

Cover Page

The following handle holds various files of this Leiden University dissertation:
http://hdl.handle.net/1887/80413

Author: Steudtner, M.
Title: Methods to simulate fermions on quantum computers with hardware limitations
Issue Date: 2019-11-20

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/80413
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 2

Saving qubits with classical
codes

2.1 Background

One essential component in realizing simulations of fermionic models
on quantum computers is the representation of such models in terms
of qubits and quantum gates. Following initial simulation schemes for
fermions hopping on a lattice [3], more recent proposals used the Jordan-
Wigner [19] transform [21–24], the Verstraete-Cirac mapping [25], or the
Bravyi-Kitaev transform [26] to find a suitable representation. Specifi-
cally, the task of all such representations is two-fold. First, we seek a
mapping from states in the fermionic Fock space of 𝑁 sites to the space
of 𝑛 qubits. The fermionic Fock space is spanned by 2𝑁 basis vectors
|𝜈1, . . . , 𝜈𝑁 ⟩ where 𝜈𝑗 ∈ {0, 1} indicates the presence (𝜈𝑗 = 1) or absence
(𝜈𝑗 = 0) of a spinless fermionic particle at orbital 𝑗. Such a mapping
e : Z⊗𝑁

2 ↦→ Z⊗𝑛
2 is also called an encoding [27]. An example of such an en-

coding is the trivial one in which 𝑛 = 𝑁 and qubits are used to represent
the binary string 𝜈 = (𝜈1, ... , 𝜈𝑁)⊤. That is,

|𝜔⟩ = |e (𝜈)⟩ =
𝑛⨂︁

𝑗=1

|𝜔𝑗⟩ , (2.1)

where 𝜔𝑗 = 𝜈𝑗 in the standard basis {|0⟩ , |1⟩}.
Second, we need a way to simulate the dynamics of fermions on

these 𝑁 orbitals. These dynamics can be modeled entirely in terms of

22 Chapter 2. Saving qubits with classical codes

the annihilation and creation operators 𝑐𝑗 and 𝑐†𝑗 that satisfy the anti-
commutation relations (1.7). Following these relations, the operators act
on the fermionic Fock space as

𝑐†𝑖𝑚 𝑐†𝑖1 ... 𝑐
†
𝑖𝑚−1

𝑐†𝑖𝑚𝑐
†
𝑖𝑚+1

... 𝑐†𝑖𝑀 |Θ⟩ = 0 (2.2)

𝑐𝑖𝑚 𝑐†𝑖1 ... 𝑐
†
𝑖𝑚−1

𝑐†𝑖𝑚+1
... 𝑐†𝑖𝑀 |Θ⟩ = 0 (2.3)

𝑐𝑖𝑚 𝑐†𝑖1 ... 𝑐
†
𝑖𝑚−1

𝑐†𝑖𝑚𝑐
†
𝑖𝑚+1

... 𝑐†𝑖𝑀 |Θ⟩

= (−1)𝑚−1 𝑐†𝑖1 ... 𝑐
†
𝑖𝑚−1

𝑐†𝑖𝑚+1
... 𝑐†𝑖𝑀 |Θ⟩ (2.4)

𝑐†𝑖𝑚 𝑐†𝑖1 ... 𝑐
†
𝑖𝑚−1

𝑐†𝑖𝑚+1
... 𝑐†𝑖𝑀 |Θ⟩

= (−1)𝑚−1 𝑐†𝑖1 ... 𝑐
†
𝑖𝑚−1

𝑐†𝑖𝑚𝑐
†
𝑖𝑚+1

... 𝑐†𝑖𝑀 |Θ⟩ , (2.5)

where |Θ⟩ is the fermionic vacuum and {𝑖1, ... , 𝑖𝑀} ⊆ {1, ... , 𝑁}. Map-
pings of the operators 𝑐𝑗 to qubits typically use the Pauli matrices 𝑋 , 𝑍,
and 𝑌 acting on one qubit, characterized by their anti-commutation rela-
tions [𝑃𝑖, 𝑃𝑗]+ = 2 𝛿𝑖𝑗 I, for all 𝑃𝑖 ∈ 𝒫 = {𝑋,𝑌, 𝑍}. An example of such
a mapping is the Jordan-Wigner transform [19] given by

𝑐𝑗 =̂ 𝑍⊗𝑗−1 ⊗ 𝜎− ⊗ I⊗𝑛−𝑗 (2.6)

𝑐†𝑗 =̂ 𝑍⊗𝑗−1 ⊗ 𝜎+ ⊗ I⊗𝑛−𝑗 (2.7)

where

𝜎− = |0⟩⟨1| = 1

2
(𝑋 + 𝑖𝑌) , (2.8)

𝜎+ = |1⟩⟨0| = 1

2
(𝑋 − 𝑖𝑌) . (2.9)

It is easily verified that together with the trivial encoding (2.1) this trans-
formation satisfies the desired properties (2.2)-(2.5) and can hence be
used to represent fermionic models with qubit systems.

In order to assess the suitability of an encoding scheme for the simu-
lation of fermionic models on a quantum computer, a number of param-
eters are of interest. The first is the total number of qubits 𝑛 needed in
the simulation. Second, we may care about the gate size of the opera-
tors 𝑐𝑗 and 𝑐†𝑗 when mapped to qubits. In its simplest form, this prob-
lem concerns the total number of qubits on which these operators do not

2.2 Results 23

act trivially, that is, the number of qubits 𝐿, on which an operator acts
as 𝑃𝑗 ∈ 𝒫 instead of the identity I, sometimes called the Pauli length.
Different transformations can lead to dramatically different performance
with respect to these parameters. For both the Jordan-Wigner as well as
the Bravyi-Kitaev transform 𝑛 = 𝑁 , but we have 𝐿 = 𝑂(𝑛) for the first,
while 𝐿 = 𝑂(log 𝑛) for the second. We remark that in experimental im-
plementations we typically do not only care about the absolute number
𝐿, but rather the specific gate size and individual difficulty of the qubit
gates each of which may be easier or harder to realize in a specific exper-
imental architecture. For error-corrected quantum simulation, the cost in
T-gates is as important to optimize as the circuit depth [28], and quan-
tum devices with restricted connectivity even require mappings tailored
to them [29, 30]. Finally, we remark that instead of looking for a mapping
for individual operators 𝑐

(†)
𝑗 we may instead opt to map pairs (or higher

order terms) of such operators at once, or even look to represent sums of
such operators.

2.2 Results

Here, we propose a general family of mappings of fermionic models
to qubit systems and quantum gates that allow us to trade off the nec-
essary number of qubits 𝑛 against the difficulty of implementation as
parametrized by 𝐿, or more complicated quantum gates such as CPHASE.
Ideally, one would of course like both the number of qubits, as well as the
gate size to be small. We show that our mappings can lead to significant
savings in qubits for a variety of examples (see Table 2.1) as compared
to the Jordan-Wigner transform for instance, at the expense of greater
complexity in realizing the required gates. The latter may lead to an in-
creased time required for the simulation depending on which gates are
easy to realize in a particular quantum computing architecture.

At the heart of our efforts is an entirely general construction of the
creation and annihilation operators in (2.2) given an arbitrary encoding e
and the corresponding decoding d. As one might expect, this construc-
tion is not efficient for every choice of encoding e or decoding d. How-
ever, for linear encodings e, but possibly nonlinear decodings d, they can
take on a very nice form. While in principle any classical code with the
same properties can be shown to yield such mappings, we provide an
appealing example of how a classical code of fixed Hamming weight [31]

24 Chapter 2. Saving qubits with classical codes

can be used to give an interesting mapping.
Two other approaches allow us to be more modest with the algorith-

mic depth in either accepting a qubit saving that is linear with 𝑁 , or just
saving a fixed amount of qubits for hardly any cost at all.
In previous works, trading quantum resources has been addressed for
general algorithms [32], and quantum simulations [33–35]. In the two
works of Moll et al. and Bravyi et al., qubit requirements are reduced
with a scheme that is different from ours. A qubit Hamiltonian is first
obtained with e.g. the Jordan-Wigner transform, then unitary operations
are applied to it in order taper qubits off successively. The paper by
Moll et al. provides a straightforward method to calculate the Hamil-
tonian, that can be used to reduce the amount of qubits to a minimum,
but the number of Hamiltonian terms scales exponentially with the par-
ticle number. The notion that our work is based on, was first introduced
in [34] by Bravyi et al., for linear en- and decodings. With the generaliza-
tion of this method, we hope to make the goal of qubit reduction more
attainable in reducing the effort to do so. The reduction method is medi-
ated by nonlinear codes, of which we provide different types to choose
from. The transform of the Hamiltonian is straight-forward from there
on, and we give explicit recipes for arbitrary codes. We can summarize
our contributions as follows.

• We show that for any encoding e : Z⊗𝑁
2 ↦→ Z⊗𝑛

2 there exists a map-
ping of fermionic models to quantum gates. For the special case
that this encoding is linear, our procedure can be understood as
a slightly modified version of the perspective taken in [27]. This
gives a systematic way to employ classical codes for obtaining such
mappings.

• Using particle-conservation symmetry, we develop 3 types of codes
that save a constant, linear and exponential amount of qubits (see
Table 2.1 and Sections 2.4.3.1-2.4.3.3). An example from classical
coding theory [31] is used to obtain significant qubit savings (here
called the binary addressing code), at the expense of increased gate
difficulty (unless the architecture would easily support multi-controlled
gates).

• The codes developed are demonstrated on two examples from quan-
tum chemistry and physics.

2.2 Results 25

- The Hamiltonian of the well-studied hydrogen molecule in
minimal basis is re-shaped into a two-qubit problem, using
a simple code.

- A Fermi-Hubbard model on a 2×5 lattice and periodic bound-
ary conditions in the lateral direction is considered. We parametrize
and compare the sizes of the resulting Hamiltonians, as we
employ different codes to save various amounts of qubits. In
this way, the trade-off between qubit savings and gate com-
plexity is illustrated (see Table 2.2).

M
ap

pi
ng

En
-/

D
ec

od
in

g
ty

pe
Q

ub
it

s
sa

ve
d

𝑛
(𝑁

,𝐾
)

R
es

ul
ti

ng
ga

te
s

O
ri

gi
n

Jo
rd

an
-W

ig
ne

r
|P

ar
it

y
tr

.
lin

ea
r/

lin
ea

r
no

ne
𝑁

le
ng

th
-𝑂

(𝑛
)

Pa
ul

is
tr

in
gs

[1
9,

27
]

Br
av

yi
-K

it
ae

v
tr

an
sf

or
m

lin
ea

r/
lin

ea
r

no
ne

𝑁
le

ng
th

-𝑂
(l
o
g
𝑛
)

Pa
ul

is
tr

in
gs

[2
6]

C
he

ck
su

m
co

de
s

lin
ea

r/
af

fin
e

lin
ea

r
𝑂
(1
)

𝑁
−

1
le

ng
th

-𝑂
(𝑛

)
Pa

ul
is

tr
in

gs
[3

6]
Bi

na
ry

ad
dr

es
si

ng
co

de
s

no
nl

in
ea

r/
no

nl
in

ea
r

𝑂
(2

𝑛
/
𝐾
)

lo
g
(︀ 𝑁𝐾

/
𝐾
!)︀

(𝑂
(𝑛

))
-c

on
tr

ol
le

d
ga

te
s

[3
6]

Se
gm

en
tc

od
es

lin
ea

r/
no

nl
in

ea
r

𝑂
(𝑛

/
𝐾
)

𝑁
/
(1

+
1

2
𝐾
)

(𝑂
(𝐾

))
-c

on
tr

ol
le

d
ga

te
s

[3
6]

Ta
bl

e
2.

1.
O

ve
rv

ie
w

of
m

ap
pi

ng
s

pr
es

en
te

d
in

th
is

pa
pe

r,
lis

te
d

by
th

e
co

m
pl

ex
it

y
of

th
ei

r
co

de
fu

nc
ti

on
s,

th
ei

r
qu

bi
t

sa
vi

ng
s,

qu
bi

tr
eq

ui
re

m
en

ts
(𝑛

),
pr

op
er

ti
es

of
th

e
re

su
lt

in
g

ga
te

s
an

d
fir

st
ap

pe
ar

an
ce

.M
ap

pi
ng

s
ca

n
be

co
m

pa
re

d
w

it
h

re
sp

ec
tt

o
th

e
si

ze
of

pl
ai

n
w

or
ds

(𝑁
)a

nd
th

ei
r

ta
rg

et
ed

H
am

m
in

g
w

ei
gh

t𝐾
.W

e
al

so
re

fe
r

to
di

ff
er

en
tm

et
ho

ds
th

at
ar

e
no

tl
is

te
d,

as
th

ey
do

no
tr

el
y

on
co

de
s

in
an

y
w

ay
[3

3,
34

].

