

98

20.

21.

(GENERIC). Ref Type: Unpublished Work

. Scheible M, Loreille O, Just R, Irwin J. Short tandem repeat typing on the 454 platform:

strategies and considerations for targeted sequencing of common forensic markers.
Forensic Scilnt.Genet. 2014; 12:107-119

. Schirmer M, llaz UZ, D'Amore R, Hall N, Sloan WT, Quince C. Insight into biases and

sequencing errors for amplicon sequencing with the lllumina MiSeq platform. Nucleic
Acids Res. 2015;

van der Gaag K], de Knijff P Forensic nomenclature for short tandem repeats updated for
sequencing. Forensic Science International: Genetics Supplement Series 201 5;Volume 4

. Warshauer DH, King |L, Budowle B. STRait Razor v2.0: the improved STR Allele

|dentification Tool--Razor. Forensic Sciint.Genet. 2015; 14:182-186

. Westen AA, Grol L, Harteveld ], Matai AS, de KR Sijen T. Assessment of the stochastic

threshold, back- and forward stutter filters and low template techniques for NGM.
Forensic Scilnt.Genet. 2012; 6:708-715

Westen AA, Kraaijenbrink T, Robles de Medina EA, Harteveld J, Willemse P, Zuniga
SB, van der Gaag K], Weiler NE, Warnaar |, Kayser M, Sijen T, de KPR Comparing six
commercial autosomal STR kits in a large Dutch population sample. Forensic Sci.lnt.
Genet.2014; 10:55-63

Zeng X, King JL, Stoljarova M, Warshauer DH, LaRue BL, Sajantila A, Patel J, Storts DR,
Budowle B. High sensitivity multiplex short tandem repeat loci analyses with massively

parallel sequencing. Forensic Scilnt.Genet. 2015; 16:38-47



STR sequencing validation of the Powerseq™ assay

Supplementary materials

Supplemental Figure I, four examples of allele combinations to illustrate the
criteria used for inclusion of stutters for the calculation of stutter ratios

A.

¥
n-1

B.

16 18
n-1 n+l

[
n+l

The peak profiles display which stutter peaks are included and excluded for analysis of stutter ratios. In all four examples, the blue peaks
represent the genuine alleles, the green peaks represent stutters that are included in the calculation of stutter ratios and the red peaks represent
stutters that are excluded for the calculation of stutter ratios. Example A.: Both alleles have no overlapping stutters, all the stutter peaks are
included for calculation of stutter ratios. Example B.:Allele |4 is overlapping with the n-| stutter of allele 5. For this allele |5, the n-1 stutter
cannot be used for calculation of the stutter ratio. The n-1 stutter of allele 14 overlaps the n-2 stutter of allele 15 but is still included in the
calculation of the stutter ratio for allele |4 since the contribution of the n-2 stutter to the peak height is considered to be negligible. Example
C..The n+1 stutter of allele 14 is overlapping with the n-2 stutter of allele |7.This stutter position is removed from the analysis of the stutter
ratio. Example D.:The n-| stutter of allele |6 overlaps with the n+1 stutter of allele |4 and is excluded from the analysis of the stutter ratio.
For the sequencing data, the same criteria were used but sequence variation was considered resulting in fewer alleles to be excluded from the
calculation of the stutter ratios.
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Supplemental Figure 2. Overview of sequence efficiency for MiSeq® sequencing
runs with different cluster density
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Scatterplot displaying the yield of sequence reads after different filtering steps in the analysis from signal on the MiSeq® until the reads retained
in the fastq files after demultiplexing for runs with different levels of cluster density. In red, the initial number of reads are displayed before any
filtering took place on the MiSeq®. In purple, remaining reads after MiSeq® qudlity filtering are displayed. In orange, the reads are displayed in
which a barcode is recognised during de-multiplexing.
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Supplemental Figure 3. Overview of analysis filtering / interpretation steps of a
sequence DNA profile for a single source sample and a mixture
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Final table used for interpretation _u!‘-._.ﬁi!

highest alleie  Allele / Stutter

CSF1PO
CE10_CTAT[10]
CE11_CTAT[11]

D138317
CE11_TATC[11JAATC[2]

CE13_TCCT[12IACCT1TCTT[1]TCCT]1)
CE14_TCCT(13ACCT1]TCTT1]TCCT]1]

D21S11

CE27_TCTA4]TCTG(S]TCTA[S|TATCI4JA{1]TCTA[]TCCA[1]TATC{10]
CE28_TCTAMTCTGIS]TCTAB[TATCI4JA1TCTAZITCCA[1]TATC{11]
CE29_TCTA4]TCTG(S]TCTA[3TATCI4JA{1]TCTA[ZITCCA[1]TATC[12]

D251338
CE19_GGAA[12]GGCA(7]

D351358

CE15_TCTA(1[TCTG(3[TCTA(11)]
CE16_TCTA[1]TCTG[3[TCTA[12]
CE18_TCTA(1]TCTG(ITCTA(14]
CE19_TCTA[1[TCTG[3[TCTA{15]

D5S818

CEB_ATCT[9] 123775612 A>G
CE9_ATCT[10]_123775612 A>G
CE10_CTCT[JATCT([10]

CE11_CTCTHATCT[11]

CSF1P0 e e -
CE11_CTAT[11)
D13§317 e
CE12_TATC[12JAATC{2]
CE13_TATC[14]AATC(1]
D16S539 e
CE9_GATA[9)
CE11_GATA[11]
D18S51 ——
CE10_AGAA[10]

CE17_AGAA[17]

CE14_TCCT3JACCT[1[TCTT1JTCCT[1]
D21811 ceeneeee

CE28_TCTA4|TCTG(S]TCTA[ITATCI4JA[1]TCTA[ZITCCA[1JTATC(11]
CE29_TCTA[4|TCTG{B]TCTA[SITATCIAJA{[TCTAZITCCA[1]TATC(12]

D251338 ~—eee

CE20_GGAA[13)GGCA[7]

CE21_GGAA[2IGGAC[1]GGAA[1 1}GGCA[7]
(110K P——
CE16_TCTA{1]TCTG(3]TCTA[12)
CE19_TCTA[1[TCTG{3[TCTA[15]

(o157 1 1. J——
CES_ATCT[10]_123775612 A>G

CE11_CTCT[1JATCT[11]

102



Chapter 4

STR sequencing validation of the Powerseq™ assay

!iitii_gggﬁ.

forward _reverse  reads Aliele label

D7S820 forward reverse total D7S820 ——rmeee

D73820 25 19 44

D75820 42 39 81

D7S820 1057 893 1850 CEB8_TCTA[8] 84160286 G>A
D78820 21 13 34

D75820 56 40 o5

D7s820 42 30 72

D78820 745 595 1340 CE11_TCTA[11]

D8s1179 forward reverse total DES 1179 e
D8sS1179 54 40 94

D8s1179 673 602 1275 CE12_TCTA[12]

Das1179 38 41 79

D8s1179 722 662 1384 CE13_TCTA[1]TCTG[1]TCTA[11]
FGA forward reverse total FGA ~oemeemee

FGA 1 9 20

FGA 88 86 174

FGA 786 960 1746 CE23_AAGG[3JAGAA15JAGAG]1JAAAA[1JAAGA[3]
FGA 129 133 262

FGA 740 855 1595 CE25_AAGG[IAGAA[1TIAGAG[1JAAAA[1JAAGA[3]
FGA 15 15 30

PentaD forward reverse total PentaD —eeeeeeeeeeen

PentaD 24 15 39

PentaD 2006 1707 an3 CE9_AAAGA[IJAAAAA[T]
PentaD 23 23 46

PentaD 1399 1270 2669 CE12_AAAGA[1ZJAAAAA[1]
PentaE forward  reverse  total PentaE - e

PentaE 13 14 27

PentaE 659 846 1505 CE10_TTTTC[10]

PentaE 20 34 54

PentakE 854 846 1500 CE12_TTTTC[12]

THO1 forward  reverse ftotal THOT e

THO1 18 12 30

THO1 1081 1048 2120 CE6_TGAA[6]

THO1 1130 1030 2160 CES.3_TGAA[GITGA[1]TGAA[3]
TPOX forward reverse total TPOX wmeeme

TPOX kAl 83 154

TPOX 3304 3466 6770 CEB_TGAA8]

WA forward  reverse  flotal VWA e

WA 84 53 17 CE16_GATG[2IGATA[1]GATG(1]GATA[12]GACA[3IGATA(1]

VWA 877 636 1313 CE17_GATG[2JGATA[1]GATG[1]GATA[13]GACA3]GATA[1] CE17_GATG[ZJGATA{1]GATG(1]GATA{13)GACA[3|GATA[1]
WA ] 5 14 K CE17_GATG[2]GATA[1]GATG[1]GATA[12]GACA4]GATA[1]

WA 57 57 14 CE18_GATG[2]GATA[1]GATG(1]GATA[13]GACAM]GATA[1]

WA 623 557 1180 CE19_GATG(2]GATA[1]GATG[1]GATA[14]GACA[4]GATA[1] CE19_GATG[Z]GATA[1]JGATG[1]GATA[14]GACA[4]GATA[1]
WA 13 11 24 X CE19_GATG[2]GATA[1|GATG[1]GATA[15]GACA[I|GATA[1]
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read profile that is filtered for sequence variants with coverage of < 8 total reads, < 2 reads per orientation and a within marker threshold of < 0.5% of the highest allele

table shown below)

Sequence read profile where labels for stutters and errors have b
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A. Sequence profiles showing allele names after separate filtering steps used in the analysis for a single source sample with the final table used
for interpretation to call genuine alleles in a reference sample. B. Sequence profiles showing allele names after separate filtering steps used in
the analysis for a mixed sample with the final table used for interpretation to call genuine alleles in a mixed sample.
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Supplemental Figure 4. Sequence read profile for the two samples where
PentaD showed a strong allelic imbalance
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This figure displays the sequence read profile for PentaD for the two samples where a strong allelic imbalance was observed. For these samples,
the number of reads for the allele with CE-length | | was only observed for 8% and | 2% of the reads of the second dllele.
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Supplemental Figure 5. STR sequence alleles for the reference genome and

2800M Control DNA

STR coordinates in the reference CE-
Reference HGVS-name refseq:
genome (hg38) length

[CSFIP0 [ohes.hga8: g. 150076322, 150076373 HGVS REF  |CTAT[13] 3
[2200m Alele__[CTAT[12) 2
[D251338 [che2 hga8: g 218014850- 218014850 HGVS REF |GGAAIZ|GGAC] TGGAA[13|GGCALT] =
[2800m Alleie 1 [GGAARIGGACITIGGAA121GGCART] z
aneie 2 [GGAARIGGACTIGGAA15IGECAT] =
[D3S1358 |chra.hgas: g 45540739 45540802 HGVS [REF [TCTALTCTGIITCTAI4] 6
[2800m el 1 [TCTAITCTGEITCTATS] T
aneie 2_[TCTA[TCTGI[TCTA[14] 8
[D5S818 |chrb hgaB: g.123775552- 123775500 HGVS REF  |CTCT[UATCT]11] T
[z800m laseie 1 [CTCTIIATCTIIZ) 2
laneie 2_[CTCT]1]ATCT[12] 123775612 A5 12
75820 [che? hgas: g B4160224-B4 160275 HGVS REF  [TCTA[13] 13
[z800m Aleie 1 [TCTALS] [
Abeie 2 [TCTA[11] 1
[DESTI78 [che.hga8. g 124604865 1248045 16 HGVS REF  [TCTALTCTGUITCTALTT] £
[z800m Alleie 1 [TCTALTCTGIITCTALZ] 4
TCTAZ[TCTGIJTCT 15
[D135317 [chr12.hgad. g.B2 148025 82148088 TATC{11AATCI2IATCT[] T
TATCIEIAATCIRIATCTR) 9
TATC{1ZJAATCIATCT]Y 1]
168520 [che1B.nga8: g BE352702-86352745 GATA11] 1
GATAID) ]
GATA[13] 13
[78551  [che18.ngas: g. 63281667 63281750 AGAAL BYAALTIAGLA] 8
AGAA] 1BJAA] TIAGIA] 16

1AGIE] 8

108433 [che18.nga8: g 20006234 20026297 TCCT13JACCTITCTITCCT1] M
TCCT[12JACCT[1[TCTTI[TCCT]) 13

TCCT13ACCT[[TCTIITCCT]1] M

D21811  [che21.ngas: g 18181973- 18182101 TCTA4[TCTGIB|TCTAISTATCIJAIT[TCTARITCCA[TTATC12) 7]
TCTA4|TCTG|S|TCTA3[TATCI4A| TCTARZITCCA(TTATC]12) 7]

TCTAS[TCTGIBITCTA[TATCIAJAIT[TCTAIZITCCA{NTATCIN TALTATCEZ) 32

FGA hed Q38 g 1545877 26- 154587821 AAGG[| AAGAL ARG GLIAGAAL T AGAGL 1 AAPAL JAAGA F7]
AAGG1JAAGA] 1|AAGG|IJAGAAL 1 ZJAGAGL JAARAL1JAAGA 2

_ AAGG|1|AAGA{ 1| AAGG[IIAGAA ISJAGAG(T TJAAGA] z3

PentaD  [chr21.ngas: g 43636205-43636274 AAAGA|13 0 3
AAAGA| TZIAAAAAL 12

AAAGA(T3 1 13
[PentaE  |che15.ngas: g B6E31012-06831036 TTTTCS] 5
TITTCH) 7

_ TTTTC[4] 4
[THD1 chr11.hg8: g.2171086-2171113 TG 7
[TGANG) s

- _ _ TGANGTGATTTGAA 23
TPOX  |chez.hgae: . 1480651- 1480662 [TGAALE) 8
TGAA 1"

VA he12.ngab: g SOBIBE0-S0BA0A2 [GATGI2|GATALT[GAT GLTIGATALT 1] SIGATALT i
[GATGI2|GATA1|GATG 1| GATA(12)GACAIGATA(1 18

AT G[2)GATA|1|GATG{1|GATA[T|GACA|GATALT 19

Description of the coordinates of the STR motif for each STR and the alleles represented in the reference genome (hg38) and in 2800M

Control DNA.
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Supplemental Figure 6. Observed sequence variation in 297 analysed samples
from three populations

Population Total Sampl Total Alleles
Duteh 101 202
Nepal / Bhutan 97 194
Pygmy 99 198
Total 297 594

Sequenced Alleles

Amel

Total sequence alleles 3
Total CE fragment alleles 2
Alleles containing SNPs

outside STR-motil 1
Frequency
Frequency Nepal / Frequency |Total
Fragment allele allel INL Bhutan Pygmies |Frequency
X X 0.490 0,608 0717 0,604
X X-11296959C>T 0.010 0,003
Y Y 0,500 0,392 0,283 0,393
CSF1P0
Total sequence alleles 10
Total CE fragment alleles 10
Alleles containing SNPs
outside STR-motil 0
Frequency
Frequency Nepal / Frequency |Total
Fragment allele lel INL Bhutan Pygmies |Frequency
Id CET-CTAT[7] 0,020 0.007
CEB-CTAT[8] 0.010 0,035 0.015
CE9-CTAT[9] 044 0,062 0,020 0,042
0 CE10-CTAT[10] 260 0,242 0,374 0,292
0.3 CE10.3-CTATI[B]CAT[1]CTAT[4] 0,005 _
11 CE11-CTAT[11] 0,299 U.Z_ﬁ:
CE12-CTAT[12] 0.304 0.38
CE13-CTAT[13] 0.064 0,03
CE14-CTAT[14] 0,010 0,015
15 CE15-CTAT[15] 0,005 0,005
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<
—
(V]
)
= D251338
e Total sequence alleles 55
U Total CE fragment alleles 12
Alleles containing SMPs
stside STR-motif 14
Frequency
Frequency Mepal / Frequency |Total
F allele allele ML Bhutan Pygmies  |Frequancy
14 CE14—GGAABIGGCAB|-21B014824C>A 0,005 0,002
16 CE16-GGAA[ 2|GECAM]-218014824C=A 0,066 0,022
18 CE16-GGAA[11]GGCA[S] 0,015 0,005
16 CE16-GGAA[10]GGCA[E]-218014824C>A 0,074 0,025
17 CE1T-GGAA[12]GGCA[S-218014824C>A 0,005 0,002
17 CE1T-GGAA[11]GGCA[E] 0.005 0,002
i7 CENT-GGAA[11]GGCA[E]-218014824C>A 0.230 0.041 0.015 0.097
18 CE18-GGAA[5]GECA[I-218014824C=A 0,005 [iTi7i-]
18 CE18-GGAA[4)GECAM]-218014824C=A 0,010 0,003
12 CE18-GGAA[13]GGCA[S] 0,005 0,002
18 CE18-GGAA[12]GECA[E] 0,010 0,003
18 CE18-GGAA[12|GGCA[El-218014824C>A 0,074 0,005 0.027
18 CE18-GGAA[11]GGCA[T)] 0.015 0.077 0,040 0.044
18 CE10-GGAA[1 0,005 0,002
18 CE10-GGAA[14]GGCA[S] 0,005 0.010 0,040/ 0.018]
19 CE18-GGAAZ|GGAC[1)GGAA[10)GGCA[E] 0,005 0,002/
19 CE18-GGAA[13]GGCA[S] 0,005 0,081 0,022
19 CE18-GGAA[13|GECA[E]-218014824C>A 0.ms 0,005
18 CE19-GGAA[12]GGCA[T] 0,050 0.170 0,106 0,111
19 CE1 11 0,005 0.002
20 CE20-GGAA[1T|GGCA[I-218014824C>A 0,005/ 0,002/
20 CE20-GGAA[16]GGCA[M]-218014824C>A 0,005/ 0,002/
20 CE20-GGAA[14]GGCA[8] 0,020 o0.010 0,071 0,034
20 CE20-GGAA[14]GGCA[E]-218014824C>A 0,005 0,002/
20 0015 0,005
20 0.015 0.005 0.007
20 0,088 0,108 0,058 0.084
20 0.05 0,005
20 0,005 0,005/ 0,003
20 0,010 0,003
0,035 0,012]
21 CE21-GGAA[2 pmmmnmapw[s] 0,005 0,002/
Fal CE21-GGAA[16]GGCA[S) 0,020 0,007
21 CE-GGAAZIGGAC[1|GGAA1 2)GGCAJE] 0,030/ 0.010
F4l CE21-GGAA[15]|GGCA[E] 0,058/ 0.018
21 CE-GGAAZIGGAC[1]GGAAI1 1)GGCA[T] 0,005 0,010 0,005
21 CE21-GGAA[14]GGCA[T] 0,025 0,048 0,040/ 0,037
21 CE21-GGAA[13]GGCA[B] 0.010 0.030 0.013)
2 CE22-GGAA[18]GGCA[4]-218014824C>A 0,005 0,002/
2 CE22-GGAA[ZIGGAC[1|GGAA[14)GGCA[S] 0,005 0,002
2 CE22-GGAA[ZIGGAC[1|GGAA[1 3)GGCAJE] 0.010 0,040/ 0.7
2 CE22-GGAA[ZIGGAC[1|GGAA[1 2)GGCA[T] 0.010 0.02¢ 0,045 0.027
2 CE22-GGAA[15]GGCA[T] 0,005 0,002/
2 CE22-GGAA 1 11 L] 0,005/ 0,002/
px] CEZ3-GOAA ] 1 ] 6,010 0.003|
23 CE23-GGAA[2]GOAC]1|GGAA[14)GGCALE] 0,005 0,005 0,003
2 CEZ3-GGAARIGGACT1|GOAN130GCAIT) 0,089 0,180 0,025 0.081
23 0,005/ 0,002/
d 0.005 0,005 0,010 X
0,003 0.155 0,076 0,107
0,005 0,002/
0,010 0,005 0,005
0,142 0,048 0,020/ 0,070
0.005 0.005 0.003
0.015 0,005 0,010 0.010
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D351358
Tatal sequence alleles 2
Total CE fragment alleles 9

0
>
°
ct
[0}
-
A

Alleles containing SNPs
oulside STR-matif 1
Frequency
Frequency Mepal / Fraquency
Fragment allele Seguence allale NL Bhutan Pygmies
10 CE10-TCTAMITCTG2[TCTA[7] 0,005
13 CE13-TCTA[[TCTG1[TCTA[11] 0,005
13 CE13-TCTA[]TCTG2[TCTA[10] 0,005 0,005
14 CE14-TCTA[|TCTG|TCTA[12] 0,005 0,040
14 CE14-TCTANMTCTG[2ITCTA[11] 0.162 0.036 0.056
15 CE15-TCTA[1]TCTG[1[TCTA[13] 0,020 0,045
15 CE15-TCTA[]TCTG2[TCTA[12] 0,211 0,284 0,207
15 CE15-TCTA[MTCTGAITCTA[11] 0.020 0,010 0,040
18 CE16-TCTA[[TCTG1|[TCTA[14] 0,015 0,141
16 CE16-TCTA[]TCTG[2[TCTA[13] 0,118 0,201 0,247
16 CE16-TCTA[]TCTG[2]TCTA[13]-45540653C>T 0,005
16 CE16-TCTANTCTG[I[TCTA[12] 0.078 0.098 0.010
16.2 CE16.2-TCTAN|TCTGR[TC1[TCTA[12] 0.005
17 CE17-TCTA[1 r‘I'CTG|T]TCTA.[1 l|TGCﬁ|1]’TC’TAl3] 0,010
17 CE17-TCTA[1]TCTG1]TCT. 0,010 0,015
17 CE17-TCTA[TCTG 2]TI:TA.[14| 0,088 0,160 0,086
17 CE17-TCTA[1]TCTG[ITCTA[13] 0,064 0,082 007
17 CE17-TCTA[TCTGAITCTA[12] 0.015
18 CE18-TCTA[1]TCTG[2]TCTA[15] 0,015 I.'IOQG 0,015
18 CE‘IG—TCTAI"I'CTG%F%%M 0.167
[18 CE18-TCTA[I|TCTG| 1 0, ﬂ_ﬁﬁ_
Dssa18
Total sequence alleles 23
Total CE fragment alleles 7
Alleles containing SNPs
outside STR-motif 18
Frequency
Frequency Mepal/  Frequency
|Fragmentallele _Sequence alléle NL Bhutan __Pygmies
8 CEB-CTCT[1)ATCT[8}-123775612A>G 0,010
}% CEB-ATC :FEQSTTH'IM 0.045
CEB-ATCT[10}-12377561 0,029 0,072 0,010
9 CES-CTCT[1)ATC 123775612A>G 0,005
1 1 1 10]-123775612A>G 0.620 0,155 0.025
10 CE10-CTCT[1JATCT[10) 0,005 0,005
10 CE10-ATCT[11]-123775612A>G 0.039 0,010 0.071
1" CET1-CICT[1 1112377561 0,235 0,253 0,088
1 CE11-CTCT[1JATCT[11] 0,064 0,005 0.010
11 CE11-ATCT[12]-123775612A>G 0,025 0,057 0,035
nz Ccei-cre 121-123775612A>G 0230 0206 0,141
12 CE12-CTCT[1JATCT[12) 0,113 0,041 0,068
12 CE12-CTCT[1JATCT[12}-123775612A>G-123775657T>G 0,061
12 CE12-ATCT[13 123‘!?53120!.?'6 0.069 0,036 0,157
13 CE13-CTCI[1 1 TT5612A>G 0,049 0,129 0,001
13 CE13-CTCT[JATCT[13] 0,059 0,021 0,025
13 CE13-CTCT[1JATCT[13]-123775612A>G-1237T5657T>G 0,010
13 CE13-ATCT[14]-123775612A>G 0,034 0,005 Rk
13 CE13-ATCT[14]-123775611CA>TG 0,005
13 CE13-CTC Hi E‘I‘CHE%TG!H JATCT]8}-123775612A>G 0.015
14 14 1 14]-123775612A>G 0,010
14 CE14-CTCT[1JATCT[14] 0,005 0,005
14 CE14-ATCT[15]-123775612A>G 0,015
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<
—
[0]
)
(a8 D7s820
= Total sequence alleles 32
Tetal CE fragment alleles 10
U Alleles containing SNPs
_outside STR-motif 25
Fraquancy
Frequency Mepal / Frequency |Total
allele NL Bhutan _ Pygmies |Frequency |
CEG-TCTA[G|-84160204T=4 0,005
CET-TCTA[T] 0,025 0,005
CET-TCTA[T|-84160204T=A 0,005
CEB-TCTA|8| 0,127 0,057 0,136
CEB-TCTA[B]-B4160204T=A 0,005
CEB-TCTA[8]-84 160204 T>A—B4160161A=C 0,010
CEB-TCTA[B]-84160204T>A-B4160286G>A 0.044 0.191 0.066/
CES-TCTA[10}-84 160219ATCT>de|-84160204T>A 10,005
CES-TCTA[9] 0,176 0,038 0,086
CE9-TCTA[S]-84160204T=A 0,010
CES9-TCTA[9]-84160204 T>A—B4160161A>C 0,005 0,025
CES-TCT. 160204 T=>A—B4160286G=>A 0.015 0.072 0.056|
CE10-TCTA[10] 0,162 0,098 0,222
CE10-TCTA[10]-B4160204T>A 0,049 0,015
CE10-TCTA[10]-84 160204 T>A-84 16016 1A>C 0,005
CE10-TCTA[10]-84160161A>C 0,010 0,031 0.035
10 CE10-TCTA[10]-84160204T>A-84160286G>A 0,005 0,020
[103 CE10.3-TCTA[11|-B41602041>del 0,005
11 CE11-TCTA[I1] 0,181 0,155 0,071
11 CE11-TCTA[11]-84160204T=A 0 015 0,041
1 CE11-TCTA[11]-84160204T>A-B4160161A>C 0.010
1 CE11-TCTA[11]-84160161A>C 0,021 0,066
1 CE11-TCTA[11]-84160204T>A-84 160286G>A 0,026 0,005
1 CE11-TCTA[BJCCTA[1]TCTA[2]-84160204T>A 0,010
2 CE12-TCTA[12] 0,108 0,175 0,066
12 CE12-TCTA[12]-84160204T>A 0,034 0,021
12 CE12-TCTA[12]-84160204T>A-84160161A>C 0,040
12 CE12-TCTA[12]-84160161A>C 0.030
12 CE12-TCTA| 1%]-&18020!1»-041802&36» 0.035
1 1 0,015 0,015
13 CE13-TCTA[13]-B4160204T>A 0.010 0,005
14 CE14-TCTA|[14] 84160204T>A 0,010 0.005
Das1179
Tatal sequence alleles 7
Total CE fragment alleles 11
Alleles containing SNPs
oulside STR-motif 1
Frequency
Frequency MNepal/ Frequency |Total
allele ML Bhutan m
(] CEB-TCTA[S] 0,010 0,005
] CED-_TCTA[D] 0,010
10 CE10-TCTA[10] 0,088 0,072 0,010
11 CETI-TCTA[|TCTG[1|TCTA[9] 0,005
11 CE11-TCTA[11] 0,083 0,036
11 CE11-TCTA[2]TCTG[1]TCTA(8] 0.030
12 CE12-TCTA[M]TCTG[1]TCTA[10] 0,010 0,046 0,005
12 CE12-TCTA[12] 0,137 0,062 0,020
12 CE12-TCTA[2[TCTG1[TCTA[S] 0,086
121 CE121-TCTA[1[TCTG{1]TCTA[SITCTTAT] 0,005
13 CE13-TCTA[|TCTG[1[TCTA[11] 0,260 0,155 0,106
13 CE13-TCTA[13] 0,064 0,062
13 CE13-TCTA[2[TCTG[1[TCTA[10] 0.071
14 CE14-TCTA[1|TCTG[1]TCTA[12] 0,142 0,138 0,172
14 CE14-TCTA[|TCTG[1[TGTA[1]TCTA[11] 0,005
14 CE14-TCTA[14] 0,020 0,005 0,005
14 CE14-TCT. CTG]TCTA[11] 0,049 0,062 0,192
‘5—55‘5167%&5'1 TCTA[13] 0,044 0,031 0,061
GE'IS—TGTAI!ITCTGH]TCTA.['IQI 0,059 0,180 0.116
CE15-TCTA[Z[TCTG[2[TCT. 0.030
CE'IG—TCTMI]‘TCTGthcn. 'Id| 0,005
|e CE16-TCTA[1]TCTG[3|TCTA[12] 0.010
16 CE16-TCTA[2|TCTG[1]TCTA[13] 0,010 0,113 0,058
16 CE16-TCTA[2]TCTG[1|TCTA| 13}—12409497363-1 0,010
16 CE16-TCT. CTG| A. 0.010
7 CET7-TCT, 0,005
17 cEw-TCTAE]‘TCTGl‘r]TCTA.hq 0.005 0.010 0.015)
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(@)
>
g
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S
BN

outside STR-motif 10

Fraquency

Frequency Mepal / Frequency |Total
Fragment allele Seguence allela NL Bhutan Pygmies |Frequency
7 CET-TATC[TIAATC[ZIATCT[3] 0,005 0.002|
7 CE7-TATC[BJAATC[1JATCT3] 0,010 0.003]
E CEB-TATC[S]AATC[ZIATCT]3] 0,083 0,175 0,030 0.096|
a CES-TATC[10JAATC[1JATCT[3] 0,010 0,077 0.029|
a CES-TATC[I]AATC[ZIATCT3] 0,083 0,139 0,015 0.079|
10 CE10-TATC[10JAATC[2JATCT[3] 0,049 0,041 0,005 0.032|
10 CE10-TATC[11JAATC[1JATCT[3] 0,124 0,020 0.047]
10 CE10-TATC[12JATCT[3] 0,005 0.002|
10 CE10-TATC[12JAATC[1JATCT]3}-82148097 GTCT>del 0,005 0,002|
1 CE11-TATC[11JAATC[2JATCT[3] 0,103 0,036 0,096 0.079|
1 CE11-TATC[12JAATC[1JATCT]3] 0,181 0,149 0,157 0,183]
1 CE11-TATC[12JAATC[1]ATCT][3}-82148000C>T 0,039 0,005 0,015
1 CE1-TATC[1ZJAATC[1JATCT[3}-82147972G>A 0,020 0.007|
1 CE11-TATC[13JATCT[3] 0,021 0,007|
1 CENM-TATC[B[TGTC[[TATC[3JAATC[1JATCT]3] 0,021 0,007|
12 CE12-TATC[12JAATC[2JATCT[3] 0,187 0,026 0,308 0.168|
12 CE12-TATC[13JAATC[1JATCT[3] 0,127 0,124 0,111 0,121
12 CE12-TATC[13JAATC[1JATCT[3}-82148001G>A 0,035 0.012|
12 CE12-TATC[13JAATC[1]ATCT[3}-82148000C>T 0,005 0,002
12 CE12-TATC[13JAATC[1JATCT[3}-82147972G>A 0,035 0.012|
12 CE12-TATC[14JATCT[3] 0,021 0,007|
12 CE12-TATC[F[TATT[1]TATC[SJAATC[1JATCT[3] 0,010 0.003|
13 CE13-TATC[13JAATC[2]ATCT[3] 0,039 0,116 0,052
13 CE13-TATC[14JAATC[1JATCTI3] 0,034 0,005 0,005 0,015
13 CE13-TATC[14JAATC[1JATCT[I}-82148001G=A 0,005 0,002
13 CE13-TATC[14JAATC[1JATCT[3}-82148000C>T 0,005 0,002
13 CE13-TATC[14JAATC[1JATCT[3}-82147972G>A 0,005 0,002
13 CE13-TATC[15JATCT[3] 0,010 0.003
13 CE13-TATC[15]AATC1]ATCT[3}-82148097GTCT=del 0.010) 0.003|
14 CE14-TATC[14JAATCI2JATCTI3] 0,074 0,010 0.029
14 CE14-TATC[15JAATC[1JATCT]3] 0,005 0.002|
D16S539
Total sequence alleles 7
Total CE fragment alleles O
Alleles containing SNPs
outside STR-motif 2
Frequency Mepal /

