

Cover Page

The following handle holds various files of this Leiden University dissertation:
http://hdl.handle.net/1887/80413

Author: Steudtner, M.
Title: Methods to simulate fermions on quantum computers with hardware limitations
Issue Date: 2019-11-20

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/80413
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 3

Embedding simulations with
quantum codes

3.1 Background

While small quantum simulations have been performed on few-qubit de-
vices across all platforms [24, 41, 44–48], and efforts are undertaken to
scale devices up, the quantum simulation of larger fermionic systems is
still a challenge. Critical factors that determine the feasibility of an algo-
rithm would be its qubit requirements, its gate cost (in terms of magic
states when error-corrected, and in terms of two-qubit gates when noisy)
[28, 49] and circuit depth (a measure of the algorithm run time, where
each time step is the duration of one quantum gate). Quantum algo-
rithms are generally to be kept shallow to ensure that they can be run
before the qubit system has decohered. It is thus in our interest to de-
compose the algorithms into many parts that can be run in parallel, i.e. at
the same time. Obviously, one can hope for parallelization if the algo-
rithm is comprised of gate sequences that act on subsets of as few qubits
as possible and these subsets do not overlap much. Another factor is
that actual quantum devices can have geometric limitations which neg-
atively influence the circuit depth. In a practical setting not every qubit
can reach every other qubit, i.e. they cannot be entangled with a single
two-qubit gate. To entangle distant qubits, it takes additional efforts in
gates and time. Thus another criterion for the reduction of the circuit
depth is that gate sequences only act on qubits adjacent on a certain con-
nectivity graph. Although this graph depends on the actual quantum

70 Chapter 3. Embedding simulations with quantum codes

device, we can make an educated guess: devices on which surface code
can be run, require a square lattice connectivity graph.
Unfortunately, it is nontrivial to embed fermionic problems in those lat-
tices, which opposes shallow-depth quantum simulation. Let us illus-
trate the exact issue. In order to bring the problem into a form the quan-
tum computer can process, the fermionic modes need to be embedded
into a (two-dimensional) lattice structure related to the qubit connec-
tivity graph. After that, a fermion-to-qubit mapping translates the in-
teractions of those system to a qubit Hamiltonian fit to be simulated.
It is this last step in which the problem lies, as simulating the interac-
tion between as little as two fermionic modes usually requires gates act-
ing on large subsets of qubits. This is a consequence of the fermionic
wave functions being antisymmetric under particle permutations, which
causes the interaction of two fermionic modes to also be sensitive to the
occupation of seemingly uninvolved modes, turning into gates on the
qubits representing them. This is the same issue that prohibits us from
describing fermions on (two-dimensional) lattices in terms of bosons,
which could be simulated more easily. In fact, the problems are some-
what intertwined considering that those bosonic descriptions can dou-
ble as fermion-to-qubit mappings. The Jordan-Wigner transform for in-
stance is widely used as a fermion-to-qubit mapping [24, 45, 46, 48] to-
day, but its appearance in 1928 [19] predates the work of Feynman by
half a century. The original work of Jordan and Wigner was rather meant
to compare fermionic operators to the operators of (hard-core) Bosons,
which are easily mapped to (1/2)-spins. For our purposes, the spins are
immediately identified as qubits, rendering the transform a default for
fermion-to-qubit mappings. However, the Jordan-Wigner transform is
effectively one-dimensional and exhibits large deficits in the treatment
of two-dimensional systems. In particular it fails to map a fermionic
lattice model with local interactions (meaning their interaction range is
bounded by a constant) to a model of locally interacting spins. In con-
trast to that, locally interacting spins on a lattice can be mapped to a
locally interacting Boson lattice, due to the bosonic wave function not
being antisymmetric [50]. While there are tricks and generalizations to
circumvent the deficits of the Jordan-Wigner transform [51–54], not all of
them are useful for its role in quantum simulation: there is no ultimate
choice for a two-dimensional fermion-to-qubit mapping. However, there
is a mapping with which locally interacting fermion and qubit lattices can

3.1 Background 71

be related: the Verstraete-Cirac transform (VCT) [25] also known as Aux-
iliary fermion mapping [29, 55, 56], can be regarded as a manipulation of
the Jordan-Wigner transform, in which additional auxiliary particles are
added, hence the name. Other works on fermion-to-qubit mappings [27,
29, 37, 57] are based on two transforms proposed by Bravyi and Kitaev in
[26]. First, there is the already mentioned Bravyi-Kitaev transform, that,
compared to the Jordan-Wigner transform, exhibits an up to exponen-
tial improvement on the number of qubits that each fermionic interac-
tion term acts on. The Bravyi-Kitaev transformation however demands a
qubit connectivity that is higher than what a square lattice can offer. Sec-
ond, the mapping referred to as ‘Superfast simulation of fermions on a graph’
(BKSF) has the power to map local fermion lattices to local qubit lattices,
but the square lattice connectivity is generally only sufficient when the
underlying model is an interacting square lattice as well: to make inter-
actions local, the mapping requires a qubit connectivity graph set by the
Hamiltonian. When the given connectivity turns into a limitation, classi-
cal tools like sorting networks might be applied [58]. Most notably, there
are recent attempts to incorporate swapping networks into the fermion-
to-qubit mapping. With so-called fermionic swaps [26], not only qubits
are swapped but also fermionic modes, in the sense that swapping oper-
ations can change the locality of their interactions in the Jordan-Wigner
transform. This effectively eliminates the contribution of the fermion-
to-qubit mapping to the gate cost and algorithmic depth which is then
dominated by the swapping network alone [30, 59].

In this chapter, we want to abstain from swapping and sorting net-
works to make use of the (two-dimensional) geometric proximity of qubits
inside the quantum device. In this way, the gate cost is determined by the
range of interactions on the fermionic lattice and distant interactions can
be simulated in parallel. For this purpose, we define two-dimensional
(nonperturbative) fermion-to-qubit mappings that generalize the Jordan-
Wigner transform on the square lattice. We here not only demand that
local Hamiltonians of fermions are mapped to local qubit Hamiltonians
but want to go beyond nearest neighbor interactions. The exchange inter-
action between two (distant) modes should involve only the two qubits
that these modes correspond to, and some chain of qubits that connects
them geometrically. This means that when we imagine the system as a
fermion lattice with dimension (ℓ1 × ℓ2), we want an interaction term of
any two modes to transform into a term acting on 𝑂(𝑚) qubits, when

72 Chapter 3. Embedding simulations with quantum codes

the modes have a Manhattan distance of 𝑚. As a consequence, we can
bound the weight of the largest terms by 𝑂(ℓ1+ℓ2), rather than 𝑂(ℓ1×ℓ2)
as in the case of the Jordan-Wigner transform. In this way the entire sim-
ulation only considers operators acting on the shortest possible strings
along adjacent qubits, fostering parallelization.

3.2 Results

In this chapter, we introduce a class of fermion-to-qubit mappings, that
are two-dimensional generalizations of the Jordan-Wigner transform on
a ℓ1×ℓ2 lattice of fermionic sites. The Auxiliary qubit mappings (AQMs) are
based on the (one-dimensional) Jordan-Wigner transform, concatenated
with specific quantum (stabilizer) codes. Stabilizer codes, which play an
important role in quantum error correction, encode a logical basis of 2𝑁

degrees of freedom (here 𝑁 = ℓ1 × ℓ2) in a subspace of a larger system
with 𝑛 > 𝑁 qubits. The degrees of freedom left are constrained with so-
called stabilizer conditions, which means there are 𝑛 −𝑁 (independent)
qubit operators {𝑆𝑖}𝑖 that stabilize this basis, i.e. in the logical subspace
the expectation value of all stabilizers is one, ⟨𝑆𝑖⟩ = 1. In our case, the
logical basis encoded is the one of the Jordan Wigner transform, to which
𝑟 = 𝑛 − 𝑁 auxiliary qubits have been added and constrained. The en-
tire procedure is illustrated in Figure 3.1, where the AQM performs the
transition from layer (a) to (c), effectively avoiding the nonlocal interac-
tions on layer (b). The codes used for AQMs are planar on the square
lattice, and we devise a unitary quantum circuit that switches in between
the layers (b) and (c). This circuit has an algorithmic depth that scales
with ℓ1, the length of one of the lattice sides. There is no such opera-
tion for mappings found in prior works, the Verstraete-Cirac transform
and Superfast simulation. To compare them with the AQMs, we modify
the VCT and BKSF, rendering them planar codes with the Manhattan-
distance property. The contributions of this chapter

• We introduce three types of Auxiliary Qubit Mappings, each re-
quiring a different amount of auxiliary qubits. Our main result of
this paper is the square lattice AQM, which uses 2𝑁−ℓ1 qubits in to-
tal. Note that in general, mappings with more auxiliary qubits will
in some sense deal better with the second dimension, but none of
the mappings generalizing the Jordan-Wigner transform has a total
qubit number exceeding 2𝑁 . However, one might be interested in

3.2 Results 73

𝑁 fermion modes

𝑁 physical qubits

𝑁 logical qubits

A
Q

M

Jordan-Wigner transform

Auxiliary qubit code

(a)

(b)

(c)

Figure 3.1. Visualizing an Auxiliary Qubit Mapping (AQM) as a concatenation
of the Jordan-Wigner transform and a particular quantum code. The three layers
represent the lattices of fermions and qubits. We have highlighted the same
three exchange terms on each lattice, so their transformation can be observed.
(a) The starting point: a fermionic lattice or two-dimensional embedding of a
fermion system with ℓ1 × ℓ2 modes. The three (local) interactions highlighted
are brought via the Jordan-Wigner transform onto the (data) qubit layer. (b) The
data qubit layer, in which two of the formally local interactions now assume a
nonlocal form. To restore locality, we need to define a quantum code on the data
qubits register and some auxiliary qubits, added to the next layer. (c) The final
layer: a composite system of 𝑛 qubits, where we have placed 𝑛 − 𝑁 auxiliary
qubits in between the data qubits. By the Auxiliary Qubit code, interactions
that were local in the top layer can now be made local again. Note also that
the interaction in the center of the lattice, which has involved many qubits in
the middle layer, is now reduced to act on few qubits again by the Manhattan-
distance property.

74 Chapter 3. Embedding simulations with quantum codes

using fewer auxiliary qubits: this can be the case for instance when
simulating lattice models, where we would like to make the phys-
ical lattice as large as possible and ‘being on a fixed qubit budget’
accept a trade-off between circuit depth and the number of auxil-
iary qubits. A qubit-economic version of this mapping would be
the sparse AQM, which introduces the parameter ℐ to regulate the
trade-off. Furthermore, with adding only a few qubits we can al-
ready obtain a modified version of this mapping which has easy-to-
prepare logical states and is called E-type AQM. A comprehensive
list of all considered fermion-to-qubit mappings, that allows us to
compare their properties, is compiled into Table 3.1. For all Auxil-
iary Qubit Mappings, we provide the initialization circuits of 𝑂(ℓ1)
depth.

• We demonstrate the Auxiliary Qubit Mappings on the Fermi-Hubbard
model, decreasing its algorithmic depth from being linear with the
number of data qubits, 𝑂(𝑁), to being constant, 𝑂(1). This is an im-
portant step towards making its simulation scalable (at the expense
of more qubits). Lattice models are in general not just interesting
by themselves, but also test on how a fermion-to-qubit mapping
deals with the second dimension, i.e. the criteria mentioned in the
introduction, in a minimal fashion. We explicitly show how the
mappings transform the Fermi-Hubbard model into a model of lo-
cal qubit interactions on the lattice.

• We compare our work, the Auxiliary Qubit Mappings, to the Verstraete-
Cirac transform [25] and the Superfast simulation [26] from the lit-
erature. As indicated above, we adjust the latter two slightly to
make all three mappings comparable. Advantages and disadvan-
tages of each mapping eventually lead us to conclude which of
them to recommend for different situations.

While these contributions are covered in Sections 3.5, 3.6 and 3.7, the rest
of the paper is organized as follows: in Section 3.3, we provide a more
structured introduction to the layout of the quantum device and the es-
tablished fermion-to-qubit mappings. We discuss criteria for a ‘good’
mapping in detail and that the Jordan-Wigner transform has deficits in
those regards. In Section 3.4, we illustrate the effect of quantum codes,
such as the ones that are the blueprint for the AQMs, on a given Hamil-
tonian. While the AQMs are an original idea, we cannot claim the same

3.2 Results 75

about their theoretical backbone: the foundations for Auxiliary Qubit
codes are basically used in [60], although there the stabilizer formalism
was not employed. As a consequence, one auxiliary qubit would have
to be added for each term in the Hamiltonian, which is a large overhead
that can be avoided by using the underlying principle to define quan-
tum codes. We derive these codes from scratch in Section 3.9.1. Some
minor contributions are provided outside the main text of this chapter.
In Section 3.9.2, we study the class of tree-based mappings, to which
the Bravyi-Kitaev transform belongs. The Bravyi-Kitaev transform itself
does not do well with the square lattice, but we provide a general method
to tailor and embed similar mappings to arbitrary two-dimensional se-
tups. Section 3.9.3 is mostly providing details on the Verstraete-Cirac
transform and Superfast simulation, but we also tackle some side issues
by deriving the logical basis of both mappings.

Jo
rd

an
-W

ig
ne

r
(S

-p
at

te
rn

)
Ve

rs
tr

ae
te

-C
ir

ac
tr

an
sf

or
m

Su
pe

rf
as

t
si

m
ul

at
io

n
Sq

ua
re

la
tt

ic
e

A
Q

M
E-

ty
pe

A
Q

M
Sp

ar
se

A
Q

M
O

ri
gi

n
[1

9]
[2

5]
[2

6]
[4

3]
[4

3]
[4

3]

A
ux

.q
ub

it
s

0
ℓ 1
ℓ 2

ℓ 1
ℓ 2
−

ℓ 1
−

ℓ 2
ℓ 1
ℓ 2
−

ℓ 1
ℓ 2

(ℓ
2
−

1
)(

ℓ
1
−
1

ℐ
+

1
)

St
ri

ng
le

ng
th

(g
en

er
al

)
𝑂
(ℓ

1
ℓ 2
)

𝑂
(2
ℓ 1

+
ℓ 2
)

𝑂
(2
ℓ 1

+
2
ℓ 2
)

𝑂
(ℓ

1
+

2
ℓ 2
)

𝑂
(2
ℓ 1

+
ℓ 2
)

𝑂
(ℓ

1
+

2
ℓ 2
)

M
an

ha
tt

an
-

di
st

an
ce

pr
op

er
ty

?
7

3
3

3
7

ap
pr

ox
im

at
el

y

St
ri

ng
le

ng
th

(l
at

ti
ce

)
𝑂
(ℓ

1
)

𝑂
(1
)

𝑂
(1
)

𝑂
(1
)

𝑂
(ℓ

1
)

𝑂
(ℐ

)

Si
m

ul
at

io
n

ti
m

e
(l

at
ti

ce
)

𝑂
(ℓ

1
ℓ 2
)

𝑂
(1
)

𝑂
(1
)

𝑂
(1
)

𝑂
(ℓ

1
ℓ 2
)

𝑂
(ℐ

2
)

+
ca

nc
el

la
ti

on
s

𝑂
(ℓ

1
)

𝑂
(1
)

𝑂
(1
)

𝑂
(1
)

𝑂
(ℓ

1
)

𝑂
(ℐ

)

R
es

to
re

s
lo

ca
lit

y?
7

3
3

3
7

ap
pr

ox
im

at
el

y

Ta
bl

e
3.

1.
A

ll
fe

rm
io

n-
to

-q
ub

it
m

ap
pi

ng
s

di
sc

us
se

d
in

th
is

w
or

k.
W

e
co

ns
id

er
a
𝑁

=
(ℓ

1
×

ℓ 2
)

sq
ua

re
la

tt
ic

e
bl

oc
k

of
fe

rm
io

ni
c

m
od

es
,a

nd
co

m
pa

re
th

e
nu

m
be

r
of

au
xi

lia
ry

qu
bi

ts
,o

r
m

or
e

ge
ne

ra
lly

th
e

to
ta

ln
um

be
r

of
qu

bi
ts

m
in

us
𝑁

.
W

e
al

so
co

m
pa

re
th

e
sc

al
in

g
of

th
e

nu
m

be
r

of
qu

bi
ts

in
vo

lv
ed

in
tw

o
ty

pe
s

of
H

am
ilt

on
ia

ns
:

ge
ne

ri
c

on
es

,
in

w
hi

ch
w

e
ex

pe
ct

in
te

ra
ct

io
ns

be
tw

ee
n

ev
er

y
m

od
e,

an
d

la
tt

ic
e

m
od

el
s,

w
it

h
on

ly
ne

ar
es

t-
ne

ig
hb

or
in

te
ra

ct
io

ns
.

Fo
r

th
e

fo
rm

er
,

w
e

al
so

as
k

w
he

th
er

lo
ng

-r
an

ge
in

te
ra

ct
io

ns
ca

n
be

m
ap

pe
d

to
op

er
at

or
s

in
vo

lv
in

g
qu

bi
ts

al
on

g
a

di
re

ct
pa

th
(M

an
ha

tt
an

-d
is

ta
nc

e
pr

op
er

ty
).

Fo
r

th
e

la
tt

ic
e

m
od

el
s,

w
e

sp
ec

if
y

th
e

ex
pe

ct
ed

al
go

ri
th

m
ic

de
pt

h
fo

r
si

m
ul

at
in

g
th

e
en

ti
re

H
am

ilt
on

ia
n

by
e.

g.
Tr

ot
te

ri
za

ti
on

an
d

w
he

th
er

th
ei

r
lo

ca
lit

y
is

re
st

or
ed

af
te

r
th

e
tr

an
sf

or
m

at
io

n.
N

ot
e

th
at

th
e

si
m

ul
at

io
n

ti
m

e
is

ob
ta

in
ed

us
in

g
si

m
ul

at
io

n
ga

dg
et

s
th

at
ad

he
re

to
th

e
sq

ua
re

la
tt

ic
e

co
nn

ec
ti

vi
ty

of
th

e
qu

bi
ts

,
ho

w
ev

er
,w

e
ta

ke
in

to
ac

co
un

tt
ha

ts
om

e
si

m
ul

at
io

n
al

go
ri

th
m

s
al

lo
w

fo
rp

ar
ti

al
ca

nc
el

la
ti

on
of

ov
er

la
pp

in
g

Pa
ul

is
tr

in
gs

in
th

e
H

am
ilt

on
ia

n.
N

ot
e

al
so

th
at

ℐ
is

a
pa

ra
m

et
er

of
th

e
la

st
m

ap
pi

ng
th

at
ca

n
be

ch
os

en
as

so
m

e
in

te
ge

r
nu

m
be

r:
1
≤

ℐ
≤

ℓ 1
−

1.
Th

is
pa

ra
m

et
er

de
te

rm
in

es
ho

w
w

el
lt

he
M

an
ha

tt
an

-d
is

ta
nc

e
pr

op
er

ty
an

d
lo

ca
lit

y
is

ap
pr

ox
im

at
ed

.

78 Chapter 3. Embedding simulations with quantum codes

3.3 Preliminaries

In this section, we describe the influence of fermion-to-qubit mappings
on the algorithmic depth of quantum simulation in a setup of square-
lattice qubit-connectivity. In particular, we will discuss criteria which
render mappings ‘good’ in the sense that they allow for parallelization
and low gate costs. For that purpose, we will give a theoretical descrip-
tion of the qubit layout and sketch the simulation algorithms. Let us start
however by stating the role of fermion-to-qubit mappings for quantum
simulation in general. We generally advise the reader familiar with the
subject to skip ahead to Section 3.4, and if necessary use the table of no-
tations offered in Section 3.10.

The goal of quantum simulation is to approximate the ground state
and the ground-state energy of a given Hamiltonian. When the Hamil-
tonian acts on a space of fermions, a fermion-to-qubit mapping serves
as translator between the quantum system to be simulated and the qubit
system inside the quantum computer. That not only entails a correspon-
dence of basis states, but also a transformation of the Hamiltonian. The
Hamiltonian after its transformation with the mapping, is henceforward
acting on the qubits inside the quantum computer. We here consider the
case where the qubit system underlies architectural constraints, that we
want to abstract with the following model.

Our setup is a two-dimensional quantum device that we describe
with a planar graph, where each of the 𝑛 vertices is a qubit. In this model,
it is assumed that we can individually and simultaneously perform Pauli-
rotations on every single qubit. However, entangling gates can only be
applied between two qubits that share an edge in the graph. We assume
that we can perform two-qubit gates individually per edge, but qubits
involved in one gate cannot be part in another at the same time. Al-
though we do not want to specify which kind of two-qubit gate is native
to the quantum device, we want to assume that we can do CNOT-gates
in 𝑂(1) time using only a few native gates. The full qubit connectivity
graph will furthermore be assumed to be a square lattice, so we can only
perform entangling gates between qubits that are nearest neighbors, see
Figure 3.2(a). Note that the individual connectivity graphs, that every
fermion-to-qubit mapping in this chapter comes with, are subgraphs of
Figure 3.2(a), such that every mapping can be embedded in the consid-
ered qubit system.

3.3 Preliminaries 79

(a) (b)

X

ZZ

Z

ZZ

Z

X

(c)

H ∙ ∙ H

∙ ∙
∙ ∙

∙ ∙
𝑍(𝜑)

∙ ∙
∙ ∙

H ∙ ∙ H

Figure 3.2. Simulation of Pauli strings in a system with limited connectivity.
(a) Qubit connectivity graph: the vertices are qubits. Two-qubit gates can be
performed only between qubits coupled by an edge. (b) Simulating some Pauli
string (𝑋 ⊗ 𝑍⊗6 ⊗ 𝑋) on the quantum device: the qubits involved, and the
edges along which entangling gates are performed, are highlighted. Inscriptions
X, Y and Z indicate which Pauli operator acts on each qubit. (c) Simulating a
Pauli string, here we simulate the propagator exp(𝑖 𝜑𝑋 ⊗ 𝑍⊗6 ⊗ 𝑋), where 𝜑
is an angle. The Pauli string could be the one in (b). In general, this circuit
stores the parity information of the involved qubits on one of them, which is
done by chains of CNOT-gates. The inscriptions X, Z and Y determine for each
individual qubit whether it is in the Hadamard, computational or Y-basis in the
process. Note that it does not play a role on which of the qubits the parity of
the others is collected, but to optimize the simulation time, a qubit in the middle
of the chain is chosen. On that qubit the phase rotation 𝑍(𝜑) = exp(𝑖 𝜑𝑍) is
performed, after which the chains are uncomputed.

80 Chapter 3. Embedding simulations with quantum codes

3.3.1 Simulating a qubit Hamiltonian

In order to elucidate the connection between the mapping and the depth
and cost of the simulation algorithms, we need to understand these algo-
rithms better. Let us assume the fermion-to-qubit mapping transforms a
Hamiltonian into the form of Pauli strings, i.e. the sum 𝐻 =

∑︀
ℎ Γℎ · ℎ,

where {Γℎ} are real coefficients associated to a Pauli string on 𝑛 qubits,
ℎ ∈ {𝑋, 𝑌, 𝑍, I}⊗𝑛. Note that we will refer to the number of qubits, that
a string ℎ acts on nontrivially, as (operator) weight and (string) length,
interchangeably.
Quantum simulation algorithms have different ways to search for the
ground state of 𝐻 . Depending on which algorithm is used, the Pauli
strings ℎ have to be either measured, or their propagator simulated (con-
ditionally) [5, 6]. With a propagator we mean the operator exp(𝑖 𝜑 ℎ),
where 𝜑 is an angle that typically is some function of Γℎ. Using CNOT-
gates, we simulate such a propagator with the gadget like in Figure 3.2(c),
where chains of these gates copy parity information across the lattice
onto a single qubit, on which then a 𝑍-rotation around the angle 𝜑 is
performed and afterwards the CNOT-chain is uncomputed. For quan-
tum eigensolvers, this qubit will be measured instead. Often we need
the rotation to be conditional on the state of another qubit, so conven-
tionally the 𝑍-rotation, 𝑍(𝜑) = exp(𝑖 𝜑𝑍), is to be replaced with a con-
trolled rotation, I ⊗ |0⟩⟨0| + 𝑍(𝜑) ⊗ |1⟩⟨1| where the first qubit is the one
that holds the parity information, and the second is the control, typically
an auxiliary qubit of a phase estimation procedure. Alternatively, the
quantum phase estimation algorithm can be adapted to include control
qubits in the string, namely to simulate the propagator exp(−𝑖 𝜑

2 ℎ⊗𝑍) =

exp(−𝑖 𝜑
2 ℎ)⊗ |0⟩⟨0|+ exp(𝑖 𝜑

2 ℎ)⊗ |1⟩⟨1| instead.
For phase estimation-based algorithms, the propagator of the entire

Hamiltonian, exp(𝑖𝐻𝜑) needs to be simulated, which invokes the prop-
agator of each string at least once (e.g. [61, 62]). Other algorithms in-
voke each string multiple times: Trotterization [8, 9] approximates the
Hamiltonian propagator as repeating sequences of all string propagators
exp(𝑖 𝜑 ℎ), and in iterative phase estimation [23], a repeated application of
exp(𝑖𝐻𝜑) increases the accuracy of the computed energy. In general, 𝐻
does not even have to be a Hamiltonian: it could also be an operator that
prepares a trial state with Givens rotations [30] or implements a unitary
coupled-cluster operator [63]. In any case, we will expect there to be a
large number of strings in 𝐻 so we would like to apply the gadgets 3.2(c)

3.3 Preliminaries 81

in parallel to keep the simulation shallow whenever possible. Let us co-
ordinate the simulation of all those propagators by switching to layout
diagrams like the one in Figure 3.2(b), instead of using circuit diagrams
like in panel (c). This gives us an idea of all the qubits involved and how
they are coupled, but leaves out certain details about for instance the
specific simulation algorithm. Our ability to parallelize the simulation is
determined by the fermion-to-qubit mapping, in particular in the shape
of the strings that it outputs. In regard of our connectivity setup 3.2(c),
we consider a fermion-to-qubit mapping as good, if it outputs Hamilto-
nians 𝐻 with Pauli strings that are short, continuous and non-overlapping.
We will now explain these criteria:

short - The length of a Pauli string is the number of qubits that it acts
on nontrivially. While the gadget in Figure 3.2(c) implements a propa-
gator in a number of time steps that scales linearly with the amount of
qubits involved, other implementations have been conceived. As can
be seen in [39, 64], the gadget can be replaced with one that performs
the same operation with an up to exponential improvement in the cir-
cuit time, so at most 𝑂(log 𝑛). However, taking into account the (limited)
qubit connectivity of the square lattice, we want to stick to the gadget of
Figure 3.2(c). Although a time reduction can be achieved for Pauli strings
acting on a nonlinearly distributed subset of qubits, we generally expect
a time scaling linear in the string length. As the number of time steps
is interchangeably connected to the circuit depth, we have an interest in
keeping the Pauli strings as short as possible.

continuous - In general, Pauli strings in 𝐻 will not only act on near-
est neighbors, this means we cannot connect the qubits involved along
shared edges as it is done in Figure 3.2(b). Connectivity problems are
symptomatic for layouts like this, in which only nearest-neighbors are
coupled. Let us assume that two qubits need to be connected in a gad-
get like 3.2(c), but they do not share an edge and the shortest path along
edges encompasses a number of 𝑚 uninvolved qubits. In order to skip
these qubits, 𝑂(𝑚) additional two-qubit gates and time steps are required.
In case the native two-qubit gates are either 𝑖SWAP or

√
SWAP, the outer

qubits can be connected by a chain of SWAP gates, which costs 2𝑚 native
gates in the former case and 4𝑚 in the latter. For systems with native
CNOT-gates the formation SWAP gates with three CNOTs is unnecessar-

82 Chapter 3. Embedding simulations with quantum codes

ily expensive, so instead we amend gadgets like in Figure 3.2(c) with a
construction that includes the 𝑚 inner qubits in the CNOT-chains, but
compensates for their contribution. We present two versions of such a
compensation circuit in Figure 3.3, where the left panel shows us the gate
that we would like to perform but cannot: we would like the configura-
tion of the first qubit to be added to the last qubit by a nonlocal CNOT-
gate. In the end, the circuits in the center and on the right achieve that
task but render the 𝑚 uninvolved qubits useless until the circuit is un-
computed. The additional cost in time and gates is 4𝑚, which means that
it is cheaper to include a qubit in a string than to skip it. In conclusion,
compensating or swapping of qubits is possible, but we would prefer to
avoid the additional cost and rather deal with continuous strings.

non-overlapping - The overlap of two (or more) Pauli strings is the
number of qubits in the intersection of the sets of qubits the strings act on.
Two Pauli strings that are both acting nontrivially on a common subset of
qubits are hard to simulate in parallel, as these qubits get parity informa-
tion attached to them like in Figure 3.2(c). Unless these qubits are located
at the beginning of a chain or if one string is a substring of the other,
this parity would have to be corrected for. Later, we will briefly discuss
the possibility of gate cancellations between similar, overlapping strings.
While this has been suggested for Trotterization in [39], its impact on
the approximation error is not well understood yet. Product formula ap-
proaches based on coalescing or randomization offer little or no choice in
the term ordering [49, 65–67]. Thus, avoiding the need for cancellations,
we ideally would like our mapping to transform all pairs of commuting
fermionic operators into non-overlapping Pauli strings.

