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Chapter 4

Quantum error correction in
Crossbar architectures

4.1 Background

Spin qubits in silicon quantum dots are a promising platform for quan-
tum computation. Isotopically enriched silicon-28 not only promises long
coherence times, but also the compatibility with semiconductor manu-
facturing techniques. Offering a high qubit density, silicon quantum dots
are an important chance for the future of quantum computing. However,
controlling a vast amount of qubits is nontrivial. Out of an array of 𝑁×𝑁
quantum dots, we would have to be able to select singular qubits for
quantum gates and measurements. Those operations can be performed
by manipulating electric potentials on or around the corresponding dots,
for which gate lines have to connect the corresponding elements with a
classical interface. This typically means to steer 𝑂(𝑁2) elements in the
bulk of the dot array from its boundary, which only has space to connect
𝑂(𝑁) gate lines. The solution for this mismatch is known from classi-
cal electronics: a crossbar switch allows to address single elements in a
matrix of components by the use of certain row and column lines. For
the quantum case, a similar strategy can be adopted, and so only 𝑂(𝑁)
gate lines are necessary to control the entire grid. The idea is that grid
operations like quantum gates and measurements only happen where
pulsed lines connect to the same physical elements, such that individual
qubit control is achievable. The price to pay for this is a reduced ability
to perform operations on different units in the grid in parallel. For clas-
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sical systems this is not a fundamental problem, but when the computa-
tional units are qubits, whose information decays over time, parallelism
becomes absolutely essential. This introduces a formidable roadblock
for the development of crossbar systems for quantum computing sys-
tems. Nevertheless various crossbar architectures for quantum comput-
ers have been proposed in the past [18, 76–79]. This chapter is focusing
on our proposal for crossbar-controlled spin quantum dots in silicon [18].

Any realistic quantum computing device, including the one we propose
in [18], will suffer from noise processes that degrade quantum informa-
tion. This noise can be combated by quantum error correction [80, 81],
where quantum information is encoded redundantly in such a way that
errors can be diagnosed and remedied as they happen without disturb-
ing the encoded information. Many quantum error correction codes have
been developed over the last two decades and several of them have desir-
able properties such as high noise tolerance, efficient decoders and rea-
sonable implementation overhead. Of particular note are the planar sur-
face [82] and color codes [83], which can be implemented in quantum
computing systems in which only nearest-neighbor two-qubit gates are
available.

However these codes, and all other quantum error correction codes, are
developed under the assumption that all physical qubits participating in
the code can be controlled individually in parallel. While practical large-
scale quantum computers most likely pose control limitations, surpris-
ingly little work has been done in this area [72]. Here we investigate the
minimal amount of parallel control resources needed for quantum error
correction in the proposed architecture [18].

4.2 Results

• We analyze the crossbar architecture we propose in [18]. We give
a full description of the layout and control characteristics of the ar-
chitecture in a manner accessible to non-experts in quantum dots.
We develop a language for describing operations in the crossbar
system. Of particular interest here are the regular patterns (see
e.g. Section 4.4.4) that are implied by the crossbar structure. These
configurations provide an abstraction on which we build mappings
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of quantum error correction codes (see below) This analysis is par-
ticular to the system in [18] but we believe many of the considera-
tions to hold for more general crossbar architectures.

• We map the planar surface code and the 6.6.6. (hexagonal) and
4.8.8. (square-octagonal) color codes [83] to the crossbar architec-
ture, taking into account its limited ability to perform parallel quan-
tum operations. The tools we develop for describing the mapping,
in particular the configurations described in Section 4.4.4, should
be generalizable to other quantum error correction codes and gen-
eral crossbar architectures.

• Due to experimental limitations the mappings mentioned above
might not be attainable in near term devices. Therefore we adapt
the above mappings to take into account practical limitations in the
architecture [18]. In this version of the mapping the length of an
error correction cycle scale with the distance of the mapped code.
This means the mapping does not allow for arbitrary logical error
rate suppression. Therefore we analyze the behavior of the logical
error rate with respect to estimated experimental error parameters
and find that the logical error rate can in principle be suppressed
to below 10−20 (an error rate comparable to the error rate of clas-
sical computers [84]), allowing for practical quantum computation
to take place.

• Our work raises several interesting theoretical questions regarding
the mapping of quantum algorithms to limited control settings, see
Section 4.7.

In Section 4.3 we introduce the architecture proposed in [18]. We
forgo a deeper discussion of the device physics and only regard its pe-
culiarities as abstract control aspects. We aim to explain the operation of
the device in a largely self-contained manner accessible to non experts in
quantum dot physics. For that purpose introduce classical helper objects
such as the BOARDSTATE matrix which will aid later developments. We
discuss one- and two-qubit operations, measurements, and qubit shut-
tling. In Section 4.4 we focus on difficulties inherent in parallel operation
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Figure 4.1. (a) A schematic of the Quantum Dot Processor (QDP) that we pro-
pose [18], see Section 4.3.1 for details. The white circles correspond to quantum
dots, with the black filling denoting the presence of electrons, whose spins are
employed as qubits. All dots are found in either red or blue columns, repre-
senting areas of different magnetic field. Single qubit gates can only be applied
globally on either all qubits in all blue columns or all qubits in all red columns.
The vertical, horizontal (both yellow) and diagonal lines (gray) are a feature of
this crossbar scheme. The horizontal and vertical gate lines implement barriers
that isolate the dots from each other. The diagonal lines simultaneously control
the dot potentials of all dots coupled to one line. Quantum operations are ef-
fected by pulsing individuals lines. In order to perform two-qubit operations on
adjacent dots, one typically needs to lower the barrier that separates them and
change the dot potentials by operating the diagonal lines. Note that two-qubit
gates applied to adjacent qubits in the same column are inherently different (by
nature of the QDP design) from two-qubit gates between two adjacent qubits in
the same row. With the control lines, we can also move qubits from dot to dot
and measure them. However, since each control line influences 𝑂(𝑁) qubits,
individual qubit control, as well as parallel operation on many qubits is limited.
(b) Abstracted version of the QDP scheme representing the classical BOARD-
STATE matrix. The BOARDSTATE holds no quantum information, but encodes
where qubits are located on the QDP grid.
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of the crossbar system. We also introduce several BOARDSTATE config-
urations which feature prominently in quantum error correction map-
pings. We describe how these configurations can be reached efficiently
by parallel shuttling. In Section 4.5.3 we bring together all previous sec-
tions and devise a mapping of the planar surface code to the crossbar
architecture. This we continue in Section 4.5.4 for the 6.6.6. and 4.8.8.
color codes. Finally in Section 4.6 we analyze in detail the logical error
probability of the surface code mapping as a function of the code distance
and estimated error parameters of the crossbar system.

4.3 The quantum dot processor

In this section we will give an overview of the quantum dot processor
(QDP) architecture as proposed in [18]. Although this chapter considers
the concrete realization of quantum dots in silicon, our main focus is go-
ing to lie on its crossbar control structure. Therefore, we will not engage
too much with the physics of the host system, but abstract its peculiari-
ties into operational properties as they are relevant for our purposes of
controlling this device. The basic organization of the QDP is that for an
𝑁 × 𝑁 grid of qubits interspersed with control lines that effect opera-
tions on the qubits. The most notable feature of the QDP (and crossbar
architectures in general) is the fact that any classical control signal sent to
a control line will be applied simultaneously to all qubits along it. This
means that every possible classical instruction applied to the QDP will
affect 𝑂(𝑁) qubits (these qubits will not necessarily be physically close
to each other). This has important consequences for the running of quan-
tum algorithms on the QDP (or any crossbar architecture) that must be
taken into account when compiling these algorithms to hardware level
instructions. Notably it places strong restrictions on performing quan-
tum operations in parallel on the QDP. To deal with these restrictions it
is important to have an understanding of how operations are performed
on the QDP. For this reason that we begin our study of the QDP with an
examination of its control structure at the hardware level. We describe
the physical layout of the system and develop nomenclature for the fun-
damental control operations. This nomenclature might be called the ‘ma-
chine code’ of the QDP. From these basic instructions we go on to con-
struct all elementary operations that can be applied to qubits. These are
quantum operations, such as single qubit gates, nearest-neighbor two-
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qubit gates and qubit measurements but also a non-quantum operation
called coherent shuttling which does not affect the quantum state of the
QDP qubits but changes their connectivity graph (i.e. which qubits can
be entangled by two-qubit gates). All of these operations are restricted by
the nature of the control architecture in a way that gives rise to interesting
patterns (Section 4.4.4) and which we will fully examine in Section 4.4.

4.3.1 Layout

A schematic overview of the QDP architecture is given in Figure 4.1,
where qubits (which are electrons, denoted by black balls) occupy an ar-
ray of 𝑁 ×𝑁 quantum dots. The latter are denoted by white dots when
empty, since they either are occupied by a qubit or not. We will label the
dots by tuples containing row and column indices (𝑖, 𝑗) ∈ [0 : 𝑁 − 1]⊗2

beginning from the bottom left corner1. We assume all qubits to be initial-
ized in the state |0⟩. For future reference we note that |0⟩ corresponds to
the spin-up state and |1⟩ to the spin-down state of the electron constitut-
ing the qubit.

Typically we will work in a situation where half the dots are occupied by
a qubit and half the dots are empty (as seen in Figure 4.1 (a)). Because
(as we discuss in Section 4.3.3.1) the qubits can be moved around on the
grid, it is important to keep track of which dots contain qubits and which
ones do not. This can be done efficiently in classical side-processing. To
this end we introduce the BOARDSTATE object. BOARDSTATE consists of
a binary 𝑁 × 𝑁 matrix with a 1 as the (𝑖, 𝑗)-th entry if the (𝑖, 𝑗)-th dot
contains an electron and 0 otherwise. The BOARDSTATE does not contain
information about the qubit state, only about the electron occupation of
the grid. A particular BOARDSTATE is illustrated in the left panel of Fig-
ure 4.1.

We now turn to describing the control structures that are characteristic for
this architecture. As a first feature, we would like to point out that each
dot is either located in a red or a blue region in Figure 4.1 (left panel). The
blue (red) columns correspond to regions of high (low) magnetic fields,
which plays a role in the addressing of qubits for single qubit gates. We

1This is a difference from last chapter’s notation, where we started counting from 1,
and the components of the index appeared in the opposite order to resemble euclidean
coordinates.
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will denote the set of qubits in blue columns (identified by their row and
column indices) by ℬ and the set of qubits in red columns by ℛ.

Much finer groups of dots can be addressed by the control lines that run
through the grid. The crossbar architecture features control lines that are
connected to 𝑂(𝑁) dots. At the intersections of these control lines indi-
vidual dots and qubits can be addressed. This means that using 𝑂(𝑁)
control lines 𝑂(𝑁2) qubits can be controlled. As seen in Figure 4.1 the
rows and columns of the QDP are interspersed with horizontal and ver-
tical lines (yellow), as a means to control the tunnel coupling between ad-
jacent dots. We refer to those lines as barrier gates, or barriers for short.
Each line can be controlled individually, but a pulse has an effect on all
𝑂(𝑁) dot pairs it separates. Another layer of control lines is used to ad-
dress the dots itself rather than the spaces in between them. The diagonal
gate lines (gray), are used to regulate the dot potential. We label the hor-
izontal and vertical lines by an integer running from 0 to 𝑁 − 2 and the
diagonal lines with integers running from −𝑁 + 1 to 𝑁 − 1 where the
−(𝑁 − 1)-th line is the top-left line and increments move towards the
bottom right (see Figure 4.1(a)). We count horizontal and vertical lines
starting at zero from the lower left corner of the grid (see Figure 4.1).
Note that the barriers at the boundary of the grid are never addressed in
our model and are thus not labeled. Next we describe how all control
lines can be used to effect operations on the qubits occupying the QDP
grid.