Fi allele ML Bhutan
B B.010 5,610
k] 0.7 \ X
9 CEG—GATAEEIHHM?M 1
10 CE10-GAT) 0.038 0,068 0.118
10 CE10-GATA[10]-8635280TA>C
ik CETTI-GATA[TT] 0,300 0,237
1" CE11-GATA[11]-8635280TA>C 0.044 0,067
1 CE11-GATA[S)GACA[1]GATA[5]|-BBAS260TA>C 0,010
11 CE11-GATA[11]-86352607A>C—BE3525T1A>C
12 CE12-GATA[12] 0.235 0,077
12 CE12-GATA[12]-86352584G>C 0.005
12 CE12-GATA[12] 8635280TA>C 0.020 0.119
13 CE13-GATA[13] 0.118 0,021
13 CE13-GATA[13] 8635280TA>C 0.029 0.062
14 CE14-GATA[14] 0.005
14 CE14-GATA[14] 8635280TA>C 0,021
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<
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a
< D18S51
= Total sequence alleles 19
(@) Total CE fragment alisles 15
Alleles containing SNPs
oulside STR-motif [1]
Frequency
Frequency Mepal / Frequency |Total
|Fragmentallele  Jeguenccaligls NL Bhwtan  Pygmies |Frequency
10 D18551-CE10-AGAA[ 10JAA[1]AG]4] 0,005 0,002
11 D18551-CE1T1-AGAA]11]AA[1]AG]4] 0,020 0,005 0,008
12 D18551-CE12-AGAA12]AA[1]AG[4] 0,167 0,036 0,005 0,070
13 D18551-CE13-AGAA[13JAA[]AG]4] 0,069 0,227 0,025 0. 106
14 D1B551-CE 14—AGAA[1]AGCA[1JAGAA[1Z]AA[JAGH] 0,015 0,005
14 D1B551-CE14—AGAA[14JAA[1]AG4] 0,132 0,108 0.061 0.101
15 D1B551-CE15-AGAA[15JAA[1]AG[4] 0,162 0,180 0.131 0.158]
16 D18S51-CE16-AGAA[13]AGAT[1JAGAA[Z]AA 1]AG4] 0.020 0,007
16 D1BS51-CE16-AGAA[1B]AA[1]AG]4] 0,206 0,129 0217 0,185
16 D18551-CE16-AGAA[1E]AG[S] 0,005 0,005 0,003
7 DIBS51-CE1T-AGAA[TTIAATIAGH] 0,008 0.057 0.797 0117
18 D18551-CE18-AGAA[ 14]GGAA[1TAGAALIAAT]AGT4] 0.005] 0,002
18 D18551-CE18-AGAA[1BJAAM]AGI4 064 0,067 126 0.085
19 D18551-CE19-AGAA[19]AA[1]AG]4 025 0.103 41 0.080
20 D1B551_CE20_AGAAZ0JAA[1]AGI4 015 0.041 020 0,025
21 D18551-CE21 1 [1 % 010 0.015 040 0.022
2 mﬂ'm%ﬁ 010 0.015 0.008
23 D18S51-CE23-AGAA B3| AALTJAGA] 10 0,005 0,005
25 D18S51-CEZ5AGAA[ZS|AA[1JAGHA] 0,005 0,002
D195433
Total sequence alleles 20
Total CE fragment alleles 17
Alleles containing SNPs
outside STR-maotif L]
Frequency
Frequency Nepal / Frequency |Total
NL Bhutsn __ Pygmies _|Frequency |
TTCTT[TCCT]1] 015 005
1]TCCT(1] AT 059
ATCCT] 005 002
TCE T 0,045 0,015
TCI] 0.005 02|
CCT[1] 0.054 0.041 081 0.050/
[TCCT1] 0.015 025 0.013)
CE13-TCCT[12JACCT] ITCCT1] 0,260 0,242 187 0,223
13 CE13-T J3TCTTTCCT[ 0005 0.002/
132 ! CCTITTITCCT]1] 0,020 0.036 0.111 0.055]
TTCTITCE ] [ ] 0,237 0.138 0.5
14 CE14-TCCT@TCCCITCCTIACCTTCTTTCCT]Y) 000 0,003
4 CEV-TCCTN4[TCTT1[TCCT]1] ,005 0.002|
4.2 CE14.2-TCCT14JACCT]TTI[TCCT(1] 025 0.082 051 0.052]
5 CEVS-TCCTN4JACCT]TCTT]TCCT[1] 201 0.077 020 0.101
E CE15 ATTTECT]1] 038 0.170 101 0.102]
Cl TCTTTCCT[1] 029 0.031 025 0.029
ATTTCCT[1] 020 0,048 035 0,034
TETTITGE 1] 010 0,005 005
GG T] 0,008 0.005 0,000
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D21511
Total sequence alleles &3
Total CE fragment slleles 25

(@)
>
)
9
o
o
S
BN

Alleles containing SNPs
outside STR-motif 2
Frequency
Frequency Mepal / Frequency |Total

CE24 2-TCTA[SITCTG[B[TCTARTC1JA[[TCTAR[TCCA[]T

242 ATC[10] 0,005 0,002
CE26-TCTA[GITCTGIITCTAR|TATCJA[1]TCTARZITCCA[]T

26 ATC[E] 0.045 0015
CE27T-TCTAMITCTG[S[TCTAR|TATCIHJA[1]TCTARITCCA[1]T

27 ATC[11] 0,005 0,002
CE2T-TCTAMITCTGE[TCTAR|TATCIHJA[1]TCTARITCCA[TT

27 ATC[10] 0,049 0.010 0,020
CE27-TCTA[SITCTG[SITCTARITATCHIA[1TCTARITCCA[IT

27 ATC[10] 0,010 0.003]
CE27-TCTAGITCTG[SITCTARITATCHIA[1ITCTARITCCA[IT

27 ATCIE] 0,005 0.002|
CE28-TCTAMTCTGIE[TCTARITATCHIAINTCTARZITCCANIT

28 ATC[11] 0,137 0,072 0.217 0,143
CE28-TCTAISITCTGISITCTARTATCIIANTCTARITCCANIT

28 ATC[12] 0,005 0.002|
CEZE-TCTAS[TCTGIE[TCTARTATCHIA[[TCTAZITCCANT

28 ATC[10] 0.05 0,005
CE2E-TCTAB[TCTG[SITCTARTATCHIA[[TCTAZITCCANT

28 ATC[10] 0.010 0.003)
CE28.2-TCTASTCTGB|TCTARITATCHIA[TTCTAIZITCCA[T

82 [TATC[B[TA[1]TA 0,026 0.008
CE29-TCTAM[TCTGIE[TCTARTATCHIA[[TCTARZITCCANT

29 ATC[12] 0,186 0,098 0,10 0,129
CE29-TCTAMITCTGTITCTARITATCHJA[1]TCTARITCCA[T

29 ATC[11] 0.005| 0.002]
CE29-TCTA[SITCTG[E[TCTARITATCIA[1]TCTARITCCA[T

29 ATC[12] 0,005 0.002]
CE29-TCTA[SITCTG[E[TCTAR|TATCHJA[1]TCTARITCCA[T

29 ATC[11] 0,005 0.081 0.029|
CE29-TCTAGITCTGIS|TCTARTATC4JA[1]TCTARITCCA[1T

29 ATC[11] 0,049 0,149 0.085|

. ATCHJA[TTCTA[ZITCCA[1

29.2 JTATCIGITA[]TA 0.010 0,003
CE Uyl

30 ATC[13] 0054 0,041 0,051 0,049
CE30-TCTA[SITCTGE[TCTARITATCIJATCTARTCCAIT

30 ATC[13] 0,008 0,002
CE30-TCTASITCTGBITCTARTATCHIA[1[TCTARITCCA[T

30 ATC[12] 0,005 0,067 0.081 0,044
CE30-TCTASITCTGSITCTARITATCHJA[TCTARITCCA[IT

30 ATC[12] 0,132 0,082 0,072
CE30-TCTASITCTGEITCTARITATCIJA[ITCTARITCCAIT

30 ATC[11] 0,030 0,010
CE30-TCTA[TITCTGSITCTARITATCHJA[TCTARITCCA[IT

30 ATC[11] 0,005 0.031 0.012
CE30.2-TCTA[4[TCTG[E|TCTAR|TATCH]A[1]TCTA[2]TCCA[1

30.2 ITATCI1]TA{1]TATC2] 0,005 0.002
CE30.2-TCTA[S[TCTG[S|TCTARTATC4JA[1[TCTA[2]TCCA[1

30.2 JTATCI 11 TA[1TATC{2] 0,005 0.002]
CE30.2-TCTA[S[TCTG[B|TCTARTATC[3JA[1]TCTA[2]TCCA[1

30.2 JTATCI 11 TA[1TATC{2] 0.025| 0.008|
CE30.2-TCTA[S[TCTG[B|TCTARTATCM4JA[1[TCTA[2]TCCA[1

30.2 JTATCIO|TA[VTATC[2] 0,034 0,041 0.030| 0,035
CE30.2-TCTA[S[TCTG[TITCTA[Z]TATC4JA[1]TCTA[2]TCCA[1

30.2 ET 1 1]TAT 0,005 0.002]

: 1
30.3 TCTAZITCCA[]TATC[11] 0020  0.007
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< Frequency Mepsl/  Frequency [Total
(@) Fi allale ence allele NL Bhutan Pygmies _ |Frequency
‘CE31-TCTAMITCTGE[TCTARITATCHIA[TTCTARITCCAIT
31 ATC[14] 0,010 0,010 0,007
CEH-TCTAISITCTGIETCTAZTATCHJALTCTAIZITCCA[]T
31 ATC[13] 0,054 0,045 0,020 0,040
CE31-TCTASITCTGISITCTA[TATCHJA[]TCTARITCCA]T
31 ATC[13) 0,054 0,031 0,029
CE31-TCTASITCTGIE[TCTARTATCHJA[]TCTARITCCA[]T
31 ATC[12] 0,015 0,005
CEX-TCTAEITCTGTITCTARTATCIHANTCTAIZITCCA]T
31 ATC[12) 0,010 0,003
CE31-TCTA[TITCTGISITCTA[TATCHJA[T]TCTAZITCCA1]T
31 ATC[12) 0,005 0,010 0,005
CE31-TCTABITCTGIS|TCTA[TATCI4JA[1]TCTARITCCA]T
31 ATC[11] 0.021 0,007
CE31 2-TCTAS[TCTGS[TCTABTATCJA[ TG TAZ]TCCAL1
31.2 ITATCH2ITANITATCIZ] 0,005 0,005 0,003
CE31.2-TCTA[SITCTGE|TCTARTATCI3AIITCTARITCCAL
31.2 ITATC[ZITA[TATC[Z] 0,005 0,002|
CEH 2-TCTA[S[TCTGE[TCTAITATCI4JA [TCTA[ZITCCAL
31.2 ITATC11]TA[1TATC[Z] 0,083 0,052 0,005 0,050
CE31.2-TCTA[S[TCTG[7|TCTAR|TATCHJA[[TCTA[2ITCCA[1
31.2 [TATCU[TA[1[TATC[2] 0.010 0,003
CER-TCTAISITCTGIEITCTA[STATCJALTCTAZITCCA[]T
32 ATC[14]) 0,010 0,003
CE32-TCTASITCTGISITCTA[TATCHJA[1]TCTAZITCCA]T
32 ATC[14] 0,005 0,002
CE32-TCTA[B[TCTGE]TCTARTATC4JA[1]TCTARITCCA[1]T
32 ATC[13) 0.005 0.002
CE32 2-TCTA[S[TCTG[E|TCTAR|TATCHJA[1[TCTAR]TCCA[
32.2 ITATC 2ITA[1ITATC2] 0,083 0,088 0,061 0,077
CE32.2-TCTA[SITCTG[TITCTA[SITATCI4JA[ITCTA[2]TCCA[1
322 ITATC1ITA[1ITATC[Z) o00s|  op02
TTCTARZITCCAT]
33 E»;Tqi 1 . 0.005 0.002
33 2-TCTA[S|TCTGEITCTARITATCA AL TTCTAR|TCCA]
33.2 ITATC1TA[1]TATC[2] 0,020 0,041 0,005 0022
CE33.2-TCTA[S[TCTGETCTATATCI4JAN [TCTAJ2ITCCAL
332 ITATCIIITACCITATCITA[1]TATCI2] 0,005 0,002/

CE33.2-TCTA[S|TCTG[TITCTA[I|TATCI4JA[[TCTA[2]TCCA[1

332 [TATC 1[TAT 0,005 0,002/
CEEH%HME&TWMWiWH

34 TATC[12) 0,015 0,005|
CEM-TCTA[1]TCTG{SITCTARTATC4JA{1|TCTARITCCA[1)]

34 TATC[11] 0.051 0.017
CE34.1-TCTA[S|TCTG[EITCTA[ITATCI4JA[[TCTA[2]TCCA[

34.1 A TC[TAT! 1TATC| 0,005 0,002
i TCA

34.2 ATC[ 1JTAT : 0,005 0,002/
T i

35 TATC[13] 0,005 0,002
CE35-TCTA[10]TCTGTITCTAZITATCAJANTCTA[ITCCA[1]

35 TATC[12) 0,005 0,002
CE35-TCTA[12]TCTGHITCTARITATCHIAN[TCTARITCCA[1)

35 TATC[1. 0,005 0,002
L= 1 1 CCA[

35.1 ATATC{12]-19182101.1->T 0,005/ 0.002|
CE35.2-TCTA[B[TCTG[E[TCTA[ITATCI4}A1[TCTA[2]TCCA[1

35.2 [TATC14[TA{1[TATC[2] 0,005 0,002
CE36-TCTA[11]TCTG[S[TCTATATCJA[|TCTA[]TCCA[1]

36 TATC[13] 0,005 0,002
CE3-TCTA[VTCTG[TITCTARZITATCI A [TCTA[ZITCCA[1)]

36 TATC{12) 0020 0007
CE38-TCTA[S|TCTG[E[TCTA[XTATCI4JA[1TCTARITCCA{]T

36 ATCOATC] [TATC{IATCTATCTAN|TATC[2) 0,025/ 0,008/
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FGA
Total soquonao allclos

24

Total CE fragment alisles 22

Alleles containing SNPs

outside STR-matif 0
Frequency
Frequency Mepal / Frequency |Total

F allele ence allele NL Bhutan Pygmies  |Fi
CE17-AAGG[1]AAGA[1]AAGGEAGAAGIAGAGL 1 IAAAA[T]AA

1T GA[3] 0,0:40/ 0,013
CE 18-AAGG[1]AAGA[1]AAGG[3AGAA[10]AGAG[JAARA[ 1A

18 AGA[3) 0,077 0,025
CE10-AAGG[1JAAGA[1[AAGCBAGAAT1JAGAG] JAARATTIA

19 AGA[] 0,059 0,003 0,058] 0,069
CE19.2-AAGG[1|AAGA[1AAGG2AGAA[1 SJAAAA[TIGA[JAA

19.2 GA[2] 0,005 0,005 0,003
CEI-AAGG[]AAGA[1]AAGG[IAGAANZAGAG1]AAAA[1]A

20 AGA[] 0.108 0.046 0,051 0,060
CEZ1-AAGG[1JAAGA[1[AAGCEAGAA[ TIAGAG] JAARATTIA

21 AGA[3) 0,176 0,052 0,086 0,108

21.2 CE21.2-AAGG[1JAAGA[1JAAGG[3AGAA[18]GA[1]AAGA[2)] 0,005 0,002
CE21.2-AAGG[1JAAGA[1JAAGGIAGAA1 SAAAAIGA[1]AA

21.2 GA[2] 0,005 0,010 0,005
CEZ-AAGG[AAGA[1|AAGCEAGAA 1A AGAGJAARA[TA

22 AGA[Z] 0,106 0,103 0,288 0,196
CE22 1-AAGG[1JAAGA[1AAGG[IJAGAANA]A[TJAGAG]1]AA

22.1 AA[1JAAGA[] 0,005 0,002
CEZ I-AAGG[1AAGA[TAAGGIAGAATBJAARATIGA[1JAA

222 GA[2] 0,005 0,031 0,012
cm.z—m1mﬂ1 JAAGG[3JAGAA[14JAAAG[1JAGAA[1]|

322 0.020| 0.007
CMI|W1WW15MABHMM
AGA[3] 0,157 0,186 0,167 0,160

0,005 0,005 0,003 |

AGA[3) 0.137 0,180 0,126] 0,148]
CEZ4 2-AAGG[TAAGA[IAAGGRIAGAA BJAARATIGATTIAA

24.2 GA[Z] 0,026 0,008 |
CE24.2-AAGG[1JAAGA[1JAAGGIIJAGAA[1BJAAAG] 1JAGAAL1)|

242 AAAA[JGAL1JAAGAI2) oot o003
CE25-AAGG[1JAAGA[1|AAGG[IAGAAIZIACAA[ TJAGAA[ 14]A

25 GAG[1JAAAA[1JAAGA[3] 0,005 0,002
CE25-AAGG(1JAAGA[1]AAGG[IJAGAA| 1S|AGAG[1JAGAA[T]A

25 GAG[1JAAAA[1]AAGA[3] 0,005 0,002
czmnw1wﬁawrmamip

25 0003 0077 0,051 0,074

25, 0.005 0.002

26 GAG[1JAAAA1]AAGA[3] 0,005 0,002
CE26-AAGG(1JAAGA[1]JAAGGIIJAGAABIGOAA[TJAGAA[1 1)A

26 GAG[1JAAAA[1JAAGA[3] 0005| 0002

26 0,010 0,003

26 0.028 0,048 0,040 | 0,038

26, 0,005 0,002

1

a7 GAG[1JAAAA[1]AAGA[3] 0,015 0,008
CE27-AAGG(1JAAGA1JAAGG[IAGAABIGGAA[1JAGAAL1 Z]A

27 GAG1JAAAAL1JAAGAL3)] 0010| 0003
CE27-AAGG(1AAGA[1JAAGG[IAGAAZIACAAl 1JAGAA[16JA

27 GAG1JAAAA[1JAAGA[3) 0,005 0,002
CE27-AAGG(1JAAGA[1 JAAGG[IAGAA[19JAGAG{TJAAAA 1A

27 AGA[T] 0.010 0,015 0,008
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<
—
(V]
)
(a8
) Frequency
c Freguency Mepal / Frequency |Total
U allele ML Eutan Pygmies  |Frequency |
CE20-AAGG[1|AAGA| 1 AAGGI|AGAABIGGAA TJAGAATAIA
20 GAG[1JAAAA[AAGAL3] 0,005 0,002
CE3D-AAGG]1|AAGA| 1 AAGGII|AGAAZTIAGAG] TAGAATIA
30 GAG]1JAAAA1]AAGAL] 0,005 0,002
CEA5 2-AAGH 1|AAGA[1]|AAGGS|AGAA[S|AGGA[SIAGAA[13
45.2 JAGACISACAAN 4JAAAA 1 CA[ 1 JAAGAIS] 0010 0,003
Thiz adiele is longer than 300 bp and can only be complelaly analysed using paied-end dala
PentaD
Total sequence alleles 24
Total CE fragment alieles 18
Alledes containing SMPs
outside STR-mabif [
Frequency
Frequency Mepal / Frequency |Total
ML Bhutan Pygmees  |Frequency
0202 0.067
0,005 0,002
0.051 0.017
0.005 0.005 0.076 0,029
0.031 0.015 0,015
0.005 0.057 0.145 0,068
0.005 0,002
021 021 0.217 0213
0010 0,003
0,034 0,012
0.088 0.103 0.081 0,09
10 CE10-AAAGA 10JAAAAA 1 |-43636331 T=G 0.015 0.005 0.007
11 CE11-ARAGA[11|AARAA1] 0,127 0227 0,071 0,141
11 CE11-AAAGA[11JAAAAAl 1 HI3636331 T=C 0,005 0.002
12 CE1Z-AAAGA[TIAARANT] 0.25 0.201 0061 0,163
12 CE12-AAAGA[13] 0,005 0,002
122 CE12.2 1 1] 0.015 0,005
Mﬁmﬁwm 0,981 D088 u,m:TI 0,106
13 CE13-AAAGA[14] 0,005 0,002
14 CE1 14] 1 0.058 0.052 0005/ .039
T4 Eld1 B TIAAAAAT] 0,005 5,002
1 CE15-AAAGA[15]AAAAALY 0,025 0.010 012
1 CE16-AAAGA[1EJAAAAAL | 0005 002
i CE15-AAAGA| 1EJAAARAT 0,005 002
PantaE
Total sequence alleles 19
Total CE fragment alleles 18
Alldes containing SNPs
outside STR-mobif L]
Frequency
Frequency Mepal | Frequency |Totsl
Fragment allele Sequence allsle NL Bhutan __Pygmies |Frequency |
[ CES-TTTTL]S] 074 L0268 101 087
7 CET-TTITC{7] 172 031 LOTE 094
B CEB-T 8] 005 005 268 ).062 |
] CEo-TTTTCHHl _ 020 0.00¢ 101 0.043]
10 CE10= 10§ 078 01 086 | 060 |
il CE11- e 083 7! 00S| ).081 |
12 CEAZ-TTTTCIO[TTTTA[T]TTTTC[1] 01 005
12 CE12- 12) 151 113 088 131
13 CE1}- 13] 068 052 L 136] 096
d CE14-TTTTCl14) DB 077 D51 ).070]
15 CE15-T111C[15] 034 063 D51 058
18 Tl FF‘I'I"I'I'ETGI 049 136 018 ),067 |
7 CET=TTTTC ] i 020 050
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THO1

Total sequence alleles 14
Total CE fragment alleles 8
Alleles containing SNPs

outside STR-motif 5
Frequency
Frequency Nepal / Frequency |Total
Fragment allele Seguence allele INL Bhutan Pygmies |Frequency
5 CE5-TGAA[5) 0,010 ,003
6 CEB-TGAA[G] 0.201 0,048 0,056] ,1[12|
7 CE7-TGAA[1]TTAA[1]TGAA[5] 0,005 ,002
7 CE7-TGAA[7] 0,196 0,258 0,404 0,285
7 CE7-TGAA[T]-2171244C>T 0,025| 0,008
7 CE7-TGAA[7]-2171200C>A 0,005 0,002
G CEB-TGAA[8]-2171115G>T-2171244C>T 0,015 0,005|
8 CEB-TGAA[8] 0127 0,098 0,116 0,114
8 CE8-TGAA[8]-2171244C>T 0.101 0,034
9 CES-TGAA[9] 0,123 0,479 0,197 0,263
9 CES9-TGAA[9]-2171244C>T ,010 0,003
9.3 CE9.3-TGAA[6]TGA[1]TGAA[3] 0,333 0,103 ,020 0,154
10 CE10-TGAA[10] 0,010 0,010 .035] 0.018
K CE11-TGAA[11] 015 0,005
TPOX
Total sequence alleles 12
Total CE fragment alleles 7
Alleles containing SNPs
outside STR-motif 5
Frequency
Frequency Nepal / Frequency |Total
Fragment allele | INL Bhutan Pygmies  [Frequency |
B CEB-TGAA[6) 0,091 0,030
B CEB-TGAA[8] 0,461 0,443 0,273 0,393
B CE8-TGAA[8]-1489601G>T 0,005 0,021 0,008
B CEB-TGAA[8]-1489557G>A 0,030 0,010
B CEB-TGAA[8]-1489556C>T 0,121 0,040
9 CES-TGAA[9] 0,113 0,129 0,152 0,131
9 CES-TGAA[9]-1489544C>A 0,111 0,037
9 CE9-TGAA[9]-1489557G>A ,015 ,005
0 CE10-TGAA[10 064 015 El 052

CE11-TGAA[11 333 371 1121 275

CE12-TGAA[12] 020 ,021 ,010 ,017

CE13-TGAA[13] ,005 0,002]
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vWA

Total sequence alleles

24

Total CE fragment alleles 9

Alleles containing SNPs
outside STR-motif

3

Frequency
Frequency Nepal / Frequency |Total

Fragment allele uence allel INL Bhutan Pygmies |Frequency
11 CE11-GATG[2]GATA[1]JGATG[1]GATA[7]GACA[3]GATA[1] 0,010 0,003

CE14-GATG[4]GATA[3]GATG[1]GATA[3]GACA[4]GATA[1]GA
14 CA[1]GATA[1]-5984116A>T-5984121C>T-5984134T>C 0.093 0.139 0.051 0.094

CE14-GATG[4]GATA[3]GATG[1]GATA[2]GACA[S]GATA[1]GA
14 CA[1]GATA[1]-5984116A>T-5084121C>T-5984134T>C 0,051 0,017
14 CE14-GATG[2]GATA[1]GATG[1]GATA[10]GACA[3]GATA[1] 0,010 0,020 0,010
14 CE14-GATG[2]GATA[11]GACA[4]GATA[1] 0,015 0,005
14 CE14-GATG[2]GATA[1]GATG[1])GATA[S]GACA[4]GATA[1] 0,051 0,017

CE15-GATG[5]GATA[3]GATG[1]GATA[3]GACA[4]GATA[1]GA
15 CA[1]GATA[1]-5984116A>T-5984121C>T-5984134T>C 0,005 0,002
15 CE15-GATG[2]GATA[1]GATG[2]GATA[10]GACA[3]GATA[1] 0,010 0,003
15 CE15-GATG[Z]GATA[1]GATG[1)GATA[11]GACA[3IGATA[1] 0,074 0,045 0,040
15 CE15-GATG[2]GATA[1]GATG[1]GATA[10]GACA[4]GATA[1] 0,034 0,010 0,121 0,055
16 CE16—-GATG[2]GATA[1]GATG[1]GATA[12]GACA[3]GATA[1] 0,034 0,026 0,086 0,049
16 CE16-GATG[2]GATA1]GATG[1]GATA[11]GACA[4]GATA[1] 0,147 0,165 0,146] 0,153
17 CE17-GATG[2]GATA[1]GATG[1]GATA[13]GACA[3]GATA[1] 0,015 0,005 0,045 0,022
17 CE17-GATG[2]GATA[1]GATG[1]GATA[12]GACA[4]GATA[1] 0,275 0,314 0,141 0,243
18 CE18-GATG[2]GATA[1]GATG[1]GATA[14]GACA[3]GATA[1] 0,025 0,008
18 CE18-GATG[2]GATA[1]GATG[1]GATA[13]GACA[4]GATA[1] 0,196 0,216 0,096 0,169
18 CE18-GATG[2]GATA[1]GATG[1]GATA[12]GACA[SIGATA[1] 0,010 0,003
18 CE18-GATG[2]JGATA[1]GATG[1]GATA[11]GACA[BJGATA[1] 0.025 0.008
19 CE19-GATG[2]GATA[1]GATG[1)GATA[15]GACA[3IGATA[1] 0,005 0,002
19 CE19-GATG[2]GATA[1]GATG[1)GATA[14]GACA[4]GATA[1] 0,113 0,088 0,025 0,079
19 CE19-GATG[2]GATA[1]GATG[1])GATA[13]GACA[S]GATA[1] 0,005 0,002
20 CE20-GATG[2]GATA[1]GATG[1]GATA[15]GACA[4]GATA[1] 0,005 0,010 0,005 0,007
20 CE20-GATG[2]GATA[1]GATG[1]GATA[14]GACA[S]GATA[1] 0,005 0,002
22 CE22-GATG[2]GATA[1]GATG[1]GATA[14]GACA[TIGATA[1] 0,020 0,007

For every locus the table displays the observed sequence alleles and respective allele frequencies for the three populations tested.
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Supplemental Figure 7. Coverage and within locus allele balance for the samples

used for stutter analysis

A. Average allele coverage and percentage of samples reaching the aimed allele coverage of 1000 reads

Locus Average allele coverage Allele percentage coverage >1000
CSF1PD 8512 100%
D251338 2596 86%
D351358 5390 100%
D55818 7635 100%
D75820 5354 90%
DES1179 4416 92%
0135317 7901 100%
D165539 5279 96%
D18551 5878 100%
D195433 4476 99%
D21511 6700 100%
FGA 4024 98%
PentaD 5271 99%
Pentak 5411 93%
THO1 5743 98%
TPOX 7074 100%
VWA 4389 89%
B. Within locus read balance for each marker grouped by the difference in length between both alleles
Within locus read balance CSF1PO Within locus read balance D251338
R O Short / Long allele N O Short / Long allele
§ g as o
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? : . —
1 T e
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g o AERNEREE -
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] [}
0 1 2 3 4 [ 0 2 ] 6 8 10 12
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Within locus read balance D351358 Within locus read balance D55818
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2 o 15 L
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o
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Within locus read balance D135317

Within locus read balance D165539
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some loci, large length differences between the two dlleles can result in stronger within marker allele inbalance.