2.3 Encoding the entire Fock space 27

2.3 Encoding the entire Fock space

To illustrate the general use of (possibly nonlinear) encodings to repre-
sent fermionic models, let us first briefly generalize how existing map-
pings can be phrased in terms of linear encodings in the spirit of [27]. Un-
der consideration in representing the dynamics is a mapping for second-
quantized Hamiltonians of the form

𝐻 =
∞∑︁
𝑙=0

∑︁
𝑎∈[𝑁]⊗𝑙

𝑏∈Z⊗𝑙
2

ℎ𝑎𝑏

𝑙∏︁
𝑖=1

(𝑐†𝑎𝑖)
𝑏𝑖(𝑐𝑎𝑖)

1+𝑏𝑖 mod 2

=
∑︁
𝑙

∑︁
𝑎,𝑏

with ℎ𝑎𝑏 ̸=0

̂︀ℎ𝑎𝑏 , (2.10)

where ℎ𝑎𝑏 are complex coefficients, chosen in a way as to render 𝐻 her-
mitian. For our convenience, we use length-𝑙 𝑁 -ary vectors
𝑎 = (𝑎1, ... , 𝑎𝑙)

⊤ ∈ [𝑁]⊗𝑙 to parametrize the orbitals on which a term̂︀ℎ𝑎𝑏 is acting, and write [𝑁] = {1, ... , 𝑁}. A similar notation will be
employed for binary vectors of length 𝑙, with 𝑏 = (𝑏1, ... , 𝑏𝑙)

⊤ ∈ Z⊗𝑙
2 ,

Z2 = {0, 1}, deciding whether an operator is a creator or annihilator by
the rules (𝑐(†)𝑖)1 = 𝑐

(†)
𝑖 and (𝑐

(†)
𝑖)0 = 1.

Every term ̂︀ℎ𝑎𝑏 is a linear operation ℱ𝑁 ↦→ ℱ𝑁 , with ℱ𝑁 being the Fock
space restricted on 𝑁 orbitals, the direct sum of all possible anti-symmetrized
𝑀 -particle Hilbert spaces ℋ𝑀

𝑁 : ℱ𝑁 =
⨁︀𝑁

𝑚=0ℋ𝑚
𝑁 . Conventional map-

pings transform states of the Fock space ℱ𝑁 into states on 𝑁 qubits, car-
rying over all linear operations as well ℒ(ℱ𝑁) ↦→ ℒ((C2)⊗𝑁).
Before we start presenting conventional transformation schemes, we need
to make a few remarks on transformed Hamiltonians and notations per-
taining to them. First of all, we identify the set of gates {𝒫, I}⊗𝑛 =
{𝑋,𝑌, 𝑍, I}⊗𝑛 with the term Pauli strings (on 𝑛 qubits). The previously
mentioned Jordan-Wigner transform, obviously has the power to trans-
form (2.10) into a Hamiltonian that is a weighted sum of Pauli strings
on 𝑁 qubits. General transforms, however, might involve other types of
gates. We however have the choice to decompose these into Pauli strings.
One might want to do so when using standard techniques for Hamilto-
nian simulation. In the following, we will denote the correspondence of
second quantized operators or states 𝐵 to their qubit counterparts 𝐶 by:
𝐵 =̂ 𝐶. For convenience, we will also omit identities in Pauli strings and

28 Chapter 2. Saving qubits with classical codes

rather introduce qubit labels, e.g. 𝑋 ⊗ I⊗𝑋 = 𝑋1 ⊗𝑋3 = (
⨂︀

𝑖∈{1,3}𝑋𝑖)

and write I⊗𝑛 = I. A complete table of notations can be found in Section
2.8.

Consider a linear encoding of 𝑁 fermionic sites into 𝑛 = 𝑁 qubits
given by a binary matrix 𝐴 such that

|𝜔⟩ = |e (𝜈)⟩ = |𝐴𝜈⟩ =̂

⎛⎝ 𝑁∏︁
𝑗=1

(𝑐†𝑗)
𝜈𝑗

⎞⎠ |Θ⟩ (2.11)

and 𝐴 is invertible, i.e.
(︀
𝐴𝐴−1 mod 2

)︀
= I. Note that in this case, the

decoding given by 𝜈 = d(𝜔) =
(︀
𝐴−1𝜔

)︀
is also linear. It is known that

any such matrix 𝐴, subsequently also yields a mapping of the fermionic
creation and annihilation operators to qubit gates [27]. To see how these
are constructed, let us start by noting that they must fulfill the properties
given in (2.2)-(2.5) and (1.7), which motivates the definition of a parity, a
flip and an update set below:

1. 𝑐
(†)
𝑖𝑚

anticommutes with the first 𝑚 − 1 operators and thus acquires
the phase (−1)𝑚−1.

2. A creation operator 𝑐†𝑖𝑚 might be absent (present) in between 𝑐†𝑖𝑚−1

and 𝑐†𝑖𝑚+1
, leading the rightmost operator 𝑐(†)𝑖𝑚

to map the entire state

to zero since 𝑐𝑖𝑚 |Θ⟩ = 0
(︁
𝑐†𝑖𝑚𝑐

†
𝑖𝑚

= 0
)︁

.

3. Given that the state was not annihilated, the occupation of site 𝑖𝑚
has to be changed. This means a creation operator 𝑐†𝑖𝑚 has to be
added or removed between 𝑐†𝑖𝑚−1

and 𝑐†𝑖𝑚+1
.

These rules tell us what the transform of an operator 𝑐(†)𝑗 has to inflict on
a basis state (2.11). In order to implement the phase shift of the first rule,
a series of Pauli-𝑍 operators is applied on qubits, whose numbers are in
the parity set (with respect to 𝑗 ∈ [𝑁]), 𝑃 (𝑗) ⊆ [𝑁]. Following the second
rule we project onto the ±1 subspace of the 𝑍-string on qubits indexed
by another [𝑁] subset, the so-called flip set of 𝑗, 𝐹 (𝑗). The update set of 𝑗,
𝑈(𝑗) ⊆ [𝑁] labels the qubits to be flipped completing the third rule using

2.3 Encoding the entire Fock space 29

an 𝑋-string.

(𝑐†𝑗)
𝑏(𝑐𝑗)

𝑏+1mod 2 =̂

1

2

⎛⎝ ⨂︁
𝑘∈𝑈(𝑗)

𝑋𝑘

⎞⎠⎛⎝I− (−1)𝑏
⨂︁

𝑙∈𝐹 (𝑗)

𝑍𝑙

⎞⎠ ⨂︁
𝑚∈𝑃 (𝑗)

𝑍𝑚 , (2.12)

with 𝑏 ∈ Z2. 𝑃 (𝑗), 𝐹 (𝑗) and 𝑈(𝑗) depend on the matrices 𝐴 and 𝐴−1

as well as the parity matrix 𝑅. The latter is a (𝑁 × 𝑁) binary matrix
which has its lower triangle filled with ones, but not its diagonal. For the
matrix entries this means 𝑅𝑖𝑗 = 𝜃𝑖𝑗 , with 𝜃𝑖𝑗 as the discrete version of the
Heaviside function

𝜃𝑖𝑗 =

{︃
0 𝑖 ≤ 𝑗

1 𝑖 > 𝑗 ,
𝑅 =

⎡⎢⎢⎢⎢⎣
0
1 0
1 1 0
1 1 1 0
...

...
...

.

⎤⎥⎥⎥⎥⎦ . (2.13)

The set members are obtained in the following fashion:

1. 𝑃 (𝑗) contains all column numbers in which the 𝑗-th row of matrix
𝑅𝐴−1 has non-zero entries.

2. 𝐹 (𝑗) contains the column labels of non-zero entries in the 𝑗-th row
of 𝐴−1.

3. 𝑈(𝑗) contains all row numbers in which the 𝑗-th column of 𝐴 has
non-zero entries.

Note that this definition of the sets differs from their original appear-
ance in [27, 37], where diagonal elements are not included. In this way,
our sets are not disjoint, which leads to 𝑍-cancellations and appearance
of Pauli-𝑌 operators, but we have generalized the sets for arbitrary in-
vertible matrices, and provided a pattern for other transforms later.

2.3.1 Jordan-Wigner, Parity and Bravyi-Kitaev transform

As an illustration, we present popular examples of these linear transfor-
mations, note again that all of these will have 𝑛 = 𝑁 . The Jordan-Wigner

30 Chapter 2. Saving qubits with classical codes

transform is a special case for 𝐴 = I, leading to the direct mapping. The
operator transform gives 𝐿 = 𝑂(𝑁) Pauli strings as

(𝑐†𝑗)
𝑏(𝑐𝑗)

𝑏+1mod 2 =̂
1

2

(︁
𝑋𝑗 + 𝑖(−1)𝑏 𝑌𝑗

)︁⨂︁
𝑚<𝑗

𝑍𝑚 . (2.14)

In the parity transform [27], we have 𝐿 = 𝑂(𝑁) 𝑋-strings:

𝐴−1 =

⎡⎢⎢⎢⎣
1
1 1

.
1 1

⎤⎥⎥⎥⎦ , 𝐴 =

⎡⎢⎢⎢⎣
1
1 1
...

...
. . .

1 1 · · · 1

⎤⎥⎥⎥⎦ , (2.15)

(𝑐†𝑗)
𝑏(𝑐𝑗)

𝑏+1mod 2 =̂
1

2

(︁
𝑍𝑗−1 ⊗𝑋𝑗 − 𝑖(−1)𝑏 𝑌𝑗

)︁ 𝑁⨂︁
𝑚=𝑗+1

𝑋𝑚 . (2.16)

The Bravyi-Kitaev transform [26] is defined by a matrix 𝐴 [27, 37] that
has non-zero entries according to a certain binary tree rule, achieving
𝐿 = 𝑂(log𝑁).

2.4 Encoding only a subspace

2.4.1 Saving qubits by exploiting symmetries

Our goal is to be able to trade quantum resources, which is done by re-
ducing degrees of freedom by exploiting symmetries. For that purpose,
we provide a theoretical foundation to characterize the latter.
Parity, Jordan-Wigner and Bravyi-Kitaev transforms encode all ℱ𝑁 states
and provide mappings for every ℒ (ℱ𝑁) operator. Unfortunately, they
require us to own a 𝑁 -qubit quantum computer, which might be unnec-
essary. In fact, the only operator we want to simulate is the Hamilto-
nian, which usually has certain symmetries. Taking these symmetries
into account enables us to perform the same task with 𝑛 ≤ 𝑁 qubits in-
stead. Symmetries usually divide the ℱ𝑁 into subspaces, and the idea
is to encode only one of those. Let ℬ be a basis spanning a subspace
span(ℬ) ⊆ ℱ𝑁 be associated with a Hamiltonian (2.10), where for ev-
ery 𝑙, 𝑎, 𝑏; ̂︀ℎ𝑎𝑏 : span(ℬ) ↦→ span(ℬ). Usually, Hamiltonian symme-
tries generate many such (distinct) subspaces. Under consideration of

2.4 Encoding only a subspace 31

additional information about our problem, like particle number, parity
or spin polarization, we select the correct subspace. Note that particle
number conservation is by far the most prominent symmetry to take into
account. It is generated by Hamiltonians that are linear combinations
of products of 𝑐†𝑖𝑐𝑗 | 𝑖, 𝑗 ∈ [𝑁]. These Hamiltonians, originating from
first principles, only exhibit terms conserving the total particle number;̂︀ℎ𝑎𝑏 : ℋ𝑀

𝑁 ↦→ ℋ𝑀
𝑁 . From all the Hilbert spaces ℋ𝑀

𝑁 , one considers the
space with the particle number matching the problem description.
These symmetries will be utilized in the next section: we develop a lan-
guage that allows for encodings 𝑒 that reduce the length of the binary
vectors 𝑒(𝜈) as compared to 𝜈. This means that the state 𝜈 will be en-
coded in 𝑛 ≤ 𝑁 qubits, since each bit saved corresponds to a qubit elim-
inated. As suggested by Bravyi et al. [34], qubit savings can be achieved
under the consideration of non-square, invertible matrices 𝐴. However,
we will see below that using transformations based on nonlinear encod-
ings and decodings 𝑑 (the inverse transform defined by 𝐴−1 before), we
can eliminate a number of qubits that scales with the system size. For
linear codes on the other hand, we find a mere constant saving.