4.3.2 Control and addressing

As described above, the QDP consists of quantum dots interspersed with
barriers and connected by diagonal lines. For our purposes these can be
thought of as abstract control knobs that apply certain operations to the
qubits. In this section we will describe what type of gates operations are
possible on the QDP. We will not concern ourselves with the details of
parallel operation until Section 4.4.

There are three fundamental operations on the QDP which we will call
the “grid operations”. These operations are “lower vertical barrier” (V),
“lower horizontal barrier” (H) and “set diagonal line” (D). The first two
operations are essentially binary (on-off) but the last one (D) can be set
to a value 𝑡 ∈ [0 : 𝑇 ] where 𝑇 is a device parameter. At the physical
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OPCODE Effect
V[𝑖] Lower vertical barrier at index 𝑖
H[𝑖] Lower horizontal barrier at index 𝑖
D[𝑖][𝑡] Set diagonal line at index 𝑖 to value 𝑡

Table 4.1. Table of grid operations.

level this corresponds to how many clearly distinct voltages we can set
the quantum dot plunger gates [18]. Although the actual pulses on those
gates differ by amplitude and duration between the different gates and
operations, this notation gives us a clear idea which lines are utilized.
This can be done because realistically one will not interleave processes
in which pulses have such different shapes. We can label the grid opera-
tions by mnemonics (which in a classical analogy we will call OPCODES)
as seen in Table 4.1. These OPCODES are indexed by an integer parame-
ter that indicates the label of the control line it applies to.

We indicate parallel operation of a collection of OPCODES by amper-
sands, e.g. D[1]&H[2]&D[5]. The three grid operations are summarized
in Table 4.1. These grid operations can be used to induce some elemen-
tary quantum gates and operations on the qubits in the QDP. Below we
describe these operations.

4.3.3 Elementary operations

Here we give a short overview of the elementary operations available in
the QDP. We will describe basic single qubit gates, two-qubit gates, the
ability to move qubits around by coherent shuttling [20] and a measure-
ment process through Pauli Spin Blockade (PSB) [85]. All of these oper-
ations are implemented by a combination of the grid operations defined
in Table 4.1, and are inherently dependent on the BOARDSTATE .

4.3.3.1 Coherent qubit shuttling

An elementary operation of the QDP is the coherent qubit shuttling [20,
86], of one qubit to an adjacent, empty dot. That means that an electron
(qubit) is physically moved to the other dot utilizing at least one diagonal
line and the barrier between the two dots. It thereby does not play a role
whether the shuttling is in horizontal (from a red to a blue column or the
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other way around) or vertical direction (inside the same column). How-
ever, the shuttling in between columns results in a 𝑍-rotation, that must
be compensated by timing operations correctly, see [18] for details. This
𝑍-rotation can also by used as a local single qubit gate, see Section 4.3.3.3.
The operation is dependent on the BOARDSTATE by the prerequisite that
the dot adjacent to the qubit to must be empty. Collisions of qubits are
to be avoided, as those could lead to the formation of different charge
states (see however the measurement process in Section 4.3.3.2). We now
describe the coherent shuttling as the combination of grid operations.

We lower the vertical (or horizontal) barrier in between the two dots and
instigate a ‘gradient’ of the on-site potentials of the two dots. That is,
the diagonal line of the dot containing the qubit must be operated at
𝑡 ∈ [0 : 𝑇 ] while the line overhead the empty dot must have the potential
𝑡 ∈ [0 : 𝑇 ] with 𝑡 = 𝑡 − 1. Note that this implies it might not be oper-
ated at all (if it is already at the right level). We will subsequently refer
to the combination of a lowered barrier and such a gradient as a “flow”.
A flow will in general be into one of the four directions on the grid. We
define the commands VS[𝑖, 𝑗, 𝑘] (vertical shuttling) and HS[𝑖, 𝑗, 𝑘] (hor-
izontal shuttling). The command VS[𝑖, 𝑗, 𝑘] shuttles a qubit at location
(𝑖, 𝑗) to (𝑖+ 1, 𝑗) for 𝑘 = 1 (upward flow) and shuttles a qubit at location
(𝑖+ 1, 𝑗) to (𝑖, 𝑗) for 𝑘 = (−1) (downward flow). Similarly, the command
HS[𝑖, 𝑗, 𝑘] shuttles a qubit at location (𝑖, 𝑗) to (𝑖, 𝑗+1) for 𝑘 = 1 (rightward
flow) and shuttles a qubit at location (𝑖, 𝑗 + 1) to (𝑖, 𝑗) for 𝑘 = (−1) (left-
ward flow). See Table 4.2 for a summary of these OPCODES.

Using only these control lines, we can individually select a single qubit to
be shuttled. However, when attempting to shuttle in a parallel manner,
we have to be carefully take into account the effect that the activation of
several of those lines has on other locations. We will deal with this in
more detail in Section 4.4.1.

4.3.3.2 Measurement and readout

The QDP allows for local single qubit measurements in the computa-
tional basis |0⟩ , |1⟩. We can measure a qubit by using essentially the same
lines as if we were to shuttle it to a horizontally adjacent dot that is al-
ready occupied by a qubit in a fixed state of reference: that qubit will
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↦→

(a) Coherent shuttling

(b)
√

SWAP (c) CPHASE⋆ or
measurement

Figure 4.2. Schematic representation of the use of control lines for the native
operations in the QDP. Qubits are represented by black balls on the grid. Red or
blue colored dots are empty, but their dot potentials change due to an operation
of the diagonal line they are coupled to. Empty dots, unaffected by grid oper-
ations, are white. (a) Vertical shuttling of a qubit (to the top left dot) requires
to lower the orange barrier. One can than either raise the dot potentials on the
red diagonal line, or lower the potential on the blue dot by pulsing the blue di-
agonal. (b) Schematic representation of the control lines used for performing
two-qubit

√
SWAP gate between the two qubits on that grid. The orange bar-

rier is lowered and the red diagonal line is utilized to detune dot potentials. (c)
Grid operations necessary to perform a measurement or a two-qubit effective
CPHASE⋆ gate between the two qubits. The orange barrier between the two
qubits is lowered, and the dot potentials along the red diagonal line is raised by
pulsing the latter. Note that the empty, red colored dot is also effected by that
action, and its barrier to the adjacent dot is lowered. If the two dots in the up-
per row were not empty, side effects would occur. See Section 4.3.3.4 for more
information on the nature of the two-qubit gates. Note also that the readout pro-
cedure of the measurement requires us to have the upper dot (light blue) empty,
if the barrier gate between them is used for readout.
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therefore be referred to as reference qubit.2 When the first qubit is in
contact with the reference, their total spin wavefunction collapses into
either a singlet or a triplet state. Due to the Pauli principle, those two
spin wave functions produce an antisymmetric spatial wave function re-
sulting in a different distribution of charge over the two dots. This charge
distribution can be detected in the readout. This process is called Pauli
Spin Blockade (PSB) measurement [18, 85]. However, the QDP’s ability
to perform this type of qubit measurements is limited by three factors.

Firstly, the measurement requires a reference qubit horizontally adjacent
to the qubit to be measured. Not only must the reference be in a known
computational basis state, but the choice of state depends on the mag-
netic field, i.e. whether the dots are in red or blue columns in Figure
4.1(a). A reference qubit in the set ℬ must be in the state |0⟩, whereas
one found in ℛ must be in |1⟩. The qubit that is to be measured, has to be
in the respective other column, vertical measurements are not allowed.
This effectively means that when a qubit pair is in the wrong configu-
ration we must first shuttle both qubits one step to the left (or to the
right). Note that this takes two additional shuttling operations, which
means it is important to keep track at all times where the two qubits are
on the BOARDSTATE, or else incur a shuttling overhead (which might be-
come significant when dealing with large systems and many simultane-
ous measurements). We will deal with the problem of qubit-pair place-
ment in more detail in Section 4.4.3.

Secondly, assuming that the qubit pair is in the right configuration to
perform the PSB process, one still needs to perform a shuttling-like op-
eration to actually perform the measurement. On the technical level, the
operation is different from coherent shuttling, but the use of the lines is
similar with the difference that after the readout, the shuttling-like op-
eration is undone by the use of the same lines as before - which are not
necessarily the lines one would use to reverse a coherent shuttling opera-
tion. However, scheduling measurement events on the QDP is at least as
hard as the scheduling of shuttle operations discussed above. Depending
on the state the qubit is in, it will now assume one of two possible states
that can be distinguished by their charge distribution.

2Not to be confused with the measurement qubit in the surface code. The role of the
latter is assumed by the first qubit, that is supposed to be measured.
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OPCODE Control OPCODES Effect

HS[𝑖, 𝑗, 𝑘]
V[𝑖] & D[𝑖− 𝑗][𝑡− 1/2− 𝑘/2]
& D[𝑖− 𝑗 + 1][t-1/2+k/2]

(𝑘 = 1):
Shuttle from (𝑖, 𝑗) to (𝑖, 𝑗+1)
(𝑘 = −1):
Shuttle from (𝑖, 𝑗+1) to (𝑖, 𝑗)

VS[𝑖, 𝑗, 𝑘]
H[𝑗] & D[𝑖− 𝑗][𝑡− 1/2− 𝑘/2]
& D[𝑖− 𝑗 − 1][𝑡− 1/2 + 𝑘/2]

(𝑘 = 1):
Shuttle from (𝑖, 𝑗) to (𝑖+1, 𝑗)
(𝑘 = −1):
Shuttle from (𝑖+1, 𝑗) to (𝑖, 𝑗)

M[𝑖, 𝑗, 𝑘] HS[𝑖, 𝑗 + 1/2 + 𝑘/2,−𝑘] Measurement of qubit (𝑖, 𝑗)
using the qubit at (𝑖, 𝑗 + 𝑘)

Table 4.2. OPCODES for horizontal and vertical shuttling and measurement
together with the control OPCODES required to implement these operations on
the QDP.

Thirdly, the readout process requires to have a barrier line that borders
to the qubit pair, with an empty dot is across the spot of the qubit to be
measured. This is a consequence of the readout procedure [18].

In Table 4.2 we introduce the measurement OPCODE M[𝑖, 𝑗, 𝑘] with
𝑘 ∈ {−1, 1} to denote a measurement of a qubit at location (𝑖, 𝑗) with a
reference located to the left (𝑘 = −1) or to the right (𝑘 = 1).