Supplemental Figure 8. Stutter characteristics for the 17 STRs of the prototype
Powerseq™ system and the Powerplex® Fusion system
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Comparison of stutter characteristics for the MPS-based Powerseq™ system and the CE-based Powerplex® Fusion system. For every marker,
two graphs display the average stutter ratio for every allele and the Coefficient of Variance (CV) for the stutter ratio of each allele. Since for
MPS-based analysis some alleles of the same CE-length are represented by distinct sequence alleles, the stutter ratios and CV of these dlleles
are displayed separately. It is apparent that in general, stutter ratios of the MPS-based analysis are similar to the CE-based stutter ratios except
for CE-alleles that are subdivided into several sequence dlleles. The subdivided sequence dlleles of the same total CE-length often have different
stutter ratios which results in a lower variation of stutter ratio per allele compared to the combined CE-allele. This can be observed from the
generally lower values for the CV of the stutter ratio for the sequence alleles.
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Supplemental Figure 9. A three locus hypothetical example illustrating our
method for the calculation of the proportion of a minor contribution in a

mixture
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A. The sequence read profiles for three loci of a single two-person mixture
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X-axis shows allele number
Y-axis shows number of sequence reads cbserved

X-axis shows allele number
‘Y-axis shows number of sequence reads observed

B. Summary tables showing the read numbers of all unique alleles and stutters that passed all quality filters

Locus 1 Locus 2

M Reverse strand reads
M Forward strand reads

X e e 2 o & &

X-axis shows allele number
Y-axis shows number of sequence reads observed

Read interpretation of Locus 1
(Please note that in this example we only consider +1 or -1 stutters)

Read interpretation of Locus 2
(Please note that in this example we only consider +1 or -1 stutters)

None of the possible minor alleles overlap with stutters or with
major alleles

One minor allele (12) is visible. There is either only one
{homozygous) minor allele, or the second minor allele overiaps the
maijor. Only clear heterozygous minor alleles are used for the
caleulation which is not the case here

We use both minor allele (26 and 28) reads for caiculation Reads from this minor allele are not used for calculation

C. Calculation of the proportion of the minor contribution

Average minor allele propartion: (0,0448 + 0,0388 + 0,0369) / 3 = 0,041
Total minor contribution in profile: 0.0401 * 2 * 100(%) = 8%

Forward Reverse Proportion Forward Reverse Proportion Forward Reverse Proportion
strand strand Allreads of total locus strand strand Allreads of total locus strand strand Allreads of total locus
Alleles  reads  reads reads P i Alleles reads  reads i reads Alleles reads  reads 1" reads P

21 16 14 30 0.0090 stutter 11 22 18 40 0.0118 stutter 14 1 4 5 0.0017 stutter
22 760 740 1500 0.4478 major 12 135 145 280 0.0824 minor 15 50 60 110 0.0369 minor
23 28 32 60 0.0179 stutter 13 24 26 50 0.0147 stutter 16 4 6 10 0.0034 stutter
24 710 690 1400 0.4179 major 14 1510 1480 3000 0.8824 major 18 110 140 250 0.0838 stutter
25 13 17 30 0.0090 stutter 15 14 16 30 0.0088 stutter 19 680 720 1400 0.4690 major
26 74 76 150 0.0448 minor Total 1705] _ 1685] 3400 20 580 610 1200 0.4020 major
27 15 15 30 0.0090 stutter 21 5 5 10 0.0034 stutter
28 64 66 130 0.0388 minor Total 1440  1545] 2985
28 :] 12 20 0.0060 stutter

Read interpretation of Locus 3
(Please note that in this exampie we only consider +1 or -1 stutters)

Because of the high read count of allele 18, this allele was
interpreted as a minor allele + stutter, the stutter influences the
read-count of this allele and allele 18 can therefore not be used for
a reliable calculation of the proportion of minor contribution. Allele
15 remains as one of the heterazygous minor alleles and can be
included in the ion of the ion of minor ’

Only allele 15 is used for the calculation
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FDSTools - Forensic DNA Sequencing Tools for MPS data analysis

Abstract

Massively parallel sequencing (MPS) is on the advent of a broad scale application in
forensic research and casework. The improved capabilities to analyse evidentiary traces
representing unbalanced mixtures is often mentioned as one of the major advantages
of this technique. However, most of the available software packages that analyse forensic
short tandem repeat (STR) sequencing data are not well suited for high throughput
analysis of such mixed traces. The largest challenge is the presence of stutter artefacts
in STR amplifications, which are not readily discerned from minor contributions.
FDSTools is an open-source software solution developed for this purpose.The level of
stutter formation is influenced by various aspects of the sequence, such as the length
of the longest uninterrupted stretch occurring in an STR. When MPS is used, STRs
are evaluated as sequence variants that each have particular stutter characteristics
which can be precisely determined. FDSTools uses a database of reference samples to
determine stutter and other systemic PCR or sequencing artefacts for each individual
allele. In addition, stutter models are created for each repeating element in order
to predict stutter artefacts for alleles that are not included in the reference set. This
information is subsequently used to recognise and compensate for the noise in a
sequence profile. The result is a better representation of the true composition of a
sample. Using Promega Powerseq™ Auto System data from 450 reference samples
and 31 two-person mixtures, we show that the FDSTools correction module decreases
stutter ratios above 20% to below 3%. Consequently, much lower levels of contributions
in the mixed traces are detected. FDSTools contains modules to visualise the data in
an interactive format allowing users to filter data with their own preferred thresholds.

Introduction

Analysis of Short Tandem Repeats (STRs) has been a successful forensic tool in
the past two decades. The comparison of STR profiles from forensic DNA evidentiary
traces with reference samples and DNA databases has provided essential information
in many forensic cases. [ |] Standard practice is to use Capillary Electrophoresis (CE) to
analyse STR length variation. In recent years, Massively Parallel Sequencing (MPS) was
introduced as a new method to analyse STRs and other forensic DNA markers [2,3].
MPS enables the simultaneous detection of both length and sequence variation of STRs,
which increases the discriminatory value substantially [4,5,6]. The output of CE consists
of peaks reflecting fluorescent signal intensities with their own respective shapes and
peak heights. The output of MPS data analysis consists simply of read counts of the
observed sequences. Both methods can suffer from the occurrence of PCR artefacts
such as STR stutters [/]. This especially complicates the analysis of STR profiles coming
from multiple contributors, which is common in forensic evidentiary traces. [8] The
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level of stutter formation depends on a number of distinct aspects of the sequence,
including the A/T content of the repeat unit and the number of consecutive repeat
units occurring in an STR [9]. Since any specific STR length identified by CE can consist
of multiple different sequences, these CE-identified length variants show a larger
variation in measured stutter percentage than individual sequences analysed through
MPS. This decreased variation in stutter percentage for MPS STR data may aid in the
interpretation of mixtures [2], as it allows for a better prediction of stutter behaviour,
which can be used to filter the data for stutter products. Existing software packages for
the analysis of STR sequencing data [ 10,1 1,12] do not support extensive filtering and
correction of systemic PCR and/or sequencing errors and therefore seem less suited
for analysis of mixed DNA samples. This prompted us to develop a software package
that harbours the following features: |) characterisation and correction of noise in
the sequencing data caused by PCR stutter or other systemic PCR and/or sequencing
errors; 2) visualisation of sequencing data as comprehensive profiles; 3) filttering of data
in graphs and tables with user definable thresholds and 4) open-source accessibility.
Forensic DNA Sequencing Tools (FDSTools) is available via the Python Package Index
(either by manual installation or by using the command ‘pip install fdstools"). We assess
the performance of FDSTools on 3| two-person mixtures genotyped via the Promega
Powerseq™ Auto System for which we first generated a reference dataset of 450
samples.

Material and Methods

Sample preparation

PCR products and sequencing libraries were prepared as described previously
[2] using a prototype Promega Powerseq™ Auto System containing 23 STRs and
amelogenin. A set of 450 Dutch samples [13] and 31 two-person mixtures were
amplified and sequenced. The mixtures consisted of three combinations of two donors
selected randomly from a pool of unrelated individuals, which were mixed in different
ratios. The minor components in the mixtures contributed 0.5% (six mixtures), 1% (six
mixtures), 5% (four mixtures), 10% (six mixtures), 20% (six mixtures) and 50% (three
mixtures).

Since the mixtures were used to test the performance of the software and also
to determine analysis thresholds that are fit for purpose, we balanced the influence
of varying DNA inputs in the PCR and increased drop-out due to low DNA input.
This was achieved by the use of a minimum of the minor component of 60 pg in the
0.5%, 1% and 5% mixtures, resulting in a total DNA input of 12 ng, 6 ng and |.2 ng,
respectively (60 pg resulted in less than 20% drop-out in the validation of Powerplex
6C [14]). The same total DNA input of 1.2 ng was used for the 5%, 10%, 20% and
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50% mixtures (resulting in 120 pg and 240 pg of the minor components in the 0%
and 20% mixtures, respectively). The DNA input was 0.5 ng for single donor samples.

The genotypes of the donors used in the mixtures were known, which enables
the identification of drop-in and drop-out allele calls. Paired-end sequencing data of all
amplicons was generated using the MiSeq® Sequencer (lllumina).

Initial data processing

In Figure 1, the main tools of the FDSTools package and their role in the data
analysis pipeline are displayed. The tools can be split into three functional groups: tools
for reference database creation, tools for reference database curation (data quality
assessment) and tools for case sample filtering and data interpretation. In addition, the
package contains initial data processing tools such as TSSV [10] that are common to
reference database samples and case samples.

Figure |.Flow chart of the analysis process, showing the main tools of FDSTools

6tabase curation \

ﬁeference database

/| :
Reference —> BGAnalyse
samples .~ \

BGMerge }(.,

H BGEstimate

\ / K BGHomStats
Corrected Interpreted T =]
ey . —

Sample filtering and interpretation

BGCorrect

Flow chart showing the main tools (blue rectangles) of the FDSTools package and their roles in the data analysis pipeline. The output of each
tool can be visudlised using the Vis tool (not shown).
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Paired-end read merging

Using paired-end sequencing, forward and reverse strand molecules of each
amplicon were sequenced from both ends.The first ~300 nucleotides from either end
were obtained. These read pairs were merged into a consensus read by aligning the
read pair such that the largest possible overlap is obtained while allowing for up to
33% mismatches in the overlapped region. Most amplicons were about 300 base pairs
in length and provided fully complementary read pairs.

With STR amplicons that are longer than 300 bp, a problem may occur when
both reads end in the middle of the STR structure and the pair may be merged into
a truncated STR sequence. A modified version of FLASH [.2.11 [I5] (available via
github.com/Jerrythafast/FLASH-lowercase-overhang) was used to mark the bases that
were not in the overlapped region in lower case in the consensus read. This enables
detection of truncated STR sequences in downstream analysis.

Linking reads to loci and alleles

The merged reads are linked to specific loci and alleles by the TSSV tool, which is a
wrapper around a simplified version of the TSSV [10] program called TSSV-Lite. TSSV
links reads to loci by scanning the reads for the sequences flanking the STR loci used.
The flanking sequences of each locus, that usually represent the most 5" nucleotides
of the primers, are provided to FDSTools in a library file, together with various other
details about the loci used. Supplementary File | represents the library file used in this
study. The file contains a description for the contents of each section.

Each read is scanned for these flanking sequences by computing alignments. In
this study, the flanking sequences were |18 nucleotides in length and two substitutions
(or two inserted or deleted bases) per flank were allowed in the alignment. Reads
are categorised as ‘unrecognised’ if no flanking sequence is found. Furthermore, both
flanking sequences are required to have at least one upper case letter, which ensures
that overlapped reads that are potentially truncated are categorised as ‘unrecognised’
as well. Reads in which only one flanking sequence is found with at least one upper
case letter get linked to a locus but flagged as ‘no start’ or ‘no end’ depending on
whether the left or right flank is missing, respectively (optionally, these reads can be
written to separate fasta or fastq files).

The main output of TSSV is a text file with tab-separated values. The file contains
one line for every unique sequence of each locus.The columns include the name of the
locus, the sequence, and the number of reads carrying this particular sequence. Read
counts are given separately for the forward and reverse strand.
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TSSV includes additional options for filtering sequences that are seen too few
times and sequences with a length outside a given range (e.g, primer-dimers). This
range can be specified separately for each locus. Furthermore, filtered sequences can
be aggregated into a single ‘other sequences’ category for each locus. In this project,
only singletons (i.e., sequences with only one read) were aggregated to the ‘other
sequences’ category.

Building a reference database

One function of FDSTools is the building of a reference database. Such a database
can be used to obtain estimates of recurring allele-specific systemic noise. Here, 'noise’
refers to the complete collection of sequences observed in a sample, except the
sample’s true allelic sequences. Noise includes any artefact deriving from the PCR as
well as the sequencing (such as PCR stutter or single-nucleotide errors). Additionally,
based on the reference data a statistical model can be derived that aims to predict
stutter ratios for alleles not present in the reference set.

The creation of a reference database involves various tools included in the FDSTools
package, which will be discussed in the next sections. In addition to these separate
tools, FDSTools offers the Pipeline tool, which conveniently integrates the entire data
analysis pipeline. Users are advised to use Pipeline as it removes the complexity of
having to run several separate tools and to combine their output. Pipeline takes a
simple configuration file containing the analysis parameters and automatically runs the
appropriate tools.

Building a reference database is a two-phase process. In the first phase, the
reference samples are analysed in a global manner to identify their alleles and reject
those samples in which the alleles are not readily identified. In the second phase, the
systemic noise of each of these alleles is analysed in detail.

Allele calling for reference samples

Determining the alleles of single donor reference samples is a fairly straightforward
process because these generally represent the one or two most abundant sequences
for any locus. FDSTools includes Allelefinder to call alleles this way. It is applied after
Stuttermark, which is described below.A number of thresholds are used to guard against
including alleles of potential low-level contaminations, which are outlined in Figure 2.
For heterozygous loci, a second allele is only called if it passes the allele threshold,
which is defined in this project as 30% of the read count of the most frequent allele at
the same locus. As we expect no stutter above 30% [2], this threshold separates the
alleles from noise.No alleles are called at a locus when additional sequences occur that
have a read count below the allele threshold but above the noise threshold (which is
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defined as 15% of the most frequent allele in this project) or if a third sequence passes
the allele threshold. If more than two loci in the same sample fail to give a result for
these reasons, the overall quality of the sample is considered too poor to report any
alleles. Additionally, Allelefinder can be configured to call at most one allele at haploid
loci.

Figure 2. Thresholds used by Allelefinder to call alleles in reference samples

100 Most frequent allele (100%)
90
80
70
60
50
40
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Sequence variants with a read count above the allele threshold are called as alleles. The four lighter-shaded bars represent stutter variants (as
recognised by Stuttermark), which are ignored by Allelefinder.

The three potential pitfalls are 1) PCR stutter artefacts that exceed the noise
threshold; 2) strong read count imbalance for heterozygous alleles, which may be the
result of e.g,, primer=site sequence variants and 3) autosomal trisomy, which is rare.To
deal with the problem of stutter, each sample was analysed with Stuttermark [2] before
calling alleles. With Stuttermark, sequences that are in a stutter position of another
sequence while having a read count below a user-supplied percentage with respect to
the other sequence are marked as ‘stutter’. Sequences that have a read count that is
too high to be explained by stutter alone will not be marked as ‘stutter’, as they may
coincide with a genuine allele. The thresholds used here were 30% for —| stutter (loss
of a repeat unit) and 10% for +1 stutter (gain of a repeat unit). For —2 stutter products,
a 30% threshold of the —| stutter product is used. Sequences that are marked as
‘stutter’ are completely ignored by Allelefinder.

Allelefinder produces the list of alleles and a report detailing for which samples and
loci allele calling is rejected and for which reasons.

Estimating average allele-specific systemic noise

For each allele, a profile of recurring systemic noise, including PCR stutter products
as well as any other ‘side products’, can be generated based on the reference data.
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Noise profiles are always computed separately for forward and reverse reads, because
strand bias may exist in the sequencing technology used. Profiles are also computed
separately for each locus, under the assumption that noise production is not influenced
by alleles of other loci. The level of noise is expressed as the number of noise reads as
a percentage of the number of reads of the parent allele. In the context of PCR stutter
analysis, this quantity is often referred to as the 'stutter ratio’, despite the representation
as a percentage of the parent allele. We use the generalised term ‘noise ratio’ (also
represented as a percentage of the parent allele) to account for all other systemic
noise as well.
Noise ratio = Noise reads X 100%
Allele reads

In homozygous samples, the noise ratio can be calculated by dividing the number
of reads of a non-allelic sequence by the number of reads of the allele. Allele-specific
noise profiles are readily computed from homozygous samples carrying this allele by
scaling the read counts in each sample such that the parent allele is 100 and averaging
the noise ratios for each noise sequence. These per-allele noise statistics and other
statistics, such as the standard deviations of the noise ratios can be obtained using
BGHomStats. In heterozygous samples the extraction of noise sequences is more
complex, because it has to be determined which proportions each allele contributed
to the observed noise sequences. We assume that noise in heterozygous samples
corresponds to the sum of the noise profiles of the two alleles, after the application of
a scaling correction to account for differences in the amount of each allele amplified.
This is needed as even for heterozygous allele pairs, PCR efficiency may vary due
to primer binding site sequence variation or STR length. [16] To extract noise from
heterozygous reference samples an iterative approach was taken and implemented in
the BGEstimate tool in FDSTools.

In essence, the algorithm, which is discussed in more detail in Supplementary Text
I, seeks a non-negative least squares solution to the matrix equation A P = C. In this
equation, C is an N x M matrix of constants derived from the read counts in the
reference samples, A is an N x N matrix summarising the allele balance in the samples,
and P is an N X M matrix containing the estimated profiles of systemic noise. N is
the number of unique genuine alleles among the reference samples and thus also the
number of profiles produced and M is the total number of unique sequences observed.

Matrix C is computed once at the start of the algorithm. Each row in C corresponds
to one allele and contains the sum of the read counts of all samples that have that
particular allele, after scaling the allele to 100 reads for homozygous samples and 50
reads for heterozygotes. The noise profiles in P are initialised with the assumption that
no systemic noise is present, i.e,, all elements are set to O, except for the elements that
correspond to the actual alleles, which are set to 100.
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The algorithm then proceeds by repeatedly re-estimating the allele balance matrix
A while reading cross-contributions between the alleles from the current profiles P and
subsequently re-estimating P by finding a non-negative least squares optimal solution
to A P = C.The values thus obtained in P are the average noise ratios of all observed
systemic noise for all alleles (i.e., each row in P contains the noise profile of one allele).

To avoid noise from one allele being incorporated in the noise profile of another
allele, a minimum of three different heterozygous genotypes per allele was used in this
study. A threshold can be set for the minimal read count of noise to consider and the
minimal percentage (we used 80%) of reference samples with the same allele which
should contain the same noise before it is included in the noise profile. Each of these
parameters can be set using various options of the ‘fdstools bgestimate’ command.

Relating the amount of stutter to repeat length

With the methods outlined above, profiles of systemic noise were obtained for each
allele present in the reference set. However, one would also like to be able to filter and
correct the noise originating from alleles that are not (yet) included in the reference set,
as case samples may be encountered that contain alleles for which no reference sample
was available. For this purpose, we developed a method to predict the sequence and
corresponding amount of PCR stutter artefacts that would be produced for any allele
of a given locus. Note that this method does not predict noise other than noise resulting
from STR stutter or single nucleotide stretches.

Previous studies have shown that the amount of stutter is strongly correlated with
the length of the repeated sequence [I7] and even more so with the number of
consecutive repeat units [2,18]. The FDSTools tool Stuttermodel seeks to fit polynomial
functions to the repeat length and stutter ratio in homozygous reference samples.
Stuttermodel scans each of the alleles for all positions where a particular repeat unit
(e.g, the sequence 'AGAT") is repeated and records the length of this repeat, as the
number of nucleotides, including incomplete repeats at the beginning or end of the
repeated stretch. For each sample with this allele, the number of noise reads that lack
exactly one repeat is counted. Reads that combine the loss of one repeat with one or
more other differences (e.g., substitutions, or stutter in another stretch of repeats in the
same allele) are included in this count. The counts thus obtained are used to compute
the noise ratios of individual stutter sites and a polynomial function is fitted to quantify
the relationship between the length of the repeat and the stutter ratio.

This analysis is repeated for each unique repeat unit of a length between one and a
configurable maximum number of nucleotides (inclusive), treating cyclically equivalent
units (e.g., 'ATAG and ‘AGAT’) and their respective reverse complements (e.g., 'CTAT’
and ‘ATCT") synonymously. The amount of +1 stutter, =2 stutter etc. is analysed the
same way.

Because different loci behave different in stutter formation, a separate function is
fitted for each locus. Additionally, a polynomial function is fitted to all data at once,
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which is used to predict stutter in alleles of loci for which insufficient reference data was
available to fit a locus-specific function. Separate functions are fitted for the forward
and reverse strands.

For each fitted function, Stuttermodel also determines the lower bound of the
repeat length for which the function gives meaningful results. This lower bound is
defined as the lowest repeat length for which the function produces a nonnegative
result and the function is non-decreasing. Below this threshold, and in any other points
where the function value would be negative, the function value is set to zero.

The quality of fit is assessed by computing the coefficient of determination,

. — )2
pe1_ 2(i=Ji)

Yi(Vi—y)?
where
| £=0
7o £<o0

with yi the noise ratios of the reference samples, Z the mean, fi the polynomial
function’s estimate of the noise ratio of sample i, and ¥i the modified function value.
The R? score will be close to one when the function is a good fit and lower otherwise.

Stuttermodel supports fitting polynomial functions of any degree.To prevent over-
fitting while still allowing a non-linear relationship, second-degree polynomials (with a
minimum R? score) were used. In cases where the fit for one strand has an R* score
above the threshold while the fit for the other strand scores below the threshold, both
fits are rejected to prevent unintended introduction of strand bias by filtering stutter
on only one strand.

Curating the reference database

To make sure all reference samples were of good quality and all alleles were called
correctly, they were put through the same analysis pipeline as case samples, thereby
performing noise filtering and correction on the reference samples. It is important to
note that these reference samples were previously genotyped by us in great detail
using CE [13]. The remaining amounts of noise in each sample were assessed using
BGAnalyse (described below) to identify potentially unsuitable reference samples that
still passed the thresholds of Allelefinder. Any sample with a notably higher amount of
remaining background was manually removed from the set of reference samples to
prevent pollution of the noise profiles.

BGAnalyse was developed and employed to analyse the remaining noise after
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correction. For each locus and each sample, this tool calculates the least frequent (this
can be a negative value because of over-correction), most frequent, and total noise as
a percentage of the number of reads of the highest allele at each locus. These results
are subsequently visualised to easily identify potentially problematic samples. In the
visualisation, samples can be sorted by any of the calculated values or by coverage
(total number of reads). Samples were subjected to manual inspection and any sample
that exhibited non-stutter products with corrected read counts above 4% of the most
frequent allele or above 2% of the total reads was rejected.

Analysing case samples

The analysis of mock case samples was performed in a three-step process which is

described in the following sections.

I.  Aprediction was made forthe amount of stutter for each sequence inthe sample,
using the fitted polynomial functions obtained from running Stuttermodel on
the reference samples. These predictions are used to extend the allele-specific
noise profiles obtained from running BGEstimate on the reference samples.

2. The extracted noise profiles are used to filter and correct the noise in the case
sample.

3. Alleles are called and the sample is subjected to manual interpretation.

Similar to the creation of a reference database, analysing case samples involves
multiple tools discussed in the following sections. Pipeline offers a convenient way to
automatically analyse a case sample with all tools discussed.

Predicting stutter amounts for unknown alleles

Because case samples may contain alleles that are not present in the reference
samples, noise profiles for these alleles need to be predicted. FDSTools includes the
BGPredict tool, which uses a previously created Stuttermodel file to predict the
amounts of stutter artefacts for alleles not present in the reference data. BGPredict
finds all sequences in the analysed case sample in which a particular repeat unit is
repeated. The expected amount of stutter in this repeat is then computed using the
corresponding fitted polynomial function from the Stuttermodel file. All possible
combinations of stutter are taken into consideration when the frequencies of each
stutter artefact are computed.The noise profiles created in this way are used to extend
the noise profiles in the previously created BGEstimate file (a tool called BGMerge is
included in FDSTools for this purpose).
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Noise filtering and correction in case samples

To be able to filter systemic noise in case samples, one first needs to determine
which alleles are likely present in the sample.To this end, the algorithm of BGEstimate is
essentially reversed, i.e., the goal is now to solve foraina P = ¢, where cis a row vector
with the sample’s read counts for the M sequences in the noise profiles and a is a row
vector with the estimated amount of each of the N profiles in the sample. P is the
N x M matrix of noise profiles obtained from BGEstimate, extended with the
predictions obtained from BGPredict. Solving for a is done in a non-negative least
squares sense as before, giving estimated allele contributions that best fit the various
sequences — alleles as well as noise — present in the sample.

Background-corrected read counts can then be computed by first subtracting the
scaled profiles from the sample’s read counts

d<c—aP

and then adding the total size of each profile to the corresponding allele, i.e.,

M
d,<d,+ auZm:] PII,m, Vne [1 M

Note that d may have negative elements if the sample contains a lower amount of
a certain sequence than was predicted by the profiles of its dominant alleles.

FDSTools offers BGCorrect to filter and correct background noise following the
procedure outlined above. Given a sample data file (obtained from TSSV for example)
and a file containing noise profiles, BGCorrect produces a copy of the sample data with
additional columns giving the amounts of each sequence attributed to noise and the
amounts of each sequence that would be recovered by noise correction (i.e., adding
the noise to the originating allele). These values are given separately for the forward
and reverse strand. Although the method by which BGCorrect computes them results
in non-integer values, it was decided not to round these numbers to avoid unnecessary
loss of precision. If necessary, these numbers can be rounded to integer values, thereby
easing the interpretation as read counts’ when presented in a graph or table in a
report.

Allele calling for case samples

The naive method of calling alleles that Allelefinder uses is not appropriate for case
samples, since these may contain alleles of multiple contributors in different quantities.
Therefore, calling alleles in case samples is done by computing various statistics based
on the information of the detected sequences and subsequently setting interpretation
thresholds on these statistics. For this, Samplestats was developed, which operates on
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and adds various columns to the output of BGCorrect. Samplestats automatically marks
sequences as ‘allele’ using the thresholds outlined inTable |.

Alleles can also be called while visualising the sample data, hence, FDSTools
includes the Samplevis visualisation. By means of the interactive graphical user interface
of Samplevis, the same set of thresholds as depicted in Table | are available to filter
the visible sequences and to automatically call alleles. Thresholds can be specified
separately for the graphs and for the tables. While the table displays the called alleles,
less conservative settings may be used for the filtering of the corresponding graph to
ensure visibility of alleles just below the allele-calling threshold. The results of changing
the thresholds are immediately visible. Clicking a sequence in any of the graphs toggles
its ‘allele’ status. This allows the user to manually add alleles to and remove alleles from
the profile. A note is added to manually added alleles, stating that the allele is ‘User-
added'. Similarly, if the user removes any alleles, the allele remains visible but a ‘User-
removed’ note is added. In this way it remains easy to trace back exactly which alleles
meet the thresholds and which ones were manually added and removed.

Samplestats can also be used to filter sequences using the same types of thresholds
(albeit with more stringent threshold values than used for allele calling, as potential
alleles should not be filtered out) and (optionally) aggregate the filtered sequences per
locus to a single line categorised ‘other sequences'’.
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Table |.Interpretation thresholds for case samples in Samplestats and Samplevis.

Allele
Threshold Description calling
default
Total reads | Minimumnumber of reads per allele. Non-systemic (and thus 30 5
unfilterable) sequence errors occur sporadically. This
threshold ensures that a minimal amount of amplified product
is present to support the allele call.

Reads per Minimum number of reads per allele for both strands. This 1 0
strand threshold can be used to exclude low template sequences with
strong strand bias.

Filtering
default

Percentage |Thenumberofreadsasa percentage of the numberof reads 2% 0.5%
of most of the most frequent allele at the locus. This threshold sets a
frequent limit to the mixture proportions that can be analysed in mixed
samples or to the allele balance in samples with a single
contributor.

Percentage |Each allele contributes at least this percentage to the total 1.5% 0%
of locus number of reads of the locus. With this threshold, a minimum
contribution percentage can be enforced.

Percentage | Thispercentage derivesfrom the number of reads after noise 0% 0%
correction correction minus the number of reads before correction,
which is divided by the number of reads before correction.
Consequently, the percentage correction is negative if noise
correction resulted in a reduction of the read count of a
sequence. Therefore, with this threshold set to 0%, any
sequence representingnoise will not be called as an allele.

To be able to detect alleles of minor contributors that coincide
with noise products for the major contributor’s alleles, the
‘percentage recovery’ threshold described belowis allowed to
overrule this threshold.

Percentage |Thenumberofreadsaddedby noise correctionas a 0% 0%
recovery percentage of the total number of reads after noise correction.
After noise correction, at least this percentage of reads must
have originated from corrected noise. The rationale behind
this threshold is that only allelicsequences will have
substantialamounts of recovered reads. When an allele of a
minor contribution coincides with the stutter of an allele of
the major contributor, noise will be extracted and added to
the major contributor’s parent allele resulting in a negative
percentage correction. Yet, since the minor contributor’s
contribution to the reads also results in noise products that
are corrected, the allele will receive recovered readsand a
percentage recovery >0%. To allow the calling of alleles for
which no noise profile exists (or no noise was detected) in the
reference database the threshold is set at 0% by default.