2.4.2 General transforms

We here show how second-quantized operators and states, Hamiltonian
symmetries and the fermionic basis ℬ are fused into a simple descrip-
tion of occupation basis states. While in this section all general ideas
are presented, we would like to refer the reader to the appendices for
details: to Section 2.7.1 in particular, which holds the proof of the un-
derlying techniques. Fermionic basis states are represented by binary
vectors 𝜈 ∈ Z⊗𝑁

2 , with its components implicating the occupation of
the corresponding orbitals. Basis states inside the quantum computer,
on the other hand, are represented by binary vectors on a smaller space
𝜔 ∈ Z⊗𝑛

2 . These vectors are code words of the former 𝜈, where the bi-
nary code connecting all 𝜈 and 𝜔 is possibly nonlinear. In the end, an
instance of such a code will be sufficient to describe states and operators,
in a similar way than the matrix pair (𝐴, 𝐴−1) governs the conventional
transforms already presented. We now start by defining such codes and
connect them to the state mappings.
Let span (ℬ) be a subspace of ℱ𝑁 , as defined previously. For 𝑛 ≥ log |ℬ|,
we define two binary vector functions 𝑑 : Z⊗𝑛

2 ↦→ Z⊗𝑁
2 , 𝑒 : Z⊗𝑁

2 ↦→ Z⊗𝑛
2 ,

32 Chapter 2. Saving qubits with classical codes

where we regard each component 𝑑 = (𝑑1, ... , 𝑑𝑁)⊤ as a binary function
𝑑𝑖 : Z⊗𝑛

2 ↦→ Z2. Furthermore we introduce the binary basis set 𝒱 ⊆ Z⊗𝑁
2 ,

with

𝜈 ∈ 𝒱, only if

(︃
𝑁∏︁
𝑖=1

(𝑐†𝑖)
𝜈𝑖

)︃
|Θ⟩ ∈ ℬ . (2.17)

All elements in ℬ shall be represented in 𝒱 . If for all 𝜈 ∈ 𝒱 the binary
functions 𝑒 and 𝑑 satisfy 𝑑 (𝑒 (𝜈)) = 𝜈, and for all 𝜔 ∈ Z⊗𝑛

2 : 𝑑 (𝜔) ∈ 𝒱 ,
then we call the two functions encoding and decoding, respectively. An
encoding-decoding pair (𝑒, 𝑑) forms a code.
We thus have obtained a general form of encoding, in which qubit states
only represent the subspace span (ℬ). The decoding, on the other hand,
translates the qubit basis back to the fermionic one:

|𝜔⟩ =
𝑛⨂︁

𝑗=1

|𝜔𝑗⟩ =̂

(︃
𝑁∏︁
𝑖=1

(𝑐†𝑖)
𝑑𝑖(𝜔)

)︃
|Θ⟩ . (2.18)

We intentionally keep the description of these functions abstract, as the
code used might be nonlinear, i.e. it cannot be described with matrices
𝐴, 𝐴−1. Nonlinearity is thereby predominantly encountered in decoding
rather than in encoding functions, as we will see in the examples obtained
later.
For any code (𝑒, 𝑑), we will now present the transform of fermionic op-
erators into qubit gates. Before we can do so however, two issues are to
be addressed. Firstly, one observes that we cannot hope to find a trans-
formation recipe for a singular fermionic operator 𝑐

(†)
𝑗 . The reason for

this is that the latter operator changes the occupation of the 𝑗-th orbital.
As a consequence, a state with the occupation vector 𝜈 is mapped to
𝜈 + 𝑢𝑗 , where 𝑢𝑗 is the unit vector of component 𝑗; (𝑢𝑗)𝑖 = 𝛿𝑖𝑗 . The
problem is that since we have trimmed the basis, 𝜈 + 𝑢𝑗 will proba-
bly not be in 𝒱 , which means this state is not encoded1. The action
of 𝑐

(†)
𝑗 is, thus, not defined. We can however obtain a recipe for the

non-vanishing Hamiltonian terms ̂︀ℎ𝑎𝑏 as they do not escape the encoded
space being (span(ℬ) ↦→ span(ℬ))-operators. Note that this issue is never

1‘Unencoded state’ is actually a slightly misleading term: when we say a state 𝜆 ∈
Z⊗𝑁
2 is not encoded, we actually mean that it cannot be encoded and correctly decoded,

so 𝑑 (𝑒 (𝜆)) ̸= 𝜆.

2.4 Encoding only a subspace 33

encountered in the conventional transforms, as they encode the entire
Fock space.
Secondly, we are yet to introduce a tool to transform fermionic operators
into quantum gates. The structure of the latter has to be similar to the
linear case, as they mimic the same dynamics as presented in Section 2.3.
In general, a gate sequence will commence with some kind of projectors
into the subspace with the correct occupation, as well as operators imple-
menting parity phase shifts. The sequence should close with bit flips to
update the state. The task is now to determine the form of these opera-
tors. The issue boils down to finding operators that extract binary infor-
mation from qubit states, and map it onto their phase. In other words, we
need to find linear operators associated with e.g. the binary function 𝑑𝑗 ,
such that it maps basis states |𝜔⟩ ↦→ (−1)𝑑𝑗(𝜔) |𝜔⟩. In any case, we must
recover the case of Pauli strings on their respective sets when consider-
ing linear codes. For our example, this means the linear case yields the
operator (

⨂︀
𝑚∈𝐹 (𝑗) 𝑍𝑚). Using general codes, we are lead to define the

extraction superoperation X, which maps binary functions to quantum
gates on 𝑛 qubits:

X :
(︀
Z⊗𝑛
2 ↦→ Z2

)︀
↦→ ℒ

(︀
(C2)⊗𝑛

)︀
. (2.19)

The extraction superoperator is defined for all binary vectors 𝜔 ∈ Z⊗𝑛
2

and binary functions 𝑓, 𝑔 : Z⊗𝑛
2 ↦→ Z2 as:

X[𝑓] |𝜔⟩ = (−1)𝑓(𝜔) |𝜔⟩
(Extraction property) (2.20)

X [𝜔 ↦→ 𝑓 (𝜔) + 𝑔 (𝜔)] = X[𝑓] X[𝑔]

(Exponentiation identity) (2.21)

X [𝜔 ↦→ 𝑏] = (−1)𝑏 I | 𝑏 ∈ Z2

(Extracting constant functions) (2.22)

X [𝜔 ↦→ 𝜔𝑗] = 𝑍𝑗 | 𝑗 ∈ [𝑛]

(Extracting linear functions) (2.23)

34 Chapter 2. Saving qubits with classical codes

X

⎡⎣𝜔 ↦→
∏︁
𝑗∈𝒮

𝜔𝑗

⎤⎦ = C𝑘 PHASE(𝑖1, ... , 𝑖𝑘+1)

with 𝒮 = {𝑖𝑠}𝑘+1
𝑠=1 ⊆ [𝑛], 𝑘 ∈ [𝑛− 1]

(Extracting nonlinear functions). (2.24)

Note that the first two properties imply that the operators X[𝑓], X[𝑔] com-
mute and all operators are diagonal in the computational basis. Given
that binary functions have a polynomial form, we are now able to con-
struct operators by extracting every binary function possible, for example

X[𝜔 ↦→ 1 + 𝜔1 + 𝜔1𝜔2]

= X [𝜔 ↦→ 1] X [𝜔 ↦→ 𝜔1] X [𝜔 ↦→ 𝜔1𝜔2] (2.25)
= −𝑍1 CPHASE(1, 2) . (2.26)

We firstly we have used (2.21) to arrive at (2.25), and then reach (2.26)
by applying the properties (2.22)-(2.24) to the respective sub-terms. This
might however not be the final Hamiltonian, since the simulation al-
gorithm might require us to reformulate the Hamiltonian as a sum of
weighted Pauli strings [38, 39]. In that case, need to decompose all con-
trolled gates. The cost for this decomposition is an increase in the num-
ber of Hamiltonian terms, for instance we find CPHASE(𝑖, 𝑗) = 1

2(I+𝑍𝑖+
𝑍𝑗 −𝑍𝑖⊗𝑍𝑗). In general, (2.23) and (2.24) can be replaced by an adjusted
definition:

X

⎡⎣𝜔 ↦→
∏︁
𝑗 ∈𝒮

𝜔𝑗

⎤⎦ = I− 2
∏︁
𝑗 ∈𝒮

1

2
(I− 𝑍𝑗)

⃒⃒⃒⃒
⃒⃒ 𝒮 ⊆ [𝑛]

(Extracting non-constant functions). (2.27)

We will be able to define the operator mappings introducing the parity
and update functions, 𝑝 and 𝜀 𝑞:

𝑝 : Z⊗𝑛
2 ↦→ Z⊗𝑁

2 , 𝑝𝑗 (𝜔) =

𝑗−1∑︁
𝑖=1

𝑑𝑖 (𝜔) , (2.28)

𝜀 𝑞 : Z⊗𝑛
2 ↦→ Z⊗𝑛

2 , with 𝑞 ∈ Z⊗𝑁
2

𝜀 𝑞 (𝜔) = 𝑒 (𝑑 (𝜔) + 𝑞) + 𝜔 . (2.29)

2.4 Encoding only a subspace 35

Finally, we have collected all the means to obtain the operator mapping
for weight-𝑙 operator sequences as they occur in (2.10):

𝑙∏︁
𝑖=1

(𝑐†𝑎𝑖)
𝑏𝑖(𝑐𝑎𝑖)

1+𝑏𝑖 mod 2 =̂ 𝒰 𝑎

(︃
𝑙−1∏︁
𝑣=1

𝑙∏︁
𝑤=𝑣+1

(−1)𝜃𝑎𝑣𝑎𝑤

)︃

×
𝑙∏︁

𝑥=1

1

2

⎛⎝I−

⎡⎣ 𝑙∏︁
𝑦=𝑥+1

(−1)𝛿𝑎𝑥𝑎𝑦

⎤⎦ (−1)𝑏𝑥 X [𝑑𝑎𝑥]

⎞⎠X [𝑝𝑎𝑥] (2.30)

where 𝜃𝑖𝑗 is defined in (2.13) and 𝛿𝑖𝑗 is the Kronecker delta. In this expres-
sion, we find various projectors, parity operators with corrections for oc-
cupations that have changed before the update operator is applied. The
update operator 𝒰 𝑎, is characterized by the Z⊗𝑁

2 -vector 𝑞 =
∑︀𝑙

𝑖=1 𝑢𝑎𝑖 .

𝒰 𝑎 =
∑︁

𝑡∈Z⊗𝑛
2

[︃
𝑛⨂︁

𝑖=1

(𝑋𝑖)
𝑡𝑖

]︃
𝑛∏︁

𝑗=1

1

2

(︁
I+ (−1)𝑡𝑗 X

[︁
𝜀 𝑞
𝑗

]︁)︁
. (2.31)

This is a problem: when summing over the entire Z⊗𝑛
2 , one has to ex-

pect an exponential number of terms. As a remedy, one can arrange the
resulting operations into controlled gates, or rely on codes with a linear
encoding. If the encoding can be defined using a binary (𝑛 × 𝑁)-matrix
𝐴, 𝑒 (𝜈) = 𝐴𝜈, the update operator reduces to

𝒰 𝑎 =
𝑛⨂︁

𝑖=1

(𝑋𝑖)
∑︀

𝑗 𝐴𝑖𝑗𝑞𝑗 . (2.32)

In Section 2.7.1, we show that (2.30)-(2.32) satisfy the conditions (1.7)-
(2.5). Note that the update operator is also important for state prepara-
tion: let us assume that our qubits are initialized all in their zero state,
(
⨂︀

𝑖∈[𝑛] |0⟩), then the fermionic basis state associated with the vector 𝜈
is obtained by applying the update operator 𝒰𝑎. Here the vector 𝑎 con-
tains all occupied orbitals, such that 𝑞 = 𝜈. Even for nonlinear encodings
the state preparation can done with Pauli strings: as the initial state is a
product state of all zeros, we can replace operators X[𝜔 ↦→

∏︀
𝑖∈𝒮⊆[𝑛] 𝜔𝑖]

by I.
In the following we will turn our attention to the most fruitful sym-

metry to take into account: particle conservation symmetry. While code
families accounting for this symmetry are explored in the next subsec-
tion, alternatives to the mapping of entire Hamiltonian terms are dis-
cussed for such codes in Section 2.7.2.