4.3.3.3 Single-qubit rotations

There are two ways in which single qubit rotations can be performed on
the QDP, both with drawbacks and advantages. The first method, which
we call the semi-global qubit rotation, relies on electron-spin-resonance [87].
Its implementation in the QDP allows for any rotation in the single qubit
special unitary group 𝑆𝑈(2) [88] to be performed but we do not have par-
allel control of individual qubits. The control architecture of the QDP is
such that we can merely apply the same single qubit unitary rotation on
all qubits in either ℛ or ℬ (even or odd numbered columns). Concretely
we can perform in parallel the single qubit unitaries

𝑈ℛ =
⨂︁

(𝑖,𝑗)∈ℛ

𝑈(𝑖,𝑗) , 𝑈ℬ =
⨂︁

(𝑖,𝑗)∈ℬ

𝑈(𝑖,𝑗) (4.1)

where 𝑈(𝑖,𝑗) means applying the same unitary 𝑈 to the state carried by
the qubit at location (𝑖, 𝑗). In general the only way to apply an arbitrary



4.3 The quantum dot processor 167

single qubit unitary on a single qubit in ℬ (or ℛ) is by applying the uni-
tary to all qubits in ℬ (ℛ), moving the desired qubit into an adjacent
column, i.e. from ℬ to ℛ (ℛ to ℬ) and then applying the inverse of the
target unitary to ℛ (ℬ). This restores all qubits except for the target qubit
to their original states and leaves the target qubit with the required uni-
tary applied. The target qubit can then be shuttled to its original location.
A graphical depiction of the BOARDSTATE associated with this maneuver
can be found in Figure 4.3. This means applying a single unitary to a sin-
gle qubit takes a constant amount of grid operations regardless of grid
size.

The second method does allow for individual 𝑍-rotations on single qubits:
exp(𝑖𝜑𝑍) = cos𝜑 · I + 𝑖 sin𝜑 · 𝑍. This operation can be performed on
a given qubit at (𝑖, 𝑗) by shuttling it to an empty dot at (𝑖, 𝑗 ± 1) (and
perhaps back). When the qubit leaves the column it was originally de-
fined on (ℬ to ℛ or vice versa) it will effectively start precessing about
its 𝑍-axis [18]. This effect is always present but it can be mitigated by
timing subsequent operations such that a full rotation happens between
every operation (effectively performing the identity transformation, see
Section 4.3.3.1). By changing the timing between subsequent operations
any rotation angle 𝜑 can be effected. This technique will often be used to
perform the 𝑍-gate (𝜑 = 𝜋/2) and the 𝑆 =

√
𝑍 phase gate (𝜑 = 𝜋/4) in

error correction sequences.

4.3.3.4 Two-qubit gates

As the last elementary tool, we have the ability to apply entangling two-
qubit gates on adjacent qubits. The QDP can perform two different types
of two-qubit gates. Inside one column, so between qubits at locations
(𝑖, 𝑗) and (𝑖± 1, 𝑗), a square-root of SWAP (

√
SWAP ) can be realized [89].

This can be done by lowering the horizontal barrier between the two
qubits and toggling the voltage on the diagonal lines overhead the two
qubits. This situation is illustrated in Figure 4.2 (c). The

√
SWAP gate is

defined as
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(a)

𝑈 𝑈 𝑈

(b)

𝑈 † 𝑈 † 𝑈 †

(c)

Figure 4.3. BOARDSTATE schematic for applying the unitary 𝑈 to a single qubit
(red). Time flows from (a) to (c) in this schematic. This process illustrates both,
the possibility to retain single qubit control by using coherent shuttling, and the
overhead that comes with it. In (a) we firstly apply the unitary 𝑈 (blue bars) to
all qubits in ℛ (ℬ). We then move the qubit to the adjacent column. Note that
this takes two operations because we do not want any other qubits transitioning
with it. In (b), we apply the inverse unitary 𝑈† to all qubits in ℛ (ℬ). In the last
step we move the red qubit back, such that it is in its original position in (c).
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√
SWAP =

⎛⎜⎜⎝
1

(1 + 𝑖) /2 (1− 𝑖) /2
(1− 𝑖) /2 (1 + 𝑖) /2

1

⎞⎟⎟⎠ , (4.2)

in the computational basis, and has the name-lending property√
SWAP ·

√
SWAP = SWAP. Alternatively, between horizontally adjacent

qubits, e.g. between (𝑖, 𝑗) ∈ ℛ and (𝑖, 𝑗±1) ∈ ℬ the native two-qubit gate
is an effective CPHASE gate which acts on the computational basis as

CPHASE⋆ =

⎛⎜⎜⎝
1

𝑒𝑖𝜑1

𝑒𝑖𝜑2

1

⎞⎟⎟⎠ , (4.3)

where the two angles obey (𝜑1 + 𝜑2 mod 2𝜋) = 𝜋 (demonstrated in [90–
92]). This gate can be performed between horizontally adjacent qubits
by lowering the vertical barrier between them and toggling the overhead
diagonal lines. This is illustrated in Figure 4.2(a). The CPHASE⋆ can be
corrected to a CPHASE by the readily available methods of performing
individual 𝑍-rotations. In practice, however, we expect the

√
SWAP gate

to have significantly higher fidelity than the CPHASE⋆ gate [18], so in any
application (e.g. error correction) the

√
SWAP gate is the preferred native

two-qubit gate on the QDP. In Table 4.3 we define OPCODES for the hor-
izontal interaction (CPHASE⋆) and the vertical interaction (

√
SWAP ).

4.3.3.5 CNOT subroutine

Many quantum algorithms are conceived using the CNOT gate as the
main two-qubit gate. However the QDP does not support the CNOT gate
natively. It is easy to construct the CNOT gate from the CPHASE⋆ gate
by dressing the CPHASE gate with single qubit Hadamard rotations as
seen in Figure 4.4(center). It is slightly more complicated to construct
a CNOT gate using the

√
SWAP but it can be done by performing two√

SWAP gates interspersed single qubit rotations [91–93] as seen in Fig-
ure 4.4(right). If the control qubit is moved from an adjacent column on
the QDP (as it is in most cases we will deal with) the 𝑍- and 𝑆-gates
can be performed by the 𝑍-rotation-by-waiting technique described in
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𝐻 ∙ 𝐻 𝑆† � 𝑍 �

∙ ∙ 𝑍𝐻𝑆† � � 𝐻

Figure 4.4. Construction of the CNOT gate out of the native CPHASE⋆ and√
SWAP gates. Note that one requires two

√
SWAP gates to construct a

CNOT gate [93]. When performing arbitrary algorithms it would be preferable
to forgo this substitution and instead compile the algorithm directly into a gate-
set containing the

√
SWAP gate.

OPCODE Effect Parameter

HI[𝑖, 𝑗]
Perform CPHASE⋆ gate between
dots (𝑖, 𝑗) and (𝑖, 𝑗 + 1)

(𝑖, 𝑗) ∈ [0 : 𝑁 − 2]⊗2

VI[𝑖, 𝑗]
Perform

√
SWAP gate between

dots (𝑖, 𝑗) and (𝑖+ 1, 𝑗)
(𝑖, 𝑗) ∈ [0 : 𝑁 − 2]⊗2

HC[𝑖, 𝑗]
Perform CNOT (using CPHASE⋆)
between (𝑖, 𝑗) and (𝑖, 𝑗 + 1)

(𝑖, 𝑗) ∈ [0 : 𝑁 − 2]⊗2

VC[𝑖, 𝑗]
Perform CNOT (using

√
SWAP )

between (𝑖, 𝑗) and (𝑖+ 1, 𝑗)
(𝑖, 𝑗) ∈ [0 : 𝑁 − 2]⊗2

Table 4.3. OPCODES for horizontal and vertical two-qubit operations on the
QDP, respectively the CPHASE⋆ and

√
SWAP gates. We also include OPCODES

for the performing of CNOT gates composed of
√

SWAP or CPHASE⋆ gates.

the last section. For completeness we also define an OPCODE for the
CNOT operation in Table 4.3.

4.4 Parallel operation of a crossbar architecture

In this section we focus on performing operations in parallel on the QDP
(or more general crossbar architectures). Because of the limitations im-
posed by the shared control lines of the crossbar architecture, achiev-
ing as much parallelism as possible is a nontrivial task. We will discuss
parallel shuttle operations, parallel two qubit gates, parallel single qubit
gates and parallel measurement. As part of the focus on parallel shuttling
we also include some special cases relevant to quantum error correction
where full parallelism is possible.
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Before we start our investigation however, we would like to put three
issues into focus that are likely to be encountered when attempting par-
allel operations. Firstly, it must be understood that an operation on one
location on a crossbar system can cause unwanted side effects in other
locations (that might be far away). As indicated in Section 4.3 many el-
ementary operations on the grid in particular take place at the crossing
points of control lines. This means that any parallel use of these grid
operations must take into account “spurious crossings” which may have
such unintended side effects. Let us illustrate such a spurious crossing
with an example. Imagine we want to perform the vertical shuttling op-
erations VS[𝑖, 𝑗 − 1, 1] and VS[𝑖+ 2, 𝑗 − 1, 1] in parallel (see Figure 4.5 for
illustration). We can do this by lowering the horizontal barriers at rows
𝑖 and 𝑖+ 2 (orange in illustration) and elevating the on-site potentials on
the diagonal lines 𝑖− 𝑗+1 and 𝑖+2− 𝑗+1 (red in illustration). This will
open upwards flows at locations (𝑖, 𝑗 − 1) and (𝑖 + 2, 𝑗 − 1). However it
will also open an upward flow at the location (𝑖 + 2, 𝑗 + 1). This means,
if a qubit is present at that location an unintended shuttling event will
happen. To avoid this outcome we must either perform the operations
VS[𝑖, 𝑗 − 1, 1] and VS[𝑖 + 2, 𝑗 − 1, 1] in sequence (taking two time-steps)
or perform an operation VS[𝑖 + 2, 𝑗 + 1,−1] to fix the mistake we made,
again taking two time-steps. This is a general problem when considering
parallel operations on the QDP.