Sequences that meet either the ‘Percentage correction’ or ‘Percentage recovery’ threshold (or both) as well as all the other thresholds will be
marked as ‘allele’. These threshold values are evaluated dafter noise correction.The ‘Allele calling default’ column lists the default threshold values
for calling alleles. The ‘Filtering default’ column lists the default values used for filtering displayed sequences in Samplevis graphs.
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Visualisation

For visualisation of the data, FDSTools makes use of the JavaScript graphing library
Vega [19]. Vega graphs can be embedded on a web page, exposing a JavaScript
programming interface that allows for updating the graphs based on the user’s
interaction with the web page.Vega can also run on Node,s, which allows it to be
included in automated analysis pipelines to generate (static) image files.

FDSTools comes with Vega graph specifications and accompanying interactive web
pages (HTML files) to visualise the output of each tool. The Vis tool can be used
to obtain self-contained HTML files containing visualisations of various types of data
files generated by the other tools. For example, Samplevis visualises a sample data
file as a sequence profile and Profilevis visualises background noise profiles obtained
from BGEstimate or BGPredict. A description of each visualisation can be found
in Supplementary Table |.When viewed in a web browser, the web page provides
additional controls that allow the user to filter the data, switch between linear and
logarithmic scales, or select different subsets of the data to visualise. The default values
for the settings on the web page can be set when the HTML file is generated by the
Vis tool.

The web pages also offer the option to save the displayed graphs as a Scalable
Vector Graphics (SVG) or rasterised Portable Network Graphics (PNG) image, so
that they can be imported into documents. Alternatively, the Vis tool can supply a raw
Vega graph specification file (either with or without embedded data), which can then
be used by Vega to generate SVG or PNG images directly on the command line.

Results and discussion

We developed FDSTools, a software package containing a suite of tools that can be
used for the analysis of forensic MPS data. With these tools, FDSTools provides detailed
insight in the quality of a sample and the noise profile of a certain allele (or sequence
variant). In Supplementary Table |, an overview of all tools currently available in the
package is provided, of which a selection was described in more details in Section 2.

To enhance the analysis of mixed samples, FDSTools identifies, extracts and corrects
for PCR or sequencing noise such as stutter from a reference database with the aim
to discern low mixture proportions. Different STR amplification assays and different
amplification protocols could result in different noise. It is therefore important to
base the database for noise correction on references generated by a method that is
representable for the casework samples to be analysed.

Note that it is not possible to correct all noise completely as the level of noise
shows variation between samples.
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Reference database

Our reference samples were sequenced with an average coverage of 65,000 reads
and a mode of about 45,000 reads. For the present study, a minimum coverage of
6,000 reads per sample was required, which relates to an average of 250 reads per
locus as 24 loci were co-amplified. For heterozygous loci, less than 250 reads per locus
is not sufficient to quantify low amounts of noise accurately.

Reference sample curation

Since the reference database is used to filter and correct noise in case samples, it is
essential that the reference samples contain no contaminants and reference alleles are
called correctly. Although all other steps can be performed automatically by FDSTools,
a manual curation of samples in the reference database is needed. BGAnalyse was
developed to facilitate this process by visualising potential outliers.

Allelefinder automatically rejected two out of the initial 450 samples which were
clearly contaminated and three samples that had too low coverage to detect alleles
reliably. Manual inspection of samples with a notably higher amount of remaining noise
after correction in BGAnalyse resulted in the rejection of an additional |6 samples.
Reasons for rejection were low-level contamination, low coverage and low sequencing
quality. The interactive BGAnalyse visualisations displaying the remaining noise for the
reference samples are available in Supplementary File 2a (before database curation)
and 2b (after curation). For the majority of samples, the highest remaining noise variant
in the complete profile did not exceed 3% of the number of reads of the highest allele
at the locus while without correction STR stutters can represent over 20%. For the
remaining 429 samples, no drop-in or drop-out was observed when calling alleles using
Allelefinder with the settings described in Section 2.3.1.

Extending noise profiles for noise correction

As described in Section 2.4.1, case samples may contain alleles which are not present
in the reference database. In such cases, FDSTools resorts to noise prediction instead
of noise estimation. A column in the output file of BGCorrect marks if correction has
been performed using data obtained from BGEstimate (if the allele was available in the
reference database) or by using BGPredict (if not available in the reference database).

From the results from Stuttermodel it becomes evident that for simple STRs consisting
of a single repeating element or for long stretches of a specific repeating element
within a complex STR, only few reference samples are needed to reliably fit a stutter
model. However, when complex repeats consist of several repeating elements of which
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some show little length variation, correction using the stutter model is suboptimal as
exemplified by the predictions for D12S391. This STR locus consists of two repeat
units; an AGAT repeat stretch of highly variable length and an ACAG repeat that is
repeated 6 to 8 times for most individuals. Since Stuttermodel predicts the amount of
stutter based on the repeat length, at least four different repeat lengths need to be
available in homozygous reference samples to obtain a reliable fit. However, the set of
reference samples used in this study only contained homozygotes with 6 to 8 repeats
of ACAG, which is not sufficiently variable to obtain a reliable fit. Consequently, ACAG
is omitted from the stutter model for D125391, even though this repeat stutters up to
9% for the longer repeats (8 repeat units, data not shown).When BGEstimate does not
obtain a background noise profile, BGPredict will not correct stutter in this repeat and
thus stutters will remain present. As a last resort, BGPredict offers the possibility to use
a stutter model based on data from all loci that have the same repeat unit sequence
if no locus-specific fit is available. Supplementary Figure | displays the stutter model
obtained from the set of 429 reference samples, including the individual observations
on which the model was based.

Combining BGEstimate and BGPredict (by using BGMerge) instead of using BGPredict
alone is expected to reduce the noise remaining after correction, as the combined
correction also corrects for noise other than stutters . This is confirmed when we
determine the percentage of remaining noise (the reads representing remaining noise
as a percentage of the reads for the most frequent allele at the locus) and plot the
highest percentage and various percentiles (90", 95" and 99%) (Supplementary Figure
2a-b). The percentiles illustrate how often samples exhibit outlying noise sequence
variants and when the 99th percentile is regarded, BGPredict alone retains on average
2.6% noise and the combined correction 2.4%. Also, the combined correction results
in less overcorrected variants.

Thus, BGPredict can be used without BGEstimate with a slightly reduced accuracy
in correction. Note that BGEstimate should not be used without BGPredict since
alleles not included in the reference database will not be corrected, which can result
in a combination of corrected and uncorrected alleles and remaining noise for the
uncorrected alleles.

Reference database size and coverage

To test the effect of the sample size and type from which the reference database is
built, we used the complete curated reference database of 429 samples and a random
selection of 100 samples (both with combined BGEstimate and BGPredict correction,
which was found to be slightly better as described in Section 3.1.2). Supplementary
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Figures 2c—d display an overview of the most frequent and the total remaining noise at
each locus after correction.The different percentiles of the reference samples are given
to illustrate how often samples exhibit outlying noise sequence variants.

When comparing the results for the complete database with the results for the
subset of 100 samples, the difference in remaining noise seems surprisingly small
(Supplementary Figure 2c—d). However, with a smaller database, less alleles will fit the
criteria to create a BGEstimate noise profile and more alleles rely on noise prediction
by BGPredict. Indeed, for the reference set of 429 samples, only 3.5% of the alleles are
corrected using BGPredict. This percentage increases to 10.2% when the correction is
based on the subset of 100 samples.

In a larger reference database more alleles will be observed. Supplementary Figure
3 displays the alleles observed in the reference databases of 429 and 100 samples.
To fit the criteria to create a BGEstimate noise profile, alleles need to be present as
a homozygous genotype or be available as part of shared genotypes with at least
three other alleles that must also fit these criteria. For the stutter model, only the
homozygous genotypes are used. In the larger 429 database, more alleles fit these
criteria than in the smaller 100 sample set database.

To examine the effect of read coverage of the reference samples on noise profile
analysis, we generated two subsets comprising samples with high or low coverage,
which is specified as a total read count between 82,000 and 350,000 or 8,000 and
44,000 respectively. The high coverage set comprised 7| samples; the low coverage set
70.We noticed that in the low-coverage noise profiles, strand bias can occur especially
for the low-percentage noise that is due to single-strand drop-out of this noise. This
is illustrated by the BGEstimate noise profiles for the CEIO_TCTA[10]_-20T>A allele
for locus D75820 in Supplementary Figure 4, in which forward and reverse reads
are in good or reasonable balance for all seven noise sequences in the high coverage
sample set while good balance is only seen for the two main noise sequences in the
low coverage set.

Since the most abundant noise after correction in a sample is usually in the range
of 0.5-3% (for STR analysis), we recommend a coverage of at least 1,000 reads per
locus (which relates to a 24,000 total read coverage for our 24 loci amplification kit)
for the samples of the reference database to obtain the most accurate noise estimates.

Infrequent alleles

Depending on the composition of the reference database, occasionally alleles will
be encountered that are not included in the database. BGPredict can predict the noise
from stutter or other repeating elements but correction of other types of noise (like
low level SNPs caused by sequence errors) is not possible for these infrequent alleles.
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We therefore recommend to obtain BGEstimate noise profiles for as many alleles
as possible, while retaining good quality of these noise profiles. Several filtering criteria
can be applied, such as the minimum number of different heterozygous genotypes
per allele, the minimum number of samples per allele and the minimum number of
homozygous samples per allele. The effect of increasing the stringency on the filtering
criteria on the number of retrieved BGEstimate noise profiles for our 429 reference
set is shown in Supplementary Table 2. The settings selected for use in this study are:
at least two samples per allele (which ensures noise is not based on a single sample as
that could be an outlier) that present at least three different heterozygous or at least
one homozygote genotype (i.e., the samples can be three different heterozygotes or
two homozygotes or one homozygote and one heterozygote).

When an allele at a heterozygous locus fails the criteria, the complete locus carrying
this allele cannot be used for establishment of a noise profile since the noise cannot
be attributed to any of the two alleles. Thus, for both alleles at a heterozygous locus no
noise profile is extracted.

Accuracy of noise reference database and stutter model

To verify the accuracy of the noise profiles obtained through BGEstimate and
BGPredict, it can be useful to compare the average noise ratios with the noise
ratios observed in individual homozygous samples. The noise ratios of all noise in all
homozygous reference samples can easily be collected using the BGHomRaw tool.
These data points can be plotted on top of a noise profile to inspect the consistency
and variation in the noise ratios of various types of noise for each allele. In Figure 3,
the noise profile of the most frequent allele of D75820 (CEIO_TCTA[I0]_-20T>A )
is displayed, which has foremost a —I stutter (CEIO_TCTA[9]_-20T>A) in addition to
a —| nt slippage product at the A-stretch (CE9.3_TCTA[10]_-20T>-). The individual
observations for the homozygous samples coincide nicely with the estimated noise
profile ratios.
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Figure 3. Noise profile of D75820 allele CEIO_TCTA[10]_-20T>A
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The noise ratio is shown for each systemic noise sequence observed with a noise ratio of 0.19% or higher. Individual observations in homozygous
samples (above 0.5%) are displayed as circles. As expected, the most frequently observed noise sequence is the — | stutter, but since the allele
contains a single-nucleotide stretch of 9 A nucleotides, a considerable portion of the noise consists of sequences with slippage at this A-stretch
(or a combination of the two).

Similarly, it is useful to compare the functions fitted by Stuttermodel to the data
points to which they were fitted. Stuttermodel includes an option to write the raw
data points to a separate output file, which can be visualised together with the fitted
model as shown in Figure 4 for D75820. This example shows that the homozygous
calls and the Stuttermodel estimation follow the same trend and that there is no
discrepancy between forward and reverse reads. The same holds for the A-stretch
(data not shown).

In the stutter model, fits with an R2 score below 0.75 were rejected. Although this
may seem a very low R2 score, we obtained better results by including more fits than
by excluding them, which would result in the inability of the stutter model to be used
to filter and correct stutter for the respective repeat units at all.
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Figure 4. Stutter model for the —1| stutter of D75820

16 — -1 stutter in AGAT repeats
@ D75820 forward
4 D7S820 reverse

Noise ratio (%)
©
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o
o ]
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10 15 20 25 30 35 40 45 50 55
Length of repeat (nt)

On the x-axis the length of the repeat is displayed (in nucleotides) and on the y-axis the —| stutter noise ratio (as percentage of reads of the
parent allele) is displayed. Each homozygous reference sample is displayed as a dot and the lines display the fitted functions used for calculating
the expected stutter of each allele.

Sample analysis
Allele calling, interpretation and visualisation

When a reference database has been created, one can proceed with the analysis
of samples. FDSTools analyses sequencing data, calls alleles and interprets the data
by correction for noise as inferred from the reference database. Results can be
represented as a graphical sequence profile output and as an interactive profile report.

In Figure 5, an example of a sequence profile of two loci of a single-source sample
is displayed (generated by the command ‘fdstools vis sample’). A sequence profile
displays the read counts before and after correction and visualises the effects of noise
filtering and noise correction. A more detailed explanation of the interpretation of a
sequence profile can be found in Supplementary Figure 5.

The interactive sequence profile reports provide separate filtering options for the
graphs and tables displayed (see Section 2.4.3). In the graphs, all alleles that are hidden
by the filtering options are (optionally) aggregated as a separate bar (displaying the
cumulative numbers of reads) with the label ‘other sequences'. In addition, we aggregate
all singleton reads into ‘other sequences’ already in the first step of the analysis (using
fdstools tssv --minimum 2 --aggregate-filtered’) which has the additional benefits of
speeding up subsequent analysis and decreasing data storage demand.
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Figure 5. Sequence profile of a single-source sample

D18S561

CE16_AGAA[16JAAAGTJAG(3] @ Genuine reads
Noise reads
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Number of reads
Maker | Atee | ] [ | Comcton | Recovry | ol | Petforsar | Notes
D18S51 | CE16_AGAA[I6JAAAGI1IAGI3] | 598 — 672 10000% 4202% | +74 (+12.35%) | 84 (1249%) | 10 (168%) 53.36% | BGCorrect-BGEstimate
D18S51 | CE18 AGAAIIBJAAAGILIAGI3] | 452 — 527 7847% 3297% | +75(+1663%) | 77 (1454%) | 1(0.33%) 51.94% | BGCorrect BGEstimate
D195433

CE13_TCCT[12JACCT(1]TCTT(]TCCT[1) @ Genuine reads
CE14_TCCT[13JACCT[1]TCTT(1]TCCT[1] Noise reads.
+ - - — Noise/recovered overiap
t T T T T T T T T T 1 @ Recovered reads
° AR 2° A0 a0 o0 & 100 o0 o Ao°

— Strand balance

Number of reads

e | e [ o] l [ comoton] _masomy| s eroren | wors

D195433 | CE13_TCCT12JACCT(UTCTTITCCTLY] | 929 — 950 100.00% 4470% | +21 (+224%) | 110 (1157%) | 89 (9.59%) 47.29% | BGCorrect-BGEstimate
0195433 | CE14_TCCTI3JACCT(TCTT(LTCCT(L] | 702 ~ 798 8397% 37.53% | +96 (+13.62%) | 100 (1248%) | 4 (0.56%) 5219% | BGCorrect BGEstimate

Sequence profile of loci D18S51 and D 195433 of a single-source sample.A sequence profile displays the read count before correction (in purple
bars) and shows the effects of noise filtering (light purple for the reads that are removed) and noise correction (with the noise reads added to
the parent alleles in dark orange). When performing correction, it is possible that an allele gains reads because the noise reads originating from
this allele are added, but loses reads at the same time since the noise of another allele in the profile includes reads of this allele. This overlapping
part of added and removed reads is marked separately in light orange. This means that the original read count of an allele before correction is
the combination of the purple and the light orange bar. The lines in the bars indicate the strand balance; the line is drawn near the top of the
bar if the majority of reads of a sequence is on the forward strand, near the bottom of the bar if the majority of reads is on the reverse strand,
and in the middle of the bar in the absence of strand bias. Sequences displayed in green in the graphs are the alleles that the software infers
to be genuine alleles in the sample. These are also displayed in the table.

Improving heterozygote balance through noise correction

The amplification of long STR alleles in the PCR is generally less efficient than
shorter alleles and, in addition, long STR alleles suffer from a higher degree of stutter
resulting in reduced heterozygote balance between the two alleles. [2] Since FDSTools
determines which ‘noise reads’ are derived from which parent alleles, these reads can
(optionally) be added to the read counts of the parent alleles, which theoretically
will improve the heterozygote balance. When we examine the heterozygote allele
balance in the 429 single-source reference samples, an improved heterozygote balance
is indeed observed when the stutter reads are added to the read counts of the parent
alleles (Table 2). Heterozygote balance was determined per locus by dividing the read
counts for the less frequent alleles by those for the more frequent alleles, and taking
the average of all 429 samples.
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Table 2. Heterozygote balance for original, filtered and corrected datasets

9
2, o
e OO OO o s AR NN o 8

Do \T"e ‘J"es TS Yen e e, S\’qv%’e a’e& By %’J) R I A A N
Dataset | locus N AN AR A AN NG BN BN I A G

Uncorrected data 0.830.88)0.82|0.79(0.88 (0.87 |0.85|0.84 |0.88 (0.89 |0.85|0.77|0.90 |0.88 (0.90 |0.88 |0.89 |0.85 |0.87 |0.78 |0.88 |0.88 |0.85

e 0.83|0.90/0.87|0.80(0.89 (0.89 (0.87|0.88 |0.89 (0.90 (0.88|0.78|0.90|0.90 |0.91 |0.890.90|0.87 |0.87 |0.78 |0.88 |0.89 |0.88
added to allele read count
Corrected data with noise reads

0.83(0.91)0.89|0.84(0.90 (0.91 (0.89|0.90|0.91(0.91 (0.93|0.80(0.91|0.91|0.91/0.91|0.91|0.89|0.88 |0.81 |0.890.90|0.90
added to allele read count

The read counts for the less frequent alleles are divided by those for the more frequent alleles, and the average for all 429 single-source refer-
ence samples is taken.

Mixture analysis

For the analysis mixtures, noise correction may assist in identifying the alleles of a
low minor contributor: We used 31 two-person mixtures with minor contributions of
50%, 20%, 10%, 5%, 1% and 0.5% to assess this expectation.

We varied the ‘percentage of locus' threshold (Table |) for calling alleles, which
sets a limit to the mixture proportion. When no noise correction was applied the
threshold was varied between 5.0% and 1.5%; when noise correction was applied,
a lower threshold could be used, varying between 3.0% to 0.5%. We compared
the various methods by calculating percentage missed alleles (aka. drop-out) and
the number of erroneous allele calls (a.ka. drop-in). The percentage drop-out was
calculated by dividing the number of donor alleles not called by the total number of
possible alleles (homozygous and shared alleles are counted as one, Amel is included),
and the percentage was averaged for the mixtures with the same mixture ratio. Drop-
in is presented in the average number occurring in profiles with the same mixture
ratio. InTable 3, the results of these analyses are displayed and it is obvious that without
correction more drop-in alleles occur that mostly represent stutters. Consequently, the
threshold for calling an allele can be lower when correction is applied, as less stutters
remain in the corrected profile that can be wrongfully called as an allele. As expected,
the percentage of drop-out depends largely on the ‘percentage of locus' threshold
for allele calling (and hardly on the application of noise correction); drop-out is more
frequent with a higher (more stringent) threshold. When the threshold for corrected
data is decreased below 1.5%, the number of drop-ins rapidly increases for all ratios.
Not surprisingly, the drop-out percentage for the mixtures with 19 and 0.5% is very
high when using a threshold that is higher than the minor component. Therefore, the
data from the 5% and 10% minor contribution was used to determine the optimal
threshold for allele calling.

In Figure 6, we show the relation between the ‘percentage of locus’ allele-calling

threshold, drop-out and drop-in for the mixtures with a 5% or 0% minor contribution.
In the used dataset, a threshold of 1.5% appears to be the most effective for calling
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genuine alleles in mixtures with minimal erroneous calling of remaining noise in the
mixtures. With mixture ratios down to 0%, no drop-out and only minimal drop-in is
observed with this threshold, whereas with contributions smaller than 10% an optimal
balance between drop-out and drop-in is achieved (Table 3). When investigating the
noise that is erroneously called using this threshold it is apparent that the drop-in alleles
are rarely resulting from stutter but almost exclusively consist of PCR hybrids [20]. In
Table 3b, the percentage of drop-out when using the 1.5% allele-calling threshold is
categorised and illustrates that drop-out alleles consist mostly of heterozygous minor
alleles. Most of these drop-out alleles represent minor contributions on stutter positions
(where stutter ratio of the major contributor was lower than the average observed
in the set of reference samples, thereby causing over-correction) and long alleles that
suffer from heterozygote imbalance. In Figure 6 the trends from Table 3 are confirmed:
drop-out is hardly and drop-in is largely affected by the use of noise correction. Thus,
calling of genuine alleles is not negatively influenced by noise correction.

Note that the number of drop-ins may be reduced further by applying additional
thresholds fromTable |, but the effects of varying additional threshold values were not
studied in depth.

Table 3. Average number of drop-in alleles and average drop-out percentage
per sample for different ‘percentage of locus’ allele-calling thresholds

a) Summary of drop-in and drop-out rates for various allele-calling thresholds

Minor contribution 50%: 600 pg 20%: 240 pg 10%: 120 pg 5%: 60 pg 1%: 60 pg 0.5%: 60 pg
Analysis method and # drop-in / # drop-in / # drop-in / # drop-in / # drop-in / # drop-in /
threshold % drop-out % drop-out % drop-out % drop-out % drop-out % drop-out
Without correction, > 5.0% 0.7 / 0.0% 0.8/21% 1.2 /25.0% 1.0 /33.1% 1.7 / 39.9% 0.8 /40.8%
Without correction, > 2.5% 4.3 /0.0% 3.8/0.0% 43 /2.5% 4.2 /21.6% 3.5/38.3% 2.3 /40.4%
Without correction, > 2.0% 5.3/0.0% 5.3/0.0% 5.3/0.5% 4.8 /15.3% 4.2 /38.1% 2.8 /40.1%
Without correction, > 1.5% 7.7 1 0.0% 7.7 /] 0.0% 7.0 /0.0% 6.0 /10.8% 6.0 /37.4% 4.7 /39.7%
With correction, > 3.0% 0.0 /0.0% 0.3/0.0% 0.3/57% 0.0 /30.3% 0.7 / 41.1% 0.3/41.1%
With correction, > 2.5% 0.3 /0.0% 0.3/0.0% 0.5/1.4% 0.0 /25.1% 0.7 / 40.6% 0.3/41.1%
With correction, > 2.0% 0.7 / 0.0% 1.2/0.0% 1.8/0.5% 0.8 /17.4% 0.8 / 40.6% 1.2 /40.8%
With correction, = 1.5% 1.7 / 0.0% 2.3/0.0% 2.5/0.0% 2.0 /10.8% 2.7 / 39.9% 2.3 /40.8%
With correction, > 1.0% 4.0 /0.0% 5.2 /0.0% 4.5 /0.0% 4.5/3.8% 5.7 /37.8% 3.2 /40.6%
With correction, = 0.5% 16.3 /0.0% 17.3 /0.0% 14.0 / 0.0% 15.5/2.4% 14.0 /30.3% 11.0 /37.4%

b) Categorised drop-out rates when using 1.5% allele-calling threshold (with

correction)
Minor contribution 20%:240pg  10%:120 pg 5%: 60 pg 1%: 60 pg 0.5%: 60 pg
Alleles unique to the minor (homozygous) 0.0% 0.0% 0.0% 91.3% 100.0%
Alleles unique to the minor (heterozygous) 0.0% 0.0% 31.6% 98.1% 99.4%
Alleles unique to minor 0.0% 0.0% 27.0% 97.2% 99.4%
All alleles of the minor 0.0% 0.0% 18.5% 67.7% 69.3%
All alleles of the major 0.0% 0.0% 0.0% 0.0% 0.0%
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Figure 6. Average number of drop-in and percentage of drop-out per sample
for different ‘percentage of locus’ allele-calling thresholds

26
2
22
20-{
18-

16

Minor contribution
® 5%

® 10%

Noise correction
— After

- - Before

Drop-out (%)

Drop-in (absolute average per sample)

Effect of different ‘percentage of locus’ allele-calling thresholds on the drop-in and drop-out rates. The numbers next to the points display allele-
calling thresholds. The position of each point illustrates the number of drop-ins and percentage of drop-out for the corresponding threshold in
mixtures with a ratio of 90:10 (orange) and 95:5 (blue). Points connected by dashed lines correspond to results obtained without noise correc-
tion, points connected by solid lines correspond to results obtained after noise correction. The 1.5% ‘percentage of locus’ allele-calling threshold
that appears most optimal is indicated in bold.

In Figure 7a—b, the effect of noise correction on allele calling is shown for a highly
unbalanced mixture (95:5 mixture ratio) in which the alleles of the minor contributor
have a similar or lower read count than the stutter products of the alleles of the major
contributor. Without noise correction the four most frequent sequence variants are
the major contributor’s alleles and the corresponding —I stutters and interpretation
of the less frequent sequence variants becomes intractable; after noise correction, the
stutter products and other PCR artefacts are filtered out and four sequence variants
meet the ‘percentage of locus' allele-calling threshold of 1.5%, which correspond to the
four alleles of the two heterozygous donors. Also, the alleles of both the major and
minor contributor have gained recovered reads.
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Figure 7. Interpretation of a mixed sequence profile before and after correction

a) Sequence profile of locus D 125391 of a mixed sample with a ratio of 95:5,

without noise filtering and correction
D12s8391
CE17_TAGA[11]CAGA[6] @ Genuine reads

CE19_TAGA[13|CAGA[6] Noiselrecovered overlap

CE20_TAGA[14]CAGA[6]
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Number of reads
D125391 | CE17_TAGA[LLICAGA6] | 58 511% 1.82% | +0 (+0.00%) | 0 (0.00%) | 0 (0.00%) 6207%
[ b12ssen | cers TacaisicaGAls) | 180 15.86% S64% | +0(+000%) | 0(000%) | 0 (0.00%) 59.44%
D125391 | CE20_TAGA[14]CAGA[6] uasl 100.00% 3555%[&('0,00%) 0(0.00%) | 0 (0.00%) SQII%J
| b1zsson | cez1 TAGALSICAGAS) | 164 1445% 514% | +0(+000%) | 0(000% | 0 000%) 56.10%
D125391 | CE22_TAGA[16]CAGA[6] 1075| 94.71% 3310%[-0(.0,00%) 0(0.00%) | 0 (0.00%) 514msJ

b) Sequence profile of locus D 125391 of a mixed sample with a ratio of 95:5,
with noise filtering and correction applied

D12s3e1

CE17_TAGA[11]CAGA[B] [} @ Genuine reads
I * Noise reads
CE20_TAGA(14ICAGAIE] T ——— Noiseirecorered overlap
CE20_TAGA[13]CAGA[T] [ ] @ Recovered reads
— Strand balance
CE22_TAGA[1BICAGA[E] S
]
e
2 o e W o o o e e A
Number of reads
‘ D125391 | CE17_TAGA[11]CAGA[6] 58— 64 456% 201% +6(+1067%) | 10 (14.93%) ‘ 3 (5.86%) 60.59% | BGCorrect-BGEstimate
D125391 | CE20_TAGA[14]CAGA(6] | 1135 = 1407 100.00% 44.11% | +272(+23.97%) | 273 (19.39%) | 1 {0.07%) 57.37% | BGCorrect-BGEstimate
‘ D125391 | CE20_TAGA[13]CAGA[7] 46— 49 350% 1.54% +3 (+7.08%) 9 (19.07%) ‘ 6 (13.34%) 60.73% | BGCorrect-BGEstimate
D125391 | CE22_TAGA[16]CAGA[6] | 1075 — 1329 94.45% 41.66% | +254 (+23.62%) | 256 (19.24%) | 2 (0.16%) 59.45%  BGCorrect-BGPredict

¢) Noise profile of D125391 allele CE2|_TAGA[ | 5]CAGA[6]

D125391 CE21_TAGA[15]CAGA(6]

CE19_TAGA[13]CAGA[6]
CE19_TAGA[14]CAGA[5]
CE20_TAGA[14]CAGA[E]
CE20_TAGA[15]CAGA(5]
CE21_TAGA[14]CAGA[T]

CE21_TAGA[16]CAGA[5]

Noise ratio in:
@ Total reads
Forward reads
© Reverse reads
15.6
187

Noise ratio (%)

Sequence profile of locus D125391 of a mixed sample with a ratio of 95:5,A without and B with applying noise filtering and correction. The

table displays

all sequence variants with at least 1.5% of the reads of the locus (the ‘percentage of locus” allele-calling threshold used), which

are also marked in green in the graph. A note in the table in panel B warns that no noise profile was available for the major CE22_TAGA[ 1 6]
CAGA[6] allele and a stutter prediction has been used instead.An additional variant CE22_TAGA[ | 7JCAGA[5], which is derived from the major
CE22 dllele, remains visible in the sequence profile (although not marked green as it does not meet the 1.5% threshold). C Noise profile of a
similar allele, showing a non-stutter PCR artefact with a noise ratio of about 2%.
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This example also displays a pitfall of the interpretation of a mixed DNA profile
where the major contributor has an infrequent allele for which no BGEstimate noise
profile is available. The noise correction of allele CE22_TAGA[I6]JCAGA[6] is only
based on the stutter model (using BGPredict), which fails to correct for the CE22_
TAGA[ I 7]CAGA[5] PCR artefact. Looking at the noise profile of the most resembling
allele in the reference database, CE2I_TAGA[I5]CAGA[6], we find a similar PCR
artefact CE21_TAGA[I6]CAGA[5] that represents a C to T substitution at the first
CAGA repeat unit , with a noise ratio of about 2% (Figure 7c). This suggests that the
CE22_TAGA[ I 7]CAGA[5] artefact would be properly corrected if a noise profile for
the CE22_TAGA[I6]CAGA[6] allele would be available. Thus, additional inspection
of the applied method of correction (BGPredict or BGEstimate) may be useful when
infrequent alleles occur.