3.3.2 S-pattern Jordan-Wigner transform

Based on the insights of the previous sections, we will now review what
is probably the standard fermion-to-qubit mapping [19]. In case of the
Jordan-Wigner transform, the transformation matrix 𝐴 can be regarded
as the identity: 𝐴 = 𝐴−1 = I. From (2.14), we derive the number opera-
tors

𝑐†𝑗𝑐𝑗 =̂
1

2
(I− 𝑍𝑗) (3.1)

3.3 Preliminaries 83

𝜔1 ∙ 𝜔1 𝜔1 ∙ 𝜔1 + 𝜔2 𝜔1 ∙ 𝜔1

𝜔2 𝜔2 𝜔2 ∙ ∙ 𝜔1 + 𝜔3 𝜔2 ∙ ∙ 𝜔1 + 𝜔2

𝜔3 𝜔3 𝜔3 ∙ ∙ 𝜔1 + 𝜔4 𝜔3 ∙ ∙ 𝜔1 + 𝜔3

𝜔4 𝜔4 𝜔4 ∙ ∙ 𝜔1 + 𝜔5 𝜔4 ∙ ∙ 𝜔1 + 𝜔4

𝜔5 𝜔5 𝜔5 ∙ ∙ 𝜔1 𝜔5 ∙ ∙ 𝜔1 + 𝜔5

𝜔6 𝜔1 + 𝜔6 𝜔6 𝜔1 + 𝜔6 𝜔6 𝜔1 + 𝜔6

Figure 3.3. Skipping several qubits in a CNOT-chain. Here we consider the
effect of the circuits on a computational basis state (

⨂︀
𝑖 |𝜔𝑖⟩), mapping it to a

state (
⨂︀

𝑖 |𝜔′
𝑖⟩). We denote the qubit values 𝜔𝑖 and 𝜔′

𝑖 on the left and right side of
each circuit. Left: The desired circuit, a CNOT-gate that adds the parity from the
first qubit to the last. For connectivity reasons, this gate is not possible: we can
only connect adjacent qubits. Center/Right: Two circuits in which the middle
qubits are compensated for in order to entangle the first and last qubit. To get
rid of the effect on qubits 2 - 5, the gadgets have to be partially uncomputed, but
in propagators like in Figure 3.2(c), this is not necessary.

and hopping terms (for 𝑖 < 𝑗)

h𝑖𝑗 𝑐
†
𝑖𝑐𝑗 + (h𝑖𝑗)

* 𝑐†𝑗𝑐𝑖 =̂
1

2
Re(h𝑖𝑗)

(︃
𝑗−1⨂︁

𝑘=𝑖+1

𝑍𝑘

)︃
(𝑋𝑖 ⊗𝑋𝑗 + 𝑌𝑖 ⊗ 𝑌𝑗)

+
1

2
Im(h𝑖𝑗)

(︃
𝑗−1⨂︁

𝑘=𝑖+1

𝑍𝑘

)︃
(𝑌𝑖 ⊗𝑋𝑗 −𝑋𝑖 ⊗ 𝑌𝑗) .

(3.2)

While the number operator is transformed into just a constant term
and a term that acts on one qubit only, the hopping terms are transformed
into a string that exhibits long substrings of 𝑍-operators, (

⨂︀𝑗−1
𝑘=𝑖+1 𝑍𝑘),

sometimes called parity (sub-)strings. The right-hand side of (3.2), which
describes an interaction of the fermionic modes 𝑖 and 𝑗, translates into
several strings with 𝑋- and 𝑌 -operators on the corresponding qubits of
𝑖 and 𝑗, and all qubits of indices 𝑘, with 𝑖 < 𝑘 < 𝑗, are part of the parity
substring. Although the parity string does us the service of connecting
the qubits 𝑖 and 𝑗 in that way, it is also the reason that Pauli strings pro-
duced by the Jordan-Wigner transform are of length 𝑂(𝑁).
While the nature of our problem determines the Hamiltonian coefficients
(such as h𝑖𝑗) with respect to the fermionic wave functions, it is up to us to
label each fermionic mode such that we minimize the appearance of long

84 Chapter 3. Embedding simulations with quantum codes

Pauli strings in 𝐻 . While problems that are intrinsically one-dimensional
can be mapped to local Hamiltonians, long strings can generally not be
avoided for systems in higher spatial dimensions.

The question is how to incorporate the Jordan-Wigner transform into
the square lattice layout. There is a natural solution: given a 𝑁 = (ℓ1×ℓ2)-
matrix of qubits, we need to use only 𝑁 − 1 edges to connect them in
canonical order like beads on a string, see Figure 3.4(a). Due to the wind-
ings of the pattern on the block boundaries, we will refer to this particular
way of using the Jordan-Wigner transform on a square lattice as S-pattern
Jordan-Wigner transform. Let us now describe its properties in order to
assert how good a mapping it is. The mapping produces strings that are
continuous: although arbitrary terms (like 𝑐†𝑖𝑐

†
𝑗𝑐𝑘𝑐𝑙) will in general not be

transformed into continuous Pauli strings, creation/annihilation opera-
tor pairs 𝑐†𝑖𝑐𝑗 will. Unfortunately the resulting Pauli-strings are neither
short nor non-overlapping. As the parity strings encompass all the qubits
in between 𝑖 and 𝑗, the string can even span several rows, see Figure
3.4(b). This leads not just to a high gate count and algorithmic depth,
but also occupies a large portion of qubits at once, effectively hindering
parallelization.

Let us consider an illustrative example: if we want our quantum de-
vice to simulate a two-dimensional lattice of sites with fermionic occu-
pation and nearest-neighbor hopping, we encounter two kinds of terms.
Short ones, where the exchange between nearest-neighbors 𝑐†𝑖𝑐𝑖+1 + h.c.
yields the Pauli strings (𝑋𝑖 ⊗𝑋𝑖+1 + 𝑌𝑖 ⊗ 𝑌𝑖+1)/2, and long ones, as the
nearest-neighbor hoppings in the vertical direction will result in strings
that can be seen in Figure 3.4(c). Although these are nearest-neighbor in-
teractions, they use all qubits around the winding linking the two rows,
so all vertical hopping terms between two sites in the same two rows will
overlap. The S-pattern Jordan-Wigner transform thus has the property to
transform operators, that are geometrically local in second quantization
into nonlocal Pauli strings on the lattice. In Section 3.6, we will learn that
it is those vertical hopping terms, that prevent us from simulating lattice
models efficiently.

The verdict for the S-pattern Jordan-Wigner transform is that it is not
good in the sense of our criteria, but good enough to serve as a founda-
tion for better mappings. In the following, we will introduce mappings
modifying the Jordan-Winger transform in using quantum codes to can-
cel nonlocal parity strings, which will make the resulting strings short

3.3 Preliminaries 85

(a)

1 2 3 4

5678

9 10 11 12

13141516

17 18 19 20

(b)

X Z Z

ZZZZ

Z Z Z Z

ZZZZ

X

𝑖

𝑗

(c)

X Z Z Z Z

X Z Z Z Z

Figure 3.4. (a) The connectivity graph for the S-pattern Jordan-Wigner trans-
form. (b) Simulating a Pauli string (𝑋𝑖 ⊗ 𝑍𝑖+1 ⊗ · · · ⊗ 𝑍𝑗−1 ⊗ 𝑋𝑗), that can be
considered half of a hopping term. The string is highlighted on the device in
the same way as in Figure 3.2(b). (c) Simulation of a Pauli string associated with
a fermionic hopping between the two encircled qubits (dotted line). The hop-
ping is in the vertical direction (diagonal to the S-pattern) which unfortunately
involves gates on all qubits on the S-pattern between the two qubits.

and non-overlapping. This will lead to a certain overhead in auxiliary
qubits, placed along with the original (ℓ1 × ℓ2)-block of data qubits on a
square lattice. In contrast to the S-pattern Jordan-Wigner transform, the
mappings to follow embrace the second dimension as a useful tool.

Note that there are other alternatives to the Jordan-Wigner transform.
The Bravyi-Kitaev transform [26, 27, 29, 37] is known to produce Pauli
strings of weight 𝑂(log𝑁) instead of 𝑂(𝑁). For 𝑁 > 16 it can however
be rather difficult to embed the mapping into a square lattice such that it
outputs continuous strings. For a geometric interpretation of the Bravyi-
Kitaev transform and related mappings we would like to refer the reader
to Appendix 3.9.2.

86 Chapter 3. Embedding simulations with quantum codes

3.4 Techniques

3.4.1 Motivation

Here we motivate the general concept of Auxiliary Qubit Mappings. The
starting point will be a nonlocal Hamiltonian obtained by transformation
with some linear mapping from Section 2.3. We then define quantum
codes in order to restore operator locality. These codes will act on the
original system extended by several ‘auxiliary’ qubits. The effect of such
codes on the Hamiltonian will be studied.

Consider that we have an 𝑁 -qubit Hamiltonian 𝐻dat,

𝐻dat =
∑︁
ℎ∈𝒮

Γℎ · ℎdat , (3.3)

where 𝒮 is the set of all Pauli strings occurring in the Hamiltonian, 𝒮 ⊆
{𝑋,𝑌, 𝑍, I}⊗𝑁 with all Γℎ being real, non-zero coefficients. Let us omit
the qubit subscripts for now. Although we want to remain fairly general
at this point, the reader can already think of (3.3) as the result of a Jordan-
Wigner-transformed Hamiltonian (1.8). In general, the problem with this
Hamiltonian is that 𝒮 contains variations of Pauli strings that are either
too long, discontinuous or otherwise inconvenient to us. Thus we would
like to somehow replace these strings inside the Hamiltonian, even if it
means that we need to add qubits to the system. Let us first consider a
naı̈ve approach which indicates the challenges of the method. We then
tackle these challenges with a more sophisticated proposal. For the mo-
ment, let there be for exactly one inconvenient string 𝑝 ∈ {𝑋,𝑌, 𝑍, I}⊗𝑁 ,
that either appears in the Hamiltonian directly, or is the nonlocal sub-
string of some Hamiltonian strings {ℎ′} ⊂ 𝒮. To bring the Hamiltonian
in a convenient form, we would like to multiply every such string ℎ′ with
𝑝. Now we entangle an additional qubit to the system. Ideally, we would
like to find the Pauli operator 𝜎 ∈ ±{𝑋,𝑌, 𝑍}, acting on the added qubit,
such that for every state |𝜙⟩ on the original system of 𝑁 qubits, there ex-
ists a state |̃︀𝜙⟩ on the system extended by the (𝑁 + 1)-th qubit, on which
𝐻 has the same effect as on |𝜙⟩, but (𝑝⊗ 𝜎) is a stabilizer:

(𝑝⊗ 𝜎) |̃︀𝜙⟩ = |̃︀𝜙⟩ implying (𝑝⊗ I) |̃︀𝜙⟩ =
(︀
I⊗𝑁 ⊗ 𝜎

)︀
|̃︀𝜙⟩ . (3.4)

If this was true, then every time 𝑝 appears as a string in the Hamiltonian
we could just replace it with 𝜎, or multiply inconvenient strings (ℎ′ ⊗ I)

3.4 Techniques 87

by (𝑝 ⊗ 𝜎) to cancel the nonlocal substrings. However, this is generally
not possible: when there are terms in 𝒮 that anticommute with 𝑝, then 𝐻
will destroy the stabilizer state |̃︀𝜙⟩. This means that the state is altered in
a way that (3.4) is no longer valid. The simulation of the adjusted Hamil-
tonian on such a broken stabilizer state subsequently no longer describes
the correct time evolution of the underlying 𝑁 -qubit system. We thus
need to adjust the Hamiltonian 𝐻 → 𝐻(𝜅), where 𝐻(𝜅) generally acts on
𝑁 + 1 qubits even without having its terms multiplied by stabilizers yet.
This has to be done in a way as to ensure that the time evolution of |̃︀𝜙⟩
according to 𝐻(𝜅) can be mapped back to the time evolution of |𝜙⟩ ac-
cording to 𝐻 . At the same time we need to demand [𝐻(𝜅), 𝑝⊗𝜎] = 0 and
that (𝑝 ⊗ 𝜎) is a stabilizer like in (3.4). Only then we can use (𝑝 ⊗ 𝜎) to
cancel 𝑝 inside the terms of 𝐻(𝜅), and so obtain a convenient Hamiltoniañ︀𝐻 .

We now refine our approach accordingly, considering also the appear-
ance of multiple strings 𝑝 (and picking up qubit subscripts as well). In
𝐻dat, we identify 𝑟 Pauli strings 𝑝𝑖dat (for 𝑖 ∈ [𝑟]) that we would like to
cancel as we have done with a single string 𝑝 above. Furthermore, we
would like to have the option for every Hamiltonian term ℎdat to multi-
ply it with either several, one or none of the strings {𝑝𝑖dat}. This is done by
repeating the above procedure for each of the 𝑟 strings. To that end, we
add 𝑟 qubits to the system: grouping them together we introduce the 𝑟-
qubit auxiliary register aux = {𝑁+1, 𝑁+2, . . . , 𝑁+𝑟}. We assume that
at the beginning, the aux-register is initialized in the state |0𝑟⟩ = |0⟩⊗𝑟.
Our goal is to cancel the 𝑖-th string 𝑝𝑖dat with a single Pauli operator on the
(𝑁 + 𝑖)-th qubit: 𝜎𝑖

𝑁+𝑖. Thus we need to find a unitary quantum circuit
which entangles the aux-register with the data qubits in a certain way: it
has to implement a unitary 𝑉aux dat, such that for every state |𝜙⟩dat (1.5),
we have a state in the composite system, |̃︀𝜙⟩aux dat with

𝑉aux dat |𝜙⟩dat ⊗ |0𝑟⟩aux = |̃︀𝜙⟩aux dat

and (𝑝𝑖dat ⊗ 𝜎𝑖
𝑁+𝑖) |̃︀𝜙⟩aux dat = |̃︀𝜙⟩aux dat , (3.5)

for all 𝑖 ∈ [𝑟]. To make this work even on a conceptual level, we need
to demand that all 𝑝𝑖dat commute pairwise, otherwise there cannot be a
common stabilizer state of all (𝑝𝑖dat ⊗ 𝜎𝑖

𝑁+𝑖). Once the stabilizer state is
obtained, we maintain it by adjusting every term of Hamiltonian (3.3)
with a Pauli string on the auxiliary register. This is done in a way such

88 Chapter 3. Embedding simulations with quantum codes

that the action of the adjusted term on the enlarged system is the same as
the action of the original term on the original system. The adjustments
are:

ℎdat ↦→ (ℎdat ⊗ 𝜅ℎaux) with

𝑉 †
aux dat (ℎdat ⊗ 𝜅ℎaux) |̃︀𝜙⟩aux dat = ℎdat |𝜙⟩dat ⊗ |0𝑟⟩aux , (3.6)

where 𝜅ℎaux is the Pauli substring on the auxiliary register that is correct-
ing ℎdat. Note that in case ℎdat already commutes with all the stabiliz-
ers, 𝜅ℎaux is the identity. Of course we would like the above relation to
hold for every string in the Hamiltonian, ℎdat ∈ 𝒮 , but as we have ef-
fectively defined a quantum code encoding the entire Hilbert space of
the 𝑁 data qubits, ℎdat can be an arbitrary 𝑁 -qubit Pauli string. Now
by virtue of the stabilizer conditions (3.5), we can multiply the adjusted
terms (ℎdat ⊗ 𝜅ℎaux) by any of the operators (𝑝𝑖dat ⊗ 𝜎𝑖

𝑁+𝑖), and thus get rid
of their detrimental parts. The resulting logical operators ̃︀ℎaux dat define a
convenient (logical) Hamiltoniañ︀𝐻aux dat =

∑︁
ℎ∈𝒮

Γℎ · ̃︀ℎaux dat . (3.7)

3.4.2 Definitions

Generally, the auxiliary qubits can be added in the computational basis
to cancel strings 𝑝𝑖dat ∈ {I, 𝑍}⊗𝑁 with 𝑍-operators 𝜎𝑖

𝑁+𝑖 = 𝑍𝑁+𝑖. As an
enhancement of the Jordan-Wigner transform, codes like this can be used
to cancel nonlocal parity strings. The adjustment strings (of a term ℎdat)
𝜅ℎaux would then for all 𝑘 ∈ [𝑟] contain 𝑋𝑁+𝑘 if ℎdat anticommutes with
𝑝𝑘dat. Note that the codes defined in this way (with only 𝑍-stabilizers)
have the property to map 𝑁 -qubit computational basis states to states in
the computational basis on 𝑛 qubits, a trait that is useful for state prepa-
ration. These codes however have their limitations, as they can easily
demand adjustment strings 𝜅ℎaux of weight 𝑂(𝑟).

Other schemes specifically minimize the weight of 𝜅ℎaux . The methods
of Subaşı and Jarzynski [60] effectively define codes with auxiliary qubits
in Hadamard basis that allow for an arbitrary choice of Pauli strings 𝑝𝑖dat,
as long as all 𝑟 strings commute pairwise. The 𝑝-strings are subsequently
replaced with 𝑋-operators, 𝜎𝑖

𝑁+𝑖 = 𝑋𝑁+𝑖, and the adjustments 𝜅ℎaux con-
tain 𝑍𝑁+𝑘 for every string 𝑝𝑘dat, that anticommutes with ℎdat. In [60] some

3.5 Auxiliary qubit mappings 89

concern is expressed that the operator weight might generally scale with
the number of auxiliary qubits added - a key problem addressed by our
work. We will in the following pick a set of strings {𝑝𝑖dat} such that every
term ℎdat ∈ 𝒮, resulting from any fermionic Hamiltonian, anticommutes
with only a small number of stabilizers.

In Appendix 3.9.1 we give more details about these Auxiliary Qubit
codes, such as their logical basis and the derivation of their stabilizers,
adjustment terms as well as of the initialization unitaries 𝑉aux dat. There
are a few ways to extend the Auxiliary Qubit Mappings. In replacing the
Pauli operators {𝜎𝑖

𝑁+𝑖} with a set of Pauli strings {𝛾𝑖aux}, we can even
stabilize Pauli strings {𝑝𝑖dat} that anticommute. In a similar vein, we can
express the Verstraete-Cirac transform as a quantum code, which allows
us to make modifications and to verify its operator transforms, see Ap-
pendix 3.9.3.

3.5 Auxiliary qubit mappings

3.5.1 E-type AQM

Here we present a mapping that remedies the biggest drawback of the S-
pattern Jordan-Wigner transform under a moderate overhead of qubits.
Given a (ℓ1 × ℓ2) block of data qubits, we are going to add ℓ2 qubits
as auxiliaries in computational basis. With this overhead, we will not
manage to achieve any advantage for lattice models, but the scaling of
long-range interactions (on the fermionic lattice) is improved. The fol-
lowing mapping will be referred to as E-type AQM. We will first illus-
trate its graph, along with instructions on how to initialize the stabilizer
state from |𝜙⟩dat ⊗ |0𝑟⟩aux. Afterwards, a discussion of the resulting Pauli
strings will elucidate the advantages of the E-type AQM.
The idea of the E-type AQM is to store the parity of distinct data-qubit
subsets permanently on auxiliary qubits. As we will see shortly, choosing
to attach an auxiliary qubit to each of the ℓ2 data-qubit rows is providing
us with a geometric interpretation of the resulting strings. The result is
shown in Figure 3.5(a). Note that two things are different between the
S-pattern Jordan-Wigner transform and the E-type AQM: firstly, the con-
nectivity graph has changed. A row of qubits is now coupled to one aux-
iliary qubit, and only those auxiliary qubits are coupled together, data

90 Chapter 3. Embedding simulations with quantum codes

(a)

Z Z Z Z Z

1 2 3 4

8765

9 10 11 12

16151413

20191817

21

22

23

24

25 (b) 16 ∙ ∙

15 ∙ ∙

14 ∙ ∙

13 ∙

24

(c)

Y Z Y

Z

Z

Z

X Z Z Z X

XZX

Figure 3.5. E-type AQM. (a) A block of (4 × 5) data qubits (white) enhanced
with 5 auxiliary qubits (gray). A single stabilizer is highlighted in the graph.
All qubits are labeled, where numberes 1-20 indicate the canonical ordering. (b)
Initializing one of the stabilizers (

⨂︀16
𝑖=13 𝑍𝑖) ⊗ 𝑍24. (c) Simulating Pauli strings̃︀ℎaux dat that are logical versions of ℎdat = (𝑋 ⊗ 𝑍 ⊗ · · · ⊗ 𝑍 ⊗ 𝑋). The strings

are highlighted as explained in Figure 3.2(b). While long strings are rerouted to
skip rows, extending along the corresponding auxiliary qubits instead, shorter
strings that do not switch rows can be simulated in parallel.

qubits in different rows are not coupled anymore. Although such con-
nections between data qubits might be useful for simulating many-body
terms, they are not necessarily required. Secondly, we have also changed
the labeling of the qubits: the indices 𝑖 ∈ [ℓ1ℓ2] still correspond to the in-
dices attached to fermion operators in (2.11), but their order in the graph
does no longer resemble an S-pattern of the canonical indices.
From |𝜙⟩dat ⊗ |0𝑟⟩aux the logical state |̃︀𝜙⟩aux dat can be initialized in 𝑂(ℓ1)-
time and a total of 𝑂(ℓ1ℓ2) gates. Here a chain of CNOTs is used to mirror
the collective parity information of an entire row of qubits on the attached
auxiliary. The scaling in time is due to the fact that the preparation cir-
cuit in Figure 3.5(b), can theoretically be implemented on every row in

3.5 Auxiliary qubit mappings 91

parallel. The stabilizers of the system are(︃ ⨂︁
𝑖∈ row 𝑘

𝑍𝑖

)︃
⊗ 𝑍𝑁+𝑘 , (3.8)

for all rows 𝑘 ∈ [ℓ2] in the data qubit block. We now turn to describe
the resulting Pauli strings, for which we need to discuss the adjustments
𝜅ℎaux. Diagonal terms (3.2) in the Hamiltonian do not influence the sta-
bilizer state, as well as hopping terms (3.1) between qubits in the same
row. Our attention is thus focused on Pauli strings of the form ℎdat =
(𝑋𝑖 ⊗ 𝑍𝑖+1 ⊗ · · · ⊗ 𝑍𝑗−1 ⊗ 𝑋𝑗), where qubits 𝑖 and 𝑗 are situated in dif-
ferent rows 𝑘 and 𝑙, where 𝑘 < 𝑙. Those Pauli strings are subsequently
adjusted by 𝜅ℎaux = (𝑋𝑁+𝑘 ⊗𝑋𝑁+𝑙).