Secondly, we would like to point out that in realistic setups, we expect a
trade-off between parallelism (manifested in algorithmic depth) and op-
eration fidelity (in particular this will be the case in the QDP system). In
order to understand this, we have to be aware that most operations con-
sist of applying the correct pulses for the right amount of time. Due to
𝑔-factor variations, these durations can slightly vary from dot to dot. In
order to perform the perfect gate, for instance, we must be able to ter-
minate one interaction in a parallel operation. This usually entails being
able to eliminate a single crossing by resetting one control line prema-
turely, if the dot at the crossing has a higher 𝑔-factor. If this is not possible
(maybe because it would cause side effects) a loss in operation fidelity is
a consequence of the resulting improperly timed operation. The most ro-
bust case is thus to schedule operations line-by-line. By this we mean that
we attempt to perform 𝑂(𝑁) grid operations in a single time step while
using every horizontal, diagonal or vertical line only once per individual
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(a)

𝑗 + 1𝑗𝑗 − 1

𝑖+ 3

𝑖+ 2

𝑖+ 1

𝑖

(b)

(c) (d)

Figure 4.5. Spurious shuttle operations. Here we illustrate an example of unin-
tended side effects that occur due to the limited control. We again denote qubits
by colored balls, and color barriers and lines that are operated. Empty dots with
changed potentials are colored as well, whereas white dots are unaffected. (a)
The black qubits are to be shuttled from (𝑖, 𝑗−1) to (𝑖+1, 𝑗−1) and from (𝑖+2, 𝑗)
to (𝑖 + 3, 𝑗) respectively without moving the blue qubit. For that purpose, the
(orange) barriers between the two dot pairs are lowered, as well as the (red)
diagonal lines through (𝑖, 𝑗 − 1) and (𝑖 + 2, 𝑗) are pulsed, such that the dot po-
tentials at those sites are raised. (b) The qubit on (𝑖+3, 𝑗+1) has unintentionally
moved to (𝑖+2, 𝑗+1). (c) To remedy this situation, we lower the barrier labeled
𝑖 + 2 again (orange), and also raise the potential at dot (𝑖 + 3, 𝑗 + 1) and with it
at all other dots that are connected by the pulsed diagonal line (red). In (d), the
desired situation is achieved.
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grid operation. If we, for instance, schedule several vertical shuttle op-
erations, we may choose to start by lowering the horizontal barrier first
and then detune the dot potentials of all qubits adjacent to that barrier,
by pulsing the corresponding diagonal lines. To account for the varia-
tions, we reset the diagonal lines at slightly different times. Line-by-line
operations work with either line types for every two-dot operation (mea-
surement, shuttling and two-qubit gates). Note however that for shut-
tling operations individual control over one line is sufficient, whereas
for measurement and two-qubit gates we would ideally like to be able to
control two lines per qubit pair individually, where one line should be the
barrier separating the two paired qubits. Results presented in the follow-
ing take these constraints into account for quantum error correction. The
parallel operation nonetheless remains one of the greatest challenges of
the crossbar scheme. In this section, we will assume all operations to be
perfect (even when performed in parallel) but in Section 4.6 we perform
a more detailed analysis of the behavior of the QDP when operational
errors are taken into account.

Thirdly, it is important to have access to classical side computations to aid
the scheduling of parallel operations without spurious crossings. How-
ever, no classical assistance is required for purposes of quantum error
correction, such that a discussion of the concrete algorithms is omitted.
The interested reader may find an in-depth discussion on the classical
side computations within the original work [94] or the crossbar chapter
of [95]. As we define parallel versions of the elementary operations in the
next step, we would like the reader to bear in mind that these OPCODES
work with the classical input, which in our case is however trivial. We
begin with discussing parallel shuttle operations.

4.4.1 Parallel shuttle operations

We define parallel versions of the shuttling OPCODES HS[𝑖, 𝑗, 𝑘] and VS[𝑖, 𝑗, 𝑘]
in the following table.

OPCODE Effect
HS[L] Perform HS[𝑖, 𝑗, 𝑘] for all (𝑖, 𝑗, 𝑘) ∈ L
VS[L] Perform HS[𝑖, 𝑗, 𝑘] for all (𝑖, 𝑗, 𝑘) ∈ L

This OPCODE takes in a set (denoted as L) of tuples (𝑖, 𝑗, 𝑘) which de-
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note ‘locations at which shuttling happens’ (𝑖, 𝑗) and ‘shuttling direction’
(𝑘). From these codes it is not immediately clear how many of the shut-
tling operations can be performed in a single grid operation, i.e. setting
the diagonal lines to some configuration and lowering several horizontal
or vertical barrier. If multiple grid operations are needed (such as in the
example Figure 4.5) we would like this sequence of grid operations to be
as short as possible. However, given some initial BOARDSTATE and a par-
allel shuttling command HS[L] it is not clear what the sequence of parallel
shuttling operations actualizing this command is. At the same time, par-
allelization might not be the ultimate goal, and so other schedules might
be implicit in the given OPCODES.

4.4.1.1 Selective parallel single-qubit rotations

In this section we will discuss a particular example that illustrates the use
of abstracting away the complexity of parallel shuttling. Imagine a QDP
grid initialized in the so called idle configuration. This configuration can
be seen in Figure 4.6. We will focus on the qubit in the odd columns
(i.e. the set ℬ). Imagine a subset 𝑆 of these qubits to be in the state |1⟩ and
the remainder of these qubits to be in the state |0⟩. The qubits on in the
set ℛ can be in some arbitrary (and possibly entangled) multi-qubit state
|Ψ⟩. We would like to change the states of the qubits in the set 𝑆 to |0⟩
without changing the state of any other qubit. Due to the limited single
qubit gates (see Section 4.3.3.3) available in the QDP this is a nontrivial
problem for some arbitrary set 𝑆. However using the power of parallel
shuttling we can perform this task as follows. Begin by defining the set of
coordinates 𝑆, which hold all qubits in the complement of 𝑆 in ℛ. Now
we begin by performing the parallel shuttling operation

HS[L], L = {(𝑖, 𝑗, 1) ‖ (𝑖, 𝑗) ∈ 𝑆}. (4.4)

This operation in effect moves all qubits in 𝑆 out of ℛ (and into ℬ, note
that the dots the qubits are being shuttled in are always empty by the
definition of the idle configuration). Now we can use a semi-global single
qubit rotation (as discussed in Section 4.3.3.3) to perform 𝑋-rotations on
all qubits in ℛ, which is at this point all qubits in the set 𝑆. These flips
change the states of the qubits in 𝑆 from |1⟩ to |0⟩ without changing the
state of any other qubit. Following this we can restore the BOARDSTATE to
its original configuration by applying the parallel shuttling command

HS[L], L = {(𝑖, 𝑗,−1) ‖ (𝑖, 𝑗) ∈ 𝑆}. (4.5)
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OPCODE Effect
HI[L] Perform VI[𝑖, 𝑗] for (𝑖, 𝑗) ∈ L
VI[L] Perform HI[𝑖, 𝑗] for (𝑖, 𝑗) ∈ L

OPCODE Effect
VC[L] Perform VC[𝑖, 𝑗] for every (𝑖, 𝑗) in L

Now we have applied the required operation. Note that at no point we
had to reason about the structure of the set 𝑆 itself. This complexity was
taken care of by the classical subroutines embedded in HS[L]. Next we
discuss performing parallel two-qubit gates.

4.4.2 Parallel two-qubit gates

Similar to parallel shuttling it is in general rather involved to perform
parallel two-qubit operations in the QDP. We can again define parallel
versions of the OPCODES for two-qubit operations and then analyze
how to perform them as parallel as possible (again having access to clas-
sical side computation).

However, as mentioned before, the parallel operation of two-qubit
gates in the QDP will mean taking a hit in operation fidelity vis-à-vis the
more controllable line-by-line operation [18]. Since this operation fidelity
is typically a much larger error source than the waiting-time-induced de-
coherence stemming from line-by line operation we will for the remain-
der of this chapter assume line-by-line operation of the two-qubit gates.
This will have an impact when performing quantum error correction on
the QDP which we will discuss in more detail in Section 4.6.

For the sake of completeness we also define a parallel version of the
CNOT OPCODE. The same considerations of parallel operation hold for
the parallel use of CNOT gates as they hold for the CPHASE⋆ and

√
SWAP

gates. We continue the discussion of parallelism in the QDP by analyzing
parallel measurements.

4.4.3 Parallel Measurements

Performing measurements on an arbitrary subset of qubits on the QDP
is in general quite involved. Every qubit to be measured requires a ref-
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OPCODE Effect
M[L] Perform M[𝑖, 𝑗, 𝑘] for every (𝑖, 𝑗, 𝑘) in L

erence in a known computational basis state, and an empty dot must be
adjacent as a reference for the readout process. The qubits must then
be shuttled such that the pairs are horizontally adjacent and located in
such a way such that they are in the right columns for the PSB process to
take place (revisit Section 4.3.3.2 for more information). On top of the re-
quired shuttling the PSB process itself (from a control perspective similar
to shuttling) must be performed in a way that depends on the BOARD-
STATE and the configuration of the reference qubits. In general this PSB
process will be performed line-by-line (for the fidelity reasons mentioned
in the beginning of the section) and hence requires a sequence of depth
𝑂(𝑁) parallel grid operations (plus the amount of shuttling operations
needed to attain the right measurement configuration in the first place).
Due to this complexity we will not analyze parallel measurement in de-
tail but rather focus on a particular case relevant to the mapping of the
surface code. But first we define a parallel measurement OPCODE M[L]
which takes in a list of tuples (𝑖, 𝑗, 𝑘) denoting locations of qubits to be
measured (𝑖, 𝑗) and whether the reference qubit is to its left (𝑘 = −1) or
to its right (𝑘 = 1).

4.4.3.1 A specific parallel measurement example

Let us consider a specific example of a parallel measurement procedure
that will be used in our discussion of error correction. We begin by imag-
ining the BOARDSTATE to be in the idle configuration (Figure 4.6 top left).
We next perform the shuttle operations needed to change the BOARD-
STATE to the measurement configuration. This configuration (and how to
reach it by shuttling operations from the idle configuration) will be dis-
cussed Section 4.4.4 and can be seen in Section 4.6 (c). Next take the
qubits to be measured in the parallel measurement operation to be the
red qubits in Figure 4.6. The qubits directly to the right or to the left will
serve as a reference (blue in Figure 4.6). We will assume that the reference
qubits are in the |0⟩ state. If some of them were in the |1⟩ state instead we
would perform the procedure given in Section 4.3.3.3 to rotate them to
|0⟩ without changing the state of the other qubits on the grid. With that
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all the reference qubits are in the set ℬ and qubits to be read out in the
set ℛ, we can perform the PSB process by sending the latter into the dots

occupied by the former. Using the shorthand 𝑎
𝑏
= 𝑐 to denote 𝑎 mod 𝑏 = 𝑐,

we employ the commands

VS[L], L = {(𝑖, 𝑗, 1) ‖ 𝑖
2
= 0, 𝑗

2
= 1, 𝑖+ 𝑗

4
= 1} (4.6)

to bring the qubits to be measured (red) horizontally adjacent to the ref-
erence qubits (blue) and then

M[L], L = {(𝑖, 𝑗, 1) ‖ 𝑖
4
= 1, 𝑗

4
= 1} (4.7)

and

M[L], L = {(𝑖, 𝑗,−1) ‖ 𝑖
4
= 3, 𝑗

4
= 3}. (4.8)

All of these operations can be performed in a single time-step, al-
though the line-by-line manner is preferred by reasons laid out earlier. In
particular we would like to perform these operations one row at a time
since this gives us the ability to control both diagonal and vertical lines
individually for each measurement. However, if we first were to align
all pairs, a line-by-line measurement is not possible. For instance when
performing measurements on the qubits at locations (1, 1) and (1, 5) we
must measurement is also invoked on the pair at location (5, 5). To avoid
this situation we will align only the qubits in the bottom row, perform the
PSB process and readout on that row only and then undo the shuttlings.
This we repeat going up in rows until we reach the end of the grid. More
formally we perform the following sequence of operations:

For 𝑖 ∈ [0 : 𝑁 − 2]

If 𝑖
4
= 1

VS[L], L = {(𝑖− 1, 𝑗, −1) ‖ 𝑗
4
= 1}

M[L], L = {(𝑖, 𝑗, 1) ‖ 𝑗
4
= 1}

VS[L], L = {(𝑖− 1, 𝑗, 1) ‖ 𝑗
4
= 1}
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If 𝑖
4
= 3

VS[L], L = {(𝑖− 1, 𝑗, −1) ‖ 𝑗
4
= 3}

M[L], L = {(𝑖, 𝑗, −1) ‖ 𝑗
4
= 3}

VS[L], L = {(𝑖− 1, 𝑗, 1) ‖ 𝑗
4
= 3} .