Analysis time and computer demand

To indicate the required time and computer memory demand, five samples with
different numbers of reads (15,169-318,403 total read pairs) were analysed and the
time and peak memory usage for each separate tool was registered (Supplementary
Figure 6). With the used 2.0 GHz processor, the analysis time is mostly consumed by
TSSV (=75% of the total analysis time) and the complete analysis only takes up to
13:30 minutes for a sample with 318,403 reads. BGCorrect shows the highest peak
memory usage but does not exceed 200 MB for the largest sample (of the five tested
samples). Both the required time and memory increase more or less linearly when the
read count of the analysed samples is increased.

Conclusions

We developed FDSTools for the analysis of forensic MPS data. FDSTools can
determine systemic PCR and/or sequencing noise from the data of reference samples,
build a database from this data and use it to correct for systemic noise in case samples.
The software is also able to predict the noise caused by stutter for alleles not included
in the reference database and uses this information in the correction of case samples.

With automatic threshold-based allele calling, noise correction reduces the
occurrence of drop-in and drop-out substantially and improves the balance between
alleles of a heterozygote pairThis decreases the detection limits of minor contributions
in mixtures. STR stutter variants are no longer the most frequent remaining noise as
PCR hybrid artefacts now generally exceed the corrected read counts of stutters.

Although reliable noise correction can already be obtained from a database of 100
samples, a larger database is preferred as a larger number of alleles can be corrected by
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the use of a complete noise profile instead of relying on noise predictions based on the
stutter model. This will also reduce manual inspection of retained non-stutter noise for
infrequent alleles. When building the database, it is important to use an amplification
kit representative for the kit used for the samples. Although not extensively tested,
we anticipate that noise prediction will be less precise when less DNA is used and
more stochastic PCR effects occur. Also, more strand bias will occur during the
massively parallel sequencing. These effects are intrinsic to low-level DNA typing and
probabilistic genotyping software have been developed that accommodate drop-in
and dropout during profile interpretation [21,22,23,24,25,26,27,28]. Such software are
not yet straightforwardly able to deal with MPS data, but the necessary adaptations are
feasible and include nomenclature for sequence variants, allele frequencies databases
and read counts replacing peak heights in continuous models (not required for semi-
continuous models) . In CE-based analysis, PCR replicates are often used to reduce
profiling uncertainty [7]; replicates can be entered in probabilistic genotyping software
or used to prepare a consensus profile [/,8]. A future version of FDSTools will feature
a consensus-based analysis method alike those used with CE data [8]. Besides, export
options for DNA database systems such as CODIS will be added.

FDSTools has been validated following recommendations for software validation
[29,30] and is already implemented in the ISO17025 certified environment of the
LUMC for forensic casework. The validation for use and performance of the software
in casework was a separate study which was not based on the data described in this
manuscript. By providing tools to evaluate the performance of noise correction in
reference samples FDSTools facilitates the determination of analysis thresholds that
are fit for purpose.

The application of FDSTools is not limited to the analysis of STRs. FDSTools has
already been applied successfully to the analysis of multiplex assays of SNP fragments
(manuscript in preparation) and complete mtDNA data (Weiler et al., submitted).
Note that the minimum number of required reference samples for loci other than
STRs will depend on the amount of variation observed in these loci.
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Supplementary materials

Supplementary Text | - Allele-centric systemic noise estimation (BGEstimate)

The BGEstimate tool of FDSTools does the computation of a background noise
profile for each allele found among a set of reference samples. Computing background
noise profiles from a set of homozygous samples is straightforward, whereas for
heterozygous samples this becomes more complicated as the alleles of one sample in
general appear in different amounts, thereby systematically contributing to a different
amount of the same background noise sequence.

Algorithm |, which enables the computation of these background noise profiles
from heterozygous samples, is implemented in BGEstimate. In testing, the best results
were obtained if for each allele at least one homozygous sample or at least three
different heterozygous samples were available. With default settings, BGEstimate will
ensure these conditions are met before executing Algorithm 1.

In essence Algorithm | seeks a non-negative least squares solution to the matrix
equation AP = C. In this equation, C is an N*xM matrix of constants derived from the
observed read counts in the reference samples (see Figure 1), A is an NxXN matrix
in which the estimated allele balance in the samples is summarised and P is an NxM
matrix containing the estimated profiles of systemic noise. N is the number of unique
alleles among the observed reference samples and therefore also the number of
profiles produced and M is the number of unique sequences observed. It is possible
to include additional sequences beyond the N alleles of the samples if this is deemed
appropriate. With default settings, BGEstimate will include all sequences that appear
in at least 80% of the samples with any particular allele, since these sequences are
probably the result of systemic noise. In any case, the first N columns in P and C
correspond to the N alleles of the samples and the order of the rows and columns is
the same (i.e.,row n and column n in both P and C correspond to the same sequence).

The input of Algorithm | consists of a KxM matrix S which contains the observed
number of reads of each of the M sequences in each of the K samples. The genotype
of each sample is provided as a set of indices gk Vgk = N.

Any element Pnm of P can be interpreted as the amount of sequence m that is
observed, on average, for every |00 reads of sequence n. Therefore, the algorithm
initialises P to a diagonal NxM matrix with the elements on its major diagonal set to
100.The number 100 was chosen for practical reasons since it directly results in noise
ratios expressed as percentages of the actual allele.
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Algorithm 1 Systemic noise profile estimation.

Require: K x M matrix S containing the K samples in the rows
Require: number of alleles N < M, corresponding to the first N columns of 8
Require: list ¢ of sets gy the genotypes (indices of alleles < N) of samples Sy
Return: N x M matrix P containing the profiles

1 function ESTIMATEBACKGROUNDPROFILES(S, ¢, N)

Initialisation:
2 Pom+0, 1<n<N, 1<m<M
% Pun+100, 1<n<N = Set actual allele to 100.
4 Com+0 1<n<N, 1<m<M
5 fork «+ 1to K do
o: Ci. +—Ci.+ 5. % 118%9' /S, Vi€ g > Compute separately for each i.
7 end for

Optimisation:
8 repeat

Estimate allele balance:
o A,"j<—0, Vf_.f'E [lN]
10: fork «+ 1to K do
11 Qi + PR*J:S&.JU Vi, je1...|gkl]
12: I 4 Skm’i, Vie(l...|gl
13: B+ (]‘%’[/r"') x NNLs(QT, v )T
4 Agiig ¢ Mgy T Bijs Vi,je[1...|gl]
15: end for
Update profiles:

16: E+ ATA
17: F+ ATC
18: repeat
19: forn « 1to N do
20t Pn,: — (Fﬂ,: - En,\nP\n,:)fEﬂ,n
21 Py + max(Py.,0) &> Set negative elements to 0.
22: Py + 100 & Keep actual allele at 100.
23: end for
24 until stop condition is met
25:  until stop condition is met

26: return P
27: end function
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Sample 1 50
1040 33
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Figure |. Construction of matrix C in Algorithm | by summing scaled read counts of the samples that share the same dlleles. Left: Samples |
and 2 are homozygous for the third and fifth allele respectively. The read counts of both samples are scaled such that their true allele is equal
to 100, dfter which they are added to the third and fifth row of matrix C respectively. Right: Sample 3 is heterozygous, having both the third
and fifth allele. Therefore, it is added to both the third and fifth row of matrix C, with its read counts scaled such that the third or fifth allele is
equal to 50 respectively.

Similarly, the elements Cnm of C can be interpreted as the total amount of
sequence m that is observed in all samples with allele n. Line 6 in Algorithm | initialises
C. For homozygous samples, it scales the read counts of each sample Sk such that
its allele Sk,i,i €gk is equal to 100 and then adds the scaled counts to row Ci of C.
Heterozygous samples are treated likewise twice — once for each of their alleles —
except that the allele is scaled to 50 instead of 100 to compensate for the fact that the
sample is added to two rows in C, as compared to just one for homozygous samples.'

Each row Ci of C thus contains the sum of the read counts of all samples that
have allele i, with the read counts of each sample scaled such that allele Skiii€gk
becomes 00/|gk|.? After matrices P and C are initialised, the algorithm enters its main
loop wherein it alternately estimates the allele balance in the samples (matrix A) and
refines the least squares fit of the profiles P The main loop is exited and the profiles
are returned when the sum of the squared errors,

N M
Y Y (Dum)’, D=C-—AP
=1 mr=]

is reduced by less than 0.01% in one iteration. This stopping condition is generally
met within 20 iterations.

| One may also say that the samples are added once for each allele, adding them to the same row twice

2 Interestingly, because Algorithm | scales read counts to 100 divided by the number of dlleles in the sample, it handles samples with more
than two alleles without problems. Since Algorithm | makes no assumptions about the number of alleles each sample can have, it is possible to
use mixed samples to compute systemic noise profiles as well. This has not been tested, however.
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Estimation of the allele balance is done for every sample in isolation. At line | |, the
elements in P that correspond to cross-contributions between the alleles i,j €[ ...|gk|]
of sample k are extracted. Similarly, the corresponding elements from Sk are extracted
at line 2. For heterozygous samples, this expands to (shortening gk,i to i for brevity):

P;; P; 100 P;;
Pii Pi] P 100
I.'{—[Sh 51”']

At line |3,a non-negative least squares algorithm is employed to estimate the allele
balance within the sample. The nnls function can be any algorithm that solves JK = L
for K subject to K=0 in the least squares sense, e.g, [1]. Line |3 of Algorithm | uses this
function to solve bQ = r for b (by solving QTbT = rT), which gives an estimation of
the proportions in which the alleles are present in the sample. The resulting row vector
b isleft-multipliedbyacolumnvectorwiththesamescalingfactorsaspreviously calculated at
line 6. The result is, for heterozygotes, a 2x2 matrix B.? Finally, at line 14, the elements
of B are added to their corresponding elements of A.

With the allele balance estimates all added to A, the second step in the main loop
of Algorithm | is to update the profiles P such that they form a non-negative least
squares solution to the equation AP = C subject to the additional requirement that the
elements on the diagonal of P must be 100. Lines 1624 implement nnls(A, C) with this
additional requirement enforced on line 22. Indeed, with the omission of line 22, lines
| 624 are a general purpose implementation of the nnls function. This implementation
is based on [I].

Separate profiles for the numbers of forward and reverse reads can be constructed
by doubling the number of columns in P and C, where the left half corresponds to the
forward stand and the right half to the reverse strand.This ensures that the same allele
balance matrix A is used for both strands.

References

I. M. N. Schmidt, O. Winther, and L. K. Hansen. Bayesian non-negative matrix
factorization. In: Independent Component Analysis and Signal Separation.
Springer, 2009, pp. 540-547.
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Supplementary Figure | — Stutter model based on a reference database of 429
samples
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b) Total remaining noise for each locus after correction in 429 reference samples,
BGPredict correction vs combined BGEstimate and BGPredict correction
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reference samples, correction based on 100 vs 429 reference samples
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ples, correction based on 100 vs 429 reference samples

60,0 + Maximum total remaining
noise small dbase (n=100)
50,0
X % * X Maximum total remaining
40,0 T ¥ * noise complete curated
x X X * * + dbase (n=429)
¥ X ¥ % | + 99thpercentile small dbase

30,0 T * 3 * % X I % (n=100)
. X % X, * n=
. . V\ /\% N x i / \x ﬁ/
20,0 X & N v 99th percentile complete
:/ A 4 V curated dbase (n=429)

10,0
——95th percentile small dbase
(n=100)

*

0,0

Total noise (% of most frequent allele)

S8 FEF T —9sthpercentie complete
S &5 curated dbase (n=429)

a) The dotplot displays the most frequently observed noise that remained after correction in any of the 429 analysed reference samples when
performing the correction using BGPredict only (based on the stutter model) or a combination of BGEstimate and BGPredict. In addition, the
99th and the 95th percentile are plotted to illustrate the variation in remaining noise.

b) The dotplot displays the highest total observed noise (cumulative percentage of the reads of the most frequent allele) that remained after
correction in any of the 429 analysed reference samples when performing the correction using BGPredict only (based on the stutter model) or a
combination of BGEstimate and BGPredict. In addition, the 99th and the 95th percentile are plotted to illustrate the variation in remaining noise.
¢) The dotplot displays the most frequently observed noise that remained after correction in any of the 429 analysed reference samples when
performing the correction based on all 429 samples or only 100 randomly selected samples from this database. In addition, the 99th, 95th, and
90th percentile are plotted to illustrate the variation in remaining noise.

d) The dotplot displays the highest total observed noise (cumulative percentage of the reads of the most frequent allele) that remained after cor-
rection in any of the 429 analysed reference samples when performing the correction based on all 429 samples or only |00 randomly selected
samples from this database. In addition, the 99th and 95th percentile are plotted to illustrate the variation in remaining noise.
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Supplementary Figure 3 -Visualisation of the frequency of each allele and the
frequency of co-occurence with other alleles as heterozygous genotypes

The graphs depict every allele among the reference samples as a circle. The size
of the circle corresponds to the number of samples with that particular allele.
A black inner circle depicts the number of homozygotes.

The circles of two alleles are connected by a line whenever samples exist that
have a combination of the two connected alleles. The thickness of the line cor-
responds to the number of heterozygotes with that particular combination of
alleles.

To fit the criteria to create a BGEstimate noise profile, alleles need to be pre-
sent as a homozygous genotype (displayed as a black circle) or be connected
with at least three other alleles that must also fit these criteria.

These figures were generated using the command fdstools vis allele’.

a) Allele visualisation of 429 reference samples
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b) Allele visualisation of 100 reference samples
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c) Allele visualisation of 429 reference samples after removing alleles that do
not meet thresholds for determining a reliable noise profile

@ CSFIP0
D10S1248
@ D12s381
D135317
@ D16S539
@ D18ss1
D195433
@ D1s1656
® 021811
D2251045
@ D251338
D25441
@ D351358
) D55818
@ D75820
D8s1179
O FGA
PentaD
() PentaE
THO1
® TPOX
VWA

172



FDSTools - Forensic DNA Sequencing Tools for MPS data analysis

d) Allele visualisation of 100 reference samples after removing alleles that do
not meet thresholds for determining a reliable noise profile
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Supplementary Figure 4 — Noise profiles of D75820 allele CEIO_TCTA[10]_-
20T>A estimated from high and low-coverage samples

a) Noise profile of D75820 allele CEIO_TCTA[I0]_-20T>A estimated from
high-coverage samples
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b) Noise profile of D75820 allele CEIO_TCTA[I10]_-20T>A estimated from
low-coverage samples
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@ Total reads
Forward reads

CE7.3_TCTA[8]_-20T>-
CE8_TCTA[8]_-20T>A @ Reverse reads
CEB.3_TCTA[g]_-20T>-
CE9_TCTA[9]_-20T>A
CE9.3_TCTA[10]_20T>-
CE10.3_TCTA[11]_-20T>-

CE11_TCTA[11]_-20T>A

Noise ratio (%)

Noise profiles created with BGEstimate based on a selection of a) 71 high-coverage samples (82,000-350,000 total reads) and b) 70
low-coverage samples (8,000—44,000 total reads). The noise ratio is shown for each systemic noise sequence observed. It is clear that for the
low-percentage noise in the low-coverage noise profile, more strand bias is introduced due to single-strand drop-out of this noise caused by
insufficient coverage of the reference samples.
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Supplementary Figure 5a — Explanation of a sequence profile for raw, filtered
and corrected data

Raw data
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Sequence profiles for three different stages of the analysis for a simple reference sample without overlap between stutter and genuine alleles.

On top, raw read counts are displayed for each observed variant.

In the middle, noise reads are filtered out (based on the observed reproducible noise for each allele in the reference database). Filtered noise
reads are displayed in light purple.

At the bottom, filtered reads are added to the parent allele (as determined by the noise profiles) as recovered reads marked in dark orange. The
lines in the bars indicate the strand balance; the line is drawn near the top of the bar if the majority of reads of a sequence is on the forward
strand, near the bottom of the bar if the majority of reads is on the reverse strand, and in the middle of the bar in the absence of strand bias.

Sequences displayed in green in the graphs are the dlleles that the software infers to be genuine alleles in the sample, based on a threshold of
1.5% of the total number of reads of the locus.
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Supplementary Figure 5b — Explanation of a sequence profile for raw, filtered

and corrected data
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Sequence profiles for three different stages of the analysis for a reference sample with overlap between stutter and genuine alleles.
On top, raw read counts are displayed for each observed variant.
In the middle, noise reads are filtered out (based on the observed reproducible noise for each allele in the reference database). Filtered noise
reads are displayed in light purple. Note that part of allele CE 10 is filtered out as noise from allele CE |.
At the bottom, filtered reads are added to the parent allele (as determined by the noise profiles) as recovered reads marked in dark orange. For
allele CE 10, part of the reads are removed as noise, but some reads are recovered as well. The overlap of this filtered noise and recovered reads
is marked in light orange. The lines in the bars indicate the strand balance; the line is drawn near the top of the bar if the majority of reads of
a sequence is on the forward strand, near the bottom of the bar if the majority of reads is on the reverse strand, and in the middle of the bar
in the absence of strand bias. Sequences displayed in green in the graphs are the alleles that the software infers to be genuine alleles in the
sample, based on a threshold of 1.5% of the total number of reads of the locus.
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Supplementary Figure 6 — Required time and memory for the analysis of case
samples
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The dot plots display the registered time (a) and the peak memory usage (b) of analysis for five samples for each tool of the standard casework
analysis pipeline. The analysis was performed using a single core of an Intel(R) Xeon(R) E5-2620 processor at 2.00 GHz.The analysis time is
mostly consumed by TSSV and the highest memory demand is measured for the tool BGCorrect . Both the analysis time and memory increase
more or less linearly when the coverage of a sample is increased.

177



Chapter 5

Supplementary Table | — Currently available tools and visualisations in

FDSTools

General

Pipeline Automatically run complete, predefined analysis pipelines using the
other tools in the package. Recommended starting point for new users.

TSSV Link raw reads in a FastA or FastQ file to markers and count the
number of reads for each unique sequence. Wrapper around the TSSV-
Lite program.

Vis Create a data visualisation web page or Vega graph specification.

Seqconvert Convert between raw sequences, TSSV-style sequences (shortened
notation of STRs), and allele names.

BGMerge Merge multiple files containing background noise profiles. Used to
extend the output of BGEstimate with output of BGPredict.

Library Create an empty FDSTools library file.

Libconvert Convert between TSSV and FDSTools library file formats. Primarily

useful for users migrating from the older, standalone TSSV programme
to FDSTools.

Reference sample

analysis

Stuttermark Mark potential stutter products by assuming a fixed maximum
percentage of stutter product with respect to the parent sequence.
Used to mask stutter products for Allelefinder.

Allelefinder Find true alleles in reference samples and detect possible
contaminations.

BGHomRaw Compute noise ratios for all noise detected in homozygous reference
samples.

BGHomStats Compute allele-centric statistics for background noise in homozygous
reference samples (min, max, mean, sample variance).

BGEstimate Estimate allele-centric background noise profiles (means) from
reference samples.

Stuttermodel Train a stutter prediction model using homozygous reference samples.

BGAnalyse Find contaminated or otherwise unsuitable reference samples.

Case sample analysi

S

BGPredict Predict background profiles of new alleles based on a model of stutter
occurrence obtained from Stuttermodel.
BGCorrect Match background noise profiles to samples to filter and correct for

systemic noise.

FindNewAlleles

Mark all sequences that are not in a list of known (e.g., previously
encountered) allelic sequences.

Samplestats

Compute various statistics for each sequence in a given sample data
file. Can also call alleles and filter sequences using these statistics.
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Visualisations

Samplevis Visualise and interpret sample data files. The web page version of
Samplevis offers many features to help interpreting the sample, such
as automatically marking sequences that match given criteria as

‘allele’.
Profilevis Visualise background noise profiles obtained with BGEstimate,
BGHomStats, and BGPredict.
BGRawuvis Visualise raw background noise data obtained with BGHomRaw.
Stuttermodelvis | Visualise models of stutter obtained from Stuttermodel.
Allelevis Visualise the allele list obtained from Allelefinder as a graph in which

the nodes correspond to alleles and the edges correspond to
heterozygous samples combining the connected alleles.

BGAnalysevis Visualise remaining background noise levels as obtained from
BGAnalyse.
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Supplementary Table 2 — Effects of criteria for admission of alleles to noise
profile estimation

Number of alleles for which a BGEstimate noise profile can be obtained in our 429 sample
reference set when applying different criteria. These comprise the minimum number of different
heterozygous genotypes per allele, minimum number of samples per allele and minimum num-
ber of homozygous samples per allele.When a criterion is varied, the other criteria are kept at
the minimum value possible which is at least | heterozygous genotype per allele, | sample per
allele and 0 homozygous samples per allele. The criterion of the minimum number of different
heterozygotes per allele does not apply if the allele is present in at least one homozygote.

When the settings are more stringent, BGEstimate noise profiles are obtained for fewer alleles.
The results for the settings selected for this study are indicated in the rightmost column label-
led ‘'used settings’ and represent at least 3 different heterozygous genotypes per allele or if a
homozygote is available, at least 2 samples per allele.
Note that three different alleles have been detected for the gender locus Amel, which is due to
the detection of 2 sequence variants for the X allele.

Heterozygous genotypes | Samples per allele Homozygous samples per
per allele (or one (homozygous allele (situationfor Used
Criteria homozygote available) or heterozygous) Stuttermodel) settings
1+ 2+ 3+ 4+ 5+ 1+ 2+ 3+ 4+ 5+| 1+ 2+ 3+ 4+ 5+

locus Alleles

Amel 3 1 1 1 1 3 3 3 3 3 1 1 1 1 1 1
CSF1PO 10 8 6 5 4| 10 8 6 4] ] 4 4 4 4 3 6
D10S1248 11 7 6 6 6] 11 7 6 b 6 5 4 4 4 3 6
D125391 61 44 36 29 27| 61 45 36 31 28| 10 5 3 2 2 36
D135317 8 14 14 14 13| 18 14 14 14 14| 7 7 7 6 6 14
D16S539 117 11 11 11 11} 11 11 11 11 11 8 4 4 4 4 11
D18551 18 15 13 13 12| 18 15 14 14 14 7 7 7 6 5 13
D195433 1§ 15 11 10 10| 18 16 14 13 10 5 4 3 3 3 11
D151656 29 22 19 17 17| 29 22 20 18 17| 13 7 4 3 2 19
D21511 45 28 21 18 15| 45 29 22 18 17 9 7 3 3 3 21
D2251045 11 9 7 7 6] 11 11 8 8 8 5 4 3 3 3 7
D251338 42 28 23 22 17| 42 28 24 22 22| 10 8 5 4 3 23
D25441 17 13 10 10 9| 17 14 12 10 10 6 4 4 3 3 10
D351358 19 16 15 14 11| 19 16 15 14 13 8 5 5 3 3 15
D55818 23 18 17 14 13| 23 18 17 16 15 8 5 4 3 3 17
D75820 21 19 17 16 15 21 19 17 16 16 8 6 5 5 4 17
D851179 23 19 17 14 14| 23 19 18 18 16 9 5 5 4 4 17
DYS391 [ 6 6 6 6 4] 5 5 4 4 6 5 5 4 4 5
FGA 18 15 13 10 9| 18 15 14 11 9 7 7 6 4 4 13
PentaD 18 14 13 10 9| 18 14 13 13 11 6 6 5 5 5 13
PentaE 18 16 16 15 14| 18 16 16 15 14| 11 9 8 7 4 16
THO1 7 7 7 7 5 7 7 7 7 7 5 5 5 5 4 7
TPOX 7 6 6 6 6 7 6 6 6 6 4 3 3 3 2 6
vWA 22 16 15 11 9| 22 16 15 14 12 5 5 5 3 3 15
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Abstract

Since two decades, short tandem repeats (STRs) are the preferred markers for
human identification, routinely analysed by fragment length analysis. Here we present
a novel set of short hypervariable autosomal microhaplotypes (MH) that have four or
more SNPs in a span of less than 70 nucleotides (nt). These MHSs display a discriminating
power approaching that of STRs and provide a powerful alternative for the analysis
of forensic samples that are problematic when the STR fragment size range exceeds
the integrity range of severely degraded DNA or when multiple donors contribute to
an evidentiary stain and STR stutter artefacts complicate profile interpretation. MH
typing was developed using the power of massively parallel sequencing (MPS) enabling
new powerful, fast and efficient SNP-based approaches. MH candidates were obtained
from queries in data of the 1000 Genomes, and Genome of the Netherlands (GoNL)
projects. Wet-lab analysis of 276 globally dispersed samples and 97 samples of nine
large CEPH families assisted locus selection and corroboration of informative value.
We infer that MHs represent an alternative marker type with good discriminating
power per locus (allowing the use of a limited number of loci), small amplicon sizes
and absence of stutter artefacts that can be especially helpful when unbalanced mixed
samples are submitted for human identification.

Introduction

Short Tandem Repeats (STRs) have been the preferred marker for human
identification for over two decades. Although the high degree of variation at STR-
loci [I] provides useful discriminatory power for forensic and paternity cases, STRs
are not the ideal marker type when degraded or mixed samples are involved. The
interpretation of samples that have multiple contributors (and especially those
with unequal contributions) can be complicated by the effects of slippage of DNA
polymerases at the repeat stretches, resulting in stutter peaks that reside foremost
at the n-1 position (representing products of one repeat unit less than the original
allele length) [2]. Also, STR fragments with higher repeat numbers can be too long to
allow amplification in severely degraded DNA samples [3]. The ideal forensic marker
has a high degree of variation per fragment, allows for the design of small amplicons
and is devoid of the production of stutter artefacts. In 1999, Jin et al. [4] published
such a marker: a hypervariable fragment close to the MXI| gene on chromosome 2|
containing several single nucleotide polymorphisms (SNPs) within a stretch of 100
nucleotides that proved to be informative in population genetics. However, at that time,
the full power of such loci could not be exploited since routine analysis performed
by Sanger sequencing only provides consensus information for each position without
revealing how the variants of different SNPs within a fragment are connected (as a
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microhaplotype).

The development of massive parallel sequencing (MPS) platforms has provided
promising new possibilities, especially for marker types that reveal their discriminatory
value upon sequencing analysis. For STRs, MPS reveals substantial sequence variation
in addition to repeat length, thereby increasing the discriminatory power of STRs
compared to conventional fragment analysis [5,6]. However, even with MPS, the
complication of stutter formation in the interpretation of complex mixtures remains.
MPS also allows for the analysis of large panels of SNPs when severely degraded DNA
is involved [7,8]. Recently, microhaplotypes (MH) or fragments with two to four SNPs,
within a 200 nucleotide (nt) stretch, have been described [9] as an alternative for STR
typing of mixtures. Note that both SNPs and MHs do not allow for searches in DNA
databases that are generally built from STR data and that relevant reference samples
need to be available. Here we examine a new set of short hypervariable haplotypes,
consisting of four or more SNPs contained in genomic fragments of less than 70 nt.
We indicate that these MHs represent a discriminating power close to that of STR
loci and facilitate mixture analysis without the hindrance of stutter The data of the
1000 genome [10] and the GoNL projects [I ] were used to identify potentially
useful MHs. To confirm the genetic variation of these loci, data from 276 individuals
of three globally distinct populations and 97 DNA samples from nine large families
were analysed using MPS.Variant data of the most promising MHs was made publically
available via the Leiden Open (source) Variation Database (LOVD) [12,13].

Material and Methods

Marker selection

We screened the Variant Call Format (VCF) files of the African samples of the
1000 Genome and all of the GoNL project samples (Dutch selected for European
ancestry) for genome fragments spanning 100 nt containing six SNPs with Minor Allele
Frequencies (MAFs) in the relevant population = 0.1.To select a subset of fragments for
wetlab confirmation from the total set (which was >100,000 fragments), filtering was
performed using the following criteria:

* At least four out of six SNPs need to occur in both the 1000 Genomes and
the GoNL projects, we do this for both validation purposes, but also to confirm
that the variants are present in samples from different ancestry;

e All six SNIPs should be within 70 nt to maximise possibilities for small amplicon
design (the number of fragments from the 100 nt interval search allowed us to
further reduce the fragment size);

* At least five of the six SNPs should not share the same MAF to maximise the
number of possible haplotypes (many identical frequencies suggests perfect
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linkage and lack of variation);

*  One of the SNPs should have a MAF of at least 0.4 to avoid overrepresentation
of one haplotype.

* The highest and the lowest MAF of the SNPs within a fragment should have
a difference of at least 0.2 to maximise variation in frequencies between
haplotypes.

* The genomic distance to the nearest fragment should be at least 100,000 nt.

Forthe remaining fragments, the MH sequence spanning all SNPs plus 60 nucleotides
up- and downstream was checked for homology in the genome using BLAST. Fragments
with multiple hits (both within one chromosome and on different chromosomes) were
discarded. For the remaining fragments, primer design was performed using primer3
v4.0.0 allowing a Tm of 57-63 °C, a primer length of 18-27 nt and amplicon sizes of
80-120 bp. Fragments containing repeating elements (repeated four or more times)
or single nucleotide stretches over 8 nt were discarded. After primer design, the
complete amplicon was checked again for homology using BLAST to achieve the final
set of fragments for wet-lab testing. The set was completed by designing an amplicon
representing the most variable part of the fragment described in Jin et al. [4] which
includes seven of the nine SNPs excluding the last SNP of the 248 bp fragment and
the SNP in the additional 227 bp fragment.