In order to make these terms more convenient, we multiply the ad-
justed strings with the corresponding stabilizers (3.8) of rows 𝑘′, for all
𝑘 ≤ 𝑘′ < 𝑙. Here we discover the benefit of this mapping: wherever Pauli
strings act as 𝑍-strings on entire rows, the parity is inferred instead from
the auxiliary qubits attached. This limits the length of parity substrings
and so Pauli strings (originating from hopping terms) have a maximal
length 2ℓ1+ ℓ2, instead of ℓ1ℓ2. This is not just a benefit in time and gates,
but also allows us to simulate single-row strings at the same time as long
strings spanning these rows, see Figure 3.5(c).
Although we expect the E-type AQM to be useful for problems long-
range interactions, it has no advantage compared to the S-pattern Jordan-
Wigner transform if one considers locally-interacting lattice Hamiltoni-
ans. With only single-row Pauli strings or strings between adjacent rows,
no savings in gates and algorithmic depth can be anticipated. In the fol-
lowing, we will define a mapping that can transform those models into
local qubit-Hamiltonians.

3.5.2 Square lattice AQM

Our main result, the square lattice AQM, is a mapping that requires a
square lattice connectivity graph of ℓ1 × (2ℓ2 − 1) qubits for a (ℓ1 × ℓ2)
fermionic lattice. With the large amount of ℓ1(ℓ2 − 1) qubits added, we
make sure that the code space can be initialized in 𝑂(ℓ1) time steps; a
time frame that is better than linear in the total number of data qubits.
In the resulting mapping, we will be able to reroute and deform Pauli

92 Chapter 3. Embedding simulations with quantum codes

strings, such that strings originating from hopping terms have an opera-
tor weight of the order of the Manhattan distance between the two qubits
on the lattice. The implication of this mapping for lattice Hamiltonians is
that vertical hopping terms have a constant weight, and the algorithmic
depth required to simulate such a model (after the stabilizer state is pre-
pared) is constant, i.e. independent of the lattice dimension.
Before we start describing the mapping, we want to introduce some help-
ful notation concerning qubit labeling. For the sake of a geometric inter-
pretation, we will migrate to a geometric labeling, where each qubit in-
dex denotes its coordinate on a grid. In the following, qubits in the data
register will bear labels (𝑖, 𝑗) ∈ [ℓ1]⊗ [ℓ2], so each data qubit sits on inte-
ger positions of a grid and the qubit in the south-west corner of the block
has coordinate (1, 1). Beginning from that very qubit, the index of each
qubit is given according to the canonical order of the S-pattern in Figure
3.4.
We will now describe the placement of the auxiliary qubits on the lat-
tice. The idea of the square lattice AQM is to insert auxiliary qubits in
between data qubits of different rows, so in between (𝑖, 𝑗) and (𝑖, 𝑗 + 1)
into half-integer positions (𝑖, 𝑗 + 1

2), in order to cancel the parity strings
in between those qubits. However, we also want the 𝑝-strings to have
(anti-)commutation relations like Majorana-pair operators. This is an in-
tegral ingredient to avoid long adjustments substrings 𝜅ℎaux. To that end,
we use a Hadamard-basis Auxiliary Qubit code with stabilizers

𝑝
(𝑖, 𝑗+ 1

2
)

dat ⊗𝑋(𝑖, 𝑗+ 1
2
) , (3.9)

which act on the data qubits at (𝑖, 𝑗) and (𝑖, 𝑗 + 1) as 𝑋- or 𝑌 -operators
and as 𝑍-operators on all other data qubits along the S-pattern in be-
tween them. The position of the auxiliary qubits and the choice of stabi-
lizers can be seen in Figure 3.6. Note that it is unnecessary for the aux-
iliary qubits to be connected to each other in the horizontal direction,
although it might come in handy in the process of initializing the code
space. As indicated in the figure, the Pauli terms on (𝑖, 𝑗) and (𝑖, 𝑗 + 1)
in the stabilizers of qubits (𝑖, 𝑗 + 1

2) are different for even and odd rows
numbers 𝑗. The sole reason for this decision is to render both terms of
the vertical hopping terms with real coefficients (3.2) of the same weight.
For every vertical connection (𝑖, 𝑗 + 1

2), the 𝑝-substrings of the stabilizers

3.5 Auxiliary qubit mappings 93

Z

Z

Y Z Z Z

X Z Z Z

X

Z Z Z X

Z Z Z Y

X

(1, 1)

(1, 1 + 1
2)

(1, ℓ2)
(ℓ1 − 1, ℓ2) (ℓ1, ℓ2)

𝑝
(4,4+ 1

2
)

dat ⊗ 𝑋(4,4+ 1
2
)

𝑝
(2,1+ 1

2
)

dat ⊗ 𝑋(2,1+ 1
2
)

Figure 3.6. Square lattice AQM, defined on a ℓ1×(2ℓ2−1) square lattice of qubits,
here ℓ1 = ℓ2 = 6. The gray qubits form the aux-register. Some qubits are labeled
with their coordinates (dotted lines), where the auxiliary qubits generally sit on
half-integer positions. The dashed lines do not couple qubits, but only indicate
the windings of the S-pattern of the underlying Jordan-Wigner transform. The
highlighted qubits and edges are two examples of stabilizers for odd and even
rows, respectively, labeled in bold.

(3.9) are defined as:

𝑝
(𝑖, 𝑗+ 1

2)

dat =

(︃
ℓ1⨂︁

𝑘=𝑖+1

𝑍(𝑘, 𝑗)

)︃(︃
𝑖+1⨂︁
𝑙=ℓ1

𝑍(𝑙, 𝑗+1)

)︃
⊗ 𝑌(𝑖, 𝑗) ⊗𝑋(𝑖, 𝑗+1) , for odd 𝑗,

(3.10)

=

(︃
1⨂︁

𝑘=𝑖−1

𝑍(𝑘, 𝑗)

)︃(︃
𝑖−1⨂︁
𝑙=1

𝑍(𝑙, 𝑗+1)

)︃
⊗𝑋(𝑖, 𝑗) ⊗ 𝑌(𝑖, 𝑗+1) , for even 𝑗.

(3.11)

Now we are going to give instructions on how to initialize the state |̃︀𝜙⟩
within 𝑂(ℓ1) depth, starting from a disentangled state |𝜙⟩dat ⊗ |0𝑟⟩aux.
First we apply Hadamard gates on all auxiliary qubits. In all rows with
odd [even] row numbers 𝑗, we then simultaneously apply the strings
(𝑌(ℓ1, 𝑗)⊗𝑋(ℓ1, 𝑗+1))

[︀
(𝑋(1, 𝑗) ⊗ 𝑌(1, 𝑗+1))

]︀
conditional on the qubit at (ℓ1, 𝑗+

1
2)
[︀
(1, 𝑗 + 1

2)
]︀
. Entangling these auxiliaries is easy as the stabilizers are

at the windings and therefore local, the operation can be performed in
𝑂(1) time steps. We then proceed by applying the strings

𝑋(ℓ1−𝑠+1, 𝑗) ⊗ 𝑌(ℓ1−𝑠+1, 𝑗+1) ⊗ 𝑌(ℓ1−𝑠, 𝑗) ⊗𝑋(ℓ1−𝑠+1, 𝑗+ 1
2
) ⊗𝑋(ℓ1−𝑠, 𝑗+1)[︁

𝑌(𝑠, 𝑗) ⊗𝑋(𝑠, 𝑗+1) ⊗𝑋(𝑠+1, 𝑗) ⊗𝑋(𝑠, 𝑗+ 1
2
) ⊗ 𝑌(𝑠+1, 𝑗+1)

]︁
(3.12)

94 Chapter 3. Embedding simulations with quantum codes

conditionally on the qubits (ℓ1 − 𝑠, 𝑗 + 1
2) [(𝑠 + 1, 𝑗 + 1

2)]. We do this
sequentially from 𝑠 = 1 to 𝑠 = (ℓ1 − 1), which means we require 𝑂(ℓ1)
time steps in total. This concludes the definition 𝑉aux dat, as can be ver-
ified considering its formal definition in Appendix 3.9.1, and where we
use that (3.12) is obtained from the multiplication of a 𝑝-string with the
closest stabilizer. A measurement-based approach for state preparation
is discussed in Section 3.7.
We are now going to describe the logical operators of the code space
defined. In Figure 3.7(a), the adjusted term ̃︀ℎaux dat to a string ℎdat =
(𝑋 ⊗ 𝑍 ⊗ · · · ⊗ 𝑍 ⊗ 𝑋) is presented. In Section 3.9.3.1 we will show
that for Pauli strings originating from hopping terms (3.2) between two
sites (𝑖, 𝑗) and (𝑘, 𝑙), it is sufficient to check for adjustments on only the
auxiliary qubits at (𝑖, 𝑗 ± 1

2) and (𝑘, 𝑙 ± 1
2). If 𝑗 and 𝑙 are different rows,

it follows that the string is not continuous, see Figure 3.7(a). We then
choose to multiply the adjusted term with the stabilizers involving the
auxiliary qubits on which we wish the string to cross rows. For verti-
cal hoppings of lattice Hamiltonians, this choice is trivial. For arbitrary
hoppings however it is not. Considering that we likely have several such
terms inside one Hamiltonian, we want commuting strings not to over-
lap so we would deform them (by multiplying other stabilizers) to go
around each other. This allows us to simulate them in parallel. In Fig-
ure 3.7, panels (b)-(d), different paths have been chosen for the logical
operator ̃︀ℎaux dat to run along. Only deformed by the multiplication of
stabilizers, all of those choices are in fact equivalent. Note that taking
a direct path, the resulting strings will always be of roughly the same
length, as every direct path connecting two nodes on a square lattice has
the same distance: the Manhattan distance.
In the following, we will generalize this mapping to yield an AQM-version
that requires fewer auxiliary qubits.

3.5.3 Sparse AQM

The sparse AQM is a modification of the square lattice AQM that allows
us to make a trade-off between the number of auxiliary qubits required
and the locality in the resulting strings. The latter directly influences the
performance of any quantum simulation algorithm.

In the square lattice AQM, each data qubit (of the interior) has two
nonlocal connections in the vertical direction. This can be regarded as

3.5 Auxiliary qubit mappings 95

(a)

X

Z

Z Z Z Z Z Z

Z Z Z Z Z Z

Z Z Z Z X

Z

(b)

Y

Z

X

Z

X

X Z Z Z X

Z

(c)

Z

Y Z Z Z X

X

Z

X

Z

X

Z

Z

(d)

Y

X X

X

X Z X

X

X X

Z

Figure 3.7. Depicted are logical representatives of the same hopping term
ℎdat = (𝑋 ⊗𝑍 ⊗ · · · ⊗𝑍 ⊗𝑋) spanning several rows and columns in the square
lattice. The depiction of all strings follows the explanation in Figure 3.2(b). (a)
Adjusted term (ℎdat⊗𝜅ℎ

aux), not yet multiplied with any stabilizer. Note that this
string is not connected on the lattice, and the windings on which the string is
disconnected are highlighted. (b)-(d) Pauli strings ̃︀ℎaux dat that are equivalent to
(ℎdat ⊗ 𝜅ℎ

aux) by multiplication with stabilizers. All those strings are continuous
on the connectivity graph. The strings in (b) and (d) have the same weight (and
the string in (c) is just slightly longer) which is determined by the Manhattan
distance of the string endpoints.

96 Chapter 3. Embedding simulations with quantum codes

quite wasteful, as a mapping with fewer vertical connections would work
in the same way while effectively reducing the number of auxiliary qubits.
Here we introduce the sparse AQM, in which vertical connections have
a certain distance from each other. Let us say vertical connections are al-
ways placed ℐ qubits apart. The periodicity ℐ thus becomes a parameter
of the mapping and is generally an integer number ℐ ∈ [ℓ1 − 1], where
the case ℐ = 1 reproduces the square lattice AQM. We have excluded
the case in which we have only one vertical connection between every
pair of rows, as it is covered by the E-type AQM already. For conve-
nience let us say that (ℓ1 − 1)/ℐ is an integer such that we can place ver-
tical connections at the right and left boundary of the grid without spac-
ing unequally. The connectivity graph that puts auxiliary qubits on half
integer positions along ℐ-spaced columns can be seen in Figure 3.8(a),
along with the typical stabilizers. In this mapping the auxiliary register
holds 𝑟 = (ℓ2 − 1) · (ℓ1−1

ℐ +1) qubits, which is somewhere in between the
square lattice and E-type AQM. For the initialization circuit, 𝑉aux dat, the
sequence (3.12) has to be changed into applying the strings(︂

𝑋(ℓ1−𝑠+ℐ, 𝑗+ 1
2
) ⊗ 𝑝

(ℓ1−𝑠+ℐ, 𝑗+ 1
2
)

dat

)︂
· 𝑝(ℓ1−𝑠, 𝑗+ 1

2
)

dat[︂(︂
𝑋(𝑠+1−ℐ, 𝑗+ 1

2
) ⊗ 𝑝

(𝑠+1−ℐ, 𝑗+ 1
2
)

dat

)︂
· 𝑝(𝑠+1, 𝑗+ 1

2
)

dat

]︂
(3.13)

conditionally on qubits (ℓ1 − 𝑠, 𝑗 + 1
2) [(𝑠+ 1, 𝑗 + 1

2)]
for 𝑠 = ℐ, 2ℐ, 3ℐ, . . . , ℓ1 − 1. All those strings in the sequence are of
weight 𝑂(ℐ), but there are just (ℓ1−1)/ℐ of them, which brings the depth
of the entire circuit to 𝑂(ℓ1).
Figure 3.8(b) shows some output strings of this mapping. While crossing
rows works like in the square lattice AQM, the sparsity of vertical con-
nections makes for a more limited choice on where the strings can run
along. As a consequence, hopping terms between modes with a horizon-
tal distance smaller than ℐ will transform into strings like in the E-type
mapping. The effect of sparsity on simulations of a lattice model is dis-
cussed in the following section.

Note that we have made two arbitrary design choices for the connec-
tivity graph of this mapping: firstly, we have chosen for the auxiliary
qubits to be situated in between rows of data qubits. In order to fit this
mapping to a compact square lattice, we can take the auxiliary qubits

3.6 Example: Fermi-Hubbard lattice model 97

from in between the rows and insert them into the rows, so e.g. take
them from (𝑖, 𝑗 + 1

2) and insert them at (𝑖 + 1
2 , 𝑗). Then, the auxiliaries

have to be connected to the data qubits (𝑖, 𝑗) and (𝑖 + 1, 𝑗), as well as
the auxiliary qubits at (𝑖 + 1

2 , 𝑗 ± 1). In the end, no qubits will be in the
spaces between rows - this makes the array more dense and we can map
it to a square lattice, but also requires us to skip auxiliary qubits in some
horizontal hopping strings. Secondly, we have decided to place auxil-
iary qubits inside the same column of every other vertical connection.
Alternatively, the vertical connections could be arranged in a brickwork
pattern in order to minimize the weight of the adjustments 𝜅ℎaux, but then
vertical connections along a straight line are no longer possible.

3.6 Example: Fermi-Hubbard lattice model

3.6.1 Second quantization and Jordan-Wigner transform

Here we demonstrate the use of AQMs on the Fermi-Hubbard model. In
this model, we describe spin-12 fermions hopping on a square lattice, with
a repulsion term whenever spin-up and -down particles are present on
the same site. In the following, we will describe the Hamiltonian in both,
second quantization and in terms of Pauli strings after Jordan-Wigner
transform. Investigating the shortcomings of this mapping with respect
to circuit depth will be the motivation for the application of AQMs in
the next step. Let us consider an (𝐿 × 𝐿)-site square lattice of spatial
sites populated by spin-(1/2) fermions: as every such site hosts a spin-
up and -down mode, a total of 𝑁 = 2𝐿2 qubits are minimally required.
For convenience, the spin-up and -down modes of the fermionic site with
the physical location (𝑥, 𝑦) shall be placed at the coordinates (2𝑥, 𝑦) and
(2𝑥 − 1, 𝑦) in the two-dimensional embedding. This means the spin-
partners are horizontal neighbors, which is advantageous for the Jordan-
Wigner transform (and square lattice AQM). The Fermi-Hubbard Hamil-

98 Chapter 3. Embedding simulations with quantum codes

X Z Z Z Z Z

Y Z Z Z Z Z

X

Z Z Y

Z Z X

X

Z

Z

Z

Z

Y Z Y X

X Z Y Z

X X Z Y

X Y

X

X

Z

Y

(c)

(b)

(a)
(d)

X

X

Y

X

Figure 3.8. Sparse AQM with a periodicity of three (ℐ = 3). Top: Structure
and stabilizers. The gray qubits are auxiliaries, placed sparsely on half-integer
positions, connecting different rows. We depict one of the stabilizers in an odd
and an even row, respectively. Bottom: Logical equivalents ̃︀ℎaux dat of various
strings ℎdat = (𝑋 ⊗ 𝑍 ⊗ · · · ⊗ 𝑍 ⊗ 𝑋), that originate from vertical hopping
terms. (a) A vertical hopping along a vertical connection. The mapping yields
the same (𝑍 ⊗ 𝑍 ⊗ 𝑌)-string as we would expect from the square lattice AQM.
(b) The string is connecting (3, 3) and (3, 4). This example shows the virtue
of the sparse AQM: the parity string takes a shortcut along the closest vertical
connection. (c) Here we connect the qubits on (6, 1) and (6, 2) from the other
direction: over the vertical connection between (4, 1) and (4, 2). (d) A next-
nearest-neighbor vertical hopping term between (9, 1) and (9, 3).

tonian is defined as

horizontal hoppings⏞ ⏟ ∑︁
(𝑖,𝑗)

(︁
𝑡↔𝑖𝑗 𝑐†(𝑖, 𝑗)𝑐(𝑖+2, 𝑗) + h.c.

)︁
+

vertical hoppings⏞ ⏟ ∑︁
(𝑖, 𝑗)

(︁
𝑡
↕
𝑖𝑗 𝑐

†
(𝑖, 𝑗)𝑐(𝑖, 𝑗+1) + h.c.

)︁
+
∑︁
(𝑖, 𝑗)

𝜖𝑖𝑗 𝑐
†
(𝑖, 𝑗)𝑐(𝑖, 𝑗)⏟ ⏞

on-site detunings

+
∑︁
(2𝑖, 𝑗)

𝑈𝑖𝑗 𝑐
†
(2𝑖, 𝑗)𝑐(2𝑖, 𝑗)𝑐

†
(2𝑖−1, 𝑗)𝑐(2𝑖−1, 𝑗)⏟ ⏞

Hubbard interactions

, (3.14)

3.6 Example: Fermi-Hubbard lattice model 99

where 𝑡↔𝑖𝑗 , 𝑡↕𝑖𝑗 , 𝜖𝑖𝑗 and 𝑈𝑖𝑗 are real parameters. In this particular exam-
ple sums run over all possible coordinates (𝑖, 𝑗), (2𝑖, 𝑗) respectively, but
implement open boundary conditions. With an S-pattern Jordan-Wigner
transform, the Hamiltonian can now be mapped onto an (2𝐿×𝐿) square
lattice of qubits:

𝐻 =
∑︁
(𝑖, 𝑗)

𝑡↔𝑖𝑗
2

(︀
𝑋(𝑖, 𝑗) ⊗ 𝑍(𝑖+1, 𝑗) ⊗𝑋(𝑖+2, 𝑗) + 𝑌(𝑖, 𝑗) ⊗ 𝑍(𝑖+1, 𝑗) ⊗ 𝑌(𝑖+2, 𝑗)

)︀
+

∑︁
(𝑖, 𝑗), odd 𝑗

𝑡
↕
𝑖𝑗

2

(︃
2𝐿⨂︁

𝑘=𝑖+1

𝑍(𝑘, 𝑗)

)︃(︃
𝑖+1⨂︁
𝑙=2𝐿

𝑍(𝑙, 𝑗+1)

)︃(︀
𝑋(𝑖, 𝑗) ⊗𝑋(𝑖, 𝑗+1) + 𝑌(𝑖, 𝑗) ⊗ 𝑌(𝑖, 𝑗+1)

)︀
+

∑︁
(𝑖, 𝑗), even 𝑗

𝑡
↕
𝑖𝑗

2

(︃
1⨂︁

𝑘=𝑖−1

𝑍(𝑘, 𝑗)

)︃(︃
𝑖−1⨂︁
𝑙=1

𝑍(𝑙, 𝑗+1)

)︃(︀
𝑋(𝑖, 𝑗) ⊗𝑋(𝑖, 𝑗+1) + 𝑌(𝑖, 𝑗) ⊗ 𝑌(𝑖, 𝑗+1)

)︀
+
∑︁
(𝑖, 𝑗)

𝜖𝑖𝑗
2

(︀
I− 𝑍(𝑖, 𝑗)

)︀
+
∑︁
(2𝑖, 𝑗)

𝑈𝑖𝑗

4

(︀
I− 𝑍(2𝑖, 𝑗)

)︀ (︀
I− 𝑍(2𝑖−1, 𝑗)

)︀
. (3.15)

Let us discuss the terms of this Hamiltonian, and finally arrive at the
shortcomings of the mapping applied. We note that the vertical hopping
terms are different with respect to even and odd columns, due to differ-
ent directions of the S-pattern. All terms but the vertical hoppings have a
constant weight and can be simulated in 𝑂(1) time: only the latter can as-
sume a length of up to 4𝐿. Unfortunately, we have 𝑂(𝐿) terms of weight
𝑂(𝐿) per row pair. Although these strings commute, they do overlap,
which means we cannot simulate them in parallel: if no cancellations are
possible, then the entire algorithm has an algorithmic depth of 𝑂(𝐿2), so
it scales with the lattice area. In this case the simulation time and the
gate count cannot be better than being proportional to the total number
of qubits, which renders increasing lattice size expensive. If the simula-
tion algorithm allows us to cancel substrings of consecutively simulated
Pauli strings (see for instance [39]), the algorithmic depth can improve to
up to 𝑂(𝐿). To achieve even better scalings, we will employ the square
lattice AQM and sparse AQM on (3.14). A detailed consideration of the
E-type AQM is omitted, as it does not improve upon the scaling in case
of lattice models.

3.6.2 Square lattice and sparse AQM

With the square lattice AQM, the Fermi-Hubbard Hamiltonian can be
simulated in constant time, neglecting the algorithmic depth necessary
to initialize the code space, which is 𝑂(𝐿) or 𝑂(1) depending on the ex-

100 Chapter 3. Embedding simulations with quantum codes

act method used. We will now describe how the square lattice AQM
modifies the terms of the Hamiltonian (3.15), after which we will discuss
the sparse AQM in that regard.

We now use the square lattice AQM to render the vertical hopping
terms local: after adjusting each term of (3.15) by ℎdat → ℎdat ⊗ 𝜅ℎaux,
the multiplication of adjusted hopping terms between (𝑖, 𝑗) and (𝑖, 𝑗 +

1) with stabilizers (𝑝
(𝑖, 𝑗+ 1

2
)

dat ⊗ 𝑋(𝑖, 𝑗+ 1
2
)) is resulting in local operators of

weight 3. While the hopping terms in (3.14) only have real coefficients,
the operator weight of more general vertical hopping terms varies, but
remains 3 on average. For complex hopping amplitudes 𝑡↕𝑖𝑗 , we find

𝑡
↕
𝑖𝑗 𝑐

†
(𝑖, 𝑗)𝑐(𝑖, 𝑗+1) + (𝑡

↕
𝑖𝑗)

*
𝑐†(𝑖, 𝑗+1)𝑐(𝑖, 𝑗) =̂

(−1)𝑗

2
Re(𝑡

↕
𝑖𝑗)
(︁
𝑍(𝑖, 𝑗− 1

2
) ⊗ 𝑍(𝑖, 𝑗) ⊗ 𝑌(𝑖, 𝑗+ 1

2
)

)︁
− (−1)𝑗

2
Re(𝑡

↕
𝑖𝑗)
(︁
𝑌(𝑖, 𝑗+ 1

2
) ⊗ 𝑍(𝑖, 𝑗+1) ⊗ 𝑍(𝑖, 𝑗+ 3

2
)

)︁
+

(−1)𝑗

2
Im(𝑡

↕
𝑖𝑗)
(︁
𝑍(𝑖, 𝑗− 1

2
) ⊗ 𝑍(𝑖, 𝑗) ⊗𝑋(𝑖, 𝑗+ 1

2
) ⊗ 𝑍(𝑖, 𝑗+1) ⊗ 𝑍(𝑖, 𝑗+ 3

2
)

)︁
− (−1)𝑗

2
Im(𝑡

↕
𝑖𝑗) 𝑋(𝑖, 𝑗+ 1

2
) . (3.16)

The improvements that we make on vertical terms come at the cost of
the adjustments 𝜅ℎaux to other terms in (3.15). However, as already men-
tioned, the structure of the strings {𝑝𝑖dat} guarantees to keep those other
terms local. For horizontal hopping terms that are (like the vertical strings)
of the form ℎdat = (A𝑖 ⊗ 𝑍𝑖+1 ⊗ ...⊗ 𝑍𝑗−1 ⊗ B𝑗), with A,B ∈ {𝑋, 𝑌 }, the
substrings 𝜅ℎaux invoke 𝑍-operators at the end of the strings which makes
for an additional weight of 2. On the other hand, if A,B = 𝑍, 𝜅ℎaux fea-
tures 𝑍-operators along the entire string. This means that while single 𝑍-
operators are in this way adjusted to 𝑍(𝑖, 𝑗) ↦→ 𝑍(𝑖, 𝑗− 1

2
) ⊗𝑍(𝑖, 𝑗) ⊗𝑍(𝑖, 𝑗+ 1

2
),

the two-qubit Hubbard terms gain 4 qubits worth of weight.
With the square lattice AQM, we have thus managed to reduce the weight
of every term to a constant independent of the system size. A list of rel-
evant terms, that compares Jordan-Wigner and square lattice AQM can
be found in Tables 3.2 and 3.3. Having achieved locality of every Hamil-
tonian term, we can trotterize ̃︀𝐻aux dat by for instance applying all hor-
izontal hopping terms in 𝑂(1) time, then continue with a time slice in

3.6 Example: Fermi-Hubbard lattice model 101

which we simulate all vertical hoppings, follow-up with all on-site in-
teractions and Hubbard terms, and so on. Alternatively, one may apply
Hamiltonian simulation strategies to simulate patches of the lattice more
accurately and then interweave these patches with the HHKL algorithm,
[68].