We will use this particular procedure when performing the readout step
in a surface code error correction cycle in Section 4.5.3. This concludes
our discussion of parallel operations on the QDP. We now move on to
highlight some BOARDSTATE configurations that will feature prominently
in the surface and color code mappings.
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(a) Idle (b) Rightward triangle

(c) Measurement

(d) PSB and readout (e) Right square



4.4 Parallel operation of a crossbar architecture 181

Figure 4.6. Useful BOARDSTATE configurations. We denote memory qubits with
dark color, 𝑋-measurement qubits by red and 𝑍-measurement qubits by blue.
Those will collect the parity of the data qubits in one error correction cycle, and
one is the others reference at the PSB measurement. (a) The idle configuration
is a starting point of all algorithms. All qubits are spread out and well sepa-
rated. (b) The triangle configurations (here we have a rightward triangle, see
the frame in the figure) is assumed when the proximity of measurement qubits
to data qubits is required. This is the case for the parity measurements in er-
ror correction cycles. (c) The measurement configuration is formed to bring 𝑋-
and 𝑍-measurement qubits close to each other, such that a row can be selected
in which the measurement is performed. (d) Certain measurement qubits are
brought to adjacent dots in order to perform the PSB-based measurement and
readout in a line-by-line fashion (encircled qubits). Since the rest of the grid is in
the measurement configuration, individual control over the barrier lines and
one potential is guaranteed without spurious measurements. (e) The (right)
square configuration is a mid-way point between the idle and (right) triangle
configuration. Going through the square configuration keeps the shuttling al-
gorithm manageable, as not more that 2 different heights of the dot potentials
are employed. One of the characteristic squares is framed in the figure.
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4.4.4 Some useful grid configurations

There are several configurations of the BOARDSTATE that show up fre-
quently enough (for instance in the error correction codes in Section 4.5.3)
to merit some special attention. In this section, we list these specific con-
figurations and show how to construct them. Note that this is done using
Figure 4.6, in which the red (blue) qubits will later serve as measurement
qubits for the 𝑍−type (𝑋−type) stabilizer tiles of the surface code, while
the dark qubits are part of the memory.

4.4.4.1 Idle configuration

The idle configuration is the configuration in which the QDP is initial-
ized. As shown in Figure 4.6, its BOARDSTATE matrix describes a checker-
board pattern. In this configuration no two-qubit gates can be applied be-
tween any qubit pair but since it minimizes unwanted crosstalk between
qubits [18], it is good practice to bring the system back to this configu-
ration when not performing any operations. For this reason we consider
the idle configuration to be the starting point for the construction of all
other configurations.

4.4.4.2 Square configuration

As seen in Figure 4.6(e), the square configurations consist of alternating
filled and unfilled 2×2 blocks of dots. The so-called right square configu-
ration can be reached from the idle configuration by a shuttling operation
HS[L] with the set L being

L = {(𝑖, 𝑗, 1) ‖ 𝑖
2
= 1, 𝑗

2
= 1, 𝑖+ 𝑗

4
= 2}

∪ {(𝑖, 𝑗,−1) ‖ 𝑖
2
= 0, 𝑗

2
= 1, 𝑖+ 𝑗

4
= 3}. (4.9)

Note that this operation only takes a single time-step, and the square
configuration is shown in Figure 4.6(e). The right square configuration is
characterized by 𝑍-measurement qubits being in the left corner of every
square. Another flavor of this configuration is the left square configura-
tion, where the 𝑍-measurement qubits are in the upper right corner, and
the 𝑋-measurement qubits in the left in the left. The left square configu-
ration can be reached from the idle configuration by a shuttling operation
HS[L] with the set L being
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L = {(𝑖, 𝑗, 1) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 2}

∪ {(𝑖, 𝑗,−1) ‖ 𝑖
2
= 1, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 1}. (4.10)

These configurations are used as an intermediate step for us to reach
the triangle configurations.

4.4.4.3 Measurement Configuration

The measurement configuration can be reached from the idle configura-
tion in three time-steps by the following sequence of parallel shuttling
operations.

HS[A], A = {(𝑖, 𝑗,−1), (𝑖− 1, 𝑗 − 1, 1) | 𝑖 4
= 1, 𝑗

4
= 2},

HS[B], B = {(𝑖− 1, 𝑗 − 1, 1) ‖ 𝑖
4
= 3, 𝑗

4
= 1},

VS[C], C = {(𝑖, 𝑗,−1) ‖ 𝑖
2
= 0, 𝑗

2
= 1, 𝑖+ 𝑗

4
= 1}. (4.11)

This configuration can be seen in Figure 4.6(d) and it is an intermediate
state in the measurement process in which the blue qubits are read out
against the red ones. How this measurement protocol works in detail is
described in Section 4.4.3.

4.4.4.4 Triangle configurations

In order to collect the parity of memory qubits in the error correction cy-
cles, we need to align the measurement qubits with them, where it hinges
on the two-qubit gates whether the alignment is horizontal or vertical.
This is reflected in the use of triangle configurations. There are two trian-
gle configurations that can be reached in a single parallel shuttling step
from the right square configuration. The first one, seen in Figure 4.6(b),
is called the rightward triangle configuration. It can be reached from the
square configuration by the grid operation HS[L] with the set L being

L = {(𝑖, 𝑗,−1) ‖ 𝑖
2
= 1, 𝑗

2
= 1, 𝑖+ 𝑗

4
= 3}, (4.12)

which does as much as to shuttle the right memory qubit of every square
(framed squares in Figure 4.6(e)) to the empty dot on its right. In this con-
figuration, we are able to perform high-fidelity two-qubit gates between
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measurement and memory qubits in every triangle. In order to reach the
neighboring pair of memory qubits, we start from the left square config-
uration horizontally shuttling the left memory qubit out of every square.
Operationally, we would perform HS[L] with

L = {(𝑖, 𝑗, 1) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 2}. (4.13)

Note again that these parallel shuttling operations can be performed in
a single time step. From these configurations the idle configuration can
also be reached in a single time step. In the next section, these configura-
tions will feature prominently in the mapping of several quantum error
correction codes to the QDP architecture.

4.5 Error correction codes

In this section, we will apply the techniques we developed in the pre-
vious sections to map topological quantum error correction codes to the
QDP.

4.5.1 Surface code

The planar surface code is well-studied to the point were we have an ex-
act idea of how it should be implemented. In its rotated version, shown in
Figure 1.2, one code patch contains 2𝑑2 − 1 physical qubits encoding and
maintaining a single logical qubit with distance 𝑑.Here, 𝑑2 qubits are part
of the memory and additional 𝑑2 − 1 qubits are used for syndrome mea-
surements. All of them are placed onto rhombus-shaped patch of square
lattice, with ears at its boundaries. In the bulk, a checkerboard tiling of
stabilizers, in which each plaquette engulf 5 qubits, is found – see Figure
4.7(a). Adjacent plaquettes share 2 memory qubits each, and each tile’s
central qubit is used for the measurement. In an error correction cycle,
it collects the parity of the tile’s memory qubits with CNOT-gates [80,
81, 96, 97], see Figure 4.7(b) and (c). Whether the parity is collected in
the Hadamard or computational basis, meaning whether the stabilizer
on those four qubits is 𝑍⊗4 or 𝑋⊗4, is dependent on the shade of the
plaquette on the checkerboard. In all figures of this thesis depicting sur-
face code, we have chosen to distinguish 𝑍-type stabilizers with a darker
shade from white 𝑋-type stabilizers. Like in the previous chapter, we as-
sume that gate operations can be performed in parallel as long as they do
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not share any resources. This leads the to a constant runtime for all par-
ity collections. The measurement qubits, which now carry all syndrome
information, are then read out. After being decoded, possible errors can
be rectified and the error correction cycle concluded. Note that it is as-
sumed that readout and correction are assumed to happen in single time
steps, such that the entire circle has a runtime of 𝑂(1).

Unfortunately, we cannot hope to run surface code cycles in the same
manner on the QDP, not even if we neglect the issues of parallel oper-
ation and spurious crossings. As it turns out, our idea of how to run
the code makes strong assumptions on the capabilities of the device that
cannot be matched with the QDP: although CNOT-gates are possible to
all adjacent qubits in the QDP, we have already argued to refrain from
the use of CPHASE⋆ gates for the sake of fidelity. This renders some of
the two-qubit gates in Figure 4.7(b) and (c) nonlocal. Moreover, we re-
quire an additional qubit to be present in each stabilizer tile, to serve the
measurement qubit as a reference in the syndrome extraction. Also, the
readout procedure requires an empty dot along the barrier gate, which
raises questions about the packing density of the qubits. To remedy all
those issues, we present a revised version of the surface code cycles in
Section 4.5.3.

4.5.2 2D color codes

Another important class of planar topological codes are the 2D color
codes [83]. These codes are defined on 3-colorable tilings of the Euclidean
plane. Two such tilings are featured in the so-called 6.6.6. and 4.8.8.
codes, where hexagonal and square-octagonal shapes occur respectively.
Similar to Figure 1.2, we can think of the memory qubits as sitting at the
corners of those tiles, but the difference is here that every tile hosts two
stabilizers, namely one in which 𝑋-operators are applied to their corners
and another in which the same operators are replaced by 𝑍. With suit-
able boundary conditions this construction encodes a single logical qubit
with a distance 𝑑 using an amount of 𝑑2 physical qubits. See Figure 4.8
for examples of the 6.6.6. and 4.8.8. color codes of distance five, in which
tiles and qubits are sketched. Note that, similar to Figure 1.2(b) and (c),
these pictures do not include measurement qubits. Planar color codes
have lower thresholds than the planar surface code but are more versa-
tile when it comes to fault-tolerant gates, as the support the full Clifford
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Figure 4.7. Stabilizer measurements in the surface code. (a) Distance-five code
with some labeled qubits. Here, A and B label measurement qubits, while mem-
ory qubits carry numbers. The dark plaquettes indicate that the qubits at its
corners are involved in a 𝑋⊗4 stabilizer, where the syndrome is read out on the
measurement qubit in its center. White plaquettes indicate regular parity mea-
surements. (b) & (c) 𝑍− and 𝑋-stabilizer circuits [80, 81, 96, 97], with the qubits
from panel (a).
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Figure 4.8. Distance 5 examples of the 4.8.8. (first from left) and 6.6.6. (third
from left) color codes [83] and their deformed versions (second from left and
fourth from left respectively). The vertices correspond to memory qubits and
every colored face corresponds to both an 𝑋- and a 𝑍-stabilizer to be measured.
These stabilizers can be measured by using weight 4, 6 and 8 versions of the
circuits shown in Figure 4.7. The deformation of the codes does not change the
code properties at all. They are a visual guide that facilitates the mapping the
crossbar grid in Section 4.5.4.

group as a transversal set. In the next section we will focus on mapping
these codes to the QDP using the concepts introduced in Section 4.4.