Microhaplotype selection by monoplex PCR and lon PGM analysis

To confirm the sequence variation for the selected candidates, 92 MHs were
sequenced in |5 samples using the lon PGM™ System according to the manufacturer’s
procedures. Five Dutch, three Bhutanese, two Ghanese, two Pygmy and three
Amerindian samples from the HGDP CEPH-panel [14] were amplified in monoplex
reactions. PCRs were performed using a |0ul reaction containing PCR buffer (Life
Technologies), 3mM MgClI2, 0.2uM dNTPs, primer concentrations of 0.1-0.8uM, 0.6
units Amplitaq Gold (Life Technologies) and 1.5ng DNA. PCR specificity was checked
using the Qiaxcel system (Qiagen) according to the manufacturer's procedures and
MHs for which additional bands were visible in eight or more samples were discarded.
All monoplex PCR products of the same sample were pooled and adapters were
ligated to the amplicon pool using the lonXpress library preparation kit according to the
manufacturer’s procedures (lon Torrent / Thermo Fisher). Sequencing was performed
using the PGM™ System according to the manufacturer's procedures (Thermo Fisher)
and data analysis was performed using FDSTools [5].
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MH confirmation by multiplex PCR and MiSeq analysis

A multiplex PCR was designed (amplicon sizes 87-126bp including primers) to
examine the most informative 16 MHs in more detail. To test for global variation, 99
samples from the Netherlands [15], 87 Asian samples of the Han Chinese and Japan
HapMap panel[16],and 90 African samples of the Luhya (Kenya),Yoruba (Kenya/ Nigeria)
and Maasai (Kenya) HapMap panel were analysed.To confirm stable transmission of the
variants, nine CEPH families (family 12,66, 1328, 1347, 13281, 13291, 13292, 13293 and
13294; 97 samples in total) were analysed. Multiplex PCR was performed using a total
volume of 12.5pl containing PCR buffer (Life Technologies), 4mM MgClI2, 0.4uM dNTR
primer concentrations of 0.03-0.35uM, 2.5 units Amplitaq Gold (Life Technologies)
and 1.5ng DNA. Adapters were ligated using the KAPA HTP Library Preparation Kit
for llumina® platforms according to the manufacturer’s procedures (KAPA Biosystems
/ Roche) and sequencing was performed using the MiSeq® Sequencer according to
the manufacturer's procedures (lllumina, v3 chemistry). Data analysis was performed
using FDSTools [5]. Data for all observed sequence variants of the final set of MHs was
submitted to LOVD (http://databases.lovd.nl/DNA_profiles/) [12,13].

Statistical analysis

All statistic calculations were performed on haplotype data (not separately for each
SNP). Population statistics were calculated for all populations (Chinese / Japanese and
Kenyan / Nigerian were respectively grouped together) using Powerstats [17] and
Genalex [18]. The power to detect mixtures (chance to observe a third allele for at
least one locus) was calculated as described by Phillips et al. [19] by adding an extra
sheet to the Powerstats Excel sheet (file available upon request). An Excel sheet was
used to check for correct transmission of variants in the CEPH families. Neighbour
joining networks were drawn for the 16 MHs of the final multiplex using Network
5 and Network Publisher [20] using the homologous sequence of a Chimpanzee
as out-group. Recombination rates were retrieved for all MHs from the HapMap
recombination maps [21] and the average number of meioses for recombination to
occur within the fragment was calculated considering the fragment lengths. To test the
potential of these fragments to inform about geographic ancestry, STRUCTURE [22]
was run 100 times with a K-value of 2, 3 and 4. CLUMPAK [23] was used to combine
and visualise the data of the repeated runs.
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Results

MH candidate selection

A search in the VCF files for genomic intervals of 100 nt containing at least six SNPs
with a MAF of at least 0.1 resulted in 14,890 potential MHs in the African samples
of the 1000 Genomes project and 105,129 MH candidates in the GoNL dataset. An
overview of the number of remaining fragments for each chromosome after applying
several filtering criteria is shown inTable |. After checking the remaining 410 fragments
for homologous regions in the genome and the possibility for PCR design, 92 fragments
dispersed over the genome remained and amplicons were prepared for wet-lab testing.

Table | - Numbers of remaining short hypervariable microhaplotypes after
applying several filtering criteria for selection of potentially informative fragments

Chromasome
% of
Selection Criteria Total  total* 1 2 3 4 5 6 7 8 El 10
At least four SNPs in 1000 Genome and GoNL selection 10464 10.0% 181 332 277 291 133 5858 338 173 183 185
Clusters <70bp 5612 5.3% 89 155 120 128 64 3435 175 73 91 105
At least five SNPs with different MAF within the fragment 4726 4.5% 80 139 89 102 57 2925 148 58 75 87
Max MAF in fragment at least 0.4 3910 3.7% 61 108 67 81 41 2402 118 57 69 77
Max within fragment freg-distance > 0.2 2882 2.7% 50 71 46 61 31 1863 a4 42 47 51
Distance between two fragments > 100,000 nt 410 0.4% 26 16 21 28 13 32 23 20 16 20
Succesful PCR-design a2 4 2 6 4 1 6 5 5 4 5
Chromosome
Selection Criteria 11 12 13 14 15 16 17 18 19 20 21 22
At least four SNPs in 1000 Genome and GoNL selection 185 223 210 410 103 227 244 115 255 282 115 144
Clusters <70bp 96 124 112 171 33 103 125 62 120 113 53 65
At least five SNPs with different MAF within the fragment 87 109 91 125 26 82 98 57 96 102 43 52
Max MAF in fragment at least 0.4 70 97 83 113 25 63 96 47 75 82 39 39
Max within fragment freg-distance > 0.2 43 57 53 66 17 50 63 33 41 53 29 26
Distance between two fragments > 100,000 nt 24 17 17 11 11 22 17 13 26 14 11 12
Succesful PCR-design 6 2 4 4 5 5 5 2 5 4 2 4

*percentages are calculated as proportion of the GoNL candidate fragments

MH candidate testing

From the 92 MH candidates amplified for the first set of |5 samples, 83 MHs passed
the selection criterion regarding PCR specificity (no differently sized amplification
products in at least eight of the |5 samples) and were subjected to sequence analysis.

The sequence variation observed for these 83 candidates was generally very low:
in most cases only a single haplotype was observed. In addition, several fragments
showed more than two alleles in the same sample reflecting multiple genomic copies
of different sequence. Using these results as a selection criterion, 29 fragments
remained with more than two haplotypes in |5 samples and no indication of fragment
amplification from homologous loci based on the available data.
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Performance of MH set

A multiplex PCR was designed and 23 of the 29 fragments were successfully
amplified and sequenced in 276 population samples and 97 CEPH family samples.
Three of the 23 fragments revealed multiple amplification products suggesting more
than one genomic location. Four fragments showed insufficient sequence variation.
Thus, 16 fragments remained for which the genome positions and primer sequences
are displayed in Sup.Table |a. Microhaplotpes were named according to the suggested
names by Kidd et al. [24].

The observed number of variable SNP-positions within a MH varied from four to
22 and the number of unique haplotypes varied from 4-26 as displayed in Table 2.

A sequence alignment of the observed haplotypes of each MH is displayed in Sup.
Figure | and Sup.Table 2 displays the allele frequencies in each of the three tested
populations.

Networks were drawn from the population samples for each MH to visualise
the SNP-distance between the separate haplotypes and the observed number
of haplotypes for each population. An example of the network of mh07PK-3831 |
is displayed in Figure |. For this figure, an illustration of the fragment was included
connecting the position of the SNPs with the branches in the network. Sup. Figure
2 displays the networks for each of the |6 MHs, statistics of the Chi-Square tests for
Hardy-Weinberg Equilibrium are displayed in Sup.Table 3.

The observed degree of variation is different for each MH. | 3 of the 16 loci result in
a simple network with either no or one reticulation.The MH with the most haplotypes
(mh17PK-86511) has a slightly more complex structure with a few low-frequency
haplotypes that result in reticulations. MHs mh | IPK-62906 and mh14PK-72639 result
in complex web-like structure. mh| | PK-62906 is the only fragment located in a region
with a substantially elevated recombination rate. For the tested allele transfers of the
selected 16 MHs in the CEPH families (144 allele transfer events for each locus in
total), no inconsistent haplotype inheritance was observed. As an example, Sup. Figure
3 displays the joined family tree for CEPH family 1328, 13281, 13291, 13292, 13293
and 13294 (50 individuals in total) with the corresponding genotypes and read counts
of each haplotype for mh|6PK-83544.
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Table 2 - Overview of the observed variation for each Microhaplotype

Unique observed Number of observed
Locus haplotypes* SNP-positions in MH
mhO6PK-24844 9 10
mhO6PK-25713 6 6%*
mhO7PK-38311 4 5
mhO8PK-46625 5 4
mh10PK-62104 5 7H*
mh11PK-62906 19 7
mh11PK-63643 7 7
mh14PK-72639 15 9**
mh15PK-75170 12 13%*
mh16PK-83362 7 8
mh16PK-83483 8 9
mh16PK-83544 5 6%*
mh17PK-86511 26 22
mh18PK-87558 4 6
mh22PK-104638 11 12
mh21PK-MX1s 5 4

*Each haplotype is defined as a unique observed combination of the SNP-variants within a fragment (in the tested human samples).

#* For mhO6PK-25713, mh10PK-62104, mh14PK-72639, mh|5PK-75170, mh|6PK-83544 and mh|7PK-86511, one of the SNPs is tri-
allelic. For each fragment, the number of observed unique haplotypes is displayed and the number of SNP-positions in the fragment from which
these haplotypes are comprised.
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Figure | —lllustration of the fragment of mhO/PK-38311 and the corresponding
network of the haplotypes

N Il \ !
\\\ H IY‘I Population
\ I \ [l Chimpansee
\ ‘l )/ \‘ [CINetherlands
sn\ " ) ,%’ ! [l china/ Japan
, [CJKenya/ Nigeria

On top, the fragment of mhO7PK-3831 | is displayed with the observed SNP positions indicated by vertical lines. Below, the network displays the
distribution of each haplotype over the different tested populations and the SNP-distance between each haplotype. The circles are sized by the

number of haplotypes observed in each population with colours representing the haplotypes of each analysed population. Each branch of the
network is connected to the corresponding SNP in the fragment by a dotted line.

Forensic and paternity statistics are summarised for each tested population in Sup.
Table 4.The random match probability (RMP) of the total set of |6 MHs is 9.2x 10" for
the African population, 4.4x 10" for the Dutch population and 1.0x [0 for the Asian
population. In comparison, Table 3 displays the RMP for several panels of different kind

of loci and Table 4 displays the power to detect a mixture (PMD) for the MHs and the
tri-allelic [25] and tetra-allelic SNPs [19].
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Table 3 - Overview of the Random Match Probability for different panels of
forensic loci

Panel numb_er Ty'?e of RMP* Based 9" Source
of loci loci population

4.4x101 NL

Short hypervariable Micro hap- r R .
microhaplotypes ik lotypes ey China/Japan LSRG
9.2x10-13 Kenya / Nigeria
7.9x10-1 African American
SGM Plus® Kit 10 STRs ThermoFisher
3.0x10-13 US Caucasian
1.6x10-12 US Hispanic
NGM™ 15 STRs 4.6x1020 African American | ThermoFisher
2.2x10-19 US Caucasian
3.1x10-12 US Hispanic
NGM™ <= 200 bp* 9* STRs 8.8x1013 African American ThermoFisher

2.6x10-12 US Caucasian

1.6x1028 African American

2421027 US Caucasian
Powerplex Fusion STRs Promega
2.1x10%7 US Hispanic

1.4x1025 US Asians

5.0x1021 European

Sanchezetal.
=4 =1 -19 S i
SNPferlD 52 SNPs 1.1x10 omali (2006)

5.0x101¢ Asian

-
triallelic SNPs " SNPs clraaly Duich Westen et al.
tri-allelic) | 4 4,107 | Dutch Antilles (2009)
1.5x10-12 European
Sl Phillips etal
tetra-allelic SNPs* 24 (tetra- 5.2x10-10 East Asian P '
: (2015)
allelic)
2.0x10-1 African
. . Micro hap- | 1x10-13- Various global .
Kidd MicroHaps 31 lotypes 41021 populations Kidd et al. (2014)

* the boundary of 200 nt is within the range of some loci, on average 9 loci determine the RMP
#% abbreviations: RMP = Random Match Probability
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Table 4 - Overview of the Power of Mixture Detection for different panels of
forensic loci

Panel nur_nber i Type of loci | PMD* Ba_sed ON POPU- | 56urce
loci lation
Shorth 0.9989 NL
ort hypervar- . .
iable micro- 16 tl\clc:: ST 0.9947 China/Japan This study
haplotypes P —
0.9999 Kenya / Nigeria
SNPs 0.7490 Dutch Westen et al.

tri-allelic SNPs | 10 es
(tri-allelic) | g 9471 Dutch Antilles | (2009)

0.9939 European

tetra-allelic SNPs . Phillips et al.
SNPs* 24 (tetra-allelic) | 0-9260 | EastAsian (2015)
09999 | African

* abbreviations: PMD = Power of Mixture Detection

To test the power of the 16 MHSs to differentiate populations of different ancestry,
100 Structure runs were performed using two to four groups (K=2, K=3 and K=4,
Figure 2).A major cluster (76 of the 100 runs) and a minor cluster (12 of the 100) was
obtained for K=2 separating the African or the Asian samples respectively from the
other two populations. For K=3, 98 of the 100 runs resulted in an almost complete
separation of all three populations involved. For K=4, a major and a minor fourth
cluster were obtained resulting in a poor differentiation of either the African or the
Dutch population (data not shown).
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Figure 2 - STRUCTURE / CLUMPAK population differentiation for 16 MHSs in
the tested populations

K=2 major mode (76/100)

African European Asian
K=2 minor mode (12/100)

African European Asian
K=3 (98/100)

African European Asian

The figure displays the CLUMPAK results of 100 STRUCTURE runs, every bar displays one individual. On top, the major mode is displayed of
STRUCTURE runs with K=2 derived from 76/100 repeated analyses where the African samples are mostly differentiated from Europe and Asia.
In the middle, the minor K=2 mode is displayed derived from 12/100 repeated analyses where most Asian samples are differentiated from
Africa and Europe. At the bottom, the results for K=3 are displayed derived from 98/100 repeated analyses where most of the samples of the
three continents are properly differentiated.

Discussion

Detection of degraded DNA and of minor contributions in mixed samples is often
complicated when conventional forensic STR typing is applied. Due to the large range
of amplicon sizes for some loci and the occurrence of stutter products, it can be
difficult to generate reliable and reproducible STR profiles. It would therefore be ideal
to use a marker type of small amplicon sizes with a discriminating power equivalent to
STRs but without the burden of stutter artefacts.

We selected hypervariable micro haplotype loci with at least six SNPs within a
range of 100 nt from genomic reference data of a European and African populations
and tested the final set on additional populations (including Asian samples) in order
to provide a set of markers which is likely to be informative in the majority of global
populations. Since the data available to us consisted merely of SNP-frequencies and
did not contain any information about haplotype frequencies of the combined SNPs
within a fragment, we used variation of SNP allele frequencies within each fragment as
a means to maximise haplotype variation.

BLAST results of the first selection of 410 fragments exposed that many (=25%)
of the hypervariable fragments contained homologous regions in the genome, which
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suggested that part of the variation in the databases might have resulted from
something else than actual SNP variation. After discarding those fragments, sequencing
of the remaining fragments still revealed much less variation than we observed in the
data of the two genome projects. Since most of such reference data is derived from
alignment of short reads (for these projects reads of mostly <150 nt) to a reference
sequence, there are two likely issues that could cause discrepancy in the estimated
frequencies for these hypervariable fragments:

I. Homologous fragments may map to the same position, falsely suggesting a
heterozygous genotype.

2. Fragments with many SNPs in a short range may exceed the number of allowed
mismatches for mapping reads to the reference during analysis, meaning that
only the reads that overlap part of the SNPs and haplotypes that are most
similar to the reference sequence will be mapped to the correct location.

In combination with relatively low coverage, these two issues can result in erroneous
variant calling for separate SNP positions within one (heterozygous) sample. An
extensive wet-lab confirmation of new possibly hypervariable loci is therefore essential.
Testing of samples from globally dispersed populations will not only give information
about discriminating power in different populations, but also increase the chance to
find different heterozygous allele combinations that can help to identify possible co-
amplified homologous regions. Testing of samples from large families will confirm
correct inheritance of the haplotypes and assist the internal validation of genotyping
results.

Although many of the initial candidate loci were rejected, a final set of 16 MHs
remained with expected inheritance of the haplotypes in the tested families and a high
degree of variation in the population samples. With a varying number of haplotypes
for each MH (2-19) and corresponding haplotype frequencies, the discriminating
power is not as strong as STRs but the set of 16 loci still reaches strong random
match probabilities (RMP) of: 1.0x10? in the Asian population, 4.4x10"'" in the Dutch
population and 9.2x10"* in the African population. For identification purposes, our
set of loci proved to be more informative than other alternative non-STR loci as can
be observed from Table 3. Since the populations tested for the different loci are not
exactly the same, a direct comparison of the RMP should be interpreted carefully.
Notwithstanding, the discriminating power of the |6 short hypervariable MHs roughly
resembles that of nine STRs [26], 25 tri-allelic SNPs [25], 2| tetra-allelic SNPs [19] or
23 of the earlier described MHs [9].

An important advantage of the use of MHs for mixture analysis is the number of

hap-lotypes that is observed for several loci. The statistical power (likelihood ratio) of
matching a person with a two-person mixture is substantially increased when more
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than two alleles are present for a specific locus. The power to detect a third allele for
a two-person mixture in at least one of the 16 loci ranges from 0.995 in the Asian
population to 0.9989 in the Dutch population and even 0.99992 in African population.
For detecting additional contributors in mixtures, the assay outperforms the published
sets of tetra-allelic and tri-allelic SNPs (Table 4). For the 130 MHs of Kidd et al [27],
the average PMD is estimated based on the top 28 loci for different numbers of
loci divided in ranges of effective number of alleles (3-4, 4-5 and >5). These 28 loci
together reach a PDM of 0.9999999875 from which 16 loci contain all SNPs within a
150 nt span. However, only three these 28 loci contain all SNPs within a 100 nt span as
is the case for the loci described in this paper. The two sets together could complete
an even more optimal set of loci for mixture detection.

Observed variation

Reticulations in a neighbour joining network can be caused by either recombination
or by recurrent mutations. The only fragment located in a region with exceptionally
high recombination rate is mh| |PK-62906, but considering the small fragment length,
recombination would only be expected to occur within the fragment once every
5.5x10* meioses. This might suggest that the web-like networks of mh! IPK-62906
and mh14PK-72639 (and in lower extent mhl7PK-86511) are more likely to be
explained by mutation hotspots concentrated on a few specific positions rather than
by recombination. Indeed, in none of the tested allele transfers of the CEPH families
(144 allele transfer events for each locus in total), recombination has occurred in such
a way that the allele inheritance of any of the loci was impacted.When using these loci
for paternity cases, it should be considered that mh| | PK-62906 and mh|4PK-72639
are more likely to display mutations than an average fragment.

For the network of mh06PK-25713, a fairly even distribution of the haplotype
frequencies was observed for all populations but for most of the loci, several haplotypes
vary substantially in frequency between the tested populations. This suggests that the
MHSs provide ancestry information although the design and selection of the loci was
not intended for this purpose. STRUCTURE analysis indeed showed that the three
analysed populations are differentiated almost completely based on the data of these
|6 MHs. Data from a larger set of samples with a more global representation would
be needed to test the full potential of these MHSs as ancestry informative markers.
From the 16 MHs that remained after all selection criteria, several of the loci failed
Hardy-Weinberg equilibrium test since the frequency of some homozygous genotypes
(usually with low frequency) is higher than would be expected.

None of the fragments is located in gene regions, so strong natural selection is not
expected for these fragments.An explanation for this could be that some samples in the
tested populations are somewhat genetically distinct from the rest of the population,
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which is not unlikely since we grouped samples of two Asian populations and of three
African populations in order to achieve comparable sample sizes. It also cannot be
excluded that some fragments could have occasional SNPs under the primer binding
sites although we did not observe any discrepancy of inheritance in the nine CEPH
families.

Sequence data analysis

It should be noted that not every software for sequence data analysis is capable to
analyse single-fragment haplotype data.When using an analysis software that maps the
complete sequences to a reference, results are often summarised by SNP instead of
haplotypes. In this study we used FDSTools [5] since variant frequencies in the data are
always reported for the complete sequence between two flanks instead of a summary
for each position.

Conclusions

A new set of short hypervariable microhaplotypes were selected as potential loci
for application in forensic DNA analysis. For |6 MFs, confirmation of the variation
and inheritance was performed by analysing 276 samples of three globally dispersed
populations and 97 samples of nine large families.MHSs provide an alternative type of loci
for cases where STR stutter or degradation of DNA limits or complicates the analysis.
Since the discriminating power of the selected hypervariable MHs is larger than other
published non-STR loci, they provide a practical and financially advantageous method
with a relatively small number of loci. For the purpose of increased discriminating
power and ancestry informative information, a combination of these loci with (part of)
the loci of Kidd et al [21] could provide an even more powerful tool.

The selection of short hypervariable MHs from genomic reference data is
complicated since the generally short read length of reference data is not ideal to
resolve the exact variation in short range hypervariable fragments. Since the read
length of most MPS platforms is increasing, future reference data will most likely be
better suited for selection and analysis of additional MHs.

National forensic DNA databases currently consist of STR data. Although it is not
expected that all database samples will be typed for new loci in the near future, loci
such as MHs could provide a powerful tool in cases where reference samples are
available for comparison.
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Supplementary materials

Supplementary Figure | —Alignments of the observed microhaplotype variation
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Neighbour joining networks are displayed for each of the final |6 MHs.The total number of haplotypes in each circle is displayed and the size
of each coloured circle displays which number of alleles of the specific haplotype was present in each population. Every number on a branch

displays a SNP that separates one haplotype from another.
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Supplementary Figure 3 — Joined family tree of six CEPH families displaying the
observed haplotypes and read counts for mh | 6PK-83544 for each individual
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The joined family tree is displayed of CEPH family 1328, 13281, 13291, 13292, 13293 and 13294 (50 individuals in total) with the observed
haplotypes for mh|6PK-83544. In the tree, different haplotypes are marked in different colours with the read numbers of each haplotype
displayed below. Parents are connected in the tree with double lines and to their respective offspring with single lines.
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Supplementary Table | - Primer details, genome locations and recombination
rate for the |6 selected microhaplotypes

Supplementary Table |a - Primer details of the |6 selected short hypervariable
microhaplotypes

Amplicon size
Forward (including

Fragment name |primer Reverse primer primers)
mhO6PK-24844 |GTGAACCCAGCAAAAGGAAG GACTTTAAAGCTGCAAACTCTAGTGA 110
mhO6PK-25713 |CAAACTCCTGGTCTCACAYG  GGGAGGACGTGTTGAAGArA 108
mhO7PK-38311 |CCAGCTGGTCTTGAACTCCT  CCTGAGTCAAATTAAATTACAYAAAT 120
mhO8PK-46625 |GTCCCGGCTGGTGGAG CTGCCTAGACASGGTGAGC 99
mh10PK-62104 |GGCTTTCAGGGTGGTCATT CCAAATAAGGAACTTTGTGGAAA 118
mh11PK-62906 |GCTAATTCCTCCTMGCTCCT  CAGAAGGTGTTGGCrTCAT 100
mh11PK-63643 |CTTGGATTCTGCCTCCACAT  GTTGGAACTGGTCCTTGTGAA 104
mh14PK-72639 |CGAAGCGAGCACGTTG CGGTTCGGTCACCGTAAGTA 87
mh15PK-75170 |TCCCTGGCTTKAAAGTGC GTTGAGGGGAGGAGGCAG 114
mh16PK-83362 |CTCCTTTGACTGTCCCGACT  TGAAGAGAGAGCAGAAGAACACA 98
mh16PK-83483 |CCAGAGGGAGAGGAGATGC CTGTTTITATTTAACCCCTTCTGG 115
mh16PK-83544 |AGGGGTGTGTTCTGGAGATG TGGCCTGGACACTCAGC 103
mh17PK-86511 |TCACCAACAGCAAACAGCA TGAACGTGTAGAACGCTGGA 110
mh18PK-87558 |GTAGCAGCCTAGCCAAGAGC CCCAGAAACTACCCATAGGTTACTA 114
mh21PK-MX1s |GGGAGCAAGCACCTTACAGT GGACTTAACCTTGAAATGGAAA 126
mh22PK-104638 | GGAGTGCTCAGTGACATTGG AAGTGGGTACTGGTGCAGGT 116
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locations, distance to the closest

Genome

Ib

Supplementary Table

microhaplotypes of Kidd et al. 2017 and recombination rate (from HapMap)

for the |6 selected microhaplotypes

Chromosome average nr of

location Upstream MH Kidd | Distance to MH Downstream MH |Distance to MH recombination |meioses /
Fragment name |(GRCh38) et al. 2017 (nt) Kidd et al. 2017 [(nt) rate (cM/Mb) recombination
mhO6PK-24844 |chr6:13861366-13861475 mh0O6KK-101 2,1E+06 mh06KK-026 3,2E+07 0,50 1,8E+06
mhO06PK-25713 |chr6:31196928-31197035 mh06KK-101 1,9E+07 mhO06KK-026 1,5E+07 0,13 7,1E+06
mhO7PK-38311 |chr7:52677423-52677542 mh07KK-031 2,3E+07 mhO07KK-082 2,9E+07 3,30 2,5E+05
mhO8PK-46625 |chr8:1194316-1194414 mh08KK-032 2,2E+08 0,93 1,1E+06
mh10PK-62104 |chr10:127392544-12739266] mh10KK-084 2,0E+07 mh10KK-087 6,1E+06 0,42 2,0E+06
mh11PK-62906 |chr11:247959-248058 mh11KK-090 4,8E+06 18,25 5,5E+04
mh11PK-63643 |chr11:34415786-34415889 mh11KK-040 2,5E+07 mh11KK-039 1,7E+07 0,02 6,0E+07
mh14PK-72639 |chri14:32203258-32203344 mh14KK-101 1,2E+07 mh14KK-068 1,0E+08 0,29 3,9E+06
mh15PK-75170 |chrl5: 24802296-24802409 mh15KK-104 5,4E+07 1,98 4,4E+05
mh16PK-83362 |chr16:77999218-77999315 mh16KK-302 2,8E+07 mh16KK-096 4,0E+07 0,49 2,1E+06
mh16PK-83483 |chr16:84516809-84516923 mh16KK-302 3,4E+07 mh16KK-096 3,4E+07 0,51 1,7E+06
mh16PK-83544 |chr16:85934053-85934155 mh16KK-302 3,6E+07 mh16KK-096 3,3E+07 1,21 8,0E+05
mh17PK-86511 |chr17:58631674-58631783 mh17KK-055 7,0E+06 mh17KK-052 5,2E+06 0,00 1,5E+09
mh18PK-87558 |chri18:1960521-1960634 mh18KK-293 4,9E+06 0,53 1,7E+06
mh21PK-MX1s chr21:41464724-41464849 mh21KK-324 5,2E+06 mh21KK-316 5,3E+07 0,90 8,8E+05
mh22PK-104638 |chr22:44857863-44857978 mh22KK-060 2,2E+07 mh22KK-064 1,7E+06 1,12 7,7E+05

Primer details, genome locations and recombination rate of the MHs distance to the closest microhaplotypes of Kidd et al 2017.
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Supplementary Table 2 - Allele frequencies of MH haplotypes for the analysed
populations

Locus NL Asia Africa
mh06PK-24844 Haplotype \ n 929 87 73
1 0,000 0,000 0,123
3 0,566 0,586 0,425
4 0,071 0,000 0,329
5 0,005 0,000 0,000
6 0,005 0,000 0,000
7 0,348 0,414 0,110
10 0,005 0,000 0,000
12 0,000 0,000 0,007
14 0,000 0,000 0,007
mh06PK-25713 Haplotype \ n 98 87 74
1 0,209 0,092 0,216
2 0,107 0,075 0,101
3 0,464 0,431 0,534
4 0,168 0,379 0,135
5 0,051 0,023 0,007
7 0,000 0,000 0,007
mh07PK-38311 Haplotype \ n 62 60 90
1 0,153 0,067 0,089
2 0,387 0,225 0,133
3 0,427 0,708 0,617
4 0,032 0,000 0,161
mh08PK-46625 Haplotype \ n 94 80 78
1 0,191 0,250 0,327
3 0,191 0,456 0,500
5 0,000 0,000 0,058
6 0,585 0,294 0,115
7 0,032 0,000 0,000
mh10PK-62104 Haplotype \ n 99 87 90
1 0,540 0,655 0,533
2 0,399 0,345 0,456
3 0,056 0,000 0,006
4 0,005 0,000 0,000
7 0,000 0,000 0,006
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mh11PK-62906 Haplotype \ n 87 71 88
1 0,161 0,782 0,608
2 0,540 0,000 0,102
3 0,023 0,148 0,006
4 0,040 0,007 0,063
5 0,000 0,000 0,034
6 0,040 0,000 0,000
7 0,069 0,014 0,017
8 0,029 0,007 0,142
9 0,017 0,000 0,000
11 0,029 0,000 0,000
13 0,011 0,000 0,000
14 0,040 0,000 0,000
15 0,000 0,000 0,011
18 0,000 0,021 0,000
19 0,000 0,000 0,006
20 0,000 0,007 0,000
22 0,000 0,000 0,006
23 0,000 0,014 0,000
25 0,000 0,000 0,006
mh11PK-63643 Haplotype \ n 99 86 90
1 0,232 0,221 0,089
2 0,096 0,186 0,233
4 0,379 0,047 0,289
9 0,247 0,198 0,106
10 0,045 0,343 0,278
13 0,000 0,000 0,006
14 0,000 0,006 0,000
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mh14PK-72639 Haplotype \ n 97 84 88
1 0,000 0,000 0,011
2 0,216 0,482 0,159
4 0,284 0,185 0,216
7 0,000 0,000 0,006
8 0,304 0,000 0,051
9 0,005 0,000 0,000
10 0,180 0,333 0,358
14 0,005 0,000 0,028
16 0,000 0,000 0,017
17 0,000 0,000 0,034
18 0,000 0,000 0,006
19 0,005 0,000 0,057
20 0,000 0,000 0,045
25 0,000 0,000 0,006
26 0,000 0,000 0,006

mh15PK-75170 Haplotype \ n 78 76 73
1 0,179 0,164 0,548
2 0,000 0,000 0,034
3 0,000 0,086 0,000
4 0,006 0,000 0,000
5 0,699 0,730 0,315
6 0,109 0,000 0,027
7 0,006 0,000 0,000
8 0,000 0,000 0,007
9 0,000 0,007 0,000
10 0,000 0,000 0,068
11 0,000 0,007 0,000
13 0,000 0,007 0,000

mh16PK-83362 Haplotype \ n 99 85 75
1 0,076 0,053 0,167
3 0,000 0,000 0,047
4 0,202 0,471 0,487
5 0,722 0,471 0,153
6 0,000 0,000 0,140
9 0,000 0,000 0,007
10 0,000 0,006 0,000

216




FDSTools - Short Hypervariable Microhaplotypes

mh16PK-83483 Haplotype \ n 71 84 74
1 0,077 0,012 0,223
2 0,211 0,000 0,000
4 0,000 0,000 0,054
5 0,521 0,470 0,358
8 0,183 0,500 0,176
12 0,007 0,012 0,182
15 0,000 0,006 0,000
18 0,000 0,000 0,007

mh16PK-83544 Haplotype \ n 929 83 86
1 0,343 0,277 0,064
2 0,293 0,060 0,035
3 0,131 0,301 0,337
4 0,232 0,355 0,564
5 0,000 0,006 0,000
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mh17PK-86511 Haplotype \ n 98 85 70
1 0,378 0,000 0,050
2 0,015 0,000 0,000
3 0,357 0,594 0,221
4 0,031 0,000 0,000
5 0,005 0,000 0,029
6 0,036 0,000 0,000
7 0,000 0,000 0,050
8 0,051 0,059 0,021
9 0,005 0,082 0,264
10 0,092 0,235 0,157
11 0,020 0,000 0,029
12 0,010 0,000 0,000
13 0,000 0,006 0,000
14 0,000 0,000 0,014
15 0,000 0,000 0,071
17 0,000 0,012 0,000
18 0,000 0,000 0,014
19 0,000 0,000 0,007
21 0,000 0,000 0,014
22 0,000 0,000 0,007
23 0,000 0,000 0,014
24 0,000 0,000 0,007
25 0,000 0,000 0,014
26 0,000 0,000 0,007
27 0,000 0,000 0,007
28 0,000 0,012 0,000
mh18PK-87558 Haplotype \ n 70 78 20
1 0,407 0,340 0,056
2 0,129 0,109 0,428
3 0,000 0,000 0,011
4 0,464 0,551 0,506
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mh22PK-104638 Haplotype \ n 88 76 67
1 0,722 0,546 0,515
2 0,028 0,053 0,194
3 0,045 0,342 0,015
4 0,006 0,000 0,000
5 0,000 0,000 0,007
6 0,000 0,020 0,000
7 0,000 0,013 0,030
8 0,000 0,000 0,075
9 0,199 0,026 0,104
10 0,000 0,000 0,052
11 0,000 0,000 0,007

mh21PK-MX1s Haplotype \ n 96 87 90
1 0,828 0,477 0,656
2 0,141 0,080 0,028
3 0,000 0,063 0,117
4 0,010 0,000 0,083
5 0,021 0,379 0,117

219



Chapter 6

9 J4adeyd

220



General Discussion

Kristiaan J. van der Gaag






General Discussion

General Discussion

Short tandem repeat (STR) analysis by capillary electrophoresis (CE) has provided
important investigative leads and crucial evidence in numerous forensic cases requiring
human identification all over the world.While CE analysis of STRs has been the golden
standard in forensic DNA evidence for over two decades this method is not without
limitations. Parts of these limitations are caused by the analysis method CE and parts
by the nature of the chosen DNA marker: STRs. Several of these limitations may be
overcome by using Massively Parallel Sequencing (MPS) and the limits of the marker
may minimised by developing new software tools for MPS data, or by selecting new
markers with sufficient discriminating power.