With the square lattice AQM, we have made the simulation scalable in
terms of algorithmic depth and gate count. The requirement on the qubit
number has however almost doubled. In order to be more economic with
the number of auxiliary qubits, we consider the sparse AQM, which will
help us to maximize the size of the simulated lattice on a fixed qubit bud-
get. Placing vertical connections ℐ qubits apart, the required number of
auxiliary qubits is 𝑟 =

(︁
2𝐿2−2𝐿+1

ℐ + 𝐿− 1
)︁

. The weight of vertical hop-
ping strings now largely depend upon their distance to the next vertical
connection: let us say there is a vertical connection across (𝑖, 𝑗 + 1

2), then
the vertical hoppings between (𝑖, 𝑗) and (𝑖, 𝑗+1) are of (constant) weight
3, like in the square lattice AQM, while the vertical hoppings of modes to
their left and right rather resemble the strings of E-type AQM. The worst
case is certainly met for vertical hoppings in the middle of two vertical
connections, so between (𝑖± 1

2ℐ, 𝑗) and (𝑖± 1
2ℐ, 𝑗 +1). Thus per vertical

connection, there are 𝑂(ℐ) strings of weight 𝑂(ℐ) overlapping with one
another. The simulation time is thus 𝑂(ℐ) if we allow cancellations and
𝑂(ℐ2) in the general case.

102 Chapter 3. Embedding simulations with quantum codes

Jordan-Wigner transform Square lattice AQM

X Z Z Z Z

X Z Z Z Z

Z

Y

Z

(︁⨂︀2𝐿
𝑘=𝑖+1 𝑍(𝑘, 𝑗)

)︁(︁⨂︀𝑖+1
𝑙=2𝐿 𝑍(𝑙, 𝑗)

)︁
⊗ 𝑋(𝑖, 𝑗) ⊗𝑋(𝑖, 𝑗+1)

↦→ −
(︁
𝑍(𝑖, 𝑗− 1

2
) ⊗ 𝑍(𝑖, 𝑗) ⊗ 𝑌(𝑖, 𝑗+ 1

2
)

)︁

Y Z Z Z Z

Y Z Z Z Z Z

Y

Z

(︁⨂︀2𝐿
𝑘=𝑖+1 𝑍(𝑘, 𝑗)

)︁(︁⨂︀𝑖+1
𝑙=2𝐿 𝑍(𝑙, 𝑗)

)︁
⊗ 𝑌(𝑖, 𝑗) ⊗ 𝑌(𝑖, 𝑗+1)

↦→ 𝑌(𝑖, 𝑗+ 1
2
) ⊗ 𝑍(𝑖, 𝑗+1) ⊗ 𝑍(𝑖, 𝑗+ 3

2
)

Table 3.2. Comparing the Jordan-Wigner transform (3.15) to square lattice AQM
when applied to the Hubbard model (3.15). In this table we present vertical hop-
ping terms – the strings of which the nonlocal part is canceled. We generally
compare Jordan-Wigner strings, ℎdat (left), to their logical equivalents ̃︀ℎaux dat
(right) in the AQM. The strings are depicted geometrically (following the expla-
nation of Figure 3.2(b)) and symbolically (below the drawings). Note that we
display hoppings between odd rows 𝑗 and even rows 𝑗 + 1 only. For 𝑗 even, the
two ̃︀ℎaux dat-terms are exchanged.

3.6.3 VCT and BKSF

The Fermi-Hubbard model can also be made local by the Verstraete-Cirac
transform or Superfast simulation. In this section, we will compare the
weights of Pauli strings appearing in those cases to the strings result-
ing from transforming the Hubbard model with the square lattice AQM.
We have compiled a list of the operator weights in Table 3.4, and the
interested reader may find a visual representation of the strings from

3.6 Example: Fermi-Hubbard lattice model 103

Jordan-Wigner transform Square lattice AQM

X Z X X Z X

Z

Z

𝑋(𝑖,𝑗) ⊗ 𝑍(𝑖+1, 𝑗) ⊗𝑋(𝑖+2, 𝑗) ↦→
𝑍(𝑖, 𝑗− 1

2
) ⊗𝑋(𝑖, 𝑗) ⊗ 𝑍(𝑖+1, 𝑗)

⊗ 𝑋(𝑖+2, 𝑗) ⊗ 𝑍(𝑖+2, 𝑗+ 1
2
)

Y Z Y Y Z Y

Z

Z

𝑌(𝑖,𝑗) ⊗ 𝑍(𝑖+1, 𝑗) ⊗ 𝑌(𝑖+2, 𝑗) ↦→
𝑍(𝑖+2, 𝑗− 1

2
) ⊗𝑋(𝑖, 𝑗) ⊗ 𝑍(𝑖+1, 𝑗)

⊗ 𝑋(𝑖+2, 𝑗) ⊗ 𝑍(𝑖, 𝑗+ 1
2
)

Z Z Z

Z

Z

Z

Z

Z

𝑍(𝑖,𝑗) ⊗ 𝑍(𝑖+1 𝑗) ↦→
⨂︀

𝑘∈{0,1}

(︁
𝑍(𝑖+𝑘, 𝑗− 1

2
)

⊗𝑍(𝑖+𝑘,𝑗) ⊗ 𝑍(𝑖+𝑘, 𝑗+ 1
2
)

)︁

Table 3.3. Comparing the Jordan-Wigner transform (3.15) to square lattice AQM
when applied to the Hubbard model (3.15). In this table, we present the hori-
zontal hopping and Hubbard terms – all the Pauli strings that gain in weight.
However, the addition in weight is constant and local, as shown in 3.9.3. We
generally compare Jordan-Wigner strings, ℎdat (left), to their logical equivalents̃︀ℎaux dat (right) in the AQM. The strings are depicted geometrically (following
the explanation of Figure 3.2(b)) and symbolically (below the drawings). Not
on display are the on-site terms and single-qubit contributions from Hubbard
interactions, 𝑍(𝑖, 𝑗), which are adjusted into (𝑍(𝑖, 𝑗− 1

2)
⊗ 𝑍(𝑖, 𝑗) ⊗ 𝑍(𝑖, 𝑗+ 1

2)
).

104 Chapter 3. Embedding simulations with quantum codes

BKSF and VCT in Appendix 3.9.3. Let us briefly discuss how the weights
of the terms come to be. The VCT and AQM are quite similar in the
sense that both concatenate the Jordan-Wigner transform with a quan-
tum code. However, the data-qubit substrings of the VCT stabilizers just
consist of 𝑍-strings, which has two consequences: firstly, the stabilizers
commute with diagonal terms like on-site detunings and Hubbard inter-
actions, leaving them unadjusted and without any gain of weight. With
this feature, the VCT distinguished itself from the other mapping in pro-
ducing strings of the lowest weight. Secondly, while in the AQM a hop-
ping string would just be adjusted on its end points, adjustments have
to be made all along the strings in the VCT: fortunately, the auxiliary-
qubit substring of the VCT stabilizers cancel these adjustments, causing
this mapping to have shorter strings in the vertical direction (see Section
3.7). We thus place spin-up and -down modes of the same spatial site
vertically adjacent, like we have placed them horizontally adjacent in the
AQM. This leads to the weights of horizontal and vertical hoppings to
be interchanged between VCT and AQM (on average). The stabilizers of
both mappings can be made local with a weight of 6 (and weight-3 sta-
bilizers at the boundaries), which is also the weight of stabilizers in the
BKSF. The BKSF, defined on the least amount of qubits, has surprisingly
the longest strings. The reason for this is that logical 𝑍-operators have
weight 4 - a consequence of the square lattice connectivity. With this, the
BKSF has also the largest variety of weights in hopping strings, while
in the VCT, there is no variety at all among strings in the same direction.
While the VCT appears to be the favorable option when comparing string
lengths (followed by the AQM), it also uses the most qubits, as becomes
apparent in Appendix 3.9.3.

3.7 Comparison of AQM, VCT and BKSF

In this section, we will compare the Auxiliary Qubit Mapping, Super-
fast simulation and Verstraete-Cirac transform. Not only can the latter
two be used to simulate the Hubbard model with local interactions, but
we can also give them the Manhattan-distance property to align them
with our notions of a good mapping for square lattices of qubits. This
is done in Appendix 3.9.3. The reader completely unfamiliar with those
mappings may also find an introduction reviewing the original propos-
als [25, 26]. Let us here compare AQM, VCT and BKSF regarding state

3.7 Comparison of AQM, VCT and BKSF 105

Square lattice
AQM VCT BKSF

Stabilizer (interior) 6 6 6
Vertical hoppings

𝑋𝑋 |𝑌 𝑌 |𝑋𝑌 |𝑌 𝑋
3|3|5|1 5|5|5|5 2|6|5|4

Horizontal hoppings
𝑋𝑋 |𝑌 𝑌 |𝑋𝑌 |𝑌 𝑋

5|5|5|5 3|3|3|3 8|4|5|7

Two-qubit Hubbard terms 6 2 6 + 2
On-site terms 3 1 4

Table 3.4. String lengths of the Fermi-Hubbard model transformed by all three
mappings. We compare the weight of the Pauli strings, that originate from the
square lattice AQM, the Verstraete-Cirac transform and the Superfast simula-
tion. For hopping terms, we consider the strings ℎdat = (A𝑖⊗𝑍𝑖+1⊗· · ·⊗𝑍𝑗−1⊗
B𝑗), with all variations of A,B ∈ {𝑋, 𝑌 }. For vertical hoppings (in the AQM)
we fix the case of 𝑗 being in an even row. Two-qubit Hubbard terms are of the
form ℎdat = (𝑍 ⊗ 𝑍), and on-site terms are singular 𝑍-operators. In the BKSF
it is required to skip a qubit, which we penalize with an additional cost of two
gates. In conclusion, the Verstraete-Cirac transform seems to exhibit the short-
est strings, with the weights of the hopping terms being the same for all A𝑖, B𝑗 .
Regarding string lengths, the square lattice AQM is in between the Verstraete-
Cirac transform and the Superfast simulation, where the latter has the longest
strings and largest variations in length.

106 Chapter 3. Embedding simulations with quantum codes

preparation, qubit requirements, Manhattan-distance property and the
possibility of error mitigation. Afterwards, we can conclude and identify
cases in which each mapping is advantageous.

State preparation - As we have shown, there is a unitary quantum cir-
cuit for the AQM to elevate an 𝑁 -qubit state to its equivalent in the logi-
cal basis. The VCT on the other hand has a logical basis that is entangled
in a more complicated way, such that we cannot find a unitary quantum
circuit of the same simplicity. Although the BKSF has no clear distinc-
tion between data and auxiliary qubits, there is a set of 𝑁 − 1 qubits that
is only relevant for an S-pattern and one could argue that only vertical
connections add the remaining qubits and introduce stabilizers. As each
connection is implemented by just one entangled qubit, we believe that
there might be a unitary circuit as simple as 𝑉aux dat. As of now, we would
have to resort to syndrome measurements to initialize the code space of
VCT and BKSF. By syndrome measurements, we mean the measurement
and readout of a generating set of stabilizers and correct for outcomes
inconsistent with the code space. While measurement and readout-times
of state-of-the-art quantum devices might make this strategy challenging
at present, we can at least arrange for local stabilizers such that the time
overhead per measurement cycle is constant. In Figure 3.9(c)-(d) the local
stabilizer tilings of VCT and BKSF are shown. A planar tiling for stabi-
lizers of square lattice and sparse AQM follows from multiplication of
adjacent stabilizer generators

(︂
𝑝
(𝑖,𝑗+ 1

2
)

dat ⊗𝑋(𝑖, 𝑗+ 1
2
)

)︂
·
(︂
𝑝
(𝑖+1, 𝑗+ 1

2
)

dat ⊗𝑋(𝑖+1, 𝑗+ 1
2
)

)︂
and(︂

𝑝
(𝑖, 𝑗+ 1

2
)

dat ⊗𝑋(𝑖, 𝑗+ 1
2
)

)︂
·
(︂
𝑝
(𝑖+ℐ, 𝑗+ 1

2
)

dat ⊗𝑋(𝑖+ℐ, 𝑗+ 1
2
)

)︂
, (3.17)

excluding the stabilizers at the windings, which are local already. The
result is a repeating pattern of tiles with ears at the windings, shown
in Figure 3.9(a)-(b). Note that we have implicitly used these tilings al-
ready in the respective definitions of 𝑉aux dat. While with the unitary
quantum circuit we can prepare the state on only the data qubits be-
fore encoding it into the logical basis, the same thing seems impossible
with syndrome measurements. Even if the protective operations would
not change the data-qubit state, there is still an ambiguity in the logical

3.7 Comparison of AQM, VCT and BKSF 107

bases of VCT and AQM, that we now want to discuss. As can be seen
in Appendix 3.9.1, the quantum code layer included in these mappings
transform any computational basis state |𝜔⟩dat into a logical basis state[︁∏︀

𝑖∈[𝑟]
1√
2
(I+ 𝑆𝑖

aux dat)
]︁
|𝜔⟩dat ⊗ |𝜒⟩aux, where {𝑆𝑖

aux dat}𝑖 is a generating

set of stabilizers and 𝜒 = (𝜒1, 𝜒2, ... , 𝜒𝑟)
⊤ ∈ Z⊗𝑟

2 is a constant binary vec-
tor. While in the VCT, the set of stabilizers limit (not constrain) the choice
of 𝜒, (square lattice and sparse) AQMs are properly stabilized for all pos-
sible 𝜒 ∈ Z⊗𝑟

2 . However, for both mappings the (signs of) adjustments
made to operators ℎdat depend on 𝜒. For AQMs we rely on 𝜒 = (0)⊗𝑟

for the substrings 𝜅ℎaux to be free of signs. Obviously, for any basis with
an unintended 𝜒-shift, the logical Hamiltonian ̃︀𝐻aux dat will not replicate
the action of 𝐻dat. As we cannot detect this 𝜒-offset, we have to ignore it,
e.g. pretend that |𝜒⟩ = |0𝑟⟩ in AQMs: this effectively means that the state
|̃︀𝜙⟩aux dat, which is created with an unknown 𝜒-shift in the aux-register,
becomes a state [

∏︀
𝑖 (𝑝

𝑖
dat)

𝜒𝑖] |̃︀𝜙⟩aux dat without shift, a state we have not
intended to prepare. To combat ambiguities in all mappings, the system
has to be constrained to the correct subspace before any state preparation
can happen. This means we have to measure not only the stabilizers, but
also logical operators until all degrees of freedom are eliminated. Apart
form the tiles, we could measure all logical 𝑍-operators, i.e. all logical
encodings of (2𝑐†𝑗𝑐𝑗 − 1). When all measurement outcomes yield ‘+1’,

we have prepared the logical zero state, |̃︁0𝑁 ⟩aux dat. From there on, we
directly prepare |̃︀𝜙⟩aux dat by e.g. Givens rotations [30, 69] using logical
operators. This strategy appears to be the only option for measurement-
based preparation of states in any mapping, although practically one will
certainly want to perform only one cycle of measurements form the out-
come of which the logical state and the (signs of the) stabilizers are de-
fined. For the modest E-type AQM on the other hand, neither syndrome
measurements nor unitary quantum circuits are necessary to prepare a
logical state. Due to the fact that its logical basis is in the computational
basis, the product state (|0𝑁 ⟩dat ⊗ |0𝑟⟩aux) is in fact the logical zero state,
even though the two registers are obviously not entangled. Initializing
all qubits in zero at first is thus a sufficient preliminary to prepare the
state |̃︀𝜙⟩aux dat with logical operators.

Qubit requirements - For all mappings we find the highest number of
qubits they require to be ≤ 2𝑁 , in fact only the VCT demands exactly

108 Chapter 3. Embedding simulations with quantum codes

(a)

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y
Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y
Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y
Y

X

X

X

X

Y

Y

X

X

X

X

Y
Y

X

X

Y

X

X

X

X

Y

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X
X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

X

X

Y

Y

X

X

(b)

Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

Y
Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y
Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

X

Y

Y

X

X

Y

X

X

Y

X

X
X

X

Y

X

X

Y

Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

Y
Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y
Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y

Y

X

X

Z

Z

X

X

Y

(c)

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Z
Z

Y
Y

X
X

Y
Y

X
X

Y
Y

X
X

Y
Y

X
X

Y
Y

X
X

Y
Y X
X

Z

Z

Z

Z

Z Z Z Z

(d)

Y

Y

Z

Z

Y

Y

X

X

Z

Z

X

X

Y

Y

Z

Z

Y

Y

X

X

Z

Z

X

X

Y

Y

Z

Z

Y

Y

X

X

Z

Z

X

X

Y

Y

Z

Z

Y

Y

X

X

Z

Z

X

X

Y

Y

Z

Z

Y

Y

X

X

Z

Z

X

X

Y

Y

Z

Z

Y

Y

X

X

Z

Z

X

X

Y

Y

Z

Z

Y

Y

X

X

Z

Z

X

X

Y

Y

Z

Z

Y

Y

X Z

X

X Z

X

X Z

X

YZ

Y

YZ

Y

X Z X X Z X

X Z X X Z X X Z X

X Z X

Y

Y

Z

Z

Y

Y

Y

Y

Z

Z

Y

Y

Y

Y

Z

Z

Y

Y

Y

Y

Z

Z

Y

Y

Y

Y

Z

Z

Y

Y

X

X

Z

Z

X

X

X

X

Z

Z

X

X

X

X

Z

Z

X

X

X

X

Z

Z

X

X

X

X

Z

Z

X

X

Figure 3.9. Tilings of local stabilizers for square lattice and sparse AQMs,
BKSF and VCT. Every tile represents a local stabilizer involving qubits along
its perimeter. Inside the tiles, X, Y and Z indicate the Pauli operators that ev-
ery qubit contributes to the corresponding stabilizer. We have shaded the tiles
to as a visual aid for error mitigation. (a) Square lattice AQM with dimensions
ℓ1 = ℓ2 = 6. The stabilizers of all tiles are the same, except at the windings.
(b) Sparse AQM with dimensions ℓ1 = 7, ℓ2 = 6 and ℐ = 2. (c) BKSF of a
ℓ1 = ℓ2 = 6 fermionic lattice. The tiling is a three-colorable brickwork pattern.
(d) VCT with dimensions ℓ1 = ℓ2 = 6. The stabilizer tiles are alternating in
a checkerboard pattern, that resembles the rotated surface code except for the
𝑍-operators on the data qubits.

3.7 Comparison of AQM, VCT and BKSF 109

2𝑁 qubits, the square lattice AQM on the other hand requires ℓ1 qubits
less, and the BKSF requires even ℓ2 less than the AQM. As for the AQM,
we can think about reducing the amount of qubits with sparse AQMs.
For the VCT such a modification is discussed in Appendix 3.9.3. As the
qubits added to the VCT are generally added into the rows, its sparse ver-
sion can be mapped back to a compact square lattice more easily than the
AQM. In the BKSF, we can also make vertical connections more sparse,
but as its layout is rotated, mapping the sparse BKSF to a compact square
lattice requires changes in the connectivity graph, which will influence
the continuity of resulting strings.

Manhattan-distance property - With all mappings we manage to trans-
form long-range hopping terms of a ℓ1×ℓ2 fermionic lattice to continuous
Pauli strings on a qubit lattice, that can be deformed by the multiplica-
tion of stabilizers. For all mappings, the shortest version of those strings
involve a number of qubits scaling with the Manhattan distance of the
fermionic modes on their lattice, but their exact weight differs from map-
ping to mapping - and is an interesting figure of merit. Let us say that on
the fermionic lattice we have a hopping term

𝑡 𝑐†(𝑖, 𝑗)𝑐(𝑖+𝑥, 𝑗+𝑦) + 𝑡* 𝑐†(𝑖+𝑥, 𝑗+𝑦)𝑐(𝑖, 𝑗) , (3.18)

where 𝑡 and 𝑡* is a complex coefficient and its Hermitian conjugate. Here
the shortest path connecting those modes is over 𝑥 modes in horizontal
and 𝑦 in vertical direction, the Manhattan distance is 𝑥+𝑦. Transforming
a string with such a distance by one of the three mappings, the connecting
string is supported on roughly 𝑂(𝑥+ 𝑦) qubits, but its operator weight is
not going to be 𝑥+ 𝑦 exactly. In the case of the AQM, we will have twice
the number of qubits per mode in the vertical direction, which means
that overcoming a vertical distance is more difficult, the string has the
weight 𝑥 + 2𝑦. In the VCT, the situation is exactly opposite and the hor-
izontal distance is more costly to overcome due to the adjustment costs
of the auxiliary modes: the operator weight of the connecting string is
2𝑥 + 𝑦. For the BKSF, we find that horizontal and vertical paths are of
equal weight, unfortunately the cost is doubled, so 2(𝑥 + 𝑦). Note that
different versions of the BKSF exist, where the one version that yields
these results is similar to the mapping in [54] - others produce strings of
higher weight, for some they are even disconnected.
Note that so far we have omitted the discussion of constant weight over-

110 Chapter 3. Embedding simulations with quantum codes

heads, that can arise at the end points of each string, and as such they
are just relevant for small Manhattan distances. Around the modes la-
beled (𝑖, 𝑗) and (𝑖+ 𝑥, 𝑗 + 𝑦), BKSF and AQM can yield additional terms
that matter predominantly for the local hoppings. As discussed, strings
in the AQM can have one additional 𝑍-operator around each end-mode,
due to costs of the adjustments 𝜅ℎaux. In the BKSF, the strings might differ
by up to one logical 𝑍-operator on each end, meaning there can be an ad-
ditional cost of up to three (physical) 𝑍-operators per end. Most notably,
the VCT does not have such additional costs making it attractive for the
simulation of lattice models, where 𝑥+ 𝑦 is small.

Error mitigation - The reduction of the algorithmic depth, that all three
mappings aim at, is the main tool in the reduction of noise. However,
as the mappings can be regarded as stabilizer codes, it is fair to ask if
they can be used for mitigating the effect of noise, as has recently been
proposed on a small scale [70, 71]. Intriguingly, the AQM and VCT have
local stabilizer tilings that resemble the stabilizers of surface code [17].
However, in contrast to those error correction codes, we cannot achieve
topological protection against logical errors. For the planar code of the
VCT to correct errors, we necessarily would need the data qubits (the
qubits with Z on them in Figure 3.9(d)) to be error free, as 𝑋- and 𝑌 - er-
rors would masquerade syndromes of errors on the auxiliary qubits. Fur-
thermore, the code cannot detect 𝑍-errors on the data qubits, and even
increases their 𝑍-error rate, as syndromes which are stabilizers in surface
code differ by some 𝑍-operators from the stabilizers of the VCT. A similar
statement can be made for the square lattice AQM, where the auxiliary
qubits would have to be perfect, and their 𝑋-error rate is increased, see
Figure 3.9 (a). Using fewer auxiliary qubits, the square lattice AQM has
fewer ears to mitigate errors with (as compared to Figure 3.9(d)), they
could however be added with more auxiliary qubits encoding the cor-
responding horizontal (local) connections. Unlike the surface code, the
BKSF (Figure 3.9(c)) has a three-colorable brickwork-pattern in its tiling,
that theoretically allows to detect all single-Pauli errors, but like before
some weight-two errors tend to masquerade themselves and go unde-
tected when too close together. Although none of the codes allow for
topological error correction, they exhibit a limited potential for error mit-
igation, in which one might be able to catch some errors if the rate is low
enough. Whether this is feasible is left to be decided.

3.8 Conclusion 111

In conclusion, although the BKSF has the longest operators, it also
requires the fewest qubits. As it is defined on a rotated square lattice,
its shape might be the perfect fit for actual devices, as a patch of rotated
surface code (including measurement qubits) is a rhombus. The BKSF is
probably the most feasible candidate for error mitigation strategies. With
its output strings having the lowest weight of all three mappings, the
VCT is perhaps the most sophisticated. However, its theoretical back-
bone is also the most complicated – when using the VCT one would
probably have to adhere to the surface-code-like structure of the origi-
nal proposal. With the weight of the output strings in between the two
mappings, AQMs are a compromise for the cases that demand more flex-
ibility. The most unique feature of the AQMs is that we can just use a
unitary circuit to promote a data-qubit state into its logical equivalent
and if necessary even release it from the auxiliary qubits. The stabilizer
state can also be manipulated during the simulation, e.g. accounting
for swaps or basis transforms. The state preparation with 𝑉aux dat might
make this mapping even interesting for NISQ devices [4], especially for
cloud-based quantum computing.

3.8 Conclusion

In this chapter, we have developed a new class of fermion-to-qubit map-
pings that truly generalize the Jordan-Wigner transform to two dimen-
sions. Moreover, this class can be regarded as a quantum code layer
on top of the mapping provided by the Jordan-Wigner transform, and
with the unitary 𝑉

(†)
aux dat we find a means to encode (decode) quantum

states in the code layer. The quantum code is shown to require a cer-
tain number of auxiliary qubits that is close to 𝑁 , but this number is
not strict. In fact, sparse mappings with a reduced number of auxil-
iary qubits can achieve similar results, which might be of great practical
advantage. More generally, there is a statement that we can make not
just about the Auxiliary Qubit Mapping, but also the Verstraete-Cirac
transform and the Bravyi-Kitaev Superfast simulation. Versions of all
these transforms can be used as one-dimensional linear fermion-to-qubit
mapping with 𝑁 (respectively 𝑁 − 1) qubits, but at the expense of ad-
ditional qubits we can pre-compute certain Pauli strings, which allows
us to take shortcuts when mapping operators. This pre-computation is

112 Chapter 3. Embedding simulations with quantum codes

done when said strings are stabilized in a quantum code that entangles
data qubits with the qubits added. The usage of these codes allows a
quantum computer to do what was not manageable classically: the local
treatment of two-dimensional fermion systems. In this way we can not
only simulate fermionic lattices, but embed every fermion system on a
two-dimensional layout.