4.5.3 Surface code mapping

We now describe a protocol that maps the surface code on the architec-
ture described in Section 4.3. The surface code layout has a straight-
forward mapping that places the memory qubits into even numbered
columns, while 𝑋- and 𝑍-measurement qubits can be found in the odd
ones. This means we have single-qubit control over the set of all mem-
ory qubits and the set of all measurement qubits separately. We be-
gin by changing the circuits performing the 𝑋- and 𝑍-stabilizer mea-
surements to work with

√
SWAP rather than CNOT. We can emulate a
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|0⟩𝐴 𝑆† � 𝑍 � 𝑆† � 𝑍 � 𝑆† � 𝑍 � 𝑆† � 𝑍 � 𝑆† 𝑍

|𝑞1⟩ 𝑍𝐻𝑆† � � 𝑍𝐻𝑆†

|𝑞2⟩ 𝑍𝐻𝑆† � � 𝑍𝐻𝑆†

|𝑞3⟩ 𝑍𝐻𝑆† � � 𝑍𝐻𝑆†

|𝑞4⟩ 𝑍𝐻𝑆† � � 𝑍𝐻𝑆†

Figure 4.9. 𝑍-stabilizer measurement circuit using the
√

SWAP as the main two-
qubit gate. The 𝑍- and 𝑆-rotations can be performed by the timing procedure
described in Section 4.3.3.3.

CNOT gate by using two
√

SWAP gates interspersed with a 𝑍-gate on
the control plus some single qubit gates. As described in Section 4.3.3.5
the 𝑍- and 𝑆-gates on the measurement qubit can performed by waiting,
which means they can be performed locally while the single qubit opera-
tions on the memory qubits can be performed in parallel using the global
unitary rotations described in Section 4.3.3.3. The 𝑋- and 𝑍-circuits us-
ing

√
SWAP are shown in Figure 4.9.

We will split up the quantum error correction cycle by first measur-
ing all 𝑋-type stabilizers (the 𝑋-cycle) and then all 𝑍-type stabilizers (𝑍-
cycle). This means we can use the idle 𝑍- (𝑋-) measurement qubits as
references for the 𝑋- (𝑍-) cycle measurements. For convenience we in-
cluded a depiction of the surface code 𝑍-cycle unit cell in Figure 4.10(right).
Note that all panels in that figure depict the smallest possible building
block of a code patch, not the patch itself. The qubit labeled ‘A’ is go-
ing to be measured in the 𝑍-cycle. The numbered qubits are part of the
memory and the qubit labeled ‘B’ is used as a reference for ‘A’ qubit.
It is also the measurement qubit for the 𝑋-cycle. We now describe the
steps needed to perform the 𝑍-cycle in parallel on the entire surface code
sheet. For convenience we ignore the surface code boundary conditions
since these can be easily included. The 𝑋-cycle is equivalent up to differ-
ent single qubit gates (𝑋𝑆† instead of 𝑍𝐻𝑆† on the memory qubits, 𝐻𝑆†

instead of 𝑆† on the measurement qubits) and shifting every operation 2
steps up, e.g. setting 𝑖 ↦→ 𝑖+ 2 in row indices.
∙



4.5 Error correction codes 189

10

9

D

8

7

6

5

A

B

C

1

2

3

4

4.8.8.

6

5

4

A

B

1

2

3

6.6.6.

4

3

A

1

2

surface code

B

Figure 4.10. Unit cells of topological codes in the QDP. From left to right: de-
formed 4.8.8. color code, deformed 6.6.6. color code and surface code. Darkened
circles correspond to qubits, where qubits used for measurement are labeled
with letters, while memory qubits bear numbers. The shaded and colored pla-
quettes denote stabilizer tiles. Note that the depicted cells do not encode logical
qubits, but are the smallest possible building blocks of a code patch. 4.8.8. code:
The qubit labeled ‘A’ is the is measured for the octagon (now a rectangle) stabi-
lizer, while the qubit labeled ‘D’ has the same role for the square sub-cell. The
qubit labeled ‘B’ is used to read out the qubit ‘D’ and the qubit labeled ‘C’ is
used to read out the measurement qubit for the octagon cell directly below the
square cell (not pictured). 6.6.6. code: The qubit labeled ‘A’ is measurement
qubit of that tile while the qubit labeled ‘B’ is used as a reference to read out the
‘A’ qubit for the unit cell directly to the bottom left (not pictured). Surface code:
The qubit labeled ‘A’ is the measurement qubit of the for the 𝑍-cycle stabilizer
using ‘B’ as a reference. Their roles are reversed in the 𝑋-cycle.
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The surface code 𝑍-cycle

1. Initialize in the idle configuration.

2. Apply 𝑍𝐻𝑆† to all qubits in ℛ (memory) and 𝑆† to qubits in ℬ.

3. Go to right square configuration.

4. Go to rightward triangle configuration.

5. Perform CNOT between qubits A and 1 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 1, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 3} .

6. Perform CNOT between qubits A and 2 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 2} .

7. Go to idle configuration.

8. Go to left square configuration.

9. Go to leftward triangle configuration.

10. Perform CNOT between qubits A and 3 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 1, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 1} .

11. Perform CNOT between qubits A and 4 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 0} .

12. Go to idle configuration

13. Apply 𝑍𝐻𝑆† to all qubits in ℛ and 𝑆† to qubits in ℬ.

14. Apply measurement qubit correction step for qubit B as described
in Section 4.4.1.1.

15. Go to measurement configuration.

16. Perform PSB measurement process as described in Section 4.4.3 us-
ing qubit B as reference to qubit A.

17. Go to idle configuration.

∙
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4.5.4 Color code mapping

The mapping of the color codes is largely analogous to that of the sur-
face code. We begin with the 6.6.6. color code as it is easiest to map.
First, the tiling on which the color code is must be deformed such that it
is more amenable to the square grid structure of the QDP. This is fairly
straightforward as can be seen from the 𝑑 = 5 example in Figure 4.8. In
the deformed tiling it is clear how to map the code to the QDP. We once
again place all memory qubits in the even columns and all measurement
qubits in the odd columns. This places the unit ‘hexagon’ seen in the de-
formed code into a patch of 3× 5 dots on the QDP (see Figure 4.10 (right)
for this unit tile). It also puts all memory qubits in ℛ and 2 extra qubits
into ℬ, both of which could be used as measurement qubit in the stabi-
lizer circuit. We will always choose the top qubit ( ‘A’) of these two in
the hexagon unit cell as the measurement qubit for the error correction
cycles. The extra (bottom) qubit (‘B’) in the unit cell will be used as a
reference for the unit hexagon to its direct left. This has the advantage of
making the readout process independent of the measurement results of
the previous cycles (as was the case in the surface code). Note also that
all measurement qubits are positioned along diagonal lines on the QDP
grid. This makes the quantum error correction cycle very analogous to
the surface code. We once again must split up the 𝑋- and 𝑍-cycles (again
due to the limited single qubit rotations possible). Below we present the
steps needed to perform the 𝑍-cycle (which now measures a weight 6
operator). The 𝑋-cycle is identical up to differing single qubit rotations
on the memory qubits.
∙

The 6.6.6 color code 𝑍-cycle

1. Apply Steps 1 to 11 in the surface code 𝑍-cycle to perform CNOT gates
between qubits A and the memory qubits 1, 2, 5, 6 in the unit hexagon,
ending in the idle configuration.

2. Go to idle configuration but with all even columns up and all odd
columns down by performing VS[L] with

L = {(𝑖, 𝑗, 1) ‖ 𝑖
2
= 0, 𝑗

2
= 0} ∪ {(𝑖, 𝑗,−1) ‖ 𝑖

2
= 1, 𝑗

2
= 1} .
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3. Go to right square configuration.

4. Go to rightward triangle configuration.

5. Perform CNOT between qubits A and 3 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 1, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 1} .

6. Go to idle configuration.

7. Go to left square configuration.

8. Go to leftward triangle configuration.

9. Perform CNOT by performing between qubits A and 4 by VC[L]
with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

4
= 2} .

10. Go to idle configuration.

11. Invert Step 6 by performing VS[L] with

L = {(𝑖, 𝑗,−1) ‖ 𝑖
2
= 0, 𝑗

2
= 0} ∪ {(𝑖, 𝑗, 1) ‖ 𝑖

2
= 1, 𝑗

2
= 1} .

12. Apply 𝑍𝐻𝑆† to all qubits in ℛ (memory) and 𝑆† to qubits in ℬ.

13. Go to measurement configuration.

14. Perform PSB measurement process as described in Section 4.4.3 us-
ing qubit B as reference to A in the unit cell to the right.

15. Go to idle configuration.

∙

Next up is the 4.8.8. color code. We deform the tiling on which the code
is defined similarly to the 6.6.6. code. The deformed 4.8.8. code lattice
can be seen in Figure 4.10 (left). We again place the memory qubits into
ℛ and the measurement qubits into the set ℬ. See Figure 4.10 for a lay-
out of the unit cell of the 4.8.8. code on the QDP. Note that holds two
different stabilizers. The square tile has one qubit (qubit ‘D’ in Figure
4.10) in ℬ, which we will use for the measurement. The deformed oc-
tagon tile has three qubits in ℬ. We will use the topmost qubit (‘A’) as the
measurement qubit for the tile while the middle one (qubit ‘B’) serves



4.5 Error correction codes 193

as reference for the square tile measurement directly to its left. The bot-
tommost qubit (‘C’) will be used to as a reference of the octagon directly
below the square tile (not pictured). Because the structure of the 4.8.8.
code is less amenable to direct mapping the stepping process is a little
more involved. We will again only write down the 𝑍-cycle with the 𝑋-
cycle being the same up to initial and final single-qubit rotations on the
memory qubits.
∙

The 4.8.8 color code 𝑍-cycle

1. Initialize in the idle configuration.

2. Apply 𝑍𝐻𝑆† to all qubits in ℛ (memory) and 𝑆† to qubits in ℬ.

3. Go to right square configuration.

4. Go to rightward triangle configuration.

5. Perform CNOT between qubits A and 1 and D and 7 by performing
VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 1, 𝑗

2
= 0, 𝑖+ 𝑗

16
= 3 ∨ 7} .

6. Perform CNOT between qubits A and 2 as well as D and 6 by per-
forming VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

16
= 2 ∨ 6} .

7. Go to left square configuration.

8. Go to left triangle configuration.

9. Perform CNOT between qubits A and 8 and D and 9 by performing
VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 1, 𝑗

2
= 0, 𝑖+ 𝑗

16
= 1 ∨ 5} .

10. Perform CNOT between qubits A and 7 and d and 10 by performing
VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

16
= 0 ∨ 4} .



194 Chapter 4. Quantum error correction in Crossbar architectures

11. Go to idle configuration.
12. Go to idle configuration but with all even columns up and all odd

columns down by performing VS[L] with

L = {(𝑖, 𝑗, 1) ‖ 𝑖
2
= 0, 𝑗

2
= 0} ∪ {(𝑖, 𝑗,−1) ‖ 𝑖

2
= 1, 𝑗

2
= 1} .