36 Chapter 2. Saving qubits with classical codes

2.4.3 Particle number conserving codes

In the following, we will present three types of codes that save qubits
by exploiting particle number conservation symmetry, and possibly the
conservation of the total spin polarization. Particle number conserving
Hamiltonians are highly relevant for quantum chemistry and problems
posed from first principles. We therefore set out to find codes in which
𝜈 ∈ 𝒱 have a constant Hamming weight wH (𝜈) = 𝐾. Since the Ham-
ming weight is defined as wH (𝜈) =

∑︀
𝑚 𝜈𝑚, where the sum is defined

without the modulus, it yields the total occupation number for the vec-
tors 𝜈. In order to simulate systems with a fixed particle number, we
are thus interested to find codes that implement code words of constant
Hamming weight. Note that the fixed Hamming weight 𝐾 does not nec-
essarily need to coincide with the total particle number 𝑀 . A code with
the such a property might also be interesting for systems with additional
symmetries. Most importantly, we have not taken into account the spin
multiplicity yet. As the particles in our system are fermions, every spa-
tial site will typically have an even number of spin configurations as-
sociated with it. Orbitals with the same spin configurations naturally
denote subsets of the total amount of orbitals, much like the suits in a
card deck. An absence of magnetic terms as well as spin-orbit interac-
tions leaves the Hamiltonian to conserve the number of particles inside
all those suits. Consequently, we can append several constant-weight
codes to each other. Each of those subcodes encodes thereby the orbitals
inside one suit. In electronic system with only Coulomb interactions for
instance, we can use two subcodes (𝑒♢, 𝑑♢) and (𝑒♠, 𝑑♠), to encode
all spin-up, and spin-down orbitals, respectively. The global code (𝑒, 𝑑),
encoding the entire system, is obtained by appending the subcode func-
tions e.g. 𝑑

(︀
𝜔1 ⊕ 𝜔2

)︀
= 𝑑♢(𝜔1) ⊕ 𝑑♠(𝜔2). Appending codes like this

will help us to achieve higher savings at a lower gate cost.
The codes that we now introduce (see also again Table 2.1), fulfill the task
of encoding only constant-weight words differently well. The larger 𝒱 ,
the less qubits will be eliminated, but we expect the resulting gate se-
quences to be more simple. Although not just words of that weight are
encoded, we treat 𝐾 as a parameter - the targeted weight.

2.4 Encoding only a subspace 37

2.4.3.1 Checksum codes

A slim, constant amount of qubits can be saved with the following 𝑛 =
𝑁 − 1, affine linear codes. Checksum codes encode all the words with
either even or odd Hamming weight. As this corresponds to exactly half
of the Fock space, one qubit is eliminated. This means we disregard the
last component when we encode 𝜈 into words with one digit less. The
decoding function then adds the missing component depending on the
parity of the code words. The code for 𝐾 odd is defined as

𝑑 (𝜔) =

⎡⎢⎢⎢⎣
1

. . .
1

1 · · · 1

⎤⎥⎥⎥⎦𝜔 +

⎛⎜⎜⎜⎝
0
...
0
1

⎞⎟⎟⎟⎠ , (2.33)

𝑒 (𝜈) =

⎡⎢⎣1 0
. . .

...
1 0

⎤⎥⎦𝜈 . (2.34)

In the even-𝐾 version, the affine vector 𝑢𝑁 , added in the decoding, is
removed. Since encoding and decoding function are both at most affine
linear, the extracted operators will all be Pauli strings, with at most a
minus sign. The advantage of the checksum codes is that they do not
depend on 𝐾. They can be used even in cases of smaller saving opportu-
nities, like 𝐾 ≈ 𝑁/2. We can employ these codes even for Hamiltonians
that conserve only the fermion parity. This makes them important for
effective descriptions of superconductors [40].

2.4.3.2 Codes with binary addressing

We present a concept for heavily nonlinear codes for large qubit savings,
𝑛 = ⌈log(𝑁𝐾/𝐾!)⌉, [31]. In order to conserve the maximum amount
of qubits possible, we choose to encode particle coordinates as binary
numbers in 𝜔. To keep it simple, we here consider the example of weight-
one binary addressing codes, and refer the reader to Section 2.7.3 for 𝐾 >
1. In 𝐾 = 1, we recognize the qubit savings to be exponential, so consider
𝑁 = 2𝑛. Encoding and decoding functions are defined by means of the

38 Chapter 2. Saving qubits with classical codes

binary enumerator, bin : Z⊗𝑛
2 ↦→ Z, with bin (𝜔) =

∑︀𝑛
𝑗=1 2

𝑗−1𝜔𝑗 .

𝑑𝑗 (𝜔) =
𝑛∏︁

𝑖=1

(︁
𝜔𝑖 + 1 + 𝑞 𝑗

𝑖

)︁
, (2.35)

𝑒 (𝜈) =

⎡⎣ 𝑞1 𝑞2 · · · 𝑞
2𝑛

⎤⎦𝜈 , (2.36)

where 𝑞 𝑗 ∈ Z⊗𝑛
2 is implicitly defined by bin(𝑞𝑗) + 1 = 𝑗. An input 𝜔 will

by construction render only the 𝑗-th component of (2.35) non-zero, when
𝑞 𝑗 = 𝜔.
The exponential qubit savings come at a high cost: the product over each
component of 𝜔 implies multi-controlled gates on the entire register. This
is likely to cause connectivity problems. Note that decomposing the con-
trolled gates will in general be practically prohibited by the sheer amount
of resulting terms. On top of those drawbacks, we also expect the encod-
ing function to be nonlinear for 𝐾 > 1.

2.4.3.3 Segment codes

We introduce a type of scaleable 𝑛 = ⌈𝑁/(1 + 1
2𝐾)⌉ codes to eliminate a

linear amount of qubits. The idea of segment codes is to cut the vectors 𝜈
into smaller, constant-size vectors ̂︀𝜈𝑖 ∈ Z⊗ ̂︀𝑁

2 , such that 𝜈 =
⨁︀

𝑖 ̂︀𝜈𝑖. Each
such segment ̂︀𝜈𝑖 is encoded by a subcode. Although we have introduced
the concept already, this segmentation is independent from our treatment
of spin ‘suits’. In order to construct a weight-𝐾 global code, we append
several instances of the same subcode. Each of these subcodes codes is
defined on ̂︀𝑛 qubits, encoding ̂︀𝑁 = ̂︀𝑛 + 1 orbitals. We deliberately have
chosen to only save one qubit per segment in order to keep the segment
size ̂︀𝑁(𝐾) small.
We now turn our attention to the construction of these segment codes.
As shown in Section 2.7.4, the segment sizes can be set to ̂︀𝑛 = 2𝐾 and̂︀𝑁 = 2𝐾 + 1. As the global code is supposed to encode all 𝜈 ∈ Z⊗𝑁

2 with
Hamming weight 𝐾, each segment must encode all vectors from Ham-
ming weight zero up to weight 𝐾. In this way, we guarantee that the
encoded space contains the relevant, weight-𝐾 subspace. This construc-
tion follows from the idea that each block contains equal or less than 𝐾

2.4 Encoding only a subspace 39

particles, but might as well be empty. For each segment, the following
de- and encoding functions are found for ̂︀𝜔 ∈ Z⊗̂︀𝑛

2 , ̂︀𝜈 ∈ Z⊗ ̂︀𝑁
2 :

̂︀𝑑 (̂︀𝜔) =

⎡⎢⎢⎢⎣
1

. . .
1

0 . . . 0

⎤⎥⎥⎥⎦ ̂︀𝜔 + 𝑓 (̂︀𝜔)

⎛⎜⎜⎜⎜⎝
1
...
...
1

⎞⎟⎟⎟⎟⎠ (2.37)

̂︀𝑒 (̂︀𝜈) =
⎡⎢⎣1 1

. . .
...

1 1

⎤⎥⎦ ̂︀𝜈 , (2.38)

where 𝑓 : Z⊗̂︀𝑛
2 ↦→ Z2 is a binary switch. The switch is the source of non-

linearity in these codes. On an input ̂︀𝜔 with wH (̂︀𝜔) > 𝐾, it yields one,
and zero otherwise.
There is just one problem: segment codes are not suitable for particle-
number conserving Hamiltonians, according to the definition of the ba-
sis ℬ, that we would have for segment codes. The reason for this is that
we have not encoded all states with wH (𝜈) > 𝐾. In this way, Hamil-
tonian terms ̂︀ℎ𝑎𝑏 that exchange occupation numbers between two seg-
ments, can map into unencoded space. We can, however, adjust these
terms, such that they only act non-destructively on states with at most
𝐾 particles between the involved segment. This does not change the
model, but aligns the Hamiltonian with the necessary condition that we
have on ℬ, ̂︀ℎ𝑎𝑏 : span(ℬ) ↦→ span(ℬ). This is discussed in detail Section
2.7.4, where we also provide an explicit description of the binary switch
mentioned earlier.

Using segment codes, the operator transforms will have multi-controlled
gates as well: the binary switch is nonlinear. However, gates are con-
trolled on at most an entire segment, which means there is no gate that
acts on more than 2𝐾 qubits. This an improvement in gate locality, as
compared to binary addressing codes.

40 Chapter 2. Saving qubits with classical codes

2.5 Examples

2.5.1 Hydrogen molecule

In this subsection, we will demonstrate the Hamiltonian transformation
on a simple problem. Choosing a standard example, we draw compar-
ison with other methods for qubit reduction. As one of the simplest
problems, the minimal electronic structure of the hydrogen molecule has
been studied extensively for quantum simulation [23, 38] already. We de-
scribe the system as two electrons on 2 spatial sites. Because of the spin-
multiplicity, we require 4 qubits to simulate the Hamiltonian in conven-
tional ways. Using the particle conservation symmetry of the Hamilto-
nian, this number can be reduced. The Hamiltonian also lacks terms that
mix spin-up and -down states, with the total spin polarization known to
be zero in the ground state. Taking into account these symmetries, one
finds a total of 4 fermionic basis states:
𝒱 = {(0, 1, 0, 1) , (0, 1, 1, 0) , (1, 0, 0, 1) , (1, 0, 1, 0)}. These can be encoded
into two qubits by appending two instances of a (𝑁 = 2, 𝑛 = 1, 𝐾 = 1)-
code. The global code is defined as :

𝑑 (𝜔) =

⎡⎢⎢⎣
1
1

1
1

⎤⎥⎥⎦𝜔 +

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠ (2.39)

𝑒 (𝜈) =

[︂
0 1 0 0
0 0 0 1

]︂
𝜈 . (2.40)

The physical Hamiltonian,

𝐻 = − ℎ11

(︁
𝑐†1𝑐1 + 𝑐†3𝑐3

)︁
− ℎ22

(︁
𝑐†2𝑐2 + 𝑐†4𝑐4

)︁
+ ℎ1331 𝑐

†
1𝑐

†
3𝑐3𝑐1 + ℎ2442 𝑐

†
2𝑐

†
4𝑐4𝑐2

+ ℎ1221

(︁
𝑐†1𝑐

†
4𝑐4𝑐1 + 𝑐†3𝑐

†
2𝑐2𝑐3

)︁
+ (ℎ1221 − ℎ1212)

(︁
𝑐†1𝑐

†
2𝑐2𝑐1 + 𝑐†3𝑐

†
4𝑐4𝑐3

)︁
+ ℎ1212

(︁
𝑐†1𝑐

†
4𝑐3𝑐2 + 𝑐†2𝑐

†
3𝑐4𝑐1

)︁
+ ℎ1212

(︁
𝑐†1𝑐

†
3𝑐4𝑐2 + 𝑐†2𝑐

†
4𝑐3𝑐1

)︁
, (2.41)

2.5 Examples 41

is transformed into the qubit Hamiltonian

𝑔1 I+ 𝑔2 𝑋1 ⊗𝑋2 + 𝑔3 𝑍1 + 𝑔4 𝑍2 + 𝑔5 𝑍1 ⊗ 𝑍2 . (2.42)

The real coefficients 𝑔𝑖 are formed by the coefficients ℎ𝑖𝑗𝑘𝑙 of (2.41). After
performing the transformation, we find

𝑔1 = −ℎ11 − ℎ22 +
1

2
ℎ1221 +

1

4
ℎ1331 +

1

4
ℎ2442 (2.43)

𝑔2 = ℎ1212 (2.44)

𝑔3 = 𝑔4 =
1

2
ℎ11 −

1

2
ℎ22 +−1

4
ℎ1331 +

1

4
ℎ2442 (2.45)

𝑔5 = −1

2
ℎ1221 +

1

4
ℎ1331 +

1

4
ℎ2442 . (2.46)

In previous works, conventional transforms have been applied to that
problem Hamiltonian. Afterwards, the resulting 4-qubit-Hamiltonian
has been reduced by hand in some way. In [41], the actions on two
qubits are replaced with their expectation values after inspection of the
Hamiltonian. In [33], on the other hand, the Hamiltonian is reduced to
two qubits in a systematic fashion. Finally, the case is revisited in [34],
where the problem is reduced below the combinatorial limit to one qubit.
The latter two attempts have used Jordan-Wigner, the former the Bravyi-
Kitaev transform first.