We hope that future work will extend these results: we for instance
have not taken into account specific limitations on either the qubit con-
nectivity graph or the ability to perform quantum gates, which can be
found in proposals for actual devices [18, 72]. It would also be interest-
ing to incorporate the mappings into specific simulation algorithms, to
see for instance how phase estimation or qubitization could deal with
the planar layout.

3.9 Supplement

3.9.1 Auxiliary Qubit codes

Here we will set up the quantum codes used for the AQMs, which in-
cludes the review of the methods developed in [60]. We adapt those
methods for quantum codes and contribute ideas which can be used to
speed up the initialization of the logical basis.

As mentioned before, the stabilizing the Pauli strings (𝑝𝑖dat ⊗ 𝜎𝑖
𝑁+𝑖)

effectively describes a quantum code: a larger Hilbert space of 𝑛 = 𝑁 + 𝑟
qubits is constrained to the dimension 2𝑁 by 𝑟 stabilizer conditions. In
contrast to codes for quantum error correction, we do not want to encode
information nonlocally, i.e. obtain nonlocal logical operators, but want to
localize operators that were nonlocal to begin with. When characterizing
a quantum error correction code, one is usually interested in the generat-
ing set of stabilizers, the logical basis states, e.g.

⃒⃒
0
⟩︀
,
⃒⃒
1
⟩︀

and the logical
operators, 𝑋 , 𝑍. In the following, we will look at the AQM equivalents
of those quantities: while {𝑝𝑖dat ⊗ 𝜎𝑖

𝑁+𝑖}𝑖 is a set of stabilizer generators,
the extended computational basis 𝑉aux dat |𝜔⟩dat⊗|0𝑟⟩aux spans the logical
subspace and the adjusted Pauli strings ̃︀ℎaux dat are its logical operators.

In the initialization of the code space via the unitary 𝑉aux dat, the aux-

3.9 Supplement 113

iliary qubits are entangled with data qubits, but not before the former
are possibly rotated into some basis other than the computational basis:
the basis choice of the auxiliary qubits can have consequences for other
methods of state preparation and for sure determines the form of the op-
erators 𝜎𝑖

𝑁+𝑖 and 𝜅ℎaux. In the following, we will introduce the two logical
bases, to which AQMs resort. For each of these we will outline the fol-
lowing points:

i. Logical basis Basis of the (𝑁 + 𝑟)-qubit states |̃︀𝜙⟩aux dat with respect to the
computational basis |𝜔⟩dat of the 𝑁 -qubit states |𝜙⟩dat.

ii. Entangling operation The unitary 𝑉aux dat, for initializing the stabilizer
state by quantum gates: 𝑉aux dat |𝜙⟩ ⊗ |0𝑟⟩ = |̃︀𝜙⟩aux dat.

iii. Hamiltonian adjustments Adjustments to be made to Pauli strings, ℎdat ↦→
ℎdat ⊗ 𝜅ℎaux, and adjusted operator mappings.

We want to deliver the last point in a two-fold way: on the one hand, we
present the adjustments to a Hamiltonian in Pauli string form (3.3), where
we replace every term ℎdat ↦→ (ℎdat ⊗𝜅ℎaux). The origin of such a Hamilto-
nian can be arbitrary. On the other hand we want to focus on Hamiltoni-
ans that originate from certain many-body problems of fermions. There-
fore, we fuse the Hamiltonian adjustments with the linear transform,
such that terms (ℎdat ⊗ 𝜅ℎaux) can be obtained directly from second quan-
tization as a redefinition of relation (2.12):

𝑐†𝑗 =̂
1

2

⎛⎝ ⨂︁
𝑘∈̃︀𝑈(𝑗)

𝑋𝑘

⎞⎠⎛⎝I+
⨂︁

𝑙∈ ̃︀𝐹 (𝑗)

𝑍𝑙

⎞⎠⎛⎝ ⨂︁
𝑚∈ ̃︀𝑃 (𝑗)

𝑍𝑚

⎞⎠ ,

𝑐𝑗 =̂
1

2

⎛⎝ ⨂︁
𝑘∈̃︀𝑈(𝑗)

𝑋𝑘

⎞⎠⎛⎝I−
⨂︁

𝑙∈ ̃︀𝐹 (𝑗)

𝑍𝑙

⎞⎠⎛⎝ ⨂︁
𝑚∈ ̃︀𝑃 (𝑗)

𝑍𝑚

⎞⎠ . (3.19)

The redefined transform stays close to the spirit of the original in the
sense that only the flip, parity and update sets are replaced by adjusted
versions ̃︀𝐹 (𝑗), ̃︀𝑃 (𝑗) and ̃︀𝑈(𝑗).
Apart from the two bases, we also take a look at an extension of the prin-
ciple, that allows to build a stabilizer set with strings {𝑝𝑖dat}, that might
anticommute. Interestingly, one could in this way encode all terms of a
Hamiltonian into a mapping. The resulting code is perhaps most akin to
the original method [60], where a new auxiliary qubit is spent for every
Hamiltonian term to be multiplied with a stabilizer.

114 Chapter 3. Embedding simulations with quantum codes

3.9.1.1 Auxiliary qubits in computational basis

With the parity strings being the detrimental substrings of the Jordan-
Wigner-transformed Hamiltonians, our main goal is to cancel long strings
of 𝑍-operators. In [73], this is achieved in collecting the parity informa-
tion of subsets of qubits with a circuit QED resonator. In a hardware-
unspecific approach, computational basis AQMs store parity information
on auxiliary qubits, which can be updated and they have never to be un-
computed.

We generally restrict computational-basis Auxiliary Qubit codes to
strings 𝑝𝑖dat ⊆ {I, 𝑍}⊗𝑁 . The 𝑝𝑖dat-strings are here canceled with auxiliary
Pauli-𝑍 operators 𝜎𝑖

𝑁+𝑖 = 𝑍𝑁+𝑖. Let us say that the stabilizers are char-
acterized by the (𝑟×𝑁) binary matrix 𝐵, such that an entry ‘1’ in the 𝑗-th
column on line 𝑖 of 𝐵 means that 𝑍𝑗 is part of 𝑝𝑖dat:

𝑝𝑖dat ⊗ 𝜎𝑖
𝑁+𝑖 =

⎛⎝⨂︁
𝑗∈[𝑁]

(𝑍𝑗)
𝐵𝑖𝑗

⎞⎠⊗ 𝑍𝑁+𝑖 . (3.20)

i. Logical basis In the transformation to a logical state, |𝜙⟩dat ↦→ |̃︀𝜙⟩aux dat,
the computational basis is extended to

|𝜔⟩dat ↦→ |𝜔⟩dat ⊗ |𝐵𝜔⟩aux . (3.21)

It is easy to verify that this new basis is stabilized by (3.20) considering
𝑍𝑗 |𝑏⟩𝑗 = (−1)𝑏 |𝑏⟩𝑗 , where 𝑏 ∈ Z2.

ii. Entangling operation The entangling operation can be described as a (com-
muting) sequence of CNOT-gates that depend on the matrix 𝐵. If 𝐵𝑖𝑗 =
1, then there is a CNOT-gate in 𝑉aux dat, that, controlled on data qubit 𝑗,
targets the auxiliary qubit labeled 𝑁 + 𝑖:

𝑉aux dat =
∏︁
𝑖∈[𝑟]

∏︁
𝑗 ∈ [𝑁]

with 𝐵𝑖𝑗 = 1

CNOT (𝑗 → 𝑁 + 𝑖) . (3.22)

The unitary 𝑉aux dat, acting on a basis element (|𝜔⟩dat ⊗ |0𝑟⟩aux) yields the
extended basis of (3.21), considering that
CNOT(𝑗 → 𝑘) |𝑎⟩𝑗 ⊗ |𝑏⟩𝑘 = |𝑎⟩𝑗 ⊗ |𝑎+ 𝑏⟩𝑘, where 𝑎, 𝑏 ∈ Z2. The en-
tangling operation basically stores parity information of subsets of data

3.9 Supplement 115

qubits (as defined by the rows of 𝐵) on auxiliaries. For the exact imple-
mentation of 𝑉aux dat, (3.22) needs to be adjusted to the connectivity graph
of the qubit layout. For square lattice connectivity, the above formula re-
quires 𝑂(𝑟𝑁) time steps in the worst case, but there is a way to improve
the depth of 𝑉aux dat: for the auxiliary qubits 𝑖 and 𝑘, we can replace the
circuit

⎡⎣ ∏︁
𝑗:𝐵𝑖𝑗=1

CNOT(𝑗 → 𝑁 + 𝑖)

⎤⎦⎡⎣ ∏︁
𝑙:𝐵𝑘𝑙=1

CNOT(𝑙 → 𝑁 + 𝑘)

⎤⎦ (3.23)

by

⎡⎣ ∏︁
𝑗:𝐵𝑖𝑗+𝐵𝑘𝑗=1

CNOT(𝑗 → 𝑁 + 𝑖)

⎤⎦ CNOT(𝑁 + 𝑘 → 𝑁 + 𝑗)

×

⎡⎣ ∏︁
𝑙:𝐵𝑘𝑙=1

CNOT(𝑙 → 𝑁 + 𝑘)

⎤⎦ . (3.24)

In this (non-commuting) sequence of gates, we let the 𝑖-th auxiliary qubit
inherit the parity information of the 𝑘-th auxiliary qubit by a CNOT-gate
inside the aux-register. This is a useful trick when the parity informa-
tion that is to be stored on these two auxiliary qubits has a large over-
lap in data qubits, i.e. when the vectors

⨁︀
𝑥(𝐵𝑖𝑥) and

⨁︀
𝑦(𝐵𝑘𝑦) have a

small Hamming distance. In that case, the leftmost product contains only
few CNOT-gates, as the bulk of the parity information has been inherited
from the (𝑁 + 𝑘)-th qubit.

iii. Hamiltonian adjustments To maintain the stabilizer state (3.6), we ad-
just a Pauli string ℎdat on the data qubits by ℎdat ↦→ (ℎdat ⊗ 𝜅ℎaux) with

𝜅ℎaux =
⨂︁
𝑚∈[𝑟]

(𝑋𝑁+𝑚)𝜆𝑚 , (3.25)

where 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑟)
⊤ ∈ Z⊗𝑟

2 is obtained by

𝜆 =
∑︁
𝑗

𝐵𝑢𝑗 (3.26)

with 𝑢𝑗 being the 𝑗-th unit vector of Z⊗𝑁
2 , and the sum extending over all

𝑗 ∈ [𝑁], for which ℎdat acts on the qubit space as 𝑋𝑗 or 𝑌𝑗 . Hamiltonian

116 Chapter 3. Embedding simulations with quantum codes

of adjusted terms (ℎdat ⊗𝜅ℎaux) as in (3.6) can be obtained by the redefined
transforms (3.19), with the same flip and parity sets, ̃︀𝐹 (𝑗) = 𝐹 (𝑗) and̃︀𝑃 (𝑗) = 𝑃 (𝑗), but the sets ̃︀𝑈(𝑗) defined from the columns of the matrix[︂

𝐴

𝐵

]︂
. (3.27)

In case a Pauli string ℎdat flips a data qubit, that is entangled with a qubit
in the aux-register, we have to flip the latter qubit as well. In fact we
need to flip all other auxiliaries to which the data qubit contributes: so
if we apply the operator 𝑋𝑗 to a basis state |𝜔⟩dat ⊗ |𝐵𝜔⟩aux for 𝑗 ∈ [𝑁],
we leave the stabilized basis, unless we update the configuration of the
auxiliary qubits by 𝐵𝜔 ↦→ 𝐵(𝜔 + 𝑢𝑗).

Example

Let us consider a minimal example, in which the data register holds five
qubits, and a sixth, an auxiliary qubit, is in the configuration 𝐵𝜔, where
𝐵 is a (1 × 5) binary matrix. We consider a Hamiltonian term ℎdat =
(𝑋1⊗𝑍2⊗𝑍3⊗𝑍4⊗𝑋5). After adjusting ℎdat → (ℎdat⊗𝜅ℎaux), we have the
choice to multiply with the stabilizer or not. In Table 3.5 we present the
adjusted Hamiltonian before and after multiplication with the stabilizer,
considering different choices of 𝐵.

𝐵 ℎdat ⊗ 𝜅ℎ
aux (ℎdat ⊗ 𝜅ℎ

aux) · (𝑝1dat ⊗ 𝑍6)

[0 1 0 0 0] (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5) (𝑋1 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5 ⊗ 𝑍6)
[0 1 1 1 0] (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5) (𝑋1 ⊗𝑋5 ⊗ 𝑍6)
[1 1 1 0 0] (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5 ⊗𝑋6) −(𝑌1 ⊗ 𝑍4 ⊗𝑋5 ⊗ 𝑌6)
[1 1 1 1 1] (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5) −(𝑌1 ⊗ 𝑌5 ⊗ 𝑍6)

Table 3.5. Adjusted Hamiltonian terms ̃︀ℎaux dat with respect to the original string
ℎdat = (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5), depending on the matrix (1× 5) matrix 𝐵.

3.9.1.2 Auxiliary qubits in Hadamard basis

Extending the idea of [60], we can cancel a set of arbitrary (commut-
ing) strings {𝑝𝑖dat}, where 𝑝𝑖dat ∈ {𝑋,𝑌, 𝑍, I}⊗𝑁 , by 𝑋-operators: 𝜎𝑖

𝑁+𝑖 =
𝑋𝑁+𝑖. Let us characterize the choice of the strings 𝑝𝑖dat by three (𝑟 × 𝑁)
binary matrices 𝐶𝑋 , 𝐶𝑌 and 𝐶𝑍 . Here an entry ‘1’ in 𝐶𝑠

𝑗𝑖, with 𝑠 ∈
{𝑋,𝑌, 𝑍}, indicates that the string 𝑝𝑖dat acts as 𝑠 on the 𝑗-th qubit.

3.9 Supplement 117

i. Logical basis In the transformation |𝜙⟩dat ↦→ |̃︀𝜙⟩aux dat, the computational
basis is extended to

|𝜔⟩dat ↦→

⎡⎣∏︁
𝑖∈[𝑟]

1√
2

(︀
I+ 𝑝𝑖dat ⊗𝑋𝑁+𝑖

)︀⎤⎦ |𝜔⟩dat ⊗ |0𝑟⟩aux

=
1

2𝑟/2

∑︁
𝜇∈Z⊗𝑟

2

⎡⎣∏︁
𝑘∈[𝑟]

(︁
𝑝𝑘dat

)︁𝜇𝑘

⎤⎦ |𝜔⟩dat ⊗ |𝜇⟩aux . (3.28)

The sum in (3.28) invoke all the possible qubit configurations 𝜇 ∈ Z⊗𝑟
2

with equal weight. This is a result of the auxiliary qubits being in Hadamard
basis. This choice of basis becomes plausible by multiplying a basis state
(3.28) with one of the stabilizers (𝑝𝑖dat ⊗𝑋𝑁+𝑖):

(︀
𝑝𝑖dat ⊗𝑋𝑁+𝑖

)︀ 1

2𝑟/2

∑︁
𝜇∈Z⊗𝑟

2

⎡⎣∏︁
𝑘∈[𝑟]

(︁
𝑝𝑘dat

)︁𝜇𝑘

⎤⎦ |𝜔⟩dat ⊗ |𝜇⟩aux

=
1

2𝑟/2

∑︁
𝜇∈Z⊗𝑟

2

⎡⎣∏︁
𝑘∈[𝑟]

(︁
𝑝𝑘dat

)︁𝜇𝑘+𝛿𝑖𝑘

⎤⎦ |𝜔⟩dat ⊗ |𝜇+ 𝑢𝑖⟩aux .

(3.29)

If we now shift the binary vector in the sum by the 𝑖-th unit vector 𝑢𝑖 to
𝜇 ↦→ 𝜇+ 𝑢𝑖, the original basis element on the right-hand side of (3.28) is
recovered and thus the set of Pauli strings (𝑝𝑖dat ⊗𝑋𝑁+𝑖) stabilizes every
state |̃︀𝜙⟩aux dat that is in the subspace spanned by (3.28).

ii. Entangling operation Following [60], the entangling operation can be de-
scribed as

𝑉aux dat =
∏︁
𝑖∈[𝑟]

(︀
|0⟩⟨0|𝑁+𝑖 + 𝑝𝑖dat ⊗ |1⟩⟨1|𝑁+𝑖

)︀
H𝑁+𝑖 , (3.30)

where H𝑁+𝑖 is the Hadamard gate on the (𝑁 + 𝑖)-th qubit. In words,
𝑉aux dat can be realized by a unitary quantum circuit that first applies
Hadamard gates to every auxiliary qubit, and then applies each string
𝑝𝑘dat controlled on the 𝑘-th auxiliary qubit.

We notice that the circuit (3.30), when acting on a state |𝜙⟩dat ⊗ |0𝑟⟩aux,
firstly changes the basis of the auxiliary register into

118 Chapter 3. Embedding simulations with quantum codes

𝑗 H ∙ ∙ H

𝑘 ∙ ∙ ∙

𝑙 ∙ ∙ ∙

𝑚 H ∙ H

𝑁 + 𝑖 ∙ ∙ ∙ ∙ ∙
Figure 3.10. Two versions of the controlled application of the Pauli string 𝑝𝑖dat =
(𝑋𝑗 ⊗ 𝑍𝑘 ⊗ 𝑍𝑙 ⊗𝑋𝑚) on the 𝑖-th qubit in the auxiliary register.

|+𝑟⟩aux = (
⨂︀

𝑖∈[𝑟] |+⟩𝑁+𝑖) = 𝑟−
1
2
∑︀

𝜇∈Z⊗𝑟
2

|𝜇⟩aux. Then the controlled ap-
plication of the strings 𝑝𝑖dat entangles auxiliary and data qubits. In princi-
ple, this can be done by CNOT, CPHASE and controlled-𝑌 gates accord-
ing to the action of a string 𝑝𝑖dat on each data qubit, see Figure 3.10 (left).
In practice, the required qubit connectivity might however not be avail-
able, such that we may resort to an implementation of the circuit as in
Figure 3.10 (right). Like for the codes with computational-basis auxiliary
qubits, we can here apply tricks to make 𝑉aux dat more shallow whenever
two strings 𝑝𝑖dat, 𝑝

𝑘
dat are similar to one another: after the Hadamard-gates

are applied to the auxiliary qubits 𝑖 and 𝑘, we can replace the circuit

(︁
|0⟩⟨0|𝑁+𝑖 + 𝑝𝑖dat ⊗ |1⟩⟨1|𝑁+𝑖

)︁ (︁
|0⟩⟨0|𝑁+𝑘 + 𝑝𝑘dat ⊗ |1⟩⟨1|𝑁+𝑘

)︁
by (3.31)(︁

|0⟩⟨0|𝑁+𝑖 +
(︁
𝑝𝑖dat · 𝑝𝑘dat

)︁
⊗𝑋𝑁+𝑘 ⊗ |1⟩⟨1|𝑁+𝑖

)︁(︁
|0⟩⟨0|𝑁+𝑘 + 𝑝𝑘dat ⊗ |1⟩⟨1|𝑁+𝑘

)︁
, (3.32)

which means that instead of applying the string 𝑝𝑖dat, we conditionally
apply the string that results from the operator product of 𝑝𝑖dat with 𝑝𝑘dat,
and an 𝑋-operator on the 𝑘-th auxiliary qubit. What we use here is the
fact that the (𝑁 + 𝑘)-th qubit is already entangled with the data qubits
after the right sequence of controlled gates, such that we can use the sta-
bilizer condition in the sequence on the left. For this to work, the order in
which the two resulting strings are initialized is now fixed. A minus sign
that might occur in the operator product can be reproduced by adding a
𝑍𝑁+𝑖, [42]. Before presenting the Hamiltonian adjustments, it is left for
us to verify that the controlled applications of 𝑝𝑖dat on |𝜔⟩dat⊗|+𝑟⟩aux yield
the corresponding element of the extended basis (3.28). Let us consider

3.9 Supplement 119

the following reformulation of the controlled-(𝑝𝑖dat) terms:∏︁
𝑖∈[𝑟]

(︀
|0⟩⟨0|𝑁+𝑖 + 𝑝𝑖dat ⊗ |1⟩⟨1|𝑁+𝑖

)︀

=
∏︁
𝑖∈[𝑟]

⎛⎝ ∑︁
𝜇′
𝑖∈Z2

(︀
𝑝𝑖dat

)︀𝜇′
𝑖 ⊗
⃒⃒
𝜇′
𝑖

⟩︀⟨︀
𝜇′
𝑖

⃒⃒
𝑁+𝑖

⎞⎠
=

∑︁
𝜇′∈Z⊗𝑟

2

⎡⎣∏︁
𝑘∈[𝑟]

(︁
𝑝𝑘dat

)︁𝜇′
𝑘

⎤⎦⊗
⃒⃒
𝜇′⟩︀⟨︀𝜇′⃒⃒

aux . (3.33)

Considering the expansion of |+𝑟⟩aux in the computational basis, we can
proceed to arrive at (3.28) by inspection.

iii. Hamiltonian adjustments For a Pauli string ℎdat to maintain the stabi-
lizer state (3.6), we adjust it by

𝜅ℎaux =
⨂︁

𝑗∈𝑇 (ℎ)

𝑍𝑁+𝑗 , (3.34)

where the set 𝑇 (ℎ) ⊆ [𝑟] contains 𝑘 if 𝑝𝑘dat anticommutes with ℎdat. As a
consequence, a Hamiltonian of terms (ℎdat ⊗ 𝜅ℎaux) can be obtained from
second quantization using the redefined transformations (3.19), where the
update sets are defined as before ̃︀𝑈(𝑗) = 𝑈(𝑗), but flip and parity sets̃︀𝐹 (𝑗), ̃︀𝑃 (𝑗) are redefined by the rows of the matrices[︀

𝐴
⃒⃒
𝐶𝑋 + 𝐶𝑌

]︀
,
[︀
𝑅𝐴

⃒⃒
𝑅(𝐶𝑋 + 𝐶𝑌) + 𝐶𝑌 + 𝐶𝑍

]︀
. (3.35)

We will now show that the adjusted Pauli string (ℎdat⊗𝜅ℎ𝐴) acts on a state
|̃︀𝜙⟩aux dat such that after application of 𝑉 †

aux dat, we recover ℎdat |𝜙⟩dat ⊗
|0𝑟⟩aux. We start by applying the adjusted term to the extended state. The
goal is to use (anti-)commutation relations with the strings 𝑝𝑘dat to let ℎdat
act on the data register first. It turns out that minus signs that we pick
up by anticommutations are exactly canceled by sign changes originating
from 𝜅ℎ𝐴 acting on the aux-register.

In general, we find if ℎdat now anticommutes with a string 𝑝𝑘dat, then
𝑘 ∈ 𝑇 (ℎ) such that (ℎdat ⊗ 𝜅ℎaux) commutes with (I + 𝑝𝑘dat ⊗ 𝑋𝑁+𝑘), and
we find (3.5) satisfied. For the transform (3.35), we take into account all
sorts of Pauli operators that originate from parity, update and flip op-
erators, by which we mean the strings (

⨂︀
𝑚∈𝑃 (𝑗) 𝑍𝑚), (

⨂︀
𝑘∈𝑈(𝑗)𝑋𝑘) and

120 Chapter 3. Embedding simulations with quantum codes

(
⨂︀

𝑙∈𝐹 (𝑗) 𝑍𝑙) in (2.12). If 𝑋- and 𝑌 -operators in a string 𝑝𝑖dat anticommute
with the 𝑍-operators in the 𝑗-th flip operator, we have to counteract by
adjusting it with a 𝑍-operator on the 𝑖-th auxiliary: (

⨂︀
𝑙∈𝐹 (𝑗) 𝑍𝑙)⊗ 𝑍𝑁+𝑖.

The same argument holds for the parity operators, but we also add 𝑍-
operators there, stemming from anticommutations of the update opera-
tor with 𝑍- and 𝑌 -operators in 𝑝𝑖dat. Considering that the operators 𝑋 ,
𝑌 and 𝑍 appear in the strings 𝑝𝑖dat according to the 𝐶-matrices, we can
use these matrices to describe the contents of the flip and parity sets, by
which we obtain (3.35).

Example

As an example we examine a 5-qubit Hamiltonian term, ℎdat = (𝑋1 ⊗
𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5). The sixth qubit is a Hadamard-basis auxiliary, used
to cancel various substrings 𝑝1dat. In Table 3.6, we find the adjusted terms
(ℎdat⊗𝜅ℎaux) and the deformed terms, (𝑝1dat⊗𝑋6) ·(ℎdat⊗𝜅ℎaux), for various
choices of the stabilizer (𝑝1dat ⊗𝑋6).

𝑝1dat (ℎdat ⊗ 𝜅ℎ
aux) (𝑝1dat ⊗𝑋6) · (ℎdat ⊗ 𝜅ℎ

aux)

(𝑍2 ⊗ 𝑍3 ⊗ 𝑍4) (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5) (𝑋1 ⊗𝑋5 ⊗𝑋6)
(𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗𝑋4) (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5 ⊗ 𝑍6) −(𝑌4 ⊗𝑋5 ⊗ 𝑌6)
(𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5) (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗𝑋5) 𝑋6

Table 3.6. Adjusted Hamiltonians ̃︀ℎaux dat to ℎdat = (𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗ 𝑋5),
depending on the choice of 𝑝1dat.