13. Go to right square configuration.
14. Go to rightward triangle configuration.
15. Perform CNOT between qubits A and 3 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 1, 𝑗

2
= 0, 𝑖+ 𝑗

16
= 3} .

16. Perform CNOT between qubits A and 4 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

16
= 2} .

17. Go to idle configuration.
18. Go to left square configuration.
19. Go to leftward triangle configuration.
20. Perform CNOT between qubits A and 6 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 1, 𝑗

2
= 0, 𝑖+ 𝑗

16
= 1} .

21. Perform CNOT between qubits A and 5 by performing VC[L] with

L = {(𝑖, 𝑗) ‖ 𝑖
2
= 0, 𝑗

2
= 0, 𝑖+ 𝑗

16
= 0} .

22. Go to idle configuration.
23. Invert Step 6 by performing VS[L] with

L = {(𝑖, 𝑗,−1) ‖ 𝑖
2
= 0, 𝑗

2
= 0} ∪ {(𝑖, 𝑗, 1) ‖ 𝑖

2
= 1, 𝑗

2
= 1} .

24. Repeat Steps 2 - 23 but shifting 𝑖 ↦→ 𝑖+ 2 and 𝑗 ↦→ 𝑗 + 1.
25. Apply 𝑍𝐻𝑆† to all qubits in ℛ and 𝑆† to qubits in ℬ.
26. Go to measurement configuration.
27. Perform PSB measurement process as described in Section 4.4.3 us-

ing qubit B (unit cell to the right) as reference for qubit A and using
qubit C as reference for qubit D.

28. Go to idle configuration.

∙
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4.6 Discussion

In this section, we evaluate the mapping of the error correction codes
described above and argue numerically that it is possible to attain the er-
ror suppression needed for practical universal quantum computing. We
will do this exercise for the planar surface code, as it is the most popu-
lar and best understood error correction code. The description given in
Section 4.5.3 assumes that all operations can be implemented perfectly
in parallel. In practice though, for the reasons outlined in Section 4.4
many operations that can in principle be done in parallel will be done
in a line-by-line fashion. Note that for surface code in an array like this,
the side lengths of a quadratic grid scale linearly with the code distance
as 𝑁 = 2𝑑 + 1. This means that the time performing a surface code cy-
cle (and thus the number of errors affecting a logical qubit) rises linearly
with the code distance and hence this mapping of the surface code will
not exhibit an error correction threshold. As a consequence, the error
probability of the encoded qubit (the logical error probability) cannot be
made arbitrarily small but rather will exhibit a minimum for some par-
ticular code distance after which it will start rising with increasing code
distance. Also, the code distance characterizing the minimum will de-
pend nontrivially on the error probability of the code qubits. This is not
a very satisfactory situation from a theoretical point of view, but being
pragmatic we are not so much interested in asymptotic statements but
rather in whether the logical error probability can be made small enough
to allow for realistic computation [97]. As a target logical error prob-
ability we choose 𝑃𝐿 = 10−20 as at this point the computation is essen-
tially error free (for comparison, a modern classical processor has an error
probability around 10−19 [84]). We will use this number as a benchmark
to assess if and for what error parameters the surface code mapping in
the QDP yields a “practical” logical qubit. In order to assess this we must
consider in more detail the sources of error afflicting the surface code op-
eration on the QDP. We will begin by detailing how the surface code is
likely to be implemented in practice on the QDP and afterwards consider
how this impacts the error behavior of the logical surface code qubit. We
will distinguish two classes of error sources: operation induced errors
and decoherence induced errors.
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4.6.1 Practical implementation of the surface code

Here we present an mapping of the surface code based on the one pre-
sented in Section 4.5.3 but differing in the amount of time-steps used
to perform certain operations. In particular, we choose to do all shuttle
and two-qubit-gate operations in a line-by-line manner. This is a specific
choice which we expect will work well but variations of this protocol are
certainly possible. As mentioned above, this will mean that the time an
error correction cycle takes will scale with the code distance. This means
it is important to keep track of the time needed to perform a cycle. We
will do this while describing line-by-line operation of the surface code
cycle in greater detail below.

In practice, we will perform the protocol in Section 4.5.3 in the following
manner. We begin by performing Step 1 and 2 for all qubits. Then we ap-
ply Steps 3− 7 but only in rows 0 and 1. Note that after performing these
steps on only the first two columns we are back in the idle configuration.
Now we repeat the previous for rows 2 and 3 and so forth until we reach
the end of the grid. Having done these operations we are at the end of
Step 7 (go to idle configuration) and the grid is the idle configuration. We
now repeat the same process to perform Step 8−12 of Section 4.5.3. Next
we perform Step 13 which can be done globally. Hereafter we perform
step 14 (measurement qubit correction) in standard line-by-line fashion.
Note that even in an ideal implementation Step 14 has to be done line-
by-line in the worst case. After this we perform Step 15 (go to measure-
ment configuration) in a line-by line manner and similarly for Steps 16
(PSB/readout procedure) and 17 (go to idle configuration).

Note that in this line-by-line implementation there is a slight asymmetry
between the 𝑋- and 𝑍-cycles. In Table 4.4, we count the number of time
steps that accumulate for every operation type in each program step in
Section 4.5.3. We also calculate the number of time steps (per operation
type) needed for the full surface code error correction cycle.

4.6.2 Decoherence induced errors

Decoherence induced errors are introduced into the computation by un-
controlled physical processes in the underlying system. The effect of
these processes is called decoherence. Decoherence happens even if a
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Step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
√

SWAP gates 2𝑑 2𝑑 2𝑑 2𝑑

𝑍-rotations 2𝑑 2𝑑 2𝑑 𝑑

Shuttlings 𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 5𝑑 2𝑑 3𝑑

Global rotations 1 1 1

Measurements 𝑑

Average Total
√

SWAP gates 8𝑑 16𝑑
𝑍-rotations 7𝑑 14𝑑
Shuttlings 16𝑑 32𝑑

Global rotations 3 6
Measurements 𝑑 2𝑑

Table 4.4. Time-step count per operation type and program step for the line-
by-line implementation of the surface code cycle described in Section 4.5.3. The
number of time-steps is quoted in terms of the code distance 𝑑. This table does
not specify the exact order in which the operations happen, see Section 4.6.1 for
an explanation of the time flow. Note that the table shows the average of the
time-step counts for the 𝑋- and 𝑍-cycles. The actual count for the individual 𝑋-
and 𝑍-cycles is slightly different due to the boundary conditions of the surface
code. Table cells that are left empty signify zero entries.

qubit is not being operated upon and the amount of decoherence happen-
ing during a computation scales with the time that computation takes.
Therefore, to account for decoherence induced errors during the error
correction cycle we need to compute how long an error correction cycle
takes. Generally any operation on the QDP takes a certain amount of
time denoted by 𝜏 . We distinguish again five different operations: (𝑠𝑤)
two-qubit

√
SWAP gates, (𝑠ℎ) qubit shuttle operations, (𝑧) single qubit 𝑍-

gates by waiting, (𝑔𝑙) global single qubit operations and (𝑚) qubit mea-
surements. The time they take we will denote by 𝜏𝑠𝑤, 𝜏𝑠ℎ, 𝜏𝑧, 𝜏𝑔𝑙 and 𝜏𝑚
respectively. In Table 4.4 we count the total time taken by the surface
code error correction cycle using the mapping described in Sections 4.5.3
and 4.6.1. Table 4.5 summarizes the total number of time-steps for every
gate type for a full surface code error correction cycle. Following that
table, the total time 𝜏total(𝑑) as a function of the code distance 𝑑 is given
by

𝜏total(𝑑) = 16𝑑 𝜏𝑠𝑤 + 32𝑑 𝜏𝑠ℎ + 14𝑑 𝜏𝑧 + 6 𝜏𝑔𝑙 + 2𝑑 𝜏𝑚. (4.14)

This total time can be connected to an error probability by invoking the
mean decoherence time of the qubits in the system, the so called 𝑇2 time [88,
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Symbol Operation
Time-steps
per cycle

𝜏𝑠𝑤
√

SWAP gates 16𝑑
𝜏𝑠ℎ Shuttlings 32𝑑
𝜏𝑧 𝑍 rotations by waiting 14𝑑
𝜏𝑔𝑙 Global qubit rotations 6
𝜏𝑚 Measurements 2𝑑

Table 4.5. Time steps required for one error correction cycle of surface code.

98]. We neglect the influence of 𝑇1 in this calculation as it is typically
much larger than 𝑇2 in silicon spin qubits [18, 99]). We can find the deco-
herence induced error probability 𝑃𝑑𝑒𝑐 [88, Page 384] as

𝑃𝑑𝑒𝑐(𝑑) =
𝜏total(𝑑)

2𝑇2
. (4.15)

Next we investigate operation induced errors. These will typically be
larger than decoherence induced errors but will not scale with the dis-
tance of the code.

4.6.3 Operation induced errors

Operation induced errors are caused by imperfect application of quan-
tum operations to the qubit states. According to the five types of op-
erations, we will denote the probability of an error afflicting them by
𝑃𝑠𝑤, 𝑃𝑠ℎ, 𝑃𝑧, 𝑃𝑔𝑙 and 𝑃𝑚 respectively. In Table 4.6 we list the total num-
ber of operations of a given type that memory and measurement qubits
participate in over the course of a surface code cycle. In Section 4.8 we
give a more detailed per-step overview of the operations performed on
memory and measurement qubits. For clarity we have chosen qubit 1 in
Figure 4.10 (right) as a representative of the memory qubits and qubit A
as a representative of the measurement qubits. Other qubits in the code
might have a different ordering of operations but their counts will be the
same, except for the qubits located at the boundary of the code patch
for which the given counts are an upper bound. For each operation we
also calculate the average number of this times it involves memory and
measurement qubits. This average number will serve as our measure of
operationally induced error.
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Memory qubit 𝑍-measurement qubit
Average

𝑍-cycle 𝑋-cycle Total 𝑍-cycle 𝑋-cycle Total√
SWAP gates 4 4 8 8 0 8 8

𝑍-rotations 0 0 0 7 0 7 3.5

Shuttlings 2 4 6 10 4 14 10

Global rotations 2 2 4 2 3 5 4.5

Measurements 0 0 0 1 1 2 1

Table 4.6. This table lists the total number of operations per qubit type, over
the course of a surface code cycle. In Section 4.8 we give a more detailed per-
step overview of the operations performed. For clarity we have chosen qubit 1
in Figure 4.10 (right) as a representative of the memory qubits and qubit A as
representative of the measurement qubits..