2.5.2 Fermi-Hubbard model

We present another example to illustrate the trade-off between qubit num-
ber and gate cost as well as circuit depth. For that purpose, we consider
a simple toy Hamiltonian and demonstrate that a reduction of qubit re-
quirements is theoretically possible. Although we do not want to claim
that this scenario is realistic, we present a simple cost model with it, that
hints the potential up-scaling of circuit depth and simulation cost, as the
number of qubits decreases: we therefore consider the total sum of Pauli
lengths of every term, which gives us an idea of the number of two-qubit
gates required, and the number of Hamiltonian terms, as we decompose
controlled gates (2.27), which should give us an idea of possible T-gate re-
quirements and simulation depth. Let us start now to describe the model.
We consider a small lattice with periodic boundary conditions in the lat-
eral direction. The system shall contain 10 spatial sites, doubled by the

42 Chapter 2. Saving qubits with classical codes

spin-multiplicity. The problem Hamiltonian is

𝐻 =− 𝑡
∑︁

⟨𝑖,𝑗⟩∈𝐸

(︁
𝑐†𝑖𝑐𝑗 + 𝑐†𝑗𝑐𝑖

)︁

+ 𝑈
10∑︁
𝑗=1

𝑐†𝑗𝑐𝑗 𝑐
†
10+𝑗𝑐10+𝑗 , (2.47)

with its real coefficients 𝑡, 𝑈 . It exhibits hopping terms along the edges
𝐸 of the graph in Figure 2.1. The sketch on the left of this figure shows
the connection graph of the first 10 orbitals. The other 10 orbitals are
connected in the same fashion, and each such site is interacting with its
counterpart from the other graph. We aim to populate this model with
four fermions, where the total spin polarization is zero. Two conven-
tional transforms and two transforms based on our codes are compared
by the amount of qubits necessary, as well as the size of the transformed
Hamiltonian. Note that besides eigenenergies, one might also be inter-
ested in obtaining the values of correlation functions, e.g. ⟨𝑐†𝑖𝑐𝑗⟩, which is
done by measuring (qubit) operators obtained with the transform (2.47).
The only difference is that if a correlator maps into unencoded space, it
is to be set to zero. As benchmarks, we decompose controlled gates and
count the number of resulting Pauli strings. The sum of their total weight
constitutes the gate count. Having these two disconnected graphs is an
invitation to us to append two codes acting on sites 1 − 10 and 11 − 20
respectively. For this example, we consider the following codes:

1. Jordan-Wigner and Bravyi-Kitaev transform: for comparison, we
employ these conventional transforms on our system, with which
we do not save qubits. The resulting terms are best obtained by
the transforming every fermion operator in (2.47) by (2.12), where
the flip, parity and update sets, 𝐹 (𝑗), 𝑃 (𝑗), 𝑈(𝑗) are determined by
the choice of matrices 𝐴 and 𝐴−1, which are binary-tree matrices in
the case of the Bravyi-Kitev transform, and identity matrices for the
Jordan-Wigner transform.

2. Checksum code ⊕ checksum code: knowing that the particle num-
ber is conserved, and that spin cannot be flipped, we are free to
save 2 qubits in constraining the parity of both, spin-up and -down
particles, alike. This is done in appending two (N=10) checksum
codes, where each that acts on only spin-up (spin-down) orbitals,

2.5 Examples 43

so indices 1 to 10 (11 to 20). The code resulting from appending two
even checksum codes is linear, and encoding and decoding func-
tion feature the matrices 𝐴, 𝐴−1 as

⎡⎢⎢⎢⎢⎢⎢⎣

1 0

. . .
...

1 0

1 0

. . .
...

1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. . .
1

1 · · · 1

1

. . .
1

1 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.48)

However, as not the entire Fock-space is encoded, we need to per-
form the operator transform according to (2.30), where the update
operator is defined by (2.32), where 𝐴 refers here to the first matrix.

3. Segment code ⊕ segment code: Knowing the particle number in
one ‘spin suite’ to be 2, we can for both, spin-up and -down orbitals,
append two 𝐾 = 2 segment codes to each other. This equals a
total of 4 segment codes, saving 4 qubits. The resulting global code
(𝑒, 𝑑) is defined by

𝑒

(︃
4⨁︁

𝑖=1

̂︀𝜈𝑖

)︃
=

4⨁︁
𝑖=1

̂︀𝑒(̂︀𝜈𝑖), (2.49)

𝑑 (𝜔) =

⎛⎜⎝
⎡⎢⎣1 1

1
1

⎤⎥⎦⊗

⎡⎣1 1

. . .
...

1 1

⎤⎦
⎞⎟⎠𝜔 , (2.50)

where ̂︀𝑒 are the encodings of the subcodes (2.38), and ̂︀𝜈𝑖 are occu-
pations on the segments of the total orbital vector 𝜈 =

⨁︀
𝑖 ̂︀𝜈𝑖. These

segments are formed as suggested by the right-hand side of Figure
2.1. For details on the decoding functions and Hamiltonian adjust-
ments, please consider Section 2.7.4. The Hamiltonian transform is
in the end carried out again by (2.30) and (2.32).

4. Checksum code ⊕ segment code: a compromise between the above,
in which the spin-up orbitals are transformed via a checksum code,
and the spin-down orbitals are transformed via two segment codes.
The global code used for the Hamiltonian transformation is the

44 Chapter 2. Saving qubits with classical codes

1 2 3 4 5

6 7 8 9 10

Figure 2.1. Left: illustration of the Fermi-Hubbard model considered. Lines
between two sites, like 1 and 2, indicate the appearance of the term 𝑡(𝑐†1𝑐2+𝑐†2𝑐1)
in the Hamiltonian (2.47). Periodic boundary conditions link sites 1 and 5 as well
as 6 and 10. Sites 11-20 follow the same graph. Right: segmenting of the system;
the two blocks are infringed. The gray links are to be adjusted.

appendage of an (even-weight, 𝑁 = 10) checksum code and two
(𝐾 = 2) segment codes, including Hamiltonian adjustments on the
spin-down orbitals.

Note that from the combinatorial perspective, we could encode the
problem with 11 qubits. However, if we append two 𝐾 = 2 binary ad-
dressing codes to each other, the resulting Hamiltonian is on 14 qubits al-
ready. The problem is that the resulting Hamiltonian for this case cannot
be expressed with decomposed controlled gates due to the high number
of resulting terms.

Indeed, Table 2.2 suggests that decomposing the controlling gates
might easily lead to very large Hamiltonians with a multitude of very
small terms. The gate decomposition appears therefore undesirable. We
in general recommend to rather decompose large controlled gates as shown
in [42]. However, one also notices that an elimination of up to two qubits
comes at a low cost: the amount of gates is not higher than in the Bravyi-
Kitaev transform. As soon as we employ segment codes on the other
hand, the Hamiltonian complexity rises with the amount of qubits elimi-
nated.

2.6 Conclusion

In this chapter, we have introduced new methods to reduce the number
of qubits required for simulating fermionic systems in second quantiza-
tion. We see the virtue of the introduced concepts in the fact that it takes
into account symmetries on a simple but non-abstract level. We merely

2.6 Conclusion 45

Mapping Qubits Weight Terms
Jordan-Wigner transform 20 232 74
Bravyi-Kitaev transform 20 278 74
Checksum code ⊕ Checksum code 18 260 74
Checksum code ⊕ Segment code 17 4425 876
Segment code ⊕ Segment code 16 9366 1838

Table 2.2. Relaxing the qubit requirements for the Hamiltonian (2.47), where
various mappings trade different amounts of qubits. The notation ⊕ is used as
two codes for different graphs are appended. We compare different mappings
by the amount of qubits. We make comparrisons by the number of Hamiltonian
terms and the total weight of the resulting Pauli strings.

concern ourselves with objects as simple as binary vectors, but attribute
the physical interpretation of orbital occupations to them. At this level,
the mentioned symmetries are easy to apply and exploit. The accounting
for the complicated antisymmetrization of the many-body wave function
on the other hand is done in the fermionic operators, which to transform
we have provided recipes for. In these operator transforms we see room
for improvement: we for instance lack a proper gate composition for up-
date operators of nonlinear encodings at this point. We on the other hand
have the extraction superoperator X return only conventional (multi)-
controlled phase gates. Nonlinear codes would on the other hand ben-
efit from a gate set that includes gates with negative control, i.e. with
the (−1) eigenvalue conditioned on |0⟩ eigenspaces of certain qubits in-
volved. We consider our work to be relevant for quantum simulation
with near-term devices, with a limited number of qubits at disposal. Re-
marks about asymptotic scaling are thus missing in this work, but would
be interesting. Also, we have centered our investigations around quan-
tum computers with qubits. The idea behind the generalized operator
transforms, however, can possibly be adapted to multi-level systems (qu-
dits). The operator transforms of segment and binary addressing codes,
for instance, might simplify in such a setup, if generalized Pauli opera-
tors are available in some form.
Apart from the codes presented, we have laid the foundation for the
reader to invent their own. For that purpose, we have added the func-
tionality of defining and using binary code transforms (with linear en-
coding functions 𝑒) to the OpenFermion software package [11].

46 Chapter 2. Saving qubits with classical codes

2.7 Supplement

2.7.1 General operator mappings

The goal of this section is to verify that the fermionic mode is accurately
represented by our qubit system. This is divided into three steps: step
one is to analyze the action of Hamiltonian terms on the fermionic basis.
In the second step, we verify parity and projector parts of (2.30) to work
like the original operators in step one, disregarding the occupational up-
date for a moment. Conditions for this state update are subsequently
derived. The update operator (2.31) is shown to fulfill these conditions
in the third step, thus concluding the proof.

2.7.1.1 Hamiltonian dynamics

In order to verify that the gate sequences (2.30) are mimicking the Hamil-
tonian dynamics adequately, we verify that the resulting terms have the
same effect on the Hamiltonian basis. This is done on the level of second
quantization with respect to the notation (2.17): no transition into a qubit
system is made. This step serves the sole purpose to quantify the effect
of the Hamiltonian terms on the states. To that end, we begin by study-
ing the effect of a singular fermionic operator 𝑐(†)𝑗 on a pure state, before
considering an entire term ̂︀ℎ𝑎𝑏 on a state in ℬ. As a preliminary, we note
that (2.2)-(2.5) follow directly from (1.7), when considering that

𝑐𝑗𝑐𝑗 = 𝑐†𝑗𝑐
†
𝑗 = 𝑐𝑗 |Θ⟩ = 0 . (2.51)

The relations (2.2)-(2.5) indicate how singular operators act on pure states
in general. We now become more specific and apply these rules to a
state (

∏︀
𝑖(𝑐

†
𝑖)

𝜈𝑖) |Θ⟩, that is not necessarily in ℬ, but is described by an
occupation vector 𝜈 ∈ Z⊗𝑁

2 . The effect of an annihilation operator on

2.7 Supplement 47

such a state is considered first:

𝑐𝑗

[︃
𝑁∏︁
𝑖=1

(︁
𝑐†𝑖

)︁𝜈𝑖

]︃
|Θ⟩ =

⎡⎣∏︁
𝑖<𝑗

(︁
−𝑐†𝑖

)︁𝜈𝑖

⎤⎦ 𝑐𝑗

(︁
𝑐†𝑗

)︁𝜈𝑗

⎡⎣∏︁
𝑘>𝑗

(︁
𝑐†𝑘

)︁𝜈𝑘

⎤⎦ |Θ⟩ (2.52)

=

⎡⎣∏︁
𝑖<𝑗

(︁
−𝑐†𝑖

)︁𝜈𝑖

⎤⎦ 1

2
[1− (−1)

𝜈𝑗]

⎡⎣∏︁
𝑘>𝑗

(︁
𝑐†𝑘

)︁𝜈𝑘

⎤⎦ |Θ⟩ (2.53)

=

⎡⎣∏︁
𝑖<𝑗

(−1)
𝜈𝑖

⎤⎦ 1

2
[1− (−1)

𝜈𝑗]