3.9.1.3 Stabilizing anticommuting data-qubit strings

We present a more general quantum code based on auxiliary qubits in
Hadamard basis, but in which the strings {𝑝𝑖dat} do not necessarily have
to commute. Using this code, an entire Hamiltonian can in principle be
transformed into interactions on only the auxiliary qubits. The general
idea here is to amend the scheme by the following notion: in order to
counter anticommutations, we replace the (single-qubit) Pauli operators
𝜎𝑖
𝑁+𝑖 with Pauli strings on the auxiliary register 𝛾𝑖aux, such that 𝛾𝑖aux con-

tains 𝑋𝑁+𝑖 as before, but for every other string 𝑝𝑘dat with 𝑘 < 𝑖, that anti-
commutes with 𝑝𝑖dat, it contains a 𝑍-operator, 𝑍𝑁+𝑘. For convenience we

3.9 Supplement 121

define the operation ⋆ as:

𝑖 ⋆ 𝑘 =

{︃
0 if [𝑝𝑖dat, 𝑝

𝑘
dat] = 0

1 if [𝑝𝑖dat, 𝑝
𝑘
dat]+ = 0

. (3.36)

Using this notation, we define the stabilizers of our system as

𝑝𝑖dat ⊗ 𝛾𝑖aux = 𝑝𝑖dat ⊗

⎛⎝ ⨂︁
𝑘∈[𝑖−1]

(𝑍𝑁+𝑘)
𝑖⋆𝑘

⎞⎠⊗𝑋𝑁+𝑖 , (3.37)

since all Pauli strings (𝑝𝑖dat ⊗ 𝛾𝑖aux) have to commute pairwise for all 𝑖 ∈
[𝑟] as defined above. We will now turn to describe the mapping in the
established way.

i. Extended basis The computational basis |𝜔⟩dat is extended to:

|𝜔⟩dat ↦→ 1

2𝑟/2

∑︁
𝜇∈Z⊗𝑟

2

[︀(︀
𝑝1dat

)︀𝜇1 · · · (𝑝𝑟dat)
𝜇𝑟
]︀
|𝜔⟩dat ⊗ |𝜇⟩aux . (3.38)

This basis resembles (3.28), with the subtle difference that the order of
the strings 𝑝𝑖dat matters here. When stabilizer (𝑝𝑖dat ⊗ 𝛾𝑖aux) are multiplied
to (3.38) from the right, the operators 𝛾𝑖aux cancel all minus signs from
anticommutations, and flip the 𝑖-th qubit in the auxiliary register. Note
that the order of the strings 𝑝𝑖dat in (3.38) is to be taken into account when
we attempt to encode |̃︀𝜙⟩aux dat from |𝜙⟩ ⊗ |0𝑟⟩aux.

ii. Entangling operation We pick a sequence 𝑖1, 𝑖2, ..., 𝑖𝑟 that is some per-
mutation of 1, 2, ..., 𝑟, in which we want to perform the entangling op-
eration for the stabilizers (𝑝𝑖𝑚dat ⊗ 𝛾𝑖𝑚aux), where the stabilizer of number 𝑖𝑟
is taken care of first, and the one labeled 𝑖1 last. The entangling operation
associated with that sequence is

𝑉aux dat =

𝑟∏︁
𝑚=1

(︃
|0⟩⟨0|𝑁+𝑖𝑚

+ 𝑝𝑖𝑚dat ⊗ |1⟩⟨1|𝑁+𝑖𝑚
⊗

[︃⨂︁
𝑘>𝑚

(𝑍𝑁+𝑖𝑘)
(𝑖𝑚 ⋆ 𝑖𝑘) 𝜃𝑖𝑚𝑖𝑘

]︃)︃
H𝑁+𝑖𝑚 ,

(3.39)

Note that if the we pick the original order, 𝑖𝑚 = 𝑚, the circuit almost
looks like (3.30), but, again, here the exact order matters. The Hamilto-
nian adjustments are identical to (3.34) and (3.35), as the only difference,
the ordering of the strings 𝑝𝑖dat, does not matter there: a Hamiltonian term

122 Chapter 3. Embedding simulations with quantum codes

̃︀ℎaux dat needs to pass all 𝑝𝑘dat in (3.38), picking up all minus signs possible.
We have thus obtained an auxiliary qubit mapping with completely ar-
bitrary set of strings 𝑝𝑖dat. If this string is a Hamiltonian term ℎdat = 𝑝𝑖dat,
we can eliminate its action on the data qubits by replacing

ℎdat ↦→ (ℎdat ⊗ 𝜅ℎ
aux) ·

(︀
𝑝𝑖dat ⊗ 𝛾𝑖

aux
)︀

= 𝑋𝑁+𝑖 ⊗

[︃⨂︁
𝑘>𝑖

(𝑍𝑁+𝑘)
𝑖⋆𝑘

]︃
. (3.40)

The entire Hamiltonian can in this way be pre-computed and reduced to
an action on only the auxiliary register.

3.9.2 Tree-based transforms

In this section, we consider fermion-to-qubit mappings defined on tree
structures for a setup with limited connectivity. This particular class of
mappings is part of the mappings considered in Section 2.3 (so 𝑛 = 𝑁),
where the tree structures are inherent in the definition of the transforma-
tion matrix 𝐴. Although this class technically contains the Jordan-Wigner
transform, our motivation is to obtain mappings that are more akin to the
Bravyi-Kitaev transform, in order to keep parity strings short. While the
Bravyi-Kitaev transform itself does this job perfectly, we will show that
it cannot be reconciled with a square lattice connectivity graph: in this
section, we instead develop a method to tailor mappings to preexisting
connectivity graphs, and provide an algorithm with which short parity
strings can be guaranteed and the operator weight bounded. Let us start
by reviewing the Bravyi-Kitaev transform.

In [26], the mapping is introduced in order to reduce the weight of
transformed fermionic operators to 𝑂(log𝑁), which is an exponential
improvement over the Jordan-Wigner transform. In the original paper,
the (classical) encoding and decoding are defined by a partially order-
ing the mode indices according to some rules defined by their repre-
sentation as binary numbers. Later works then developed the notion
of flip, update and parity sets and provided a method to construct the
binary matrices 𝐴−1 and 𝐴 in log𝑁 steps [27, 37]. Instead of being one-
dimensional, the partial order can be regarded placing all mode indices
onto nodes inside a tree structure, which is the reason the mapping is
sometimes referred to as binary-tree transform (even though the tree is
not a binary tree). As pointed out in [29], the flip and update opera-
tors of every mode 𝑗, (

⨂︀
𝑘∈𝐹 (𝑗) 𝑍𝑘) and (

⨂︀
𝑙∈𝑈(𝑗)𝑋𝑙), have a geometric

interpretation on that tree (as will be illustrated shortly), so we would

3.9 Supplement 123

naturally like to match it with the qubit-connectivity graph. While an
embedding is possible for small such trees, increasing 𝑁 will make the
tree outgrow the square lattice rather quickly. In fact, the binary rule im-
plies that the node with index 2𝑗 has exactly 𝑗 children, and all nodes
with indices below 2𝑗 have fewer than 𝑗 children. This means that trees
with 𝑁 > 16 modes, cannot be embedded in the square lattice where
every site has 4 nearest neighbors. The tree for 𝑁 = 16 can be found
in Figure 3.11(a) and its embedding in the square lattice is presented in
panel (b). This particular tree is however not the end of the story. In
[29], it was argued that the Bravyi-Kitaev transform can be optimized to
produce more local strings, in particular when considering Hamiltoni-
ans of locally-interacting fermions. For that purpose, the ‘binary’ trees
are replaced with segmented Fenwick-tree structures. These structures
are explicitly allowed to contain multiple trees, and the number of trees
is even a parameter of the mapping. This number can range from 1 to
𝑁 (the number of modes), where at 𝑁 the mapping is identical to the
Jordan-Wigner transform and at 1 it corresponds the Bravyi-Kitaev trans-
form (in case 𝑁 is an integer power of two). However, we can go even
further and define mappings based on an arbitrary number of arbitrary
trees. In particular, we can define tree structures that can be embedded
on arbitrary qubit connectivity graphs, like our square lattice, and the as-
sociated mappings still yield small parity operators (

⨂︀
𝑚∈𝑃 (𝑗) 𝑍𝑚). Let

us consider one specific connectivity graph.
We need to pick a forest (a set of trees) which in total has a number of
𝑁 nodes. As each node will correspond to one qubit, the trees need to
be connected to each other, and so we connect their respective roots. It
is sufficient here for each root to be connected to two others, such that
they are linked like a chain with their order foreshadowing some canon-
ical ordering. We now choose a set of trees, such that the graph created
by connecting them can be embedded in the actual qubit-connectivity
graph. Let us now turn to the description of the mapping itself. For that
purpose, we firstly need to assign an index to every node, a process for
which we later will provide an algorithm, but for now let us assume we
have done so in a prudent way. For the definition of the transform, it is
sufficient to give a definition of all update and flip sets, as by correspond-
ing sets 𝐹 (𝑗) and 𝑈(𝑗) the matrices 𝐴 and 𝐴−1 can be inferred column-
and row-wise. For the flip set of index 𝑗, 𝐹 (𝑗), we consider the node with
index 𝑗 and all its children in the tree it is on, i.e. all the nodes directly

124 Chapter 3. Embedding simulations with quantum codes

connected to 𝑗 on edges that lead away from the root. The update set
𝑈(𝑗) includes the node 𝑗 and all its ancestors, i.e. all nodes on the direct
line to the root (of the tree it is on), where the root is also included. A
visual representation of these operators can be found in Figure 3.11(c),
where the direction with respect to the root is indicated by arrows. Their
embedded version can be found in panel (d) of the figure. Note that this
means that by the encoding of this mappings, qubit 𝑗 stores the parity
information of mode 𝑗 and all other modes whose index is beneath 𝑗 in
the tree.
For anticommutation relations like [𝑐𝑖 , 𝑐

†
𝑗]+ = 𝛿𝑖𝑗 , it is important that⎛⎝ ⨂︁

𝑘∈𝐹 (𝑖)

𝑍𝑘

⎞⎠⎛⎝ ⨂︁
𝑙∈𝑈(𝑗)

𝑋𝑙

⎞⎠ = (−1)𝛿𝑖𝑗

⎛⎝ ⨂︁
𝑙∈𝑈(𝑗)

𝑋𝑙

⎞⎠⎛⎝ ⨂︁
𝑘∈𝐹 (𝑖)

𝑍𝑘

⎞⎠ , (3.41)

which we now want to verify by the definitions of the flip and update
sets. If 𝑗 is any descendant of 𝑖, then the two operators overlap on two
qubits, which means they commute. If it is not an ancestor, then the only
case where the operators have overlap is when 𝑖 = 𝑗, where they exactly
overlap on that very qubit and anticommute.
We so far have suppressed the discussion of the parity operators, that
will now lead into an algorithm for the index assigning and a bound for
the operator weight. Let us assume that our forest consisted of 𝜏 trees,
each of which has at most Λ levels and every node at most Γ children.
We know that the operator weight of update and flip operators scales
as 𝑂(Λ + 1) and 𝑂(Γ + 1), the structure of the parity set however now
depends on the index assigned to the nodes. By a binary rule, the Bravyi-
Kitaev transform manages to only involve 𝑂(log𝑁) qubits in the parity
operators, and we can devise a labeling that mirrors its principle. The
parity operator of 𝑗 is only the product of flip operators of 𝑖 < 𝑗. On
the other hand, multiplying the flip operator of a parent node 𝑘 with all
flip operators of its descendants will cancel all 𝑍-operators but 𝑍𝑘. Thus,
in order for the parity operator of 𝑗 to have low weight, as many nodes
with labels 𝑖 < 𝑗 as possible need to be descendants of 𝑗. Subsequently,
the mapping with the smallest parity sets is characterized by a tree where
every node has only one child, i.e. a vertical line. This mapping, that we
recall as parity transform from [27], has however the problem of 𝑂(𝑁)-
weight update operators, and is thus of the same quality as the Jordan-
Wigner transform. Indeed, one being characterized by a vertical line, the

3.9 Supplement 125

other by a horizontal line (connected one-node trees), makes both map-
pings effectively one-dimensional. In order to minimize the weight of
update and parity operators altogether, we need to reconcile the cancel-
lation strategy with the tree structure. The idea is to involve only qubits
in 𝑃 (𝑗), that are children of the nodes in 𝑈(𝑗). Of course, this is not quite
possible. If an entire tree only contains nodes 𝑖 < 𝑗, then 𝑃 (𝑗) will al-
ways contain the root of this tree. According to the formula (2.12), trans-
forming 𝑐

(†)
𝑗 thus results in strings of weight 𝑂(𝜏 + ΛΓ). Not only this,

but the strings produced will also be continuous for transforms of single
operators. Unfortunately, for pairs of operators like 𝑐†𝑖𝑐𝑗 , the strings are
discontinuous on the first qubit that is both, an ancestor of 𝑖 and 𝑗 – a
situation we cannot remedy.
The question is now how to assign the labels to the nodes such that this
mapping is implemented, or in other words: given an unlabeled forest
with connected roots, how can we obtain a mapping that outputs strings
of weight 𝑂(𝜏 + ΛΓ)? For that purpose, we put labels 1 to 𝑁 (in order)
on the nodes according to the little program below.

Line 1 Consider the first tree in line.

Line 2 Choose a leaf and put a label on it.

Line 3 Check whether there are unlabeled siblings. If it does, choose
such a sibling for the consideration in the following step. If not,
proceed to Line 5.

Line 4 Check whether the current node is a leaf, and if it is, label it, oth-
erwise put a label on a leaf chosen from the sub-tree of which the
current node is the root. Continue from Line 3 with the last-labeled
node.

Line 5 Check whether the last node considered has a parent. If there is
a parent, put a label on it and continue from Line 3 with it. In case
there is none, the previous node was a root, and we label it and
proceed with the next line.

Line 6 If the root is the top of the last tree, the program ends, but if it is
not, the next tree in line is considered and the program continues
from Line 2.

126 Chapter 3. Embedding simulations with quantum codes

By the end of the program, all nodes are labeled in a way such that the
resulting mapping outputs strings of weight 𝑂(𝜏 + ΛΓ). Note that there
might be variations on how this process can turn out, since in several
lines an element of choice is involved. We can now consider customized
trees and root-connected forests. For instance, we can consider a per-
fect binary tree (a real one this time), which yields a 𝑂(log𝑁) scaling as
well. Although with such a tree, every node is only required to have
three nearest-neighbors, the embedding of an arbitrarily-sized tree into
a square lattice is still not possible. This is due to the children that run
into each other as we expand the tree-embedding on the lattice. We hope
however that for future work the tools provided in this section will help
to tailor tree-based transforms directly to specific device layouts.

3.9.3 Technical details

This section is dedicated to the quantum codes in the foundation of every
locality-preserving fermion-to-qubit mapping referenced in this chapter.
In particular, we provide details on the features that distinguish our map-
pings from prior works: rather than trying to mimic the locality of the
simulated system, we have focused on the quantum device and encoded
fermions into local terms on its connectivity. However, since the fermionic
Hamiltonian is local on a different graph, we have introduced Manhattan-
distance strings to tackle this mismatch. To comply with those ideas, we
have chosen the quantum codes to be planar on the square lattice, with
locality and Manhattan-distance properties reflected in their logical oper-
ators. Catching up on a number of technical details omitted earlier in the
text, we commence this section by showing the latter for the logical oper-
ators of the square lattice AQM. Specifically, we have claimed that each
(relevant) logical operator only had small support on the auxiliary qubits
– a statement we we will substantiate in Section 3.9.3.1 by decomposing
fermion operators into Majoranas. Note that those Majorana operators
should not be regarded as physical particles, but rather as a useful de-
scription of the model at hand. With this new tool, we then motivate the
Manhattan-distance property in Section 3.9.3.2. Afterwards, we turn to
BKSF and VCT in Sections 3.9.3.4 and 3.9.3.3. We review the literature
implementations of those mappings and then adapt them such that the
codes are planar on the square lattice layout. What is more, we show
that our implementation results in logical operators with the Manhattan-
distance property. We also add some points about the proper code space

3.9 Supplement 127

(a)

1

2

4

8

16

15 1412

6 11 10 13

3 9

7

5

(b)

9 11 15 13

10 12 16 14

5 6 8 7

1 2 4 3

(c)

−→

←−
←−

←−

←−

Z

Z

X

X

Z XZ

(d)

−→ −→

←− −→−
→

X X X

Z Z Z

Z

Figure 3.11. (a) Tree of the Bravyi-Kitaev transform for 16 qubits. Qubits are
labeled from 1 to 16 according to the underlying binary tree rule. (b) Embed-
ding the tree of 16 qubits into a (4 × 4) square lattice. (c) & (d) Pauli strings
(
⨂︀

𝑖∈𝑈(10) 𝑋𝑖) and (
⨂︀

𝑖∈𝐹 (8) 𝑍𝑖) on the tree and the square lattice, where the
arrows indicate the rules that determine the update set 𝑈(10), and the flip set
𝐹 (8) respectively: 𝐹 (𝑖) would involve node 𝑖 and all its children, whereas 𝑈(𝑗)
would involve involves node 𝑗 and all its ancestors including the root.

and the logical basis, which is relevant for the logical state preparation
and transformation of the Hamiltonian. For the BKSF, we describe how
to constrain the simulated parity sector, and discuss the subspace of the
auxiliary system for the VCT. Lastly, we consider both mappings applied
to the Hubbard model, showing some of the strings referenced in Table
3.4.

128 Chapter 3. Embedding simulations with quantum codes

3.9.3.1 Auxiliary Qubit support of the square lattice AQM

Majorana particles are fermions as their many-body wave-functions are
anti-symmetric under permutation. Majorana operators 𝑚(†)

𝑗 thus satisfy
anticommutation relations like (1.7), but they are also their own antipar-
ticles, making the operators Hermitian: 𝑚†

𝑗 = 𝑚𝑗 . In general, these oper-
ators describe the relations

[𝑚𝑖, 𝑚𝑗]+ = 2𝛿𝑖𝑗 and 𝑚𝑖𝑚𝑖 = 1 . (3.42)

For each fermionic mode, we need two Majoranas, such that the fermionic
operators 𝑐

(†)
𝑗 are described by two Majorana species 𝑚𝑗 and 𝑚𝑗 , where

𝑚𝑗 obey the same relations (3.42), and are indistinguishable to 𝑚𝑗 , which
means 𝑚𝑖𝑚𝑗 = −𝑚𝑗 𝑚𝑖. We define

𝑐†𝑗 =
1

2
(𝑚𝑗 − 𝑖𝑚𝑗) and 𝑐𝑗 =

1

2
(𝑚𝑗 + 𝑖𝑚𝑗) . (3.43)

Thus we can represent the operators 𝑚𝑗 , 𝑚𝑗 with the Jordan-Wigner
transform as

𝑚𝑗 =̂

(︃
𝑗−1⨂︁
𝑘=1

𝑍𝑘

)︃
⊗𝑋𝑗 and 𝑚𝑗 =̂

(︃
𝑗−1⨂︁
𝑘=1

𝑍𝑘

)︃
⊗ 𝑌𝑗 . (3.44)

Keeping the canonical order in mind, we turn mode and qubit indices
once again into coordinates just like in Section 3.5. With the index 𝑗 being
found at coordinate 𝑅 = (𝑅1, 𝑅2)

⊤, the two Pauli strings (3.44) will be
denoted by ℳ𝑏,𝑅

dat , where 𝑏 ∈ Z2 with ℳ0,𝑅
dat =̂ 𝑚𝑅 and ℳ1,𝑅

dat =̂ 𝑚𝑅. It is
important to note that 𝐻dat is comprised of strings ℳ𝑏,𝑅

dat in the same way
the fermionic Hamiltonian is constructed from products of 𝑚𝑅 and 𝑚𝑅.
As a Hamiltonian of the form (1.8) only features products of at most four
Majorana operators, the same can be said about Jordan-Wigner trans-
formed Hamiltonians and the ℳ-strings. Therefore we only have to put
a bound on the weight gained in the adjustment process ℎdat ↦→ ℎdat⊗𝜅ℎaux

for any ℎdat = ℳ𝑏,𝑅
dat . Since the adjustment is a linear process, the total

weight that any term gains is four-fold that of a single ℳ-string. Indeed,
for a coordinate 𝑅 in the bulk of the qubit array, we find

ℳ𝑏,𝑅
dat ↦→ ℳ𝑏,𝑅

dat ⊗ 𝑍𝑅± 1
2
𝑒2

, (3.45)

3.9 Supplement 129

where 𝑒2 = (0, 1)⊤ is the Cartesian unit vector in vertical direction, and
we recall that auxiliary are placed at half integer positions of the vertical
coordinate. The point is that the adjustments only include information
of one of the two auxiliaries adjacent to the data qubit at 𝑅. As claimed
before, this means that for hopping terms, i.e. 𝑐†𝑖𝑐𝑗 , the adjustments are
local at the end points of the resulting strings. Note that in the case where
𝑅 is at the boundary of the qubit array, there is only an adjustment such
as in (3.45) if the corresponding auxiliary qubit exists.
Let us now briefly illustrate the statement (3.45). We first express the

stabilizers (3.9) in terms of ℳ𝑏,𝑅
dat . For a stabilizer (𝑝

𝑅+ 1
2
𝑒2

dat ⊗𝑋𝑅+ 1
2
𝑒2
), we

find

𝑝
𝑅+ 1

2
𝑒2

dat =

⎧⎨⎩ 𝑖ℳ0,𝑅
dat · ℳ0,𝑅+ 1

2
𝑒2

dat if 𝑅2 is odd

−𝑖ℳ1,𝑅
dat · ℳ1,𝑅+ 1

2
𝑒2

dat if 𝑅2 is even .
(3.46)

From ℳ𝑏,𝑅
dat ℳ

𝑎,𝑆
dat = (−1)1+𝛿𝑆𝑅 𝛿𝑎𝑏ℳ𝑎,𝑆

dat ℳ
𝑏,𝑅
dat it is apparent that a phys-

ical operator ℳ𝑏,𝑅
dat can only anticommute with a 𝑝-strings local to 𝑅 or

𝑅− 1
2𝑒2 (so they both exist). Since the species index has to match as well,

only one of the two stabilizers will anticommute and make an adjustment
(3.45) necessary. Note that it hinges on both 𝑏 and the vertical component
of 𝑅 whether that adjustment is 𝑍𝑅+ 1

2
𝑒2

or 𝑍𝑅− 1
2
𝑒2

in particular.

3.9.3.2 Manhattan-distance property

Verstraete-Cirac transform, Superfast simulation and the square lattice
AQM - all three mappings inherently posses the Manhattan-distance prop-
erty, which means that when we use them to transform hopping interac-
tion of two fermionic modes, the weight of the (shortest) resulting Pauli
string can be bounded with the Manhattan distance of the modes on the
fermionic lattice. Here we will show that all mappings work in a similar
fashion that enables us to use this property and elucidate why it is neces-
sary to make use of it in a limited qubit layout. Let us recall the definition
of the Majorana fermions from Section 3.9.3.1.

Majorana-pair operators like 𝑖𝑚𝑗𝑚𝑘 are used in the original proposals
of VCT and BKSF, and their structure is also an element in the AQM. This
is because these operators can be transformed into single Pauli strings
that describe the interaction of two fermionic modes 𝑗 and 𝑘, making

130 Chapter 3. Embedding simulations with quantum codes

them a useful tool for modeling it. As already established, they also
have quite convenient (anti-) commutation relations. All mappings intro-
duce extra qubits to encode operators corresponding to Majorana pairs
(𝑚𝑗 𝑚𝑘) ∝̂𝒪𝑗𝑘. In one or the other way, all mappings use these operators
to prevent hopping terms, as they occur in fermionic Hamiltonians, to
become nonlocal Pauli strings in the qubit Hamiltonian. When nonlocal
connections of modes 𝑖 with 𝑘, and 𝑘 with 𝑗, as well as 𝑖 with 𝑗 appear
in a fermionic Hamiltonian, one might think of encoding three opera-
tors 𝒪𝑖𝑘, 𝒪𝑘𝑗 and 𝒪𝑖𝑗 . However, all mappings exhibit repercussions for
adding qubits to encode these operators, such as a weight increase in the
substrings 𝜅ℎaux in case of the AQM. There is also the issue that we need to
connect all the modes in a way that would mimic the connectivity graph
of the fermionic Hamiltonian - a Hamiltonian that is generally more com-
plicated than a lattice model. In order to be modest with the amount of
qubits to be added and to be able to deal with the limited connectivity
of the setup, we reconsider encoding operators 𝒪𝑖𝑗 of all possible combi-
nations 𝑖𝑗 by adding qubits. Instead, under the cost of a slightly higher
operator weight, we can obtain some nonlocal 𝒪𝑖𝑗 by multiplying opera-
tors that are already encoded: 𝒪𝑖𝑗 ∝ 𝒪𝑖𝑘𝒪𝑘𝑗 .

This is possible since for Majorana pairs we find (𝑚𝑖𝑚𝑗) = (𝑚𝑖𝑚𝑘) ·
(𝑚𝑘 𝑚𝑗). We report only a ‘slightly’ higher weight as 𝒪𝑖𝑘 and 𝒪𝑘𝑗 have
been introduced to localize their respective links in the first place. With
the same argument we can take a walk over an arbitrary sequence of
indices 𝑘1, 𝑘2, . . . , 𝑘𝑙, where 𝑘𝑠 and 𝑘𝑠+1 are connected by an operator
𝒪𝑘𝑠𝑘𝑠+1 , just to obtain the operator that links the first and the last mode
𝑘1 and 𝑘𝑙

𝒪𝑘1𝑘𝑙 ∝
𝑙∏︁

𝑠=1

𝒪𝑘𝑠𝑘𝑠+1 . (3.47)

This is the foundation for the Manhattan-distance property of all three
mappings.

3.9.3.3 Verstraete-Cirac transform

Review Here we will review the Verstraete-Cirac transform starting
with the original proposal [25], that, like the AQMs, can be regarded as
manipulation of the Jordan-Wigner transform in which nonlocal strings

3.9 Supplement 131

are canceled with stabilizers. There, the auxiliary degrees of freedom that
produce these stabilizers are added on the side of the model, where we
find them in the form of Majorana modes. However, in the investigation
of this mapping we found the consideration of the mapping as a quan-
tum code more practical for a rigorous derivation of the stabilizers and
outputs. This is why after a short motivation in the original language,
we will describe the general concept of this mapping as a quantum code
quite similar to the concept of the Auxiliary Qubit codes, which allows
for the description of customized mappings such as a mapping with an
odd number of rows or a qubit-economic version.