4.6.4 Surface code logical error probability

By tallying up the contributions from operational and decoherence in-
duced errors we can construct a measure for the total error probability
per error correction cycle experienced by all physical qubits that make
up the code. Note that this a rather crude model that disregards possi-
ble influences from inter-qubit correlated errors and time-like correlated
errors. Nevertheless it serves as a useful first approximation to the per-
formance of the surface code on the QDP. We define the average per qubit
per cycle error probability 𝑃tot as

𝑃tot(𝑑) = 8𝑃𝑠𝑤 + 3.5𝑃𝑠ℎ + 10𝑃𝑧 + 4.5𝑃𝑔𝑙 + 𝑃𝑚 + 𝑃𝑑𝑒𝑐(𝑑). (4.16)

Note that this quantity depends linearly on the code distance 𝑑. We can
plug this total per cycle error probability 𝑃𝑡𝑜𝑡 into an empirical equation
for the logical error probability 𝑃𝐿 derived in [97]:

𝑃𝐿 = 0.03

(︂
𝑃𝑡𝑜𝑡(𝑑)

8𝑃𝑡ℎ

)︂ 𝑑+1
2

, (4.17)

where 𝑃𝑡ℎ is the per-step fault-tolerance threshold of the surface code,
which we take to be 𝑃𝑡ℎ = 0.0057 following the result in [97]. The factor
of 8 is inserted to account for the fact that the empirical relation derived
in [97] is between the physical per-step error rate and the logical per cy-
cle error rate and the protocol analyzed in [97] requires 8 time-steps per
surface code error correction cycle. This is an approximation but it will
serve our purposes of getting a basic initial estimate of the logical error
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Operation Error probability Time
Two-qubit

√
SWAP gate 𝑃𝑠𝑤 = 10−3 𝜏𝑠𝑤 = 20ns

Coherent shuttle 𝑃𝑠ℎ = 10−3 𝜏𝑠ℎ = 10ns
𝑍-rotation by waiting 𝑃𝑧 = 10−3 𝜏𝑧 = 100ns
Global qubit rotation 𝑃𝑔𝑙 = 10−3 𝜏𝑔𝑙 = 1000ns

Measurement 𝑃𝑚 = 10−3 𝜏𝑚 = 100ns

Table 4.7. Error probabilities and times for the five elementary operations of the
QDP.

rate. In Table 4.7, we quote error probabilities and operation times that
will be plugged into (4.16). These numbers are projections from [18] and
references therein. To convert the operation times into decoherence in-
duced error we use the estimated 𝑇2 time of quantum dot spin qubits in
28Si quoted as 𝑇2 = 109ns [18, 99] and (4.15). Plugging these numbers
into (4.16) we get the following linear function of the code distance

𝑃𝑡𝑜𝑡 = 2.7× 10−2 + 2.8𝑑× 10−5 (4.18)

which we can plug into the empirical model (4.17). In Figure 4.11 we plot
the logical error probability 𝑃𝐿 versus code distance. Note that for the ex-
perimental numbers provided the practical quantum computing bench-
marking log(𝑃𝐿) = −20 is reached for a code distance of 𝑑 = 37. The
maximal code distance for the experimental parameters is 𝑑 = 155 for
which the logarithmical logical error probability reaches log(𝑃𝐿) = −41,
after which it starts increasing again. We also plot what would happen if
we had the power to operate the QDP (with quoted device parameters)
completely in parallel. The physical error rate of the latter scenario is cal-
culated setting 𝑑 = 1 in (4.18). Note that the difference between parallel
and crossbar style operation is not that big, the parallel version reaches
𝑃𝐿 = 10−20 for 𝑑 = 31. This rough model provides some quantitative
justification for the implementation of planar error correction codes in
the QDP even in the absence of the ability to arbitrarily suppress logi-
cal errors. Note also that, due to the long coherence times of the QDP
spin qubits [18, 99], the dominant terms in the expression for the total
error probability 𝑃𝑡𝑜𝑡 are those associated with operation induced errors.
This provides justification for the line-by-line application of two-qubit
gates discussed in Section 4.4.2, which takes a longer time to perform but
improves gate quality. It also means that long coherence times and/or
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fast operation times are likely critical to the success of a crossbar based
scheme. This concludes our discussion of the QDP mapping of the sur-
face code. A similar exercise can be done for the 6.6.6. and 4.8.8. color
codes but due to their lower thresholds [100], the results will likely be
less positive for current experimental parameters.

4.7 Conclusion

We analyzed the architecture presented in [18], focusing on its crossbar
control system. Building on this analysis we presented procedures for
mapping the planar surface code and the 6.6.6. and 4.8.8. color codes.
Because the line-by-line operation of the crossbar architecture means the
noise in a single error correction cycle scales with the distance, it is not
possible to arbitrarily suppress the logical error rate by increasing the
code distance. Instead there will be some “optimal” code distance for
which the logical error rate is the lowest. Using numbers for [18] and an
empirical model taken from [97] we analyzed the logical error behavior
of the surface code mapping and found that, for current experimental
numbers, it appears plausible to achieve logical error probabilities below
𝑃𝑙𝑜𝑔 = 10−20, making practical quantum computation possible. How-
ever, we strongly stress that this is a rather crude estimate and a more de-
tailed answer would have to take into account the details of the dominant
error processes in quantum dot qubits. It must also take into account that
while it is possible to achieve certain low noise gates and good coherence
times in quantum dots qubits in isolation this does not necessarily mean
they will be practically achievable in the current QDP design. A future
research direction would be to perform much more detailed simulations
of this crossbar system, perhaps with input from future experiments. In
such a simulation the effect of correlated errors (which might feasibly ap-
pear in a crossbar architecture) could be investigated.

Another possible research direction would be to use the currently devel-
oped machinery to map more exotic quantum error correction codes. A
first step in this direction would be the implementation of variants of
the surface code with more resistance to biased noise [101, 102]. Due
to the possibility of qubit shuttling, also codes with long distance stabi-
lizers could in principle be implemented. Codes such as the 3D gauge
color codes might be prime candidates for this kind of treatment. How-
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Figure 4.11. Plot of logical error probability versus code distance for the empiri-
cal model given in (4.17) with experimental parameters given in Table 4.7. Note
that the logical error probability for crossbar operation goes below 𝑃𝐿 = 10−20

for 𝑑 = 37. This is only slightly slower that parallel operation, which reaches
𝑃𝐿 = 10−20 for 𝑑 = 31. Due to the scaling of crossbar operation with the code
distance the logical error probability bottoms out at some point. This however
does not happen until 𝑑 = 155 (not shown) for a logical error rate of 𝑃𝐿 = 10−41,
which is not practically relevant. This rough model gives good indication it is
possible to create very low logical error surface code logical qubits in the QDP.
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ever, barring some special cases, parallel shuttling is currently being per-
formed in a line-by-line manner. A general classical algorithm for gener-
ating optimal (in time) shuttling-steps from an initial to a final BOARD-
STATE would vastly simplify the task of mapping more exotic codes and
also general quantum circuits. Such an algorithm would probably be use-
ful for any future crossbar quantum architecture.

Lastly, there are important aspects of quantum error correction that
are not discussed in this paper. Two of these aspects are the ability to
store multiple logical qubits simultaneously and the ability to perform
quantum operations on the logical qubits. A popular way of performing
these tasks is by encoding multiple logical qubits in a single surface code
sheet by introducing topological defects in to the surface code sheet [97].
This process involves not measuring stabilizers at certain points in the
sheet, thus creating extra degrees of freedom which can store logical in-
formation. The code distance of the code is given by the physical dis-
tance (measured in number of physical qubits) between the defects. Op-
erations can then be performed on these logical qubits by moving the
defects around each other, a process known as braiding. We think this
approach is not natural to the constraints of the crossbar architecture for
the following reasons

• Encoding qubits as defects would mean the size of the surface code
sheet would scale as the number of encoded qubits. Hence also, in
our implementation, the physical error probability per QEC cycle
would scale with the number of qubits. This would put an upper
limit on the number of qubits that can be implemented.

• Creating and moving defects around requires turning on and off
measurements for certain stabilizers in a local manner. This locality
runs counter to the design ideas of the crossbar architecture.

• Given that the size of the surface code sheet would scale with the
number of logical qubits one would likely face significant issues
involving uniformity of control parameters of the entire sheet. This
would be a significant issue even if the scaling of the physical error
probability can be avoided by clever implementation.

However, we can envision a mode of computation that we speculate is
more amenable to this architecture by thinking of an architecture com-
posed of separate modules containing a single logical qubit. We refer
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to Figure 7 of [18] for a proposal of implementation. Inside each module
our surface code protocol could be run with the ideal code distance given
physical error parameters setting the size of these modules. We could
then perform logical 𝑋- and 𝑍-gates transversally within the modules
and we could perform CNOT gates between adjacent modules via lattice
surgery. Note that lattice surgery, which involves the turning on and off
of stabilizer patches in regular patterns (see [103] for an introduction to
lattice surgery), is very amenable to the constraints of the architecture,
implying that a high degree of parallelization could be achieved when
mapping lattice surgery techniques to the QDP.

4.8 Supplement: surface code operation counts

(The reader may find the corresponding tables on the next pages.)
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4.9 Notations

𝑎
𝑏
= 𝑐 Shorthand for 𝑎 mod 𝑏 = 𝑐.

[𝑎 : 𝑏] Set of integers from 𝑎 to 𝑏.

(𝑖, 𝑗) Dot locations, in row 𝑖 and column 𝑗.

BOARDSTATE
(𝑁 × 𝑁) Matrix mirroring the charge distribution
over the grid of dots.

ℬ Qubits in grid columns of high magnetic field.

CNOT Controlled-Not gate: |0⟩⟨0| ⊗ I+ |1⟩⟨1| ⊗𝑋 .

𝑑 Distance of a quantum code.

CPHASE⋆ Effective controlled-phase gate, see (4.3).

D[𝑖][𝑡]
Set diagonal line 𝑖 to potential level 𝑡, see Table 4.1.

𝐻 Hadamard gate: (𝑋 + 𝑍)/
√
2.

H[𝑖] Pulsing horizontal barrier 𝑖, see Table 4.1.

HC[𝑖, 𝑗]
CNOT-gate along horizontal direction, Table 4.3
and Figure 4.4.

HI[𝑖, 𝑗]
OPCODE for CPHASE⋆ gate between qubits (𝑖, 𝑗)
and (𝑖, 𝑗 + 1), see Table 4.3.

HS[𝑖, 𝑗, 𝑘] Horizontal shuttling at (𝑖, 𝑗) with flow 𝑘, see Table
4.2.

M[𝑖, 𝑗, 𝑘]
Measuring the qubit at (𝑖, 𝑗) with the qubit at (𝑖, 𝑗+
𝑘) as a reference, see Table 4.2.

𝑁
The grid inside the processor has the size of 𝑁 ×𝑁
quantum dots, see Figure 4.1(a).

PSB Pauli spin blockade.

QDP
Abbreviation for Quantum Dot Processor, the term
we use to describe the proposed quantum device.

ℛ Qubits in grid columns with low magnetic field.

𝑆 Square-root of a Pauli-𝑍 gate: |0⟩⟨0|+ 𝑖 |1⟩⟨1|.
√

SWAP Square-root of swap gate, (4.2).

V[𝑖] Pulse vertical barrier gate 𝑖, see Table 4.1.
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VC[𝑖, 𝑗]
CNOT-gate in vertical direction, see Table 4.3 and
Figure 4.4.

VI[𝑖, 𝑗]
OPCODE for

√
SWAP gate between qubits (𝑖, 𝑗) and

(𝑖+ 1, 𝑗), see 4.3.

VS[𝑖, 𝑗, 𝑘] Vertical shuttling at (𝑖, 𝑗) with flow 𝑘, see Table 4.2.