[︃
𝑁∏︁

𝑘=1

(︁
𝑐†𝑘

)︁𝜈𝑘+𝛿𝑗𝑘 mod 2
]︃
|Θ⟩ (2.54)

A short explanation on what has happened: in (2.52), 𝑐𝑗 has anticom-
muted with all creation operator 𝑐†𝑖 that have indexes 𝑖 < 𝑗. Depending
on the component 𝜈𝑗 , a creation operator 𝑐†𝑗 might now be to the right of
the annihilator 𝑐𝑗 . If the creation operator is not encountered, we may
continue the anticommutations of 𝑐𝑗 until it meets the vacuum and an-
nihilates the state by 𝑐𝑗 |Θ⟩ = 0. Using the anticommutation relations
(1.7), we therefore replace 𝑐𝑗(𝑐

†
𝑗)

𝜈𝑗 with 1
2 [1− (−1)𝜈𝑗] when going from

(2.52) to (2.53). Finally, the terms are rearranged in (2.54): conditional
sign changes of the anticommutations are factored out of the new state
with an occupation that is now described by the binary vector (𝜈 + 𝑢𝑗)

rather than 𝜈. When considering to apply a creation operator 𝑐†𝑗 on the
former state, the result is similar. Alone at step (2.53), we have to replace
𝑐†𝑗(𝑐

†
𝑗)

𝜈𝑗 by 1
2 [1 + (−1)𝜈𝑗] instead, as now the case of appearance of the

creation operator leads to annihilation: 𝑐†𝑗𝑐
†
𝑗 = 0. We thus find

𝑐†𝑗

[︃
𝑁∏︁
𝑖=1

(︁
𝑐†𝑖

)︁𝜈𝑗

]︃
|Θ⟩ =

⎡⎣∏︁
𝑖<𝑗

(−1)
𝜈𝑖

⎤⎦ 1

2
[1 + (−1)

𝜈𝑗]

[︃
𝑁∏︁

𝑘=1

(︁
𝑐†𝑘

)︁𝜈𝑘+𝛿𝑗𝑘 mod 2
]︃
|Θ⟩ .

(2.55)

We now turn our attention to the actual goal, the effect that a Hamil-
tonian term from (2.10) has on a state in ℬ (this means its occupation
vector 𝜈 is in 𝒱). We therefore consider a generic operator sequence∏︀𝑙

𝑖=1(𝑐
†
𝑎𝑖)

𝑏𝑖(𝑐𝑎𝑖)
1+𝑏𝑖 mod 2, parametrized by some 𝑁 -ary vector 𝑎 ∈ [𝑁]⊗𝑙

and a binary vector 𝑏 ∈ Z⊗𝑙
2 , for some length 𝑙. With (2.54) and (2.55), we

now have the means to consider the effect such a sequence of annihila-
tion and creation operators. The two relations will be repeatedly utilized
in an inductive procedure, as every single operator (𝑐†𝑎𝑖)

𝑏𝑖(𝑐𝑎𝑖)
1+𝑏𝑖 mod 2

48 Chapter 2. Saving qubits with classical codes

of
∏︀𝑙

𝑖=1(𝑐
†
𝑎𝑖)

𝑏𝑖(𝑐𝑎𝑖)
1+𝑏𝑖 mod 2 will act on a basis state, one after another.

The state’s occupation is updated after every such operation. For con-
venience, we define:

𝜈(𝑖) ∈ Z⊗𝑁
2

⃒⃒⃒
𝑖 ∈ {0, . . . , 𝑙} (2.56)

𝜈(𝑙) = 𝜈 ∈ 𝒱 (2.57)

𝜈(𝑖−1) = 𝜈(𝑖) + 𝑢𝑎𝑖 . (2.58)

Now, the procedure starts:[︃
𝑙∏︁

𝑖=1

(𝑐†𝑎𝑖
)𝑏𝑖(𝑐𝑎𝑖

)1+𝑏𝑖 mod 2

]︃ [︃
𝑁∏︁

𝑘=1

(𝑐†𝑘)
𝜈𝑘

]︃
|Θ⟩ (2.59)

=

[︃
𝑙−1∏︁
𝑖=1

(𝑐†𝑎𝑖
)𝑏𝑖(𝑐𝑎𝑖

)1+𝑏𝑖 mod 2

]︃
1

2

[︁
1− (−1)

𝑏𝑙 (−1)𝜈𝑎𝑙

]︁
× (−1)

∑︀
𝑗<𝑎𝑙

𝜈𝑗

[︃
𝑁∏︁

𝑘=1

(︁
𝑐†𝑘

)︁𝜈𝑘+𝛿𝑎𝑙𝑘
mod 2

]︃
|Θ⟩ (2.60)

=

[︂
1

2

[︁
1− (−1)

𝑏𝑙 (−1)𝜈
(𝑙)
𝑎𝑙

]︁
(−1)

∑︀
𝑗<𝑎𝑙

𝜈
(𝑙)
𝑗

]︂
×

[︃
𝑙−1∏︁
𝑖=1

(︀
𝑐†𝑎𝑖

)︀𝑏𝑖
(𝑐𝑎𝑖

)1+𝑏𝑖 mod 2

]︃ [︃
𝑁∏︁

𝑘=1

(𝑐†𝑘)
𝜈
(𝑙−1)
𝑘

]︃
|Θ⟩ (2.61)

=

[︃
𝑙∏︁

𝑖=1

1

2

[︁
1− (−1)

𝑏𝑖 (−1)𝜈
(𝑖)
𝑎𝑖

]︁
⏟ ⏞

projector eigenvalues

(−1)
∑︀

𝑗<𝑎𝑖
𝜈
(𝑖)
𝑗⏟ ⏞

parity signs

]︃ [︃
𝑁∏︁

𝑘=1

(𝑐†𝑘)
𝜈
(0)
𝑘

]︃
|Θ⟩⏟ ⏞

updated state

(2.62)

We again explain what has happened: first, the rightmost operator, which
is either 𝑐𝑎𝑙 or 𝑐†𝑎𝑙 depending on the parameter 𝑏𝑙, acts on the state accord-
ing to either (2.54) or (2.55). We therefore combine the two relations for
the absorption of this operator (𝑐†𝑎𝑙)

𝑏𝑙(𝑐𝑎𝑙)
1+𝑏𝑙 mod 2 in (2.60). In the same

fashion, all the remaining operators of the sequence are one-after-another
absorbed into the state. The new state is described by the vector 𝜈(𝑙−1) af-
ter the update. And the cycle begins anew with (𝑐†𝑎𝑙−1)

𝑏𝑙−1(𝑐𝑎𝑙−1
)1+𝑏𝑙−1 mod 2.

From (2.61) on, we use the notations (2.56)-(2.58) to describe partially up-
dated occupations. By the end of this iteration, the occupation of the state
is changed to 𝜈(0) = 𝜈 + 𝑞, with the total change 𝑞 =

∑︀
𝑖 𝑢𝑎𝑖 . Also, the

coefficients of (2.62) take into account sign changes from anticommuta-
tions (“parity signs” in (2.62)) and the eigenvalues of the applied projec-

2.7 Supplement 49

tions. In its entirety, (2.62) denotes the resulting state, and is the main
ingredient for the next step.

2.7.1.2 Parity operators and projectors

We are given the operator transform (2.30) and the state transform (2.18).
We want to show the that the fermion system is adequately simulated,
which means to show that the effect (2.62) is replicated by (2.30) acting
on |𝑒(𝜈)⟩. This is the goal of the next two steps. We start by evaluating
the application of (2.30) on that state, up to the update operator 𝒰 𝑎. This
means that the operators applied implement two things only: the par-
ity signs of (2.62), and the projection onto the correct occupational state.
Note that these parity operators and projectors are applied before the up-
date operator in (2.30):

update operator

𝒰 𝑎

parity signs(︃
𝑙−1∏︁
𝑣=1

𝑙∏︁
𝑤=𝑣+1

(−1)
𝜃𝑎𝑣𝑎𝑤

)︃

×
𝑙∏︁

𝑥=1

1

2

(︃
I−

[︃
𝑙∏︁

𝑦=𝑥+1

(−1)𝛿𝑎𝑥𝑎𝑦

]︃
(−1)𝑏𝑥 X [𝑑𝑎𝑥]

)︃
projectors

X [𝑝𝑎𝑥]

parity operators

. (2.63)

We now commence our evaluation:

𝒰 𝑎

[︃(︃
𝑙−1∏︁
𝑣=1

𝑙∏︁
𝑤=𝑣+1

(−1)
𝜃𝑎𝑣𝑎𝑤

)︃
𝑙∏︁

𝑥=1

1

2

(︃
I−

[︃
𝑙∏︁

𝑦=𝑥+1

(−1)𝛿𝑎𝑥𝑎𝑦

]︃
(−1)𝑏𝑥 X [𝑑𝑎𝑥

]

)︃
X [𝑝𝑎𝑥

]

]︃
|𝑒 (𝜈)⟩ (2.64)

= 𝒰 𝑎

[︃(︃
𝑙−1∏︁
𝑣=1

𝑙∏︁
𝑤=𝑣+1

(−1)
𝜃𝑎𝑣𝑎𝑤

)︃
𝑙∏︁

𝑥=1

1

2

(︃
1−

[︃
𝑙∏︁

𝑦=𝑥+1

(−1)𝛿𝑎𝑥𝑎𝑦

]︃
(−1)𝑏𝑥 (−1)

𝑑𝑎𝑥 (𝑒(𝜈))

)︃
(−1)

𝑝𝑎𝑥 (𝑒(𝜈))

]︃
|𝑒 (𝜈)⟩

(2.65)

50 Chapter 2. Saving qubits with classical codes

= 𝒰 𝑎

[︃(︃
𝑙−1∏︁
𝑣=1

𝑙∏︁
𝑤=𝑣+1

(−1)
𝜃𝑎𝑣𝑎𝑤

)︃
𝑙∏︁

𝑥=1

1

2

(︃
1−

[︃
𝑙∏︁

𝑦=𝑥+1

(−1)𝛿𝑎𝑥𝑎𝑦

]︃
(−1)𝑏𝑥 (−1)

𝜈𝑎𝑥

)︃
(−1)

∑︀
𝑗<𝑎𝑥

𝜈𝑗

]︃
|𝑒 (𝜈)⟩ (2.66)

= 𝒰 𝑎

[︃
𝑙∏︁

𝑥=1

1

2

(︁
1− (−1)𝑏𝑥 (−1)

𝜈𝑎𝑥+
∑︀𝑙

𝑦=𝑥+1 𝛿𝑎𝑥𝑎𝑦

)︁
(−1)

∑︀
𝑗<𝑎𝑥

𝜈𝑗+
∑︀𝑙

𝑦=𝑥+1 𝜃𝑎𝑥𝑎𝑦

]︃
|𝑒 (𝜈)⟩ (2.67)

=

[︃
𝑙∏︁

𝑥=1

1

2

(︁
1− (−1)𝑏𝑥 (−1)

𝜈(𝑥)
𝑎𝑥

)︁
(−1)

∑︀
𝑗<𝑎𝑥

𝜈
(𝑥)
𝑗

]︃
𝒰 𝑎 |𝑒 (𝜈)⟩ . (2.68)

Let us describe what has happened: in (2.65), the extraction property
(2.20) is used, and we arrive at (2.66) after using the property 𝑑 (𝑒 (𝜈)) =
𝜈 and the definition of the parity function. From there we go to (2.67)
when we merge the two products and perform rearrangements that make
it easy to cast all delta and theta functions into the components of the par-
tially updated occupations 𝜈(𝑖), (2.68).
Comparing (2.68) to (2.62), we notice to have successfully mimicked the
same sign changes and and projections, as the coefficients in both rela-
tions match. Now it is only left to show that the state update is executed
correctly. Naively, one would think that we would need to show that

𝒰 𝑎 |𝑒 (𝜈)⟩ =̂

[︃
𝑁∏︁
𝑘=1

(︁
𝑐†𝑘

)︁𝜈(0)𝑘

]︃
|Θ⟩ , (2.69)

but this is too strong a statement. It is in fact sufficient to demand

𝒰 𝑎 |𝑒 (𝜈)⟩ =
⃒⃒⃒
𝑒
(︁
𝜈(0)

)︁⟩
= |𝑒 (𝜈 + 𝑞)⟩ . (2.70)

For 𝜈(0) ∈ 𝒱 , (2.69) and (2.70) is equivalent. However, it might be the case
that 𝜈(0) /∈ 𝒱 , so 𝜈(0) is not encoded. This mean that (2.69) is not fulfilled,
since 𝑑(𝑒(𝜈(0))) ̸= 𝜈(0). It is however not necessary to include 𝜈(0) in the
encoding, as for 𝜈(0) /∈ 𝒱 , the state will vanish anyways: we know from̂︀ℎ𝑎𝑏 : span(ℬ) ↦→ span(ℬ), that in this case ̂︀ℎ𝑎𝑏 must act destructively on

2.7 Supplement 51

that basis state, ̂︀ℎ𝑎𝑏 (∏︀𝑘(𝑐
†
𝑘)

𝜈𝑘) |Θ⟩ = 0. This detail is implemented by the
projector part of the transformed sequence (2.30). These projectors are,
as we have just shown, working faithfully like (2.62), for the transformed
sequence acting on every |𝜈⟩ with 𝜈 ∈ 𝒱 . Hence (2.70) is a sufficient con-
dition for the updated state. The proof is completed once we have veri-
fied that (2.70) is satisfied with the update operator defined as in (2.31).
This is done during the next step.