The idea of [25] is to extend the fermionic systems by doubling the
number of modes, where the modes added are denoted by primed num-
bers from 1′ to 𝑁 ′. For all indices 𝑘, 𝑘′ does not denote another variable
but is the primed version of the value of 𝑘. For the Jordan-Wigner trans-
form, we need to impose the canonical order of 2𝑁 sites, and so we stag-
ger primed and unprimed indices:
1, 1′, 2, 2′, . . . 𝑁, 𝑁 ′. Adding those primed sites, we practically increase
the length of Pauli strings, since all hopping terms on the original system
hop over primed sites, even turning horizontal nearest-neighbor hop-
pings into next-nearest neighbor interactions.

(𝑖 < 𝑗) : 𝑐†𝑖𝑐𝑗 + 𝑐†𝑗𝑐𝑖 =̂
1

2

[︃
𝑗−1⨂︁

𝑘=𝑖+1

𝑍𝑘

]︃
(𝑋𝑖 ⊗𝑋𝑗 + 𝑌𝑖 ⊗ 𝑌𝑗)

↦→ 1

2

[︃
𝑗−1⨂︁

𝑘=𝑖+1

(𝑍𝑘 ⊗ 𝑍𝑘′)

]︃
(𝑋𝑖 ⊗ 𝑍𝑖′ ⊗𝑋𝑗 + 𝑌𝑖 ⊗ 𝑍𝑖′ ⊗ 𝑌𝑗) . (3.48)

The hopping terms are thus made sensitive to the primed subsystem, and
the original system is recovered if all primed modes are empty. In their
original work, Verstraete and Cirac define a fermionic quantum code,
that constrains the primed subsystem completely by means of majoranic
stabilizers (𝑖𝑚𝑗′ 𝑚𝑘′) for certain pairs of modes 𝑗′ and 𝑘′. These are
translated to the qubit side by Jordan-Wigner transform (𝑖𝑚𝑗′ 𝑚𝑘′) =̂𝒫𝑗𝑘.
While in the original proposal, the majoranic stabilizers (𝑖𝑚𝑗′𝑚𝑘′) are
fixed as gap terms in the model Hamiltonian, it is suggested in [55] to
prepare the entangled state by making syndrome measurements with the
transformed stabilizers 𝒫𝑗𝑘.

Stabilizers like (𝑖𝑚𝑗′𝑚𝑘′) are useful to cancel nonlocal connections be-

132 Chapter 3. Embedding simulations with quantum codes

tween 𝑗 and 𝑘. Let us here assume that such a stabilizer is present, then
the hopping between those modes can be modified by multiplication of
the corresponding fermionic terms in the model Hamiltonians:(︁

𝑐†𝑗𝑐𝑘 + 𝑐†𝑘𝑐𝑗

)︁
𝑖𝑚𝑗′ 𝑚𝑘′ =̂ −1

2
𝑋𝑗 ⊗𝑋𝑗′ ⊗ 𝑌𝑘 ⊗ 𝑌𝑘′

+
1

2
𝑌𝑗 ⊗𝑋𝑗′ ⊗𝑋𝑘 ⊗ 𝑌𝑘′ . (3.49)

As one can see, the re-sized parity string has been canceled. Although
all operators involved satisfy the correct (anti-)commutation relations, it
is not possible to attribute the correct sign to all stabilizers and Hamilto-
nian terms without considering the code space. To do so, we now derive
the quantum code version of the VCT, starting by the constructing the
logical basis, that has to determine the adjustments to the Jordan-Wigner-
transformed Hamiltonian terms. Although it was recently pointed out in
[55], that keeping the stabilizers majoranic is unnecessary, we will stick
to the original concept and merely add the freedom to ‘flip’ the stabilizer
by introducing a sign

𝒫𝑏𝑠
𝛼𝑠𝛽𝑠

=̂ (−1)𝑏𝑠 𝑖𝑚𝛼′
𝑠
𝑚𝛽′

𝑠
, (3.50)

where 𝛽, 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑟) ∈ [𝑁]⊗𝑟 and 𝑏 = (𝑏1, 𝑏2, . . . , 𝑏𝑟) ∈
Z⊗𝑟
2 are sequences that parameterize the mapping. A ‘flipped’ stabilizer

would practically be implemented by requiring that syndrome measure-
ments have the outcomes (−1), so a stabilizer 𝒫𝑏𝑠

𝛼𝑠𝛽𝑠
constrains the code

space to ⟨𝒫0
𝛼𝑠𝛽𝑠

⟩ = (−1)𝑏𝑠 . Instead of the primed and unprimed subspace
to host indistinguishable fermions and being interleaved in the canoni-
cal order, we separate those modes (qubits) in an attempt to regard the
primed subspace as the auxiliary register. The aux-register is not even
required to have size 𝑁 , instead a smaller number of auxiliary qubits
can be chosen, 𝑟 ≤ 𝑁 . Although separated into different registers, each
auxiliary qubit is still affiliated with a data qubit, or rather their corre-
sponding modes are. Our intention is to keep the previous notation and
let the auxiliary register contain the primed labels. For that purpose, we
introduce the set 𝑊 as a 𝑟-sized subset of the mode numbers, 𝑊 ⊆ [𝑁],
such that the auxiliary register is comprised of qubits labeled (

⋃︀
𝑘∈𝑊 𝑘′).

In this way every data qubit 𝑘 ∈ 𝑊 has an auxiliary qubit 𝑘′ associated
with it. Let us now characterize a general version of this mapping. We
consider the (ℓ1 × ℓ2) block of data qubits and for every 𝑠 ∈ [𝑟] connect
the qubits 𝛼𝑠 and 𝛽𝑠 in a directed graph. For every qubit 𝑘 that is a vertex
of this graph, we add an auxiliary qubit 𝑘′ somewhere, and the number 𝑘

3.9 Supplement 133

becomes a member of 𝑊 . Generalizing (3.50), the stabilizers of the qubit
system are

𝒫𝑏𝑠
𝛼𝑠𝛽𝑠

= (−1)𝑏𝑠

⎛⎝ 𝛽𝑠⨂︁
𝑗=𝛼𝑠+1

𝑍𝑗

⎞⎠⊗ 𝑌𝛼′
𝑠
⊗

⎛⎜⎜⎝ ⨂︁
𝑘∈𝑊

𝛼𝑠<𝑘<𝛽𝑠

𝑍𝑘′

⎞⎟⎟⎠⊗ 𝑌𝛽′
𝑠

if 𝛼𝑠 < 𝛽𝑠

= (−1)𝑏𝑠

⎛⎝ 𝛼𝑠⨂︁
𝑗=𝛽𝑠+1

𝑍𝑗

⎞⎠⊗𝑋𝛽′
𝑠
⊗

⎛⎜⎜⎝ ⨂︁
𝑘∈𝑊

𝛽𝑠<𝑘<𝛼𝑠

𝑍𝑘′

⎞⎟⎟⎠⊗𝑋𝛼′
𝑠

if 𝛼𝑠 > 𝛽𝑠 .

(3.51)

Note that for the quantum code, that we intent to construct with the set
{𝒫𝑏𝑠

𝛼𝑠𝛽𝑠
}𝛼,𝛽 as stabilizer generators, certain conditions on 𝛼 and 𝛽 are to

be met. While these conditions are intrinsically fulfilled for the mappings
in [25], we want to briefly spell them out for the sake of generality. The
following conditions must be met by the directed graph on which 𝛼 and
𝛽 are defined: (i) the graph must be composed of closed loops on the
(ℓ1 × ℓ2)-grid. (ii) The loops do not overlap in their vertices. (iii) The
loops are uniformly directed, which means that within one loop no two
edges point towards the same vertex.
Statement (i) is just a consequence of the fact that we need to constrain the
auxiliary system completely. As the stabilizers (3.51) are associated with
edges, we need to consider closed loops, otherwise degrees of freedom
remain undetermined. We also need to make sure that all stabilizes com-
mute and so, considering (3.50), we find that every vertex can host one
incident and one outbound edge. This, together with statement (i), ex-
plains statements (ii) and (iii). An example of such a mapping, for which
all three statements hold, is depicted in Figure 3.12(a), where we con-
sider two loops in counter-clockwise directions. While in (a), we elimi-
nate some arbitrary nonlocal connections, Figure 3.12(b) exhibits the orig-
inal proposal, where the stabilizer implement the vertical connections.
Of course we need to involve a few horizontal connections in order to
comply with statement (i). As loops cannot be closed in it, the original
proposal deals with an odd number ℓ1 in ignoring the last column. Alter-
natively, we suggest that one could just create loops between vertically
adjacent modes in that last column, like it is done in the right-most loop
in panel (a). It is of course only possible to stabilize roughly half of all
vertical connections in this way, i.e. all even or all odd pairs. Assuming

134 Chapter 3. Embedding simulations with quantum codes

an underlying S-pattern of the canonical ordering, nothing else would be
required, since half of the links are local anyways. The original proposal
yields a decent mapping already, as we can shorten vertical hoppings
along the last column by multiplications stabilizers of the second-to-last
column. In fact, the idea that not every column needs to have their own
auxiliary qubits is the foundation for qubit-conserving versions of the
VCT, as is shown in Figure 3.12(c). Note that in order to comply with the
three statements, the periodicity ℐ has to be chosen such that (ℓ1 − 1)/ℐ
is an odd number, the size of the auxiliary register subsequently becomes
𝑟 = ℓ2+(ℓ1−1)ℓ2/ℐ. Note that a loop of one vertex is counterproductive,
resulting in a stabilizer 𝒫𝑏

𝑗𝑗 = (−1)1+𝑏𝑍𝑗′ . This only fixes the parity of the
auxiliary qubit, which renders it redundant since it is not entangled with
the rest of the system. Not just that, it blocks the mode from being part
in another loop.

Let us now take a look to the basis of the extended system. As before,
the 𝑁 original modes describing the fermionic Fock space shall make up
the data qubit register and the primed auxiliary qubits be in the register
aux = (

⋃︀
𝑘∈𝑊 𝑘′). An ansatz for a logical basis stabilized by all {𝒫𝑏𝑠

𝛼𝑠𝛽𝑠
} is

|𝜔⟩dat ↦→ ∝

⎛⎝ ∑︁
𝜇∈Z⊗𝑟

2

𝑟∏︁
𝑠=1

[︁
𝒫𝑏𝑠
𝛼𝑠𝛽𝑠

]︁𝜇𝑠

⎞⎠ |𝜔⟩dat ⊗ |𝜒⟩aux , (3.52)

where |𝜒⟩aux = (
⨂︀

𝑘∈𝑊 |𝜒𝑘⟩𝑘′) is a product state on the auxiliary regis-
ter that can be chosen inside a certain range of parity constraints, which
we now want to explain.
These parity constraints are related to a certain freedom in the charac-
terization of the mapping. We have not determined 𝑏 yet, as up to now
the only restrictions we had were on the choice of 𝛼 and 𝛽. In order
to understand the role of 𝑏, let us for a moment assume that the graph
spanned by 𝛼 and 𝛽 is only one loop, which means that 𝛽𝑠 = 𝛼𝑠+1 and
𝛽𝑟 = 𝛼1. No matter the number of loops, the sum in the basis (3.52) will
always contain the product of all stabilizers around a closed loop, here
it is (

∏︀𝑟
𝑠=1 𝒫

𝑏𝑠
𝛼𝑠𝛽𝑠

), met by the summand for which 𝜇 = (1)⊗𝑟. In fact,
half of the terms in the sum will differ from the other half only by these
operators: (having omitted the normalization factor for that reason) it is
alright for some stabilizers to be linearly dependent, as long as they sta-
bilize |𝜔⟩dat ⊗ |𝜒⟩aux. Since we are stabilizing a loop, we find by (3.50),

3.9 Supplement 135

(a) (b)

(c)

Figure 3.12. Verstraete-Cirac transform. (a) An arbitrary mapping showcasing
the constraints on the VCT code space. The black dots correspond to data qubits.
Directed loops of operators 𝒫𝑏

𝑗𝑘 are drawn into this grid, where the direction
of one loop is indicated by arrows. With 9 vertices involved, we entangle 9
auxiliary qubits to that system. (b) Graph of the original proposal [25]. (c) One
possibility for a qubit-economic version of the VCT.

that
𝑟∏︁

𝑠=1

𝒫𝑏𝑠
𝛼𝑠𝛽𝑠

= (−1)1+
∑︀𝑟

𝑘=1 𝑏𝑘
⨂︁
𝑗∈𝑊

𝑍𝑗′ . (3.53)

Since (3.53) acts only on |𝜒⟩aux, it becomes apparent that 𝑏 determines
the parity of all auxiliary qubits associated with the loops in the map-
ping. According to the choice of 𝑏, we now need to pick a state |𝜒⟩aux
that meets all parity constraints (3.53). Since we in general have more
than one loop in our mapping, we need to fix the parity on several dis-
tinct subsets of |𝜒⟩aux. For instance if we pick the parity of every loop to
be even, we can choose |𝜒⟩aux = |0𝑟⟩aux.

We lastly show that 𝑍-strings on the primed qubits come naturally
as adjustments to Hamiltonian terms ℎdat, together with minus signs

136 Chapter 3. Embedding simulations with quantum codes

from the loop parity constraints. The data-qubit substring of the stabi-
lizers (3.51) is purely a 𝑍-string, so we do not need to adjust a string
ℎdat ∈ {I, 𝑍}⊗𝑁 . This means that it is sufficient to consider the changes
to be made to a string (

⨂︀𝑘−1
𝑗=1 𝑍𝑗)⊗𝑋𝑘, in order to describe all fermionic

operators 𝑐
(†)
𝑘 . This string anticommutes with all stabilizers, that have

data qubit substrings (
⨂︀𝑡

𝑗=𝑠 𝑍𝑗), where 𝑠 ≤ 𝑘. These stabilizers, 𝒫𝑏
(𝑠−1)𝑡

or 𝒫𝑏
𝑡(𝑠−1), act on the aux-register as

(−1)𝑏 𝑌(𝑠−1)′⊗

⎛⎜⎜⎝ ⨂︁
𝑗∈𝑊

𝑡<𝑗<(𝑠−1)

𝑍𝑗′

⎞⎟⎟⎠⊗ 𝑌𝑡′

or (−1)𝑏 𝑋(𝑠−1)′⊗

⎛⎜⎜⎝ ⨂︁
𝑗∈𝑊

𝑡<𝑗<(𝑠−1)

𝑍𝑗′

⎞⎟⎟⎠⊗𝑋𝑡′ , (3.54)

which means they change the parity of the subsystem that is spanned
by all auxiliary qubits with the labels 𝑗′, where 𝑗 ≤ (𝑘 − 1) and 𝑗 ∈ 𝑊 .
The total parity of all auxiliary qubits is however constant i.e. it does
not change with the multiplication of either stabilizer. The total parity
is predetermined by |𝜒⟩aux and the action of a Majorana-pair operator
conserves it.

If we now multiply (
⨂︀𝑘−1

𝑗=1 𝑍𝑗)⊗𝑋𝑘 to a basis element (3.52), we can
determine whether it anticommutes with an even or odd number of stabi-
lizers as we move it to the right until it reaches |𝜔⟩dat⊗|𝜒⟩aux: it anticom-
mutes with an odd number of stabilizers if the parity of the subsystem,
spanned by all auxiliary qubits with labels at most as large as (𝑘 − 1)′, is
changed. We therefore extract the parity of said subsystem by the oper-
ator (

⨂︀
𝑗∈𝑊<𝑘 𝑍𝑗′) and add a minus sign in case (

⨂︀
𝑗∈𝑊<𝑘 𝑍𝑗′) |𝜒⟩aux =

(−1) |𝜒⟩aux. We hence find

(︃
𝑘−1⨂︁
𝑖=1

𝑍𝑖

)︃
⊗𝑋𝑘 ↦→ ±

⎛⎝𝑘−1⨂︁
𝑗=1

𝑍𝑗

⎞⎠⊗𝑋𝑘 ⊗

⎛⎝ ⨂︁
𝑗∈𝑊<𝑘

𝑍𝑗′

⎞⎠ (3.55)

where the sign is determined by |𝜒⟩. When we consider the planar code

3.9 Supplement 137

of the original proposal, we find that string has become

±

⎡⎣𝑘−1⨂︁
𝑗=1

(𝑍𝑗 ⊗ 𝑍𝑗′)

⎤⎦⊗𝑋𝑘 (3.56)

which is the expected string with perhaps a minus sign, depending on
whether we have flipped any stabilizers. Note however that the loop
parity constraints have to be fulfilled somewhere, either by minus signs
in the logical operators or by flipping stabilizers.

Adaption to the layout & Manhattan-distance property We here adapt
the Verstraete-Cirac transform to the square lattice connectivity, such that
it has the Manhattan-distance property. In doing so, we will not stray too
far from the original proposal, that is built upon the connectivity graph
in Figure 3.12(b). The layout is roughly motivated by an S-pattern of
the qubits ordered 1 1′ 2 2′ . . . 𝑁 𝑁 ′. For reasons that become clear
later, we need the rows to be connected vertically by the auxiliary qubits,
which leads us to shift every second row in order to align the primed
qubits. The vertical connections are also placed along the windings of
the S-pattern, resulting in a graph that can be studied in Figure 3.13(a).
For the initialization of a state, stabilizers that are horizontally adjacent
are multiplied pairwise. We fully constrain the auxiliary systems by those
localized stabilizers, plus the stabilizers that are local already: the ones
along the windings and the horizontal connections in the first and ℓ2-th
row. The stabilizer tiling to the layout of Figure 3.13(a) is presented in
panel (b) of the same figure. As already remarked in [25], the analogy of
the stabilizer tilings of this code and the rotated surface code [17] comes
to mind easily. The tiles of the VCT are identical to the surface code on
the primed qubits, but the stabilizers contain some additional 𝑍-strings
on the data qubits. Also, not all of the stabilizers might have the same
sign according to 𝑏 in the definition 𝒫𝑏

𝑗𝑘. Curiously, only the first qubit of
the data register is not entangled with the auxiliary system in any way.

Using the interpretations of the stabilizers (3.50), we can define 𝒪𝑗𝑘 ∝
(−1)𝑏 𝒫𝑏

𝑗𝑘𝑍𝑘′ and obtain arbitrary long-range vertical connections over
the sequence of vertically aligned stabilizers 𝒫𝑏𝑠

𝑘𝑠𝑘𝑠+1
, where 𝑘 ∈ [𝑁]⊗𝑙

and 𝑏 ∈ Z⊗𝑙
2 , via (3.47):

138 Chapter 3. Embedding simulations with quantum codes

(a)

1 1′ 2 2′ 3 3′ 4 4′

88′ 77′ 66′ 55′

9 10 11 12

16 15 14 13

17 18 19 20

24 23 22 21

(b)

Y
Y

Z
Z

Y
Y

X
X

Z
Z

X
X

Y
Y

Z
Z

Y
Y

X
X

Z
Z

X
X

Y
Y

Z
Z

Y
Y

X
X

Z
Z

X
X

Y
Y

Z
Z

Y
Y

X
X

Z
Z

X
X

Y
Y

Z
Z

Y
Y

X
X

Z
Z

X
X

Y
Y

Z
Z

Y
Y

X
X

Z
Z

X
X

Y
Y

Z
Z

Y
Y

X
X

Z
Z

X
X

Y
Y

Z
Z

Y
Y

X Z
X

X Z
X

X Z
X

YZ
Y

YZ
Y

X Z X X Z X

X Z X X Z X

Figure 3.13. VCT as a planar code. (a) Connectivity graph, in which we alternate
data (white) and auxiliary qubits (gray), but shift every second row such that the
auxiliary qubits align vertically. The labeling of the qubits follows an S-pattern.
(b) Stabilizers of the VCT for a graph as in Figure 3.12(b), the original proposal.
We here give the connectivity graph a two-coloring of the stabilizer plaquettes,
where the Pauli operators, that make up each stabilizer, are denoted by letters
inside the plaquettes close to where their corresponding qubits are. Note that
we have not indicated the signs that each stabilizer possibly has attached to it.

3.9 Supplement 139

X X

Y Z Z Z Y

Z

Z

X X

Figure 3.14. Simulating the term (𝑖𝑚20 𝑚1) via the VCT, where we have arbi-
trarily deformed the string by the multiplication of stabilizers.

𝑙−1∏︁
𝑡=1

𝒫𝑏𝑡
𝑘𝑡𝑘𝑡+1

= 𝒫𝑎
𝑘1𝑘𝑙

𝑙−1⨂︁
𝑢=2

𝑍𝑘′𝑢 , (3.57)

where 𝑎 = (
∑︀𝑙

𝑠=1 𝑏𝑠). Equation (3.57) means that the multiplication of
these vertical stabilizers yields a nonlocal connection 𝒫𝑎

𝑘1𝑘𝑙
, which (is not

a stabilizer and) is missing the operators 𝑍𝑘′𝑢 for 1 < 𝑢 < 𝑙. The absence
of these 𝑍-operators does not cancel them in Pauli strings originating
from fermionic terms like 𝑐†𝑖𝑐𝑗 , where 𝑖 ≤ 𝑘1 < 𝑘𝑙 ≤ 𝑗. These operators
subsequently serve as connection between the qubits labeled 𝑘′1 and 𝑘′𝑙, as
the qubits are vertically aligned by our layout. With this building block
we can multiply various stabilizers and so connect the qubits 𝑖 and 𝑗 via
different paths but with the same number of gates. In Figure 3.14, we
present an example of such a term.

3.9.3.4 Superfast Simulation

Review We here review the original proposal of the Bravyi-Kitaev Su-
perfast simulation, [26], which includes the transform of the operators
and the structure of the stabilizers.

In contrast to the other mappings, the Superfast simulation is not de-
fined to transform fermionic operators, but pairs of Majoranas. Thus the
BKSF only allows us to conveniently consider Hamiltonians that con-
serve the fermionic parity i.e. are comprised of operator pairs 𝑐𝑗𝑐𝑘, 𝑐†𝑗𝑐

†
𝑘

and 𝑐†𝑗𝑐𝑘. By the relations (3.43), these Hamiltonians can then be ex-

140 Chapter 3. Embedding simulations with quantum codes

pressed using only the operators

𝒜𝑗𝑘 =̂ − 𝑖𝑚𝑗 𝑚𝑘 , (3.58)
ℬ𝑘 =̂ − 𝑖𝑚𝑘 𝑚𝑘 , (3.59)

where 𝒜𝑗𝑘 and ℬ𝑘 are some Pauli strings. Using these operators, fermionic
Hamiltonians can be transformed via

𝑐𝑗𝑐𝑘 =̂
𝑖

4
(𝒜𝑗𝑘 −𝒜𝑗𝑘ℬ𝑘 + ℬ𝑗𝒜𝑗𝑘 − ℬ𝑗𝒜𝑗𝑘ℬ𝑘) , (3.60)

𝑐†𝑗𝑐
†
𝑘 =̂

𝑖

4
(𝒜𝑗𝑘 +𝒜𝑗𝑘ℬ𝑘 − ℬ𝑗𝒜𝑗𝑘 − ℬ𝑗𝒜𝑗𝑘ℬ𝑘) , (3.61)

𝑐†𝑗𝑐𝑘 =̂
𝑖

4
(𝒜𝑗𝑘 −𝒜𝑗𝑘ℬ𝑘 − ℬ𝑗𝒜𝑗𝑘 + ℬ𝑗𝒜𝑗𝑘ℬ𝑘) . (3.62)

The BKSF is furthermore not based on the Jordan-Wigner transform, so
𝒜𝑗𝑘 and ℬ𝑘 are not going to be obtained by transforming the right-hand
side of (3.58) and (3.59) under (3.44). Instead, the 𝒜- and ℬ-operators will
be defined on a unique qubit layout, that we now introduce.
The Hamiltonian that we want to simulate describes a certain graph of
pairwise interactions between modes, for example there is an edge be-
tween vertices 𝑗, 𝑘 when it contains at least one of the term (3.60)-(3.62).
The qubit connectivity graph of the Superfast simulation is then the line
graph of this Hamiltonian graph. Here the operators 𝒜𝑗𝑘 are associated
with edges in the Hamiltonian graph, i.e. interactions of the Hamiltonian,
and the operators ℬ𝑘 are associated with vertices, i.e. fermionic modes.
Let 𝐸 be the set of undirected edges of the Hamiltonian graph, and 𝜀𝑗𝑘
a number associated to the index pair 𝑗𝑘, that yields zero if 𝑗𝑘 /∈ 𝐸. By
means of 𝜀𝑗𝑘 a direction on the graph is fixed by imposing that if 𝑗𝑘 ∈ 𝐸,
then 𝜀𝑗𝑘 = 1, in case the edge is directed from 𝑗 ↦→ 𝑘, and 𝜀𝑗𝑘 = −1 when
the direction is opposite. With that construction, we will take into ac-
count that 𝒜𝑗𝑘 = −𝒜𝑘𝑗 , which is straightforward to see from (3.58). Also,
on every vertex 𝑘, we need to impose an ordering of the edges connected
to it. To that end Bravyi and Kitaev introduce the symbolic operator <

𝑘
,

such that two different edges 𝑗𝑘, 𝑙𝑘 ∈ 𝐸, 𝑗 ̸= 𝑙 on vertex 𝑘 are ordered by
a relation like 𝑗𝑘 <

𝑘
𝑙𝑘. As we place the qubits on the edges of that graph,

both 𝑗𝑘 and 𝑘𝑗 shall be identifiers for the same qubit (given 𝜀𝑗𝑘 ̸= 0). In
the original BKSF, the number of qubits equals the number of edges in
the graph, so the qubit requirements do not depend on the system size,

3.9 Supplement 141

but on the size of the Hamiltonian. The operators 𝒜𝑗𝑘 and ℬ𝑘 are defined
by

ℬ𝑘 =
⨂︁

𝑎: 𝑎𝑘∈𝐸
𝑍𝑎𝑘 , (3.63)

𝒜𝑗𝑘 = 𝜀𝑗𝑘𝑋𝑗𝑘

⎛⎜⎝ ⨂︁
𝑏: 𝑏𝑘 <

𝑘
𝑗𝑘

𝑍𝑏𝑘

⎞⎟⎠
⎛⎜⎝ ⨂︁

𝑐: 𝑗𝑐<
𝑗
𝑗𝑘

𝑍𝑗𝑐

⎞⎟⎠ . (3.64)

As shown in [26], these operators fulfill all algebraic relations that we
would expect from representations of (3.58) and (3.59) but one. As it is
now, the mapping would allow a Majorana to unphysically interact with
itself via hopping terms around a closed loop. For a length-𝑙 sequence
𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑙, that describes a closed loop along edges, i.e. 𝑎𝑗𝑎𝑗+1 ∈ 𝐸
and 𝑎1 = 𝑎𝑙, we must impose that

(𝑖)𝑙
𝑙−1∏︁
𝑗=1

𝒜𝑎𝑗𝑎𝑗+1 (3.65)

is a stabilizer of the system. As not all closed loops are linearly indepen-
dent, one needs to stabilize only the smallest closed loops of the system.