Strengths and limits of routine CE STR-analysis

CE analysis is an easy operable, fast running and relatively cheap method; all three
very good arguments for routine use in a high throughpu=t workflow such as forensic
DNA analysis. A drawback is that CE can only make use of a limited number of
fluorescent dye labels (currently 5-6 labels; soon up to eight labels [21]) which means
that each label needs to accommodate several STR loci of different fragment sizes to
enable the multiplex range of current STR typing systems that is 16 to 27 loci. The
commonly used size range of the most recent CE STR assays is around 75-450 bp
(enabling 3-7 loci distributed over the range for each label). In forensic traces, DNA
is often fragmented which can result in imbalance of the smaller and longer loci of a
DNA profile (as shown in figure I).Since the excitation spectra of the used fluorescent
labels are partly overlapping and the used detectors in a CE system do not have an
unlimited detection range, strong imbalance of loci can lead to either allelic drop-out
for the longer loci or off-scale signals for the shorter loci. Off-scale signal can lead
to bleed through signal in adjacent colour channels which complexes profile analysis
as these artefact signals need to be differentiated from genuine alleles to prevent
apparent allelic drop-in signals as shown in figure |.
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Figure | — Capillary Electrophoresis STR profile of a degraded sample
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The figure displays a profile (Powerplex Fusion© 6C) of a severely degraded DNA sample. The signal drops as the length of alleles increases
resulting in drop-out of many long alleles while the signal is off-scale for the shortest loci. The signal is so high for the short loci that bleed through
signal is observed from the highest peaks to other colors.
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Strengths and limits of STRs as marker for human identification

STRs have a high mutation rate. This is the very reason that these loci show a
lot of variability between individuals thereby providing a strong discriminating power.
The high mutation rate is most likely caused by slippage of polymerase [I0] when
it encounters stretches of repeated sequence motifs. Unfortunately, the process of
generating a DNA profile involves an amplification step by PCR where slipping of the
polymerase results in PCR stutter artefacts that can reach intensities of over 20% of
the original allele (chapter 4). In imbalanced mixtures, minor contributions with alleles
at stutter position of the major contributor can be overshadowed by PCR stutters
resulting in allelic drop-out of (part of) the minor contributor.

Potential of Massively Parallel Sequencing (MPS) of STRs

Even though STRs have the drawback of stutter formation during amplification, the
forensic DNA databases consist almost exclusively of STRs. It therefore makes sense to
start the implementation of MPS in forensics by analysis of STRs (chapter 4).This can
also aid in a stepwise training of experts for court, lawyers and judges to present and
explain MPS data in criminal cases.

Although noise from stutter will remain as long as sample preparation for STR
analysis contains an amplification step, MPS does provide some advantages over CE.

* Loci are recognised by sequence rather than by length and fluorescent label

* All amplicons can have overlapping sizes (see section ‘recognition of loci by
sequence rather than length and fluorescent label’)

*  MPSis not limited by the detection range for fluorescence signal as for CE

* Sequencing of STRs reveals additional variation that is not visible by performing
CE analysis

*  MPS data is more straightforward (digital) than CE data

Recognition of loci by sequence rather than length and fluorescent label

During MPS data analysis, fragments are recognised by sequence so there is no
need to design consecutive size ranges for STR loci. Design of all amplicons in a
multiplex in a narrow size window will improve the within-sample locus balance for
degraded samples. The only remaining fragment size variation will derive from limits
for successful primer design and the variation in repeat length. As long as loci can be
separated by sequence, an almost indefinite number of loci can be multiplexed in one
reaction. Increased numbers of loci open up new options for answering other forensic
questions; this will be discussed later in ‘potential new forensic markers'.
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Analysis with an almost indefinite dynamic range

Off-scale signal no longer exists in MPS data so bleed through signal can no longer
complicate the interpretation for other loci. A single PCR product yields sufficient
material for more than one run on the MiSeq sequencer so even in case of strong
locus imbalance, the number of reads per sample can be increased in a rerun with
more input so that coverage is sufficient at all loci. In principal, multiplexes do not need
to be optimally balanced but for cost effectiveness, a balanced assay is opportune as
it allows for a higher number of samples per run. The MPS PCR primers are much
cheaper than those used in combination with CE analysis that have a fluorescent label,
but sequencing costs are substantially higher than the costs of an electrophoresis run.
For a routine application of MPS analysis in forensic casework, cost will be an important
factor which can be achieved with a well-balanced assay for which many barcoded
samples can be combined in a single sequencing run.

STR sequence variation in addition to length

On the sequence level, many of the STRs exhibit more variation than repeat length
only (chapter 4). By using a reference database which includes sequence variation,
the discriminating power of the same loci increases substantially. The additional
information also aids in differentiating genuine alleles from PCR noise such as stutter
since overlapping alleles on stutter positions may differ in sequence, which is either due
to the repeat structure (in case of complex STRs that exist of more than one repeat
motif) or to the presence of SNPs in the repeat or flanking regions. Figure 2 shows part
of a CE and MPS profile of the same two-person mixture with a ratio of 95:5.

As can be observed from the example of figure 2 the additional discriminatory
power gained by sequence variation can be substantial already for a single locus when
comparing genotype frequencies, but will be even larger when analysing mixtures.

The sequence variation is likely to also provide additional information for the
genetic biogeographic ancestry of a person. Already with CE STR data [ 1], it is possible
to make a prediction of the biogeographic ancestry of a person, but the additional,
often less variable, sequence variation will likely increase the accuracy of biogeographic
ancestry prediction.
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Figure 2 — lllustration of the influence of additional sequence variation for a
mixed profile of D351358 for CE and MPS
CE profile MPS profile
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CE and MPS allele frequencies D3S1358
CE allele MPS allele
CE allele | frequency MPS allele frequency
15 0,232 15a: CE15_TCTA[1]TCTG[2]TCTA[12] 0,227
15b: CE15_TCTA[1]TCTG[3]TCTA[11] 0,005
16 0,226 16b: CE16_TCTA[1]TCTG[3]TCTA[12] 0,068
16¢: CE16_TCTA[1]TCTG[1]TCTA[14] 0,011

CE and MPS genotype frequencies of observed alleles D3S1358

CE CE genotype MPS genotype
genotype| frequency MPS genotype frequency
15a-15a 0,0515
15-15 0,054 15a-15b 0,0011
15b-15b 0,0000
15a-16b 0,0154
15a-16¢ 0,0025
15-16 0,0524 15b-16b 0,0003
15b-16¢ 0,0001
16b-16b 0,0046
16-16 0,0511 16b-16¢c 0,0007
16c-16¢ 0,0001
Match probability for the major and the minor for CE and MPS
Major CE Major MPS Minor CE Minor MPS
Possible alleles 15-15 15a-15b 15-16 or 16-16 16b-16¢
Genotype 0,0524+0,0511
frequencies 0,054 0,0011 =0,1035 0,0007

On top, the CE and MPS profile are illustrated for a two person mixture (5% minor). For the MPS
profile, the stutters (recognised by sequence) are marked in red. The middle two tables display
the (Dutch) allele and genotype frequencies for the called alleles. At the bottom, the match
probability is calculated for both contributors based on the frequencies of the deconvoluted
genotypes for the major and the minor for CE and MPS.
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When evaluating the MPS based PowerseqTM assay more insight was obtained
in the formation of stutter artefacts as, for complex STRs, the abundance of stutter
artefacts of the same length depended largely of the repeat length of the longest
uninterrupted stretch. Although additional stutter artefacts (and PCR hybrids which
will be discussed later on) might provide a total profile which is more complex. Many
of the complexity can now be much better explained than all the piled up artefacts
that are visible as a single peak of the same length in a CE profile. This will be further
addressed in the software part later on.

STR sequence nomenclature

Alleles generated by CE are named based on their fragment length which is
assumed to correspond to a certain repeat length and this repeat length is simply used
as the CE allele name. (Massively parallel) sequenced STR alleles will require a new
way of describing variation. Currently available databases that describe STR sequence
variation have followed the convention of describing the sequence in accordance with
length variation observed using CE and using the predominant repeat motif(s) in the
variable region as basis. This procedure does not always make sense when the actual
sequence is regarded as shown below in two examples of sequences from allele CEI2.

DI13S317-CEI2-TATC[ I 2]JAATC[2]ATCT[3]
and
DI13S317-CEI2-TATC[ I 3]JAATC[ I JATCT[3]

The observed sequence variation for this locus as displayed in Sup. Figure 6 of
chapter 4 shows that the AATC motif adjacent to the predominant TATC motif is
common and variable while it is originally not used in calling the CE allele length.
Comparing CE allele names and descriptions of the complete sequence variation may
therefore cause confusion. It should be noted that for comparison of CE data and
sequence data in a casework setting, the CE allele length is the only relevant detail.

Much insight for sequence description can be obtained from already existing
nomenclature used in human genome projects [28]. For clarity, and because the
number of loci constantly increases (and is likely to increase further with the use of
MPS in forensics), it makes sense to use general and fixed rules for describing sequence
variation for the STR motifs as well as in the flanking sequences. In chapter 3 we
suggested a general way to describe sequence variation in detail in accordance with the
HGVS recommendation except for a few adjustments that derive from the targeted
approach (instead of whole genome) that is common in forensics.We manually applied
these rules to a first set of autosomal loci for which data was present at that time
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(a prototype version of the Powerseq™ assay). These rules should be assessed for a
larger number of loci and should preferably be integrated in an automated and freely
available software tool to allow a general format for exchanging sequence results.

Because of the international debate on the nomenclature of forensic STR sequencing
data, the ISFG prepared a set of recommendations accommodating the points that
most groups agreed on in an attempt to harmonise forensic STR sequence variation
naming in literature [ 1 6]. Notably, the name should include a reference to the CE allele
designation to avoid incorrect comparison with data in old cases or with existing CE
DNA databases. Also it was recommended to describe all sequences in the forward
orientation of the genome reference. This point opposes some existing STR sequence
databases (most importantly the NIST STRBase [22]) in which some STRs follow the
reverse orientation. Unfortunately, several articles published since then disregard this
ISFG recommendation and use the original orientation. Until a general nomenclature
consensus is accepted, the ISFG recommendation to include the complete sequence
string for exchanging STR sequencing data remains even more important to avoid
wrongful comparison of deviant allele calling systems.

Forensic MPS data analysis

A new type of data requires new software to handle the data. For CE data,companies
that provided the analysers provided software to translate the electrophoresis data to
either an STR profile (describing the number of repeats of each allele plus the observed
fluorescence intensity) or a consensus sequence when applying Sanger sequencing.
When needed, results could be checked manually. For MPS however, the initial output
files were huge fastq files and very limited possibilities for further data processing were
provided. Nowadays, the companies provide tools that are capable of doing many of
the basic analyses, although for many applications and data interpretation additional
third-party tools are still required.

Early users of MPS applications benefit greatly from the help of bioinformaticians.
Although some basic knowledge of programming is acquired more easily than most
people would expect, data analysis from MPS is too massive and complex for most
biologist to handle completely on their own in an efficient way. It is therefore not
surprising that a large part of the work in this thesis is done in close collaboration
with bioinformaticians and focusses on development of specific software with tools for
forensic MPS analysis.
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Analysing STRs and investigation of STR stutter

Repeating sequences such as STRs pose a challenge for most alignment algorithms
[30]. Since STRs were an important target of interest, we developed the software
TSSV using a new approach for analysis of fixed targets containing repeated sequence
motifs by only mapping small parts in both the flanking, non-repetitive sequences and
reporting all variation between those two flanks. In this way, mapping bias of repeating
motifs was avoided. To achieve a readable output, repeated motifs were summarised
(chapter 2).While TSSV was a good solution for analysing the first experiments, it was
still lacking many of the functionalities needed for a forensic casework setting. Then, one
needs to apply filters using quality thresholds, differentiate the genuine allele calls from
artefacts, and visualise data to explain your sequence profiles in court. The output of
such software could subsequently be used to perform statistical calculations on the data
for further interpretation of the context and provide information for the evidentiary
value/ weight of evidence in a case.

Once the evaluation of the Powerseq assay showed that the majority of observed
stutter followed clear patterns in relation to the length of the longest uninterrupted
stretch of repeats, a concept was developed to recognise stutter patterns based on a
set of training data. This concept was included in the development of FDSTools (chapter
5) combined with all the needed data analysis functions intended for implementation in
forensic casework. Although this concept could potentially be used for CE as well, it is
not likely that it will ever perform as well as for sequencing data since the level of the
most abundant stutter depends primarily on the longest uninterrupted repeated motif
which varies for alleles of the same CE length.

FDSTools

While the initial concept for reduction of noise in STR sequencing data was only
focussed on developing a model for STR stutter correction, one of the implemented
approaches for noise correction was able to characterise not only STR stutter, but any
systemic allele related noise in the set of training data. An example of this is noise on a
SNP positions as shown for D135317 and PentaD in Figure 3.
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Figure 3 — Distribution of different types of noise for the three most
common alleles of D 135317 and PentaD
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Systemically observed noise for the references in the FDSTools training set that carry the three
most frequent alleles for D135317 and PentaD is shown divided in noise caused by stutter,
slippage in a single nucleotide stretch and errors on specific nt positions (noted in the figure as
‘SNPs’) as a percentage of the reads of the corresponding allele. As can observed, the stutter
increases for the longer alleles of both loci and while D 135317 noise consists almost exlusively
of stutter, PentaD shows substantial levels of noise from single nucleotide slippage but also of
errors on specific nt positions.

In accordance with CE data, we see that alleles with longer uninterrupted stretches
of repeats ‘loose’ more of their original intensity to stutter events and other PCR noise
than smaller alleles (also see Sup. figure/ of chapter 4). Once noise sequences can
be attributed to the respective genuine alleles based on the knowledge gained in the
training data, there is no reason why the noise reads can't be added to their respective
genuine allele. In chapter 5: table 2 we show that the within locus balance of single
source samples is substantially improved when noise is not only filtered, but also added
to the respective alleles. After applying the noise correction to mixtures it was shown
that noise was substantially reduced and the performance of analysis of unbalanced
mixtures was substantially improved. It was even shown that, after allele related noise
correction, stutter is no longer the limiting factor for analysis of unbalanced mixtures.
The most abundant noise that is still complicating mixture analysis is now caused by
PCR hybrids.
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PCR hybrids, the next generation of PCR noise

For MPS, sequence reads are generated for each molecule separately. Therefore,
linkage of variants can now be monitored in detail as linked variants occur within one
read. While this provides opportunities for the analysis of microhaplotypes (discussed
in more detail later on) it also reveals a type of PCR noise that could not be seen
by Sanger sequencing. Figure 4 shows an illustration of our theory on PCR hybrid
formation (also referred to as jumping PCR). Although PCR hybrids are a new type
of noise for the forensic community, they were already described in 1989 [25]) and
are well known in the field of metagenomics (also known as PCR chimeras or jumping
PCR artefacts) where the hybrids are visible when performing Sanger sequencing after
cloning of PCR products.

Figure 4 — lllustration of the formation of PCR hybrids
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On top, two ‘parent’ alleles are displayed that can form PCR hybrids during the PCR. In this
example, the primer binds to allele 2 and is only partially extended. In a later cycle (displayed in
the middle), the partially extended primer hybridises to allele | and is again extended, thereby
creating a hybrid PCR product with part of allele | and part of allele 2. Depending on the posi-
tion until where the primer is extended and the fragment / orientation where the extension
starts, four different hybrids (displayed on bottom) can be derived from these two alleles.

The formation of PCR hybrids is not allele specific but depends on the combination
of alleles in a sample. Hybrids are currently not recognised and corrected by FDSTools
(since it corrects systemic allele dependant and not genotype dependant noise).
In metagenomics, tools are available that completely filter out alleles that could, by
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sequence, reside from PCR hybrids [I3,14]. However, in the forensic setting, many
of the PCR hybrids result in a sequence that also exists as genuine alleles in the
population. Therefore, discarding any possible hybrid would result in regular drop-out
of genuine alleles in mixed samples. Since the level of hybrid formation seems to be
sequence dependant [24], setting a common threshold for hybrid removal would be
a suboptimal solution too. Therefore, further investigation of the dynamics of hybrid
formation might improve analysis of low level mixture contributions and increase the
possible level of automated allele calling for STR sequencing data.

How to further reduce ‘MPS’ noise

The noise discussed before represents noise created during the PCR. Besides,
sequencing errors occur, but this is only a small minority of the noise. Although a lot
of the noise can be recognised and corrected during MPS data analysis, ideally noise
is prevented to arise at all, which would mean working without PCR.With the minute
amounts of cell material in forensic cases, this seems unrealistic for now. Probably it
would be possible to reduce the number of PCR cycles, but this decreases inputs in the
adapter-ligation step (of the libraryprep) which is shown to increase adapter dimers
(as described in chapter 4),. Adapter dimers could be prevented by using new library
prep methods such as the NEBNext Ultra Il FS DNA library prep kit, but this protocol
includes an additional amplification step to generate the complete sequencing adapters
as required for sequencing.

Random barcodes

Another solution for reducing both, STR stutter and PCR hybrids, is the use of
random barcodes (also referred to as unique molecule identifiers: UMIs) [8]. By
performing a two-step nested PCR, UMIs can be included in the primers used for the
first few cycles of step | to be amplified with the target (and remain stable) in step
2 of the PCR In this way, by counting the number of UMIs for each variant instead of
the total number of reads, any noise resulting from the PCR can be reduced to the
noise that is generated in the cycles of step I.The use of UMIs is further explained in
figure 5. Although the use of UMIs seems like an excellent solution to reduce noise
and authenticate genuine alleles in samples, our first tests (unpublished data) were not
very successful. The inclusion of UMls in the primers for the cycles of step | of the PCR
resulfted in highly increased primer-dimers which were amplified preferentially in step 2
of the PCR, thereby decreasing the sensitivity essential for forensic DNA analysis. So far,
published methods using UMIs were all using large amounts of DNA (>20 ng).
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Figure 5 — Using random barcodes to trace back PCR noise
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On top, the design of a primer from PCR step | is displayed including a piece of random nucleo-
tides (UMI) that are integrated in the primer. During the cycles of PCR | (middle part) PCR-
products are generated that each contain their own unique molecule identifier (UMI). In PCR
step 2, the complete molecules are amplified by targeting the tail 5 of the UMI thereby copying
the UMI from PCR step | without generating new UMIs. During the analysis, results can be sum-
marised by UMI rather than by read to reduce PCR noise to the the cycles performed in PCRI.

Alternative MPS methods
Target enrichment by DNA capture methods

Target enrichment is essential for forensics since most countries have legal
restrictions in the features and thus genomic regions that can be analysed without
informed consent (as is generally the case with crime scene investigations).

Target enrichment in forensics is commonly achieved by PCR but an alternative
approach would be to use capture methods using probes to fish out the targets
of fragmented DNA and get rid of PCR bias before sequencing. However; current
MPS methods still require a substantial number of input molecules. For the MiSeq,
one sequencing run requires around 3 — 9 fmol (equalling 1,8 — 54 * 10° molecules)
meaning that a substantial number of PCR cycles is needed to achieve sufficient
material even if DNA capture methods would be 100% efficient (which they probably
are not). Still, it would be worth investigating these methods since new platforms such
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as single molecule sequencing (also referred to as third generation sequencing) might
need less material.

Single molecule sequencing

Single molecule sequencing platforms such as Pacific Biosystems and Nanopore
(minion) sequencing are currently mostly known for being able to sequence long
DNA fragments. While long DNA fragments are often not available in forensic DNA
research, this new type of technology can provide opportunities for forensics once
small amounts of material can be used and sequence read quality is increased to a level
to a level such as current MPS methods. Unfortunately both of these requirements are
not yet achieved for single molecule sequencing (to my knowledge). Still, developments
in this field should be closely monitored by the forensic field since analysis without PCR
could reduce bias, substantially increase the speed of sample preparation and might
facilitate possibilities such as on-site preparation of samples at a crime scene or mobile
labs.

Potential ‘new’ forensic markers

Although MPS increases the evidential value that can be gained by analysing STRs, it
also enables the application of new types of markers for forensics. It would be possible
to simply sequence high numbers of SNPs until the same discriminating power of STRs
is reached (which will require >60 SNPs [37]), but an increased number of loci will
substantially increase sequence demand and cost. One type of potential target that
could allow forensic analysis using a limited number of loci is microhaplotypes.

Microhaplotypes

Since MPS generates sequence reads separately for each molecule, the linkage of
all the observed variation within a read (also referred to as microhaplotype) can be
monitored in detail. In chapter 6 we used genome data from two large genome projects
[12,29] to select potential microhaplotypes dispersed over the human genome. While
this seemed a straightforward analysis, this project revealed the risk of using data from
genome projects (derived from short read data) since they are not without error.
Apparently, mapping of multicopy fragments sometimes results in wrongful calling of
SNPs in a small region which is exactly the criteria that we used to select potential
microhaplotypes. Genome data derived from long reads (the longer the better!) would
probably be a much better source for selecting these loci. Unfortunately, this kind of
data was not yet available at the time that this research was conducted. A large part of
this part of our project focussed on selection of fragments that showed actual variation,
and wet lab validation is essential. Surprisingly, many studies still publish new potential
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loci (including microhaplotypes). It would be beneficial for the scientific community if
respected journals would demand wet lab validation for appointing new loci. Analysis
of samples from families aids in authenticating genuine SNPs from the inheritance
patterns (SNPs that derive from mapping errors will have deviating patterns). Using
sample from globally dispersed populations minimise the chance of fixed combinations
of common haplotypes and are immediately useful to assess global variation.

After discarding the majority of originally selected loci that did not show the expected
variation, a final set of 16 loci remained with a discriminating power comparable to
nine STRs. However, in the current format, also the microhaplotypes are not the ideal
markers since, as with STRs, PCR hybrids were observed as a complicating factor
for interpretation. Like as with STRs, PCR hybrids often result in sequences that also
exist as genuine alleles and cannot be simply filtered out. It is surprising that PCR
hybrids are still hardly mentioned in forensic MPS publications since they are likely to
become the next limiting factor for mixture analysis. Despite the issue of PCR hybrids,
microhaplotypes are still potentially interesting loci for forensic DNA analysis since
they provide a high discriminating power for a small number of loci and also provide
information for prediction of biogeographic ancestry [5].

Increased numbers of loci

Because, during the analysis, different loci are recognised by sequence, the number
of loci that can be analysed in one reaction can be increased almost indefinitely for
MPS as long as the PCR remains sufficiently sensitive for all the loci. This opened many
new possibilities for potential forensic application. Many SNP panels have recently been
developed for different purposes:

* ldentification

*  Prediction of geographic ancestry

*  Prediction of external visual characteristics (EVCs)

*  Analysis of SNPs on the RNA level

SNP panels for identification

When analysing a large number of SNPs, the same discriminating power can be
reached as for the currently used sets of STRs without the burden of STR stutter
[37]. Although the current forensic DNA databases consist exclusively of STRs, SNP
panels for identification can be used for comparison of known references with forensic
evidentiary material and can provide better means for analysing more distant kinships.
The only disadvantage of these panels is the bi-allelic nature of most SNPs which is
suboptimal for analysis of mixtures containing DNA of more than two contributors. Tri-
allelic and tetra-allelic SNPs [18,34] could provide a potential solution to this, but the
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numbers of available SNPs for these types of markers in the genome are limited.VWhen
using panels of large numbers of SNPs, one can choose to use SNPs dispersed over
the genome, but for kinship analysis, panels that contain dense coverage of SNPs over
a genomic region can provide information about the number of recombinations that
occurred which can help distinction between kinships such as cousins or grandparent
— grandchildren [38].

Investigative leads

While the most commonly known application of forensic DNA analysis is human
identification, DNA can also provide investigative leads. While this application is not
restricted to MPS, the possibility of analysing more markers certainly facilititates more
options.

SNP panels for geographic biogeographical ancestry

Biogeographical ancestry prediction has recently become a hot item in forensic DNA
analysis [19]. When there are no leads available but sufficient perpetrator material is
available, biogeographical ancestry information can limit the pool of potential suspects
and provide investigative leads. In case of the discovery of unidentifiable human remains
or body parts, information on biogeographical ancestry can also be useful to narrow
down where to look for a missing person. While SNP analysis on the Y chromosome
and mitochondrial DNA are important markers for predicting the biogeographical
ancestry in the maternal and paternal linage [3 1], the use of autosomal markers for this
purpose is becoming increasingly important since numbers of persons with admixed
biogeographical ancestry are constantly increasing. For the use of biogeographical
ancestry prediction in forensic cases it should be noted that the prediction will never
be a hundred percent accurate and should be interpreted carefully. Current application
in casework is extra complicated by the way of presenting the data which usually
consists of principal component analysis (PCA) or structure plots [6,23]. While this
way of presenting the data is a neat way of visually presenting the data, the reliability
of the prediction is probably interpreted in a less biased way by using likelihood ratios
[19] while strong guidance of a trained expert will remain essential for application of
biogeographical ancestry prediction in a forensic case.

SNP panels for prediction of external visible characteristics

In addition to biogeographical ancestry prediction, SNP panels have been published
in the last decade for prediction of EVCs such as eye colour, hair colour / structure,
early onset baldness (alopecia) [15] and skin colour [26]. While the initially published
traits such as eye colour and hair colour can be predicted with substantial reliability,
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EVCs such as alopecia and skin colour often do not reach probabilities over 80% which
can easily be misinterpreted by policemen in the field who will use the information
for selection of potential suspects. This and the limited number of visible traits that is
reliably analysed may be why prediction of EVCs is currently hardly applied in forensic
casework. Once prediction of more visual traits is possible and the reliability is increased
for several of the traits (i.e. by using a high number of SNPs which is now possible using
MPS) prediction of EVCs in forensic cases will probably be more informative.