2.7.1.3 Update operator

The missing piece of the proof is to check that (2.31) and (2.32) fulfill
the condition (2.70). We start by verifying the condition (2.70) for (2.32),
which we have presented as special case of (2.31) for linear encoding
functions: 𝑒 (𝜈 + 𝜈′) = 𝑒 (𝜈) + 𝑒 (𝜈′). Using that property, one can in
fact derive (2.32) from (2.31) directly. We now apply (2.32) to |𝑒(𝜈)⟩, but
firstly we note that

𝑋𝑗 |𝜔⟩ = |𝜔 + 𝑢𝑗⟩ , (2.71)

where 𝑢𝑗 is the 𝑗-th unit vector of Z⊗𝑛
2 . Using (2.71) and the linearity of

𝑒, we find:

𝒰 𝑎 |𝑒 (𝜈)⟩ =

[︃
𝑛⨂︁

𝑖=1

(𝑋𝑖)
∑︀

𝑗 𝐴𝑖𝑗𝑞𝑗

]︃
|𝑒(𝜈)⟩ (2.72)

=

[︃
𝑛⨂︁

𝑖=1

(𝑋𝑖)
𝑒(𝑞)

]︃
|𝑒(𝜈)⟩ (2.73)

= |𝑒(𝜈) + 𝑒(𝑞)⟩ (2.74)
= |𝑒(𝜈 + 𝑞)⟩ , (2.75)

which shows (2.70) for linear encodings.
We now turn our attention to general encodings and prove the same ex-

52 Chapter 2. Saving qubits with classical codes

pression for update operators as defined in (2.31):

𝒰 𝑎 |𝑒 (𝜈)⟩

=

⎛⎝ ∑︁
𝑡∈Z⊗𝑛

2

[︃
𝑛⨂︁

𝑖=1

(𝑋𝑖)
𝑡𝑖

]︃
𝑛∏︁

𝑗=1

1

2

(︁
I+ (−1)𝑡𝑗 X

[︁
𝜀 𝑞
𝑗

]︁)︁⎞⎠ |𝑒 (𝜈)⟩ (2.76)

=

⎛⎝ ∑︁
𝑡∈Z⊗𝑛

2

[︃
𝑛⨂︁

𝑖=1

(𝑋𝑖)
𝑡𝑖

]︃
𝑛∏︁

𝑗=1

1

2

(︁
1 + (−1)𝑡𝑗+𝜀 𝑞

𝑗 (𝑒(𝜈))
)︁

⏟ ⏞
𝛿
𝑡
𝑗
𝜀
𝑞
𝑗
(𝑒(𝜈))

⎞⎠ |𝑒 (𝜈)⟩ (2.77)

=

(︃
𝑛⨂︁

𝑖=1

(𝑋𝑖)
𝜀 𝑞
𝑖 (𝑒(𝜈))

)︃
|𝑒 (𝜈)⟩ (2.78)

= |𝑒 (𝜈) + 𝜀 𝑞 (𝑒 (𝜈))⟩ (2.79)
= |𝑒 (𝜈) + 𝑒 (𝜈) + 𝑒 (𝑑 (𝑒 (𝜈)) + 𝑞)⟩ (2.80)
= |𝑒 (𝜈 + 𝑞)⟩ , (2.81)

which completes the proof. We swiftly recap what has happened: in
(2.76), we have plugged the definition of(2.31) into the left-hand side of
(2.70). In between this equation and (2.77), we have evaluated the expec-
tation values of the extracted operators X[𝜀𝑞𝑗]. From that line to the next,
the Z⊗𝑛

2 -sum is collapsed over the condition 𝑡 = 𝜀 𝑞(𝑒(𝜈)). We go from
(2.78) to (2.79) by applying (2.71). Once we insert the definition (2.29)
into (2.79), it becomes obvious that the condition (2.70) is fulfilled. Thus,
the entire operator transform is now proven.

2.7.2 Transforming particle-number conserving Hamiltonians

In this section, we examine the richest symmetry to exploit for qubit
savings: particle conservation. We begin by introducing the most rel-
evant class of Hamiltonians that exhibit this symmetry, but ultimately
the main goal of this section is to simplify the operator transform for all
such Hamiltonians. Motivated by the compartmentalized recipes of the
conventional mappings, (2.12), we suggest alternatives to the transform
(2.30), that do not depend on the sequence length 𝑙.
Let us start by noting how easy it is to state that a Hamiltonian the total
number of particles: a Hamiltonian like (2.10), conserves the total num-
ber of particles when every term ̂︀ℎ𝑎𝑏 has as many creation operators as

2.7 Supplement 53

it has annihilation operators. The lengths 𝑙, implicit in the sequences ̂︀ℎ𝑎𝑏
that occur in the Hamiltonian, are thereby determined by the field the-
ory or model, that underlies the problem. The coefficients ℎ𝑎𝑏, on the
other hand, are determined by the set of basis functions used. For first-
principle problems in quantum chemistry and solid state physics, we
usually encounter particle-number-conserving Hamiltonians with terms
of weight that is at most 𝑙 = 4 (1.8). In the notation of (2.10), these coeffi-
cients 𝑉𝑖𝑗𝑘𝑙 and 𝑡𝑖𝑗 correspond to ℎ(𝑖,𝑗,𝑘,𝑙)(1,1,0,0) and ℎ(𝑖,𝑗)(1,0). The (𝑙 = 4)
interaction terms usually originate from either magnetism and/or the
Coulomb interaction. Even for these (𝑙 = 4)-terms, the operator trans-
form (2.30) is quite bulky, and we in general would like to have a trans-
form that is independent of 𝑙. Before we begin to discuss such transform
recipes however, we need to set up some preliminaries. First of all, we
need to find a suitable code (𝑒, 𝑑), as discussed in the main part. Ide-
ally, we would encode only the Hilbert space with the correct number of
particles, 𝑀 , but Hilbert spaces of other particle numbers can also be in-
cluded. Assuming that the Hamiltonian visits every state with the same
particle number, we must encode entire Hilbert spaces ℋ𝑚

𝑁 only. Sec-
ondly, we need to reorder the fermionic operators inside the Hamilto-
nian terms ̂︀ℎ𝑎𝑏. The reason for this is, that our goal can only be achieved
by finding recipes for smaller sequences of constant length. In order to
transform the Hamiltonian terms then, we need to invoke the anticom-
mutation relations (1.7) to introduce an order in ̂︀ℎ𝑎𝑏, such that these small
sequences appear as consecutive, distinct blocks. As we shall see, these
blocks will have the shape 𝑐†𝑖𝑐𝑗 . So every ̂︀ℎ𝑎𝑏 needs to be reordered, such
that every even operator is a creation operator, and every odd opera-
tor an annihilator. For the (𝑙 = 4)-terms in (1.8), this reordering means
𝑐†𝑖𝑐

†
𝑗𝑐𝑘𝑐𝑙 ↦→ 𝑐†𝑖𝑐𝑙 𝑐

†
𝑗𝑐𝑘 − 𝛿𝑗𝑙 𝑐

†
𝑖𝑐𝑘.

Let us quickly sketch the idea behind that reordering and introduce some
nomenclature: instead of considering Hamiltonian terms, we realize that
also the terms 𝑐†𝑖𝑐𝑗 also conserve the particle number: ℋ𝑚

𝑁 ↦→ ℋ𝑚
𝑁 . Let

us act with 𝑐†𝑖𝑐𝑗 on an encoded state. We consider a state that is not an-
nihilated by 𝑐†𝑖𝑐𝑗 . Its particle number is reduced by one through 𝑐𝑗 , but
then immediately restored by 𝑐†𝑖 . In fact, for a general sequence of that ar-
rangement, every even operator restores the particle number in this way
and every odd reduces it. We therefore call the subspace, in which we
find the state after an even (odd) number of operators, the even (odd)

54 Chapter 2. Saving qubits with classical codes

subspace. Since all 𝑙 must be even for the Hamiltonian to have particle
conservation symmetry, the even subspace is the one encoded. The odd
subspace, on the other hand, has one particle less, so it is ℋ(𝑀−1)

𝑁 , if the
even one is ℋ𝑀

𝑁 .

2.7.2.1 Encoding the two spaces separately

In this ordering, one can find a recipe for a singular creation or annihi-
lation operator. The strategy is to consider a second code for the odd
subspace. As before (𝑒, 𝑑) denotes the code for the even subspace, and
now (𝑒′, 𝑑′) is encoding the odd subspace. The idea is that after an odd
operator (which in this ordering is an annihilation operator), the state is
updated into the odd subspace. With every even operator (which is a
creation operator), the state is updated from the odd subspace back into
the even one. We find:

𝑐†𝑗 =̂
1

2
𝒰 (𝑗) (I+ X [𝑑𝑗]) X [𝑝𝑗] , (2.82)

𝑐𝑗 =̂
1

2
𝒰 (𝑗)

(︀
I− X

[︀
𝑑′𝑗
]︀)︀

X
[︀
𝑝′𝑗
]︀
. (2.83)

In (2.83), 𝒰 (𝑗) is defined as in (2.31), but its counterpart from (2.82) is
defined by

𝒰 (𝑗) =
∑︁

𝑡∈Z⊗𝑛
2

[︃
𝑛⨂︁

𝑖=1

(𝑋𝑖)
𝑡𝑖

]︃
𝑛∏︁

𝑖=1

1

2

(︁
I+ (−1)𝑡𝑖 X

[︁
𝜀
′ 𝑢𝑗

𝑘

]︁)︁
, (2.84)

with the primed functions 𝜀′ 𝑞, 𝑝′ defined like (2.29) and (2.28), but with
(𝑒′, 𝑑′) in place of (𝑒, 𝑑).
This method relies on 𝑛 qubits being feasible to simulate the odd sub-
space in. That is, however, not always the case. The basis set of ℋ𝑀−1

𝑁

is in general larger than ℋ𝑀
𝑁 , when 𝑀 > 𝑁/2. In this way, the odd sub-

space can also be larger and even be infeasible to simulate with just 𝑛
qubits. As a solution, one changes the ordering into odd operators being
creation operators, and even ones being annihilators, like 𝑐𝑘𝑐

†
𝑖 𝑐𝑙 𝑐

†
𝑗 . This

causes the odd subspace to become ℋ(𝑀+1)
𝑁 , which has a smaller basis set

than ℋ𝑀
𝑁 . For that case (𝑒, 𝑑) become the code for the odd subspace, and

(𝑒′, 𝑑′) will be associated to the even subspace in (2.82) and (2.83).
The obvious disadvantage is that two codes have to be employed at once.

2.7 Supplement 55

However, the checksum code for instance (Section2.4.3.1 in the main part),
comes in two different flavors already, which can be used as codes for
even and odd subspaces, respectively.

2.7.2.2 Encoding the building blocks

The building blocks 𝑐†𝑖𝑐𝑗 are guaranteed to conserve the particle number,
so the even subspace is conserved. As a consequence, one may consider
the possibility to transform the operators as the pairs we have rearranged
them into. In this way, we still have a certain compartmentalization of
(2.30). Two special cases are to be taken into account: when 𝑖 > 𝑗, an
additional minus sign has to be added, as compared to the 𝑖 < 𝑗 case.
Also, when 𝑖 = 𝑗, all parity operators cancel and the projectors coincide.
We find:

𝑐†𝑖𝑐𝑗 =̂

⎧⎪⎨⎪⎩
1
4 (−1)𝜃𝑖𝑗 𝒰 (𝑖,𝑗) X [𝑝𝑖 + 𝑝𝑗] (I+ X [𝑑𝑖]) (I− X [𝑑𝑗]) 𝑖 ̸= 𝑗

1
2 (1− X [𝑑𝑗]) 𝑖 = 𝑗 ,

(2.85)

with 𝒰 (𝑖,𝑗) being the 𝑙 = 2 version of (2.31), and 𝑝 and 𝜀 𝑞 defined as
usual by (2.28) and (2.29).