Adaption to the layout & Manhattan-distance property We now adapt
the Superfast simulation to the square lattice layout and give it the Manhattan-
distance property. As we are interested in simulating more than square
lattice Hamiltonians, we are going to depart a bit from the original con-
cept of the qubit connectivity being related to the Hamiltonian.

Instead, we will show that we can adapt the mapping adequately by
pretending that the Hamiltonian graph is a square lattice. On this lattice,
modes that are actually subject to hopping interactions in the Hamilto-
nian, should be locally close. Such a lattice of modes is shown in Figure
3.15(a), where the direction of every edge is indicated. As the direction
of every edge 𝑗𝑘 only determines the factor 𝜀𝑗𝑘 ∈ {+1, −1} in (3.63), it
has not much influence on the transformation. We will see later that the
choice of the order of the edges on every mode is way more relevant for
the strings that such a mapping produces. In 3.15(a), we have already
outlined the tiling of the line graph, to which we now switch. The re-
sulting qubit connectivity graph can be seen in Figure 3.15(b), where the

142 Chapter 3. Embedding simulations with quantum codes

(a) (b)

Figure 3.15. Connectivity graphs for Superfast simulation in limited connec-
tivity. (a) Hamiltonian graph: all vertices correspond to fermionic modes, and
in the original setting all edges would indicate the presence of hopping terms
between the two modes in the Hamiltonian. We have displayed the direction
of every edge in this graph. (b) Qubit connectivity graph: a qubit is placed on
each vertex of this rotated square lattice. The underlying checkerboard pattern
indicates which qubits are associated with which fermionic modes. Each dark
plaquette is associated with an index 𝑘, such that the qubits on each of its cor-
ners have indices 𝑗𝑘 ∈ 𝐸.

plaquettes enclosing a fermionic mode are darkened. Starting from a
general set of ℓ1× ℓ2 modes, we have now ended up with a rotated patch
of the square lattice that has 2ℓ1ℓ2 − (ℓ1 + ℓ2) qubits on it. The number of
white plaquettes, that are enclosed in the graph, describes the number of
smallest possible loops, which means it is the total number of linearly in-
dependent stabilizers. We have (ℓ1− 1)(ℓ2− 1) of those white plaquettes,
which means the system has 2ℓ1ℓ2−1 degrees of freedom left: since we
have mapped only pairs of operators (3.60)-(3.62), we are now seemingly
stuck in the subspace with an even number of fermions. This situation
is however not terminal: we can simulate the odd-parity subspace sepa-
rately as well as the entire Fock space. Let us further illuminate this issue
by considering the logical basis of the even-parity subspace first. For that
purpose we pick a set {𝑆𝑖}𝑖 of (ℓ1 − 1)(ℓ2 − 1) linearly independent sta-
bilizers from (3.65). The set fully constrains the system. Automatically,
all stabilizers 𝑆𝑖 are orthogonal in the computational basis, such that the
fermionic vacuum state is encoded as

|Θ⟩ =̂

[︃∏︁
𝑖

1√
2

(︀
I+ 𝑆𝑖

)︀]︃
|0𝑛⟩ . (3.66)

3.9 Supplement 143

We can then apply operators 𝒜𝑗𝑘 and ℬ𝑗 in order to prepare other states
with an even particle number. While the 𝒜𝑗𝑘 are different for every order-
ing, the operators ℬ𝑘, are independent of it: an operator ℬ𝑘 is the string of
𝑍-operators around the shaded plaquette associated with mode 𝑘. If this
plaquette is in the interior of the lattice in Figure 3.15(b), the string has
weight four, three if it is on the boundary edge, and two if in a corner. The
one feature that the operators 𝒜𝑗𝑘 have in common for every ordering, is
that they include an 𝑋-operator on the qubit (𝑗𝑘). Apart from the admin-
istration of some minus signs, the 𝒜𝑗𝑘 has generally the effect to flip qubit
(𝑗𝑘) in the all-zero state |0𝑛⟩ of (3.66). Comparing the encoded operators
(3.58) and (3.59) to the toy picture of the 𝒜 and ℬ operators we have just
suggested, we find that a qubit configuration |𝜉⟩ = (

⨂︀
𝑗𝑘∈𝐸 |𝜉𝑗𝑘⟩𝑗𝑘), with

all 𝜉𝑗𝑘 ∈ Z2, has the following correspondence to a fermionic quantum
state:[︃∏︁

𝑖

1√
2

(︀
I+ 𝑆𝑖

)︀]︃
|𝜉⟩ ∝̂

⎡⎣ 𝑁∏︁
𝑗=1

(︁
𝑐†𝑗

)︁∑︀
𝑖: (𝑖𝑗)∈𝐸 𝜉𝑖𝑗 mod 2

⎤⎦ |Θ⟩ . (3.67)

Note that (as denoted by ∝̂) we have not kept track of any minus signs in
(3.67). The relation is however sufficient to show that a fermionic mode
𝑘 is occupied, if an odd number of qubits around the plaquette 𝑘 are in
|1⟩. The product of the stabilizers

∏︀
𝑖

1√
2

(︀
I+ 𝑆𝑖

)︀
mixes all possible con-

figurations that conserve the common parity of qubits around a shaded
plaquette (as the stabilizers need to commute with ℬ𝑘, a logical opera-
tor), and so the fermionic occupations are conserved as well. In order
to prepare a pure fermionic state different from the vacuum, we need to
consider a qubit configuration |𝜉⟩, in which we flip strings of adjacent
qubits in order to create fermions on the plaquettes at their ends, see Fig-
ure 3.16.

So far, we still have not left the even-parity subspace, but we might
have systems to solve that are populated by odd numbers of fermions.
In [57], it is suggested to add another mode to the system that is how-
ever not coupled to any other term in the Hamiltonian. From the original
concept of the BKSF it is however not clear how this mode is brought
into the system, since all qubits correspond to couplings of modes in the
Hamiltonian, which here do not exist. Let us suggest to couple this mode
to exactly one other, without ever using the 𝒜-operator of this link in
the Hamiltonian. For state preparation we however can have strings that
end at that outer plaquette, creating a mode that does not play a role and

144 Chapter 3. Embedding simulations with quantum codes

1

1

1

1(a)

(b)

(c)

Figure 3.16. State preparation in the Superfast simulation. Black dots are flipped
qubits and plaquettes with an odd number of flipped qubits are marked with 1,
as a fermion is created on the corresponding mode. (a) Flipping a qubit with
label (𝑗𝑘) creates fermions on the adjacent modes 𝑗 and 𝑘. (b) 𝑋-strings (here
emphasized by linking the qubits) create nonlocal pairs of fermions, as long as
we ensure to flip always an even number of qubits on each plaquette, which
means winding around white plaquettes when the string has to change direc-
tion. (c) Flips like this result from stabilizers, and do not excite fermions, as on
all dark plaquettes an even number of qubits is flipped.

so effectively increase the degrees of freedom to 2𝑁 , modeling the entire
Fock space. The cost of this increase is the overhead of one qubit. Al-
ternatively there is a way to only map the odd-parity subspace without
using additional quantum resources: the idea is to consider the plaquette
𝑘 as being switched to ‘filled’, such that the configuration on the right-
hand side of (3.66) does not correspond to the vacuum state (which is
in the even-parity subspace), but to the state 𝑐†𝑘 |Θ⟩. Flipping the qubit
(𝑗𝑘) will lead to the fermion on 𝑘 being annihilated and re-created on 𝑗,
a string of flips that ends at 𝑘 will in general move the fermion to the
other end. We therefore make the replacement

∑︀
𝑖 𝜉𝑖𝑘 ↦→ (1 +

∑︀
𝑖 𝜉𝑖𝑘) in

the exponent of the mode-𝑘 creation operator 𝑐†𝑘 on the right-hand side
of (3.67). In order to account for the switched occupation, we also need
to update ℬ𝑘 ↦→ (−1)ℬ𝑘 and add minus signs to some 𝒜-operators.
After having established an abstract idea of BKSF on the square lattice,
we will now consider different versions of this mapping as we delve into
detail. As mentioned before, the stabilizers of this mapping roughly flip
qubits around white plaquettes. Due to (3.65), their exact structure is
determined by the operators 𝒜𝑗𝑘, which on the other hand depend on
the ordering of edges on every vertex in the Hamiltonian graph, Figure
3.15(a). In the qubit graph, this means that with every shaded plaquette

3.9 Supplement 145

we associate numbers with the qubits on its edges. The decision for an
ordering has to be made consciously, as it influences the weight of strings
simulating long-range hoppings. For now let us consider two different
versions of this mapping in Table 3.7. For each version we assume that
the ordering on every dark plaquette (leaving out missing vertices at the
boundaries) is the same. From (3.63), we therefore just need to differ-
entiate between vertical and horizontal version of the operators 𝒜𝑗𝑘, i.e.
considering the directions of the edges, we need to separate the cases
where (1) the plaquette 𝑘 is the right neighbor of the plaquette 𝑗 and (2)
where the plaquette 𝑗 is below 𝑘. In the Table 3.7, we sketch these opera-
tors, along with the stabilizers that follow from the multiplication of four
of those operators to describe a closed loop around a white plaquette.
The first version is the one already considered in [29], and second one is
related to the mapping in [54].

O
rd

er
in

g
𝒜

𝑗𝑘
(h

or
iz

on
ta

l)
𝒜

𝑗𝑘
(v

er
ti

ca
l)

St
ab

ili
ze

r

2
3

1 4
Z

X

Z
Z

𝑗
𝑘

Z
Z

Z X𝑘 𝑗

X

Y
Y

Z

Z
X

4
2

3 1
X

Z
ZZ

Z
𝑗

𝑘

X Z

Z

𝑘 𝑗

X

Y
XZ

Z

Y

Ta
bl

e
3.

7.
D

iff
er

en
tv

er
si

on
s

of
BK

SF
.T

he
or

de
ri

ng
of

th
e

ed
ge

s
on

ea
ch

ve
rt

ex
is

di
sp

la
ye

d
as

w
el

la
s

th
e

op
er

at
or

s
th

is
or

de
ri

ng
en

ta
ils

:h
or

iz
on

ta
la

nd
ve

rt
ic

al
ed

ge
op

er
at

or
s
𝒜

𝑗
𝑘

an
d

th
e

st
ab

ili
ze

rs
(s

ig
ns

ar
e

om
it

te
d)

.T
he

up
pe

r
ve

rs
io

n
is

th
e

on
e

us
ed

in
[2

9]
,w

hi
le

th
e

lo
w

er
on

e
is

re
la

te
d

to
th

e
m

ap
pi

ng
in

[5
4]

.

3.9 Supplement 147

We can now describe fermion-operator-pairs via Table 3.7 with (3.60)-
(3.62). The latter equations hold for operators 𝒜𝑗𝑘 of every link, whereas
the table only provides us with operators in which 𝑗 and 𝑘 are adjacent
plaquettes. We will now cease to pretend that the Hamiltonian is just
composed of nearest-neighbor interactions, and derive nonlocal opera-
tors 𝒜𝑗𝑘. By (3.58) we set 𝒜𝑗𝑘 ∝ 𝒪𝑗𝑘 and using (3.47) we find

𝒜𝑘1𝑘𝑙 = (𝑖)𝑙−1
𝑙−1∏︁
𝑠=1

𝒜𝑘𝑠𝑘𝑠+1 (3.68)

for any sequence 𝑘1, 𝑘2, . . . , 𝑘𝑙, where for all 𝑠 ∈ [𝑙− 1]: 𝑘𝑠𝑘𝑠+1 ∈ 𝐸. This
means we can multiply several of the nearest-neighbor 𝒜-operators from
Table 3.7. The choice of the ordering turns out to be crucial, as for vari-
ous orderings, the resulting mapping is not a good one according to the
criteria of Section 3.3. The first mapping in Table 3.7 for instance does not
produce a continuous Pauli string (3.68) when making a chain of several
horizontal 𝒜𝑗𝑘. For a vertical chain, we have a maximal operator weight.
The second mapping on the other hand is better behaved: horizontal
and vertical 𝒜-operators are connected and their weight is minimal. In
Figure 3.17, we present an example of the simulation of the Pauli string
(−𝑖ℬ𝑘1𝒜𝑘1𝑘𝑙), where 𝒜𝑘1𝑘𝑙 is nonlocal as in (3.68), with 𝑙 = 13. The string
here extends on a zig zag line along the edges of the plaquettes involved,
{𝑘𝑠}𝑠 connecting the plaquettes 𝑘1 and 𝑘13. The weight of this string can
perhaps be optimized in cutting more corners like at plaquette 𝑘5. In any
case, we have adapted the BKSF as a two-dimensional fermion-to-qubit
mapping on the square lattice.

3.9.3.5 Fermi-Hubbard model

In this section we test the proposed square lattice implementations of the
Superfast simulation and the Verstraete-Cirac transform on the Fermi-
Hubbard model.
For both mappings, we have to decide where to place spin-up and -down
modes of the same spatial site. On the one hand should the qubits repre-
senting these modes be locally close, perhaps even horizontally or verti-
cally adjacent, but on the other hand they will increase the weight of the
strings simulating hopping terms, as they are ‘in the way’. For the BKSF,
it is almost inconsequential whether the spin pairs are vertically or hori-
zontally stacked, so we decide for the latter. For the VCT, the situation is

148 Chapter 3. Embedding simulations with quantum codes

Z

Z

Y

Z

Y

Z

Y

Z

Y

X

Z

Y

Z

Y

Z

Y

Z

Y

X

Z

Y

Z

X

Z

Z

Z

𝑘1 𝑘2 𝑘3 𝑘4 𝑘5

𝑘6

𝑘7

𝑘8

𝑘9

𝑘10 𝑘11 𝑘12 𝑘13

Figure 3.17. Superfast simulation of a hopping operator in the between modes
𝑘1 and 𝑘13, coupling the respective shaded plaquettes in a string of length scal-
ing with their Manhattan distance, where the path taken is defined by the lo-
cally connected chain of modes 𝑘2 to 𝑘12. The string simulated is (−𝑖ℬ𝑘1

𝒜𝑘1𝑘13
),

which in Jordan-Wigner transform would be ℎdat = (𝑋𝑘1
⊗𝑍𝑘1+1⊗· · ·⊗𝑍𝑘13−1⊗

𝑋𝑘13). The plaquettes (𝑘1, ... , 𝑘13) are labeled on this lattice.

3.10 Notations 149

different as it produces shorter hopping strings in the vertical direction,
which leads us to make the spin pairs vertical neighbors on the grid. In
order to do that, we need to compensate for the shift that has emerged
aligning the primed qubits: in Figure 3.13(a), qubit 4 is for instance below
qubit 6, not qubit 5. Without this shift, there would be additional costs
for horizontal or vertical hoppings, but with the shift, additional costs
emerge for the Hubbard terms. As a fix, we simulate the model with ℓ2
additional modes, that remain empty. The qubits corresponding to those
modes are the ones at the horizontal perimeter of the qubit lattice, i.e. the
qubits labeled 1, 5, 9, 13, 17 and 21 in Figure 3.13(a). Those data qubits,
fixed to |0⟩, can as well be removed, but their primed counterparts must
remain and be part of the code. The spin-partners can now be placed ver-
tically adjacent on the grid. The Hubbard model with 𝐿× 𝐿 spatial sites
is thus simulated with 4𝐿2 + 2𝐿 qubits in the VCT, and with 4𝐿2 − 3𝐿
qubits in the BKSF. The resulting Pauli strings can be found in Table 3.8.

3.10 Notations

[...] The set of integers from 1 to the argument.

(𝑖, 𝑗)

Spacial coordinates replacing qubit labels in Section 3.5. To
distinguish data from auxiliary qubits, the latter are given
half-integer coordinates.

=̂

Sign signifying the equivalence between fermionic op-
erators/states to qubit counterparts according to some
fermion-to-qubit mapping.

𝐴, 𝐴−1 The two binary (𝑁 ×𝑁) matrices defining linear fermion-
to-qubit mappings, see Section 2.3 in the first chapter.

AQM Auxiliary Qubit Mapping [43].

aux The auxiliary qubit register, which comprises the integer
labels from (𝑁 + 1) to (𝑁 + 𝑟).

BKSF
Superfast simulation of fermions on a graph, also known
as Superfast Encoding, by Bravyi and Kitaev [26]

𝑐†𝑗 , 𝑐𝑗 Fermionic creation and annihilation operators on mode 𝑗.

150 Chapter 3. Embedding simulations with quantum codes

Verstraete-Cirac transform Superfast simulation

Vertical hoppings

X Y

Z

XY

Y Y

Z

XX

Y

Z

Z Z

Z

Y

Z

Z

Horizontal hoppings

X Z X

Z Y

Z

Z

Z

Z

Z

Y

Y Z Y

X

Z

Z

X

Hubbard interactions

Z

Z

Z

Z

Z

Z Z

Z

Z Z Z

Z

Z

Table 3.8. Transforming terms of the Hubbard model according to the
Verstraete-Cirac and Superfast simulation mapping. For the hoppings, we con-
sider the real hopping terms, i.e. transforms of (𝑖𝑚𝑗 𝑚𝑘) and (𝑖𝑚𝑘 𝑚𝑗) for 𝑗 < 𝑘.
Note that for the Verstraete-Cirac transform, the vertical hopping terms are dif-
ferent for even/odd rows and columns. Here the south east qubit is in an even
column and odd row. The qubit marked, but not labeled with X, Y or Z, is
skipped.

3.10 Notations 151

CNOT(𝑖 → 𝑗)
|0⟩⟨0|𝑖 + |1⟩⟨1|𝑖 ⊗ 𝑋𝑗 . The Controlled-Not gate, where 𝑖 is
the control and 𝑗 is the target qubit.

dat
The data register labels, which comprises all integers from
1 to 𝑁 .

𝐹 (𝑗) The flip set of mode 𝑗, see (2.12).

ℎdat, ̃︀ℎaux dat

𝑁 -qubit Pauli strings and their logical equivalents on 𝑁+𝑟

qubits. Note that ̃︀ℎaux dat and (ℎdat ⊗ 𝜅ℎaux) are equivalent
and identical by the multiplication of stabilizers.

𝐻dat, ̃︀𝐻aux dat

An 𝑁 -qubit physical Hamiltonian (3.3), as for instance ob-
tained by Jordan-Wigner transform, and its (𝑁 + 𝑟)-qubit
logical equivalent (3.7).

H𝑗
1√
2

[︀
1 1
1 −1

]︀
. The Hadamard gate on qubit 𝑗.

I The identity matrix or operation in various spaces.

ℐ
A parameter determining the periodicity in the sparse
AQM, see Table 3.1.

𝜅ℎaux
A Pauli string on the auxiliary register. Adjustments made
to the physical operator ℎdat, see (3.6).

ℓ1, ℓ2
Parameters of the lattice. ℓ1 × ℓ2 is the dimension of the
fermionic lattice depicted in Figure 3.1(a).

𝐿
A lattice size. 2𝐿 × 𝐿 is the dimension of the Fermi-
Hubbard-lattice in Section 3.6.

𝑚𝑗 , 𝑚𝑗
The two types of Majorana operators associated with the
same mode 𝑗, see (3.42)-(3.44).

𝑛 𝑁 + 𝑟. The number of qubits.

𝑁 ℓ1 × ℓ2. The number of fermionic modes.
𝑃 (𝑗) The parity set of mode 𝑗, see (2.12).

𝑝𝑖dat
The part of the stabilizers (𝑝𝑖dat ⊗ 𝜎𝑖

𝑁+𝑖) that is supported
on the data register, see (3.5).

𝑟 The number of auxiliary qubits.

𝑅
A binary (𝑁 × 𝑁) matrix, in which the lower triangle is
filled with ones, see see (2.13).

𝜎𝑖
𝑁+𝑖

The part of the stabilizers (𝑝𝑖dat ⊗ 𝜎𝑖
𝑁+𝑖), that is supported

on the auxiliary register, see (3.5).

152 Chapter 3. Embedding simulations with quantum codes

𝑈(𝑗) The update set of mode 𝑗, see (2.12).

𝑉aux dat The unitary initializing the code space, see (3.5).

VCT
Verstraete-Cirac transform, also known as Auxiliary
fermion mapping, [25] .

3.11 Further work

Generalized Superfast Encoding

Not long after we finished [43], the Superfast simulation was extended
in [74] and [75], focusing on the error mitigation properties. Both works
not just manage to eliminate the blindness against certain type of Pauli
errors, but even define distance three codes with which all Pauli errors of
weight one can be corrected. Note that the goal of error mitigation and
even correction is somewhat orthogonal to locality efforts. For quantum
error correction the code distance, the minimal weight of a logical oper-
ator, is sought to be increased, whereas it is sought to be minimized for
locality. However, the construction of [75], called Generalized Superfast En-
coding (GSE) turns out to be a versatile scheme that can be used for either
purpose. For the sake of completeness within this work, let us quickly
sketch the idea of this mapping. In the GSE, the entirety of qubits is sec-
tioned into partitions 𝑛1, 𝑛2, ... , 𝑛𝑁 , for each mode, where each partition
𝑛𝑗 has 𝑑𝑗/2 qubits, with 𝑑𝑗 being the number of edges at node (mode)
𝑗 that the partition represents. In [75], a different encodings for the 𝒜-
and ℬ-operators are found relying on Majorana-like Pauli strings on ev-
ery node. The strings of one node, {𝛾𝑘𝑛𝑗

}𝑘∈[𝑑𝑗], only anticommute with
each other, not with the 𝛾-operators of a different node. Therefore, we
can think of every node as hosting a local set of Majoranas distinctly en-
coded on the qubits at the node. An operator 𝒜𝑗𝑘 now is defined not just
with the direction 𝜀𝑗𝑘, but also which two 𝛾-strings on nodes 𝑗 and 𝑘 are
associated with the edge. Any 𝛾-string can only participate in one edge
operator, and so we say that for an edge 𝑗𝑘, we select the Majoranas 𝑠
and 𝑡 from nodes 𝑗 and 𝑘. The logical operators are defined as

𝒜𝑗𝑘 = 𝜀𝑗𝑘 𝛾𝑠𝑛𝑗
⊗ 𝛾𝑡𝑛𝑘

(3.69)

ℬ𝑘 = (−𝑖)𝑑𝑘/2
𝑑𝑘∏︁

𝑚=1

𝛾𝑚𝑛𝑘
, (3.70)

3.11 Further work 153

and the stabilizers are defined as before. In contrast to the BKSF, an inter-
action graph underlying the GSE is only valid if every of its vertices has
even degree. That also means that there is an Euler path connecting every
vertex using each edge exactly once. The Euler path is important, since
the multiplication of 𝒜-operators along yields a stabilizer proportional to∏︀

𝑘 ℬ𝑘, the parity operator. It is thus the proportionality constant ±1 that
determines the total parity of the system simulated.
To simulate systems that do not comply with the even-degree condition
on the interaction graph, the introduction of dummy edges and vertices is
advertised in [75]. Even more conditions on the graph connectivity have
to be imposed in order to achieve a code distance of three, which would
allow for quantum error correction. However, for the task of this chapter,
we can also try to cast this mapping into a square lattice of qubits. Con-
sidering that the interaction graph is a square lattice, the total number of
qubits would be 2ℓ1ℓ2 − 4, where it is necessary to introduce ears at the
boundaries such that every node has two qubits associated with it. The
only exceptions are the nodes in the lattice corners, which only have one.
Ideally, one would like to define

{𝛾1𝑛𝑗
, 𝛾2𝑛𝑗

, 𝛾3𝑛𝑗
, 𝛾4𝑛𝑗

} = {𝑋 ⊗ I, 𝑌 ⊗ I, 𝑍 ⊗𝑋, 𝑍 ⊗ 𝑌 } (3.71)

on every node, where the first two operators are chosen e.g. for the two
𝒜-operators in horizontal direction. As a consequence, a Manhattan string
of 𝒜(𝑖, 𝑗)(𝑖+𝑥, 𝑗+𝑦) would roughly be of weight 𝑥 + 𝑦. However, assigning
the qubits to a square lattice, such that all 𝒜(𝑖, 𝑗)(𝑖+𝑥, 𝑗+𝑦) are continuous,
seems impossible. Instead, we can employ a different choice of (3.71) and
settle for weight 𝑥+2𝑦, but with continuous strings, a planar code on the
square lattice with weight-6 stabilizers. This choice is characterized by
the definition of

{𝛾1𝑛𝑗
, 𝛾2𝑛𝑗

, 𝛾3𝑛𝑗
, 𝛾4𝑛𝑗

} = {𝑋 ⊗ 𝑌, 𝑌 ⊗ 𝑌, I⊗𝑋, 𝑍 ⊗ 𝑌 } (3.72)

on every node 𝑗. In conclusion, there is a Superfast mapping with Man-
hattan distance strings of one preferred direction like in the AQM and
VCT. Its qubit requirements are similar to the VCT, and ℬ-strings are en-
coded also by a singular 𝑍-operator. After its state preparation, classical
side computations have to aid the attachment of minus signs to 𝒜- and
ℬ-operators, such that the targeted parity subspace is encoded. Note that
while the representation (3.72) guarantees continuous strings for long-
range interactions, (3.71) can be used for error mitigation purposes, as it
forms a weight-2 code.

154 Chapter 3. Embedding simulations with quantum codes