Analysis of SNPs on the RNA level

Analysis of specific RNA targets has been presented in many publications for
identification of the origin of the organ or body fluid of cell material in an evidentiary
trace [3] This can provide important context information for interpretation of the
related DNA profile. However, when a sample is mixed, the organ or body fluid
type cannot be attributed to the donors by using conventional techniques since
the expression level of the different RNA targets varies (except for gender related
markers). Thereby the highest RNA signal is not necessarily from the donor with the
highest signal in the DNA profile. However, by typing SNPs in body fluid or tissue type
related RNA loci, SNPs where the donors carry a different variant can be used to
attribute the tissue type or body fluid to a donor: It should be noted however, that the
number of SNPs in cell- or tissue type related loci will not be sufficient to reach the
same level of discriminating power as is common for routine STR analysis. However, by
combining RNA-SNP and STR results, one could simply look for cell type related SNPs
of references discriminate the observed donors (deducted from the STR profile) [35].

Quantitative analysis by MPS

In the analysis of mixtures performed in this thesis (chapter 4 and 5) it was indicated
that the dynamic nature of MPS data (numbers of sequence reads in contrast to rfus)
provides a way to perform a quantitative analysis of the contributors in a mixture.
While this aids the interpretation of mixtures, it also provides opportunities for other
quantitative analyses such as the epigenetic marker methylation which can be measured
by bisulphite sequencing [32]. By treating DNA by bisulphite, non-methylated Cytosines
(Cs) are converted to Uracil (U) which is translated to a T during PCR and methylated
Cs are protected from conversion. By comparing the levels of Cs and Ts the level of
methylation can be quantified.

Several studies [32] have recently addressed estimation of age based on MPS
analysis of methylation levels of specific CpG sites. Age is a very interesting forensic
trait since age is searchable in genealogical databases. It can provide an investigative
lead in case of an unknown perpetrator, assist in familial searches (search the family
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tree where individuals of corresponding age occur) and provide additional information
for kinship analyses (i.e. a boy of 18 years old cannot be the grandson of a reference
of 25 years old but could be a cousin).

Vidaki et al.[32] recently published a review suggesting numerous potential forensic
applications of methylation-based epigenetic studies that we might expect in the near
future, such as:

» Tissue identification; if no RNA is present, tissue specific methylation can still

be assessed.

» Differentiating monozygotic twins; currently only possible by looking for de
novo mutations using deep complete genome sequencing. Analysis of levels of
methylation in only a few loci might provide a much cheaper and straightforward
method

* Information on alcohol / drug abuse, body size and shape might be of great
importance for investigative purposes.

The accuracy of quantitative analyses using MPS can probably be increased by using
UMIs (as discussed before), since this will reduce bias introduced during the PCR by
preferential amplification.

Combining different forensic loci

The possibility to analyse numerous markers in one analysis provides new
opportunities for forensic samples with limited sample material. If a sufficiently balanced
assay can be designed, in principle, autosomal,Y and X chromosomal STRs could be
analysed at once in combination with SNPs on the autosomes, Y chromosome and
mtDNA for identification purposes and for prediction of biogeographical ancestry
and prediction of EVCs, all in one reaction. The first commercial assays have been
developed already by Promega and lllumina / Verogen [20] that combine different
types of loci. However, for many cases it will depend on the research question to
be answered if all these loci are actually needed. Only if all loci can be combined in
one assay for a price that is not substantially higher than the current routine analysis,
a combined analysis will be implemented for routine work. In general, the level of
implementation of MPS as routine tool or as a tool for exceptional cases will depend
on the cost of the commercially available assays in the near future.

Metagenomics

Metagenomics (analysing not only human but also microbial and any other
DNA) is a long existing research field with many applications in the medical field
[2] but is currently only applied occasionally in forensics [9]. Once more extended
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(preferably curated) reference databases become available and specific analysis tools
are developed for this application there is an immense potential for this type of analysis.
The first studies have already indicated the possibility of attributing a sampling to
a donor by analysing skin microbial sequence variation [I 1] although studies using
considerable numbers of references and traces still need to be performed. Since the
amount of microbial that we leave behind in a trace can be much higher than the
amount of human material (on average, only half of the DNA in saliva is of human
origin [27], forensic metagenomics can probably yield a sensitivity beyond the most
sensitive forensic method ever available targeting human DNA. In addition, a lot of
investigative information can probably be retrieved such as geographic location (based
on databases of earth metagenomics).

Ethics related to new MPS data

In most countries, the allowed forensic investigations are bound by law. While the
possibilities for e.g. prediction of EVCs is progressing rapidly, it will still take some time
before the developed methods can be put into practice. In the Netherlands, additional
forensic DNA analyses next to the routine STR profiles are described in detail [4].
For example, since 2007, it is allowed to predict biogeographical ancestry, in 2012, eye
colour was added to the list of allowed EVCs and it took until 2017 until hair colour
was allowed as well while the methods to predict hair colour were already published
2013 [33]. However, any additional EVCs need to be mentioned separately in the law
which is a political process that usually takes several years. STR sequencing is allowed
within the current documentation of the Dutch law since no visible traits or diseases
can be deducted from the non-coding sequences surrounding the STRs. However,
several foreign laws (such as in Belgium) do not allow any expansion of the region
that is routinely analysed at the moment unless specifically stated in the law. This might
delay the possibility to exchange sequence-based allele information between countries
on short term. However, if big successes are achieved in forensic cases using this extra
information, it is likely that the political system will pick this up and will work on new
legislation. Perhaps this would be a topic that would benefit from European legislation
rather than country-based legislation.

Application of forensic MPS tools for non-forensic purposes

The development of Forensic DNA tools largely follows on initially developed
techniques for the medical field. In return, tools specifically designed for forensics
often find applications in other fields. In the medical field, cell lines are now regularly
authenticated using forensic assays [7,36] and FFPE samples with limited cell material
can be analysed using forensic assays because of the high sensitivity. Techniques that
will be applied for forensic mixture analysis might find an application in Non-invasive
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prenatal testing (or the other way around) and prediction of biogeographical ancestry
and EVCs find a use in ancient DNA research as well as a commercial application for
people who are curious to find out more about their roots.

Implementation and accreditation of MPS in a forensic setting

Before implementation of a new method in forensics, detailed validation studies
need to be performed, the method needs to be ISO-accredited and experts for court
need to be trained to be able to integrate results in a report and explain the data in
court. While this is relatively straightforward (although still a tremendous amount of
work) for established routine techniques such as CE analysis it is more challenging for
a new method such as MPS. Since general scientifically accepted thresholds for allele
calling are lacking, detailed testing was required to support the new interpretation
guidelines. After writing detailed documentation and validation, one can apply for ISO
accreditation and is visited by an expert to judge whether the presented method is fit
for accreditation.

At the moment, very few forensic laboratories are using MPS for forensic casework
and even less groups do so under accreditation but the number of groups that are
investigating the method is increasing rapidly. At the LUMC, accreditation was achieved
in September 2015 for using MPS in forensic casework as one of the first laboratories
in the world and at the NFI (my current employer) we received accreditation for MPS
early 2018 (still as one of the first labs to completely implement MPS for a casework
setting). While there isn't any lab that is currently using MPS as the routine method
in forensic DNA analysis, this might change in a few years. However, this is unlikely to
happen if the costs for sample preparation and/ or sequencing do not decrease further.
For application in high profile cases MPS will probably applied regularly in the coming
years, especially for analysis of unbalanced mixtures and for analysis of EVCs in order
to gain investigative leads to limit the pool of suspects.
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Summary thesis

This thesis focusses on the development, application and validation of new forensic
methods bases on recently developed techniques referred to as Massively Parallel
Sequencing (MPS, also known as Next Generation Sequencing).

In chapter | the background of the currently used methods is discussed and the
basics and challenges of MPS methods are discussed.

The development and application of forensic DNA research has evolved rapidly
since the discovery of hypervariable DNA ‘fingerprints’ by Jeffreys et al. (1985) leading
to the powerful tool that is currently referred to as genetic ‘human identification’.

Over the past two decades, investigation of Short Tandem Repeat (STR) markers
has played a major role in human identification. STRs are pieces of DNA that contain
a repeated sequence of 2-6 nucleotides. The length of this repeated sequence can vary
between people and by analysing a number of these STRs, a practically unique DNA
profile can be generated. An example of a DNA sequence containing an STR is shown
below.

Figure |, DNA sequence containing an AGAT-repeat
ATCCGA AGAT AGAT AGAT AGAT AGAT AGAT AGAT AGAT TGGACCAG

Conventional analysis of DNA profiles

Conventionally, STRs are analysed by the technique ‘capillary electrophoresis’ (CE)
which basically means that fixed fragments containing the STRs are amplified and
tagged with a (fluorescent) label and separated by length. By comparing the obtained
fragment lengths to a known ladder, the number of STR repeats is deduced for each
marker, resulting in a DNA profile,

While CE is a relatively easy and straightforward technique, it is not without
limitations. During the amplification of STRs, so-called stutter artefacts emerge that
can complicate the interpretation of a DNA profile. In addition, analysing sufficient
STRs in one reaction to obtain a ‘unique’ DNA profile results in sub-optimal conditions
for samples where DNA is degraded as is often the case for forensic samples. Figure 2
shows an example of (part of) a conventional DNA profile.
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Figure 2, example of a DNA profile
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Part of a DNA profile from a single person.The peaks are shown for five loci separated by length (in the same colour) and by fluorescent label.

E

New technologies: Massively Parallel Sequencing

New DNA analysis techniques have recently been developed that are capable of
analysing millions of DNA molecules in parallel in a highly automated fashion. While
these ‘Massively Parallel Sequencing’ (MPS) techniques are already being implemented
in the medical and other molecular analysis fields, MPS s still relatively new to forensic
DNA analysis.

In principle, MPS could overcome some of the limitations of CE analysis. However,
some of these limitations are caused rather by the nature of the STR marker than
by the technique that is used to analyse it. Since the type, and especially the amount,
of data for MPS are very different from conventional DNA analysis techniques,
development of specialised forensic software to properly handle this data is crucial for
implementation of MPS in actual casework.

In this thesis we explore the applications of MPS for human forensic DNA analysis,
not only focussing on the lab-related practical work, but also on the development of
specialised forensic software for MPS data analysis. In addition, we survey alternative
DNA markers to STRs with the goal to further expand the application of DNA analysis
in forensic cases in the near future.
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Massively Parallel Sequencing vs Capillary Electrophoresis

The expected potential of MPS in forensic DNA analysis relies on the following

differences between CE and MPS.

*  While CE only analyses the fragment length MPS determines the exact DNA
sequence. Sequence variation (in addition to length only) increases the statistical
power of each locus. In addition, sequence variation can help to differentiate
stutter artefacts from genuine alleles.

» The detection range of CE is limited while the MPS detection range is almost
unlimited. For CE,too much signal results in artefacts in a DNA profile while very
low signal cannot be separated from noise. For MPS, the number of sequence
reads for a sample can be increased almost indefinitely without interfering with
other markers (although not without cost)

» CE is limited in multiplex capacity while MPS can potentially analyse thousands
of markers at once. Since currently, no more than six fluorescent labels can be
used, multiplexing for CE is achieved by designing the amplification in fragments
of different lengths. For MPS, all markers can be designed in the same fragment
range since markers are distinguished by sequence during the analysis rather
than by length.

Massively Parallel Sequencing of Short Tandem Repeats

Most of the work discussed in this thesis focusses on MPS analysis of STRs. Since
forensic DNA databases consist of STR data, it makes sense to start by analysing this
marker using MPS so the resulting data can still be used to perform searches in the
DNA databases.

Basic analysing of MPS STR data: TSSV

While STRs are the common markers for forensic DNA research they are not
used very often in other fields of DNA analysis. As a result, initial software packages
for MPS data analysis were performing poorly when it comes to handling repeating
sequences. In chapter 2 of this study, a new (open source) software tool, TSSV, was
designed as one of the first data analysis packages that focusses on these markers. By
using two anchor sequences (on either side of the STR), markers are recognised and
the variation observed between these anchor sequences is summarised by counting
the reads for each variant and abbreviating repeated sequences. This software also
turned about to be useful in assessing sequence errors in MPS data.
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Sequencing data requires sequencing nomenclature

Alleles from CE are described as allele numbers that represent the number of
repeats in the allele. Since sequencing reveals additional variation on the sequence
level, a new nomenclature is required that allows for a more detailed description of
the allele sequence composition. In chapter 3, we described the first recommendations
for forensic STR sequencing nomenclature attempting to reveal all relevant sequence
information for reconstructing the underlying sequencing while aiming for a description
as short and readable as possible.

Validating a (prototype) commercial assay for sequencing of STRs

In collaboration with the company Promega®©, a prototype version of a commercial
assay, designed for sequencing of STRs, was tested. With this assay, |7 STRs and
Amelogenin (a sex typing marker) were amplified in one reaction and, after further
preparation of the amplified product, sequenced using the Miseq™ system. Chapter
4 describes a detailed assessment of the performance of the assay and the observed
variation in each locus.

To calculate how ‘unique”a DNA profile is, the frequencies of each sequence variant
in the population must be determined.When these frequencies are known, a statistical
calculation can be used to estimate how likely it is by chance for a person to have
that exact profile. 297 samples from a European, Asian and African population were
sequenced in order to assess the additional variation that is obtained compared to CE
and to get an idea of the allele frequencies in these three populations. For most of the
tested markers, a substantial increase of alleles was observed on the sequence level
compared to the CE length alleles in the same individuals.

When analysing STRs, the amplification reaction needed to visualise the variation,
results in so called stutter artefacts caused by slippage of the enzyme Polymerase. STR
stutter is a complicating factor for interpretation of imbalanced mixtures since peaks of
the minor contributor to the mixture cannot always be differentiated from stutter The
additional information gained by sequencing also provides inside in the occurrence of
stutter: It was determined that the proportion of stutter relative to the corresponding
allele is mainly determined by the length of the longest interrupted stretch of a repeat.
This information presented new opportunities for interpreting mixtures when using the
exact sequence of each allele in the sample.
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Correcting stutter in a case sample using bioinformatics

In chapter 5, the bioinformatics software FDSTools is described as the first software
to actually correct PCR- and sequencing artefacts in MPS data. Based on a set of
training data it characterises systemic noise. This information can subsequently be used
to correct the noise in an unknown sample, thereby substantially reducing the baseline
for analysis.

The software also contains tools to perform quality control on the samples used in
the reference data and to determine analysis thresholds after performing correction.
Using these thresholds data of unknown case samples can be filtered and alleles passing
the determined thresholds are called and visualised in an interactive format.

It was shown that alleles of the minor contribution in unbalanced mixtures were
recovered after performing correction while they could not be differentiated from
stutter peaks before performing correction.

Alternative forensic markers to STRs

While bioinformatics tools can improve analysis for STRs, it remains clear that STRs
are not the ideal forensic markers for all purposes. While the high variability of STRs
helps to obtain a practically unique profile from a limited number of markers, stutter
artefacts and allelic length variation can increase the level of complexity of interpreting a
DNA profile. In chapter 6, hypervariable microhaplotypes are selected from publically
available genome data that contain four or more SNPs within a fragment of 70 bp.
These markers can almost reach the same variability as STRs without the disadvantage
of stutter artefacts and variation in length.

The study revealed that the vast majority of fragments containing this number of
SNPs within a small sequence span resided from erroneous reported variation in the
publically available genomes. However, a subset of |6 microhaplotypes was successfully
selected and validated in the lab with a discriminating power that roughly resembles
9 STRs. In addition to the high discriminating power, data from these microhaplotypes
could also be used to separate the samples from the tested European, Asian and
African population suggesting that they also provide ancestry informative information.

Conclusions and future perspectives

In chapter 7, the overall performed studies and future perspectives are discussed.
MPS is now ready to be applied in forensic casework (and is already being applied in
some cases).While MPS is currently still a relatively expensive method, it is not unlikely
that this might change in the near future and CE could be gradually replaced by MPS
once it is used in a more automated high throughput fashion. MPS seems a promising

255



Epilogue

method for the analysis of mixtures, either by sequencing STRs or other markers, such
as microhaplotypes. There are many other applications for MPS that are not (or only
limited) possible using CE, mostly because the number of markers that can be analysed
simultaneously is much higher for MPS than for CE. Currently, ancestry prediction and
prediction of a few externally visible characteristics are already feasible, but for many
other characteristics more basic knowledge needs to be acquired before the analysis
can be applied in casework. Many studies are currently ongoing to acquire the basic
knowledge for predicting more phenotypic characteristics.
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Nederlandse samenvatting

Dit proefschrift richt zich op de ontwikkeling, toepassing en validatie van nieuwe
forensische methoden gebruik makend van nieuwe beschikbare technieken bekend
als ‘Massively Parallel Sequencing’ (afgekort MPS, ook bekend onder de naam ‘Next
Generation Sequencing’).

In hoofdstuk | wordt de achtergrond beschreven van MPS zelf en de verschillende
methoden die verder in het proefschrift worden besproken.

De ontwikkeling en toepassing van forensisch DNA onderzoek heeft zich snel
ontwikkeld sinds de ontdekking van zeer variabele ‘DNA vingerafdrukken' door Jeffreys
et al. (1985).

De laatste ca. twintig jaar heeft de analyse van ‘Short Tandem Repeats’ (STRs) een
grote rol gespeeld in identificatie m.b.v. DNA onderzoek. STRs zijn stukjes DNA die
een herhaalde sequentie bevatten van 2-6 nucleotiden. Het aantal herhalingen van
deze sequentie kan vari€ren tussen personen en door het analyseren van meerdere
van deze STRs kan een vrijwel uniek DNA profiel worden vastgesteld. Een voorbeeld
van een stukje DNA sequentie met daarin een STR wordt hieronder weergegeven.

Figuur |, DNA sequentie die een AGAT-herhaling bevat
ATCCGA AGAT AGAT AGAT AGAT AGAT AGAT AGAT AGAT TGGACCAG

Conventionele DNA profielen

Capillaire elektroforese (CE) is de conventionele methode voor het analyseren
van STRs. Voor analyse dm.v. CE worden fragmenten die een STR bevatten eerst
vermeerderd en gelabeld m.b.v. de zogenaamde polymerase chain reaction (PCR).
Vervolgens worden de fragmenten op lengte van elkaar gescheiden en vergeleken met
een ladder van fragmenten met een bekende lengte om zo het aantal herhalingen van
elke STR vast te stellen in een DNA profiel.

Hoewel CE analyse van STRs een vrij eenvoudige techniek is, heeft het ook zijn
limieten.Tijdens de amplificatie van STR-fragmenten ontstaan zgn. stutter-artefacten die
vooral de interpretatie van een ongebalanceerd gemengd DNA profiel ingewikkelder
kunnen maken. Daarnaast zijn er, om een voldoende uniek DNA profiel te verkrijgen,
suboptimale condities nodig voor de analyse van gedegradeerd DNA. Figuur 2 geeft
een voorbeeld van een (deel van een) DNA profiel.
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Figuur 2, Voorbeeld van een DNA profiel
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Deel van een DNA profiel van een (enkele) persoon. De pieken zijn weergegeven voor vijf markers die gescheiden zijn bij lengte (in hetzelfde
kleurkanaal) of fluorescent label.

Nieuwe technologieén: Massively Parallel Sequencing

Recent zijn er nieuwe DNA analyse technieken ontwikkeld die parallel de sequentie
kunnen bepalen van miljoenen DNA moleculen. Terwijl deze MPS-technieken
al toegepast worden in het medische DNA onderzoek en andere moleculaire
onderzoeksgebieden zijn ze nog relatief nieuw in het forensische werkveld.

In principe zou MPS een aantal beperkingen van CE moeten kunnen voorkomen.
Enkele beperkingen in CE STR analyse worden echter veroorzaakt door het type DNA
marker en niet door de gebruikte techniek. Aangezien het type data, maar vooral de
hoeveelheid data voor MPS anders is dan bij CE, is het cruciaal dat er gespecialiseerde
forensische software ontwikkeld wordt om goed met deze data om te gaan en MPS
toepassing in zaakwerk te implementeren.

In dit proefschrift wordt de toepassing van MPS in humaan forensisch DNA
onderzoek verkend en wordt niet enkel het lab-gerelateerde praktische aspect
onderzocht, maar ook de ontwikkeling van gespecialiseerde forensische software voor
analyse van MPS data. Daarnaast verkennen we nieuwe niet-STR DNA markers als
alternatief voor de huidige analyse om de toepassing van DNA analyse in de nabije
toekomst nog verder uit te breiden.

Massively Parallel Sequencing vs Capillaire Elektroforese

De verwachte perspectieven van MPS in forensisch DNA onderzoek zijn gebaseerd
op de volgende verschillen tussen CE en MPS.
* Terwijl CE enkel fragmentlengte analyseert, typeert MPS de exacte sequentie.
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Sequentie variatie (bovenop lengtevariatie) verhoogt de statistische kracht van
een STR. Daarnaast kan sequentie-variatie helpen om stutter artefacten en
echte allelen van elkaar te onderscheiden.

* De detectierange van CE is beperkt terwijl MPS een vrijwel ongelimiteerde
detectierange heeft. Voor CE zorgt te hoog signaal voor extra artefacten (in
andere kleuren) terwijl erg laag signaal niet van ruis onderscheiden kan worden.
Voor MPS kan het aantal uitgelezen sequenties vrijwel oneindig worden
verhoogd zonder dat er artefacten ontstaan bij andere STRs (al stijgen de
kosten mee met het aantal sequenties).

* De capaciteit van CE om meerdere markers tegelijk te analyseren is beperkt
terwijl MPS in principe duizenden markers tegelijk kan analyseren. Aangezien er
momenteel niet meer dan zes fluorescente labels gebruikt kunnen worden
met CE, wordt het gewenste aantal markers in een reactie verkregen door
de lengte van verschillende markers niet te laten overlappen. Voor MPS
kunnen alle markers in dezelfde fragment-range ontworpen worden omdat ze
onderscheiden worden op sequentie in plaats van kleur en lengte.

Massively Parallel Sequencing van Short Tandem Repeats

Het meeste werk dat beschreven wordt in dit proefschrift richt zich op MPS analyse
van STRs. Aangezien forensische DNA databanken zijn opgebouwd met STR data is
het logisch om te beginnen met de analyse van deze zelfde markers zodat er nog altijd
zoekingen uitgevoerd kunnen worden in de DNA databank.

Basale analyse van MPS STR data: TSSV

Terwijl STRs de gebruikelijke markers zijn voor forensisch DNA onderzoek, worden
ze niet heel veel gebruikt in andere DNA onderzoeksgebieden. De initieel beschikbare
software pakketten voor MPS data analyse konden dan ook slecht om gaan met
herhalende sequenties. In hoofdstuk 2 van dit proefschrift wordt de (open-source)
software TSSV beschreven. Dit was een van de eerste software pakketten vooral
gericht op STR analyse. Door het gebruik van twee anker sequenties (aan beiden
kanten van de STR) worden markers herkend en vervolgens wordt de waargenomen
variatie tussen deze anker sequenties samengevat en worden herhaalde sequenties
afgekort. Naast de analyse van STRs bleek deze software ook goed toepasbaar voor
de analyse van errors in sequentie-data.

Voor sequentie data is ook sequentie nomenclatuur nodig

Allelen van CE worden benoemd als een nummer wat het aantal herhalingen in
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de STR weergeeft. Aangezien het bepalen van de exacte sequentie extra variatie aan
toont, is er een nomenclatuur nodig die ook deze variatie kan beschrijven. In hoofdstuk
3 beschrijven we de eerste aanbevelingen voor een forensische STR sequentie
nomenclatuur met het doel om alle relevante sequentie informatie weer te geven in
een zo kort en leesbaar mogelijke naam.

Validatie van een (prototype) commerciéle methode voor STR sequentie-
analyse

In samenwerking met het bedriff Promega© werd een prototype van een
commerciéle methode, ontwikkeld voor sequentie-analyse van STRs, getest. Met
deze methode werd het DNA van 17 STRs en een marker voor geslachtstypering
vermenigvuldigd in een reactie en werd, na verdere voorbereiding, de sequentie
bepaald met behulp van de Miseq™ sequencer. Hoofdstuk 4 is een gedetailleerde
beschrijving van de analyse van de prestaties van deze methode en de waargenomen
sequentie-variatie van elke STR.

Om te berekenen hoe uniek een DNA profiel is, moeten eerst de frequenties
vastgesteld worden van elke sequentie-variant in de populatie. Wanneer deze
frequenties bekend zijn kan er een statistische kansberekening gebruikt worden om in
te schatten hoe groot de kans is dat een willekeurig persoon een bepaald DNA profiel
heeft. De STR-sequenties van 297 DNA-monsters van personen uit een Europese,
Aziatische en Afrikaanse populatie werden bepaald. Zo werd inzicht verkregen in de
extra sequentie-variatie t.o.v. de CE lengte-variatie van de STRs en de frequenties van
deze sequentie-varianten.Voor de meeste STRs werden substantieel meer sequentie-
varianten waargenomen dan CE lengte varianten.

Bij de analyse van STRs resulteert de PCR in het vormen van zogenaamde stutter-
artefacten die veroorzaakt worden door een ‘slippend’ enzym (Polymerase). STR
stutter bemoeilijkt de interpretatie van ongebalanceerde mengsels aangezien pieken
van de lager bijdragende donor niet altijd onderscheiden kunnen worden van stutter.
De extra sequentie-informatie levert meer inzicht in deze stutter Het bleek dat de
hoeveelheid stutter bepaald wordt door de lengte van de langste ononderbroken
herhaling in de STR. Deze informatie gaf nieuwe mogelijkheden voor de interpretatie
van gemengde profielen op basis van sequentie-data.

Correctie van stutter in een monster m.b.v. bioinformatica tools

In hoofdstuk 5 is de bioinformatica software FDSTools beschreven als de eerste
software die werkelijk PCR- en sequentie-artefacten kan corrigeren in MPS data. Op
basis van een training dataset wordt systematische ruis vastgesteld en deze informatie
wordt vervolgens gebruikt om in een onbekend monster de ruis te corrigeren zodat
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de basislijn van de data substantieel wordt gereduceerd.

De software bevat ook tools om kwaliteitscontrole uit te voeren op de referentie
data en om analysegrenzen vast te stellen na het uitvoeren van de correctie. Met
behulp van deze vastgestelde grenzen kan data van onbekende monsters worden
gefitterd en wordt de data weergegeven in een interactieve format.

Analyse van ongebalanceerde mengsels toonde aan dat allelen van de laag
bijdragende donor vaker werden teruggevonden na correctie terwijl deze zonder
correctie niet herkend konden worden.

Alternatieve forensische markers voor STRs

Ook met de verbeterde analyses m.b.v. bioinformatica tools blijft het duidelijk dat
STRs niet voor alle toepassingen ideale forensische markers zijn. Terwijl de hoge mate
van variatie helpt om een zo uniek mogelijk profiel te verkrijgen met een beperkt
aantal markers zorgen stutter artefacten en lengte-variatie voor beperkingen in de
interpretatie van mengsels en de analyse van afgebroken DNA. In hoofdstuk 6 zijn
microhaplotypes geselecteerd uit publiek beschikbare genoom data die vier of meer
SNPs (DNA verschillen op een enkele positie) bevatten in een fragment van 70
baseparen. Deze markers kunnen bijna net zo variabel zijn als STRs zonder het nadeel
van stutter artefacten en variatie in lengte.

De studie toonde aan dat het merendeel van deze geselecteerde fragmenten
voortkwamen uit verkeerd gerapporteerde variatie in de publiek beschikbare genoom
data maar er werd toch een subset van |6 microhaplotypes geselecteerd met een
discriminerend vermogen dat ongeveer overeen komt met negen STRs. Naast
het hoge discriminerende vermogen lijkt de data ook informatie te geven over de
biogeografische afkomst van een persoon. Het was namelijk mogelijk om aan de hand
van de data de drie geteste populaties vrijwel compleet van elkaar te scheiden.

Conclusies en toekomstperspectieven

In hoofdstuk 7 wordt het geheel van de uitgevoerde studies besproken in combinatie
met de toekomstperspectieven. MPS is nu klaar om toegepast te worden in forensisch
zaken en wordt ook al in enkele zaken toegepast. Terwijl MPS nu nog een relatief dure
methode s, is het niet onmogelik dat dit in de nabije toekomst verandert en dat
CE geleidelijk vervangen kan worden door MPS wanneer het in een gestroomlijnde
geautomatiseerde manier toegepast kan worden. MPS lijkt een veelbelovende tool
voor de analyse van mengsels, die mogelijk is door het sequencen van STRs, maar
ook door het sequencen van andere markers zoals microhaplotypes. Er zijn veel
andere toepassingen voor MPS die niet (of beperkt) mogelijk zijn met CE, vooral
door het hogere aantal markers dat in een keer geanalyseerd kan worden. Momenteel
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zijn er al toepassingen voor voorspelling van biogeografische herkomst en een aantal
uiterlijke kenmerken op basis van SNPVoor een meer gedetailleerde voorspelling van
biogeografische herkomst, maar ook voor veel andere uiterlijke karakteristieken moet
nog meer basale kennis verzameld worden voor het toegepast kan worden in zaken. Bjj
verschillende instituten worden momenteel studies uitgevoerd om deze basale kennis
uit te breiden.
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mensen. Reinout, maar ook zeker Loredana hebben me geinspireerd en overtuigd om
te gaan promoveren.Verder heeft de afwisseling van onderzoek en muziek me altijd
geholpen om met enthousiasme door te gaan. Marco, Dave, Sven, Marijn, Gil en Rob,
jullie hebben me geholpen de juiste balans te houden.

Bij het NFI mocht ik het laatste ‘stukje’ van de promotie afmaken. Team Research
heeft me welkom ontvangen en gesteund om alles af te ronden. Titia, momentum
houden en reéle doelen zetten voor jezelf, niemand kon me dit beter leren dan jij. Maar
ook Corina, Margreet, Francisca, wederom Jerry, Sofia, Natalie, Josja, Patrick, Jeroen
en alle fijne stagiaires hebben, samen met mijn coaching team Peter en Ate, mogen
meegenieten van alle geduld die er nodig was om zo ver te komen. Mijn beste vrienden
Gideon, Marco en Reinout en in het bijzonder natuurlijk Melanie hebben me gesteund
en me zo sterk geholpen tot deze afronding. Mel, het is heerlijk om hier nu met jou,
maar ook met Owen, Gwen en Jill van te kunnen genieten.
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