2.7.3 Multi-weight binary addressing codes based on dissec-
tions

With binary addressing codes, that is codes that are similar to the one
presented in Section 2.4.3.2 in the main part, even an exponential amount
of qubits can be saved for systems with low particle number, but at the
expense of complicated gates. For this section, we firstly recap the situa-
tion of Section 2.4.3.2 and clarify what binary addressing means. Firstly,
some nomenclature is introduced. We then generalize the concept of bi-
nary addressing codes to weight-𝐾 codes, using results from [31]. As an
example, we explicitly obtain the 𝐾 = 2 code.
Suppose we have a system with 𝑁 = 2𝑟 orbitals, and one particle in
it. Our goal is to encode the basis state, where the particle is on or-
bital 𝑦 ∈ [2𝑟], as a binary number in 𝑟 qubits. In this way, the state
with occupational vector 𝑢𝑦 is encoded as |𝑞𝑦,𝑟⟩, with 𝑞𝑦,𝑟 ∈ Z⊗𝑟

2 and

56 Chapter 2. Saving qubits with classical codes

𝑦 = bin(𝑞𝑦,𝑟) + 1. Probing an unknown basis state, a decoding will now
have components of the form

𝜔 ↦→
∏︁
𝑖∈[𝑟]

(𝜔𝑖 + 𝑞𝑦,𝑟𝑖 + 1) . (2.86)

Such binary functions output 1 only when 𝜔 = 𝑞𝑦,𝑟. In our nomencla-
ture, we say that in the basis state |𝑞𝑦,𝑟⟩, the particle has the coordinate 𝑦.
We refer to codes that store particle coordinates in binary form, as binary
addressing codes.

In the 𝐾 = 1 case from the main part, the code words just contain
the binary representation of one coordinate. The question is now how to
generalize the binary addressing codes. For multi-weight codes, we have
to have 𝐾 sub-registers to store the addresses of 𝐾 particles. Naively, one
would want to store the coordinate of each particle in its respective sub-
register in binary form, as we have done for 𝐾 = 1. This however, holds
a problem. As the particles are indistinguishable, the stored coordinates
would be interchangeable, the code would not be one-to-one. For the
binary numbers 𝜔 1 and 𝜔 2, that represent a coordinate each, this would
mean 𝑑(𝜔 1 ⊕ 𝜔 2) = 𝑑(𝜔 2 ⊕ 𝜔 1). That strategy not only complicates
the operator transform, it also leads to a certain qubit overhead, as each
plain word has as many code words as there are permutations of 𝐾 items.
Since this naı̈ve idea leaves us unconvinced, we abandon it and search for
one-to-one codes instead. The key is to consider the coordinates to be in
a certain format and this is where [31] comes into play. We proceed by
using some relevant concepts of that paper.
Let us consider the coordinates of 𝐾 particles to be given in the 𝑁 -ary
vector 𝑥 = (𝑥1, . . . , 𝑥𝐾). Between those coordinates, we have imposed
an ordering 𝑥𝑖 > 𝑥𝑗 as 𝑖 > 𝑗. Particles cannot share the same orbital,
so we are excluding the cases where two coordinates are equal. Using
results from [31], we transform the latter into coordinates that lack such
an ordering, and where each component is an integer from a different
range:

𝑥 ↦→ 𝑦 = (𝑦1, . . . , 𝑦𝐾)⊤ with 𝑦 ∈
𝐾⨂︁

𝑚=1

[︂⌈︂
𝑁

𝑚

⌉︂]︂
. (2.87)

Through that transform, each vector 𝑦 corresponds to a valid vector 𝑥,

2.7 Supplement 57

and there is no duplication. We now represent the 𝑦-coordinates by bi-
nary numbers in the code words 𝜔 ∈ Z⊗𝑛

2 , where 𝑛 =
∑︀𝐾

𝑚=1

⌈︀
log 𝑁

𝑚

⌉︀
:

𝜔 =

𝐾⨁︁
𝑚=1

𝑞 𝑦𝑚,⌈𝑁
𝑚⌉ with 𝑞𝑖,𝑗 ∈ Z⊗𝑗

2 and bin
(︀
𝑞𝑖,𝑗

)︀
+ 1 = 𝑖 . (2.88)

A geometric interpretation of the process portrays the vector 𝑥 as a set
of coordinates in a 𝐾-dimensional, discrete vector space. The vectors
allowed by the ordering form thereby a multi-dimensional tetrahedron.
The states outside the tetrahedron do not correspond to a valid 𝒱 vector,
so encoding each coordinate 𝑥𝑖 in ⌈log𝑁⌉ qubits would be redundant.
We therefore dissect the tetrahedron, and rearrange it into a brick, as it
is referred to in [31]. What is actually done is to apply symmetry oper-
ations (like point-reflections) on the vector space until the tetrahedron is
deformed into the desired shape a 𝐾-dimensional, rectangular volume.
The fact that the vectors to encode are now all inside a hyper-rectangle
is what we wanted to achieve. We can now clip the ranges of the coor-
dinate axes (to [⌈log 𝑁

𝑚⌉]) to exclude vectors the vectors outside the brick.
As the values on the axes correspond to non-binary addresses, this means
that the qubit space is trimmed as well, and we have eliminated all states
based on not-allowed coordinates. This is where we now reconnect to our
task of finding a code: the 𝑒- and 𝑑-functions have to take into account
the reshaping process, as only the coordinates 𝑥 have a physical inter-
pretation and can be decoded. The binary addresses in the code words,
on the other hand, are representatives of 𝑦. With binary logic, the two
coordinates have to be reconnected. We illustrate this abstract process on
the example of the (𝐾 = 2)-code.

Weight-two binary addressing code

As an example, we present the weight-two binary addressing code on
𝑁 = 2𝑟 orbitals. The integer 𝑟 will determine the size of the entire qubit
system 𝑛 = 2𝑟 − 1, with two registers of size 𝑟 and 𝑟 − 1.

With the two registers, a binary vector 𝜔 = 𝛼 ⊕ 𝛽 with 𝛼 ∈ Z⊗𝑟
2 and

𝛽 ∈ Z⊗(𝑟−1)
2 is defining the qubit basis. In two dimensions, the brick turns

into a rectangle and the tetrahedron into triangle. The decoding function
takes binary addresses of the rectangular 𝑦, and transforms them into co-
ordinates in the triangle 𝑥. The ordering condition implies hereby where
to dissect the rectangle: Figure 2.2 may serve as a visual aid, disregard-

58 Chapter 2. Saving qubits with classical codes

1
2

𝑁/2

1 +𝑁/2

𝑁

𝑥2
1
2

𝑁/2

𝑦2

1 2 𝑁
2

𝑁

𝑥1 = 𝑦1

Figure 2.2. Visualization of the 2-dimensional vector space: a valid vector is
represented as a colored tile. The left gray tiles and the black ones constitute the
triangle, defining all valid vectors 𝑥 = (𝑥1, 𝑥2)

⊤. The marked diagonal tiles are
to be excluded from the encoded space. The black tiles and the gray ones on the
right of this diagonal form the brick, containing all 𝑦 = (𝑦1, 𝑦2)

⊤ vectors.

ing the excluded cases of 𝑦1 = 𝑦2, we find for 𝑦1 ∈ [𝑁], 𝑦2 ∈ [𝑁/2] and
𝑥 ∈ [𝑁]⊗2:

(𝑥1, 𝑥2) =

{︃
(𝑦1, 𝑁/2 + 𝑦2) for 𝑦1 < 𝑁/2 + 𝑦2

(𝑦1, 𝑁/2− 𝑦2 + 1) for 𝑦1 > 𝑁/2 + 𝑦2 .
(2.89)

This decoding is translated into a binary functions as follows: the coor-
dinate 𝑦1 is represented by the binary vector 𝛼 and 𝑦2 by 𝛽. For each
component defined by the binary vector 𝑏 ∈ Z⊗𝑟

2 , we have

𝑑𝑗 (𝛼⊕ 𝛽) = 𝑆 (𝛼,𝛽)

𝑟∏︁
𝑖=1

(︁
𝛼𝑖 + 𝑞 𝑗,𝑟

𝑖 + 1
)︁

+ (1 + 𝑆 (𝛼,𝛽)) (1 + 𝑇 (𝛼,𝛽))
𝑟∏︁

𝑖=1

(︁
𝛼𝑖 + 𝑞 𝑗,𝑟

𝑖

)︁
+ (1 + 𝑆 (𝛼,𝛽)) (1 + 𝑇 (𝛼,𝛽))

𝑟−1∏︁
𝑘=1

(︁
𝛽𝑘 + 𝑞 𝑗,𝑟

𝑘

)︁
+ 𝑆 (𝛼,𝛽)

𝑟−1∏︁
𝑘=1

(︁
𝛽𝑘 + 𝑞 𝑗,𝑟

𝑘 + 1
)︁
, (2.90)

2.7 Supplement 59

with 𝑞 𝑗,𝑟 = (𝑞 𝑗,𝑟
1 , 𝑞 𝑗,𝑟

2 , . . . , 𝑞 𝑗,𝑟
2𝑟) as defined in (2.88) and we have em-

ployed two binary functions 𝑆 and 𝑇 : (Z⊗𝑟
2 ,Z⊗(𝑟−1)

2) ↦→ Z2. Here, 𝑆
compares the binary numbers to determine if the coordinates are left of
the dissection (a black tile in Figure 2.2).

𝑆 (𝛼,𝛽) = 𝛼𝑟

𝑟−1∑︁
𝑗=1

⎡⎣ ∏︁
𝑟−1≥𝑖>𝑗

(𝛼𝑖 + 𝛽𝑖 + 1)

⎤⎦ (1 + 𝛼𝑗)𝛽𝑗 + 1 + 𝛼𝑟 (2.91)

The binary function 𝑇 , on the other hand, is checking whether a set of
coordinates is on a diagonal position (diagonally marked tiles). These
excluded cases are mapped to (0)⊗𝑟 altogether.

𝑇 (𝛼,𝛽) =
∏︁
𝑖

(𝛼𝑖 + 𝛽𝑖) (2.92)

This concludes the decoding function. Unfortunately, the amount of logic
elements in the decoding will complicate the weight-two codes quite a
bit, and the encoding function is hardly better. The reason for this is to
find in the ordering condition: the update operations are conditional on
whether we change the ordering of the coordinates represented by 𝛼 and
𝛽. This is reflected in a nonlinear encoding function: we remind us that
the encoding function is a map 𝑒 : Z⊗2𝑟

2 ↦→ Z⊗(2𝑟−1)
2 , and with 𝜈 ∈ Z⊗2𝑟

2

we find

𝑒 (𝜈) =

2𝑟−1∑︁
𝑗=2

𝑗−1∑︁
𝑖=1

(︁
𝑞 𝑖,𝑟 + 𝐼 𝑟

)︁
⊕
(︁
𝑞 𝑗,𝑟−1 + 𝐼 𝑟−1

)︁
𝜈𝑖𝜈𝑗

+

2𝑟∑︁
𝑗=2𝑟−1+1

2𝑟−1∑︁
𝑖=1

(︁
𝑞 𝑖,𝑟 + 𝐼 𝑟

)︁
⊕
(︁
𝑞 𝑗−2𝑟−1,𝑟−1

)︁
𝜈𝑖𝜈𝑗

+

2𝑟∑︁
𝑗=2𝑟−1+2

𝑗−1∑︁
𝑖=2𝑟−1+1

(︁
𝑞 𝑖,𝑟

)︁
⊕
(︁
𝑞 𝑗−2𝑟−1,𝑟−1

)︁
𝜈𝑖𝜈𝑗 ,

with 𝑞 𝑖,𝑗 as defined in (2.88), and 𝐼 𝑗 = (1)⊗𝑗 = 𝑞2
𝑗, 𝑗 .

The dissecting of tetrahedrons can be generalized for codes of weight
larger than two (see again [31]), but as one increases the number of dis-
sections, the code functions are complicated even further.

60 Chapter 2. Saving qubits with classical codes

2.7.4 Segment codes

In this section, we provide detailed information on the segment codes.
We firstly concern ourselves with the segmentation of the global code,
including a derivation of the segment sizes. In another subsection we
construct the segment codes themselves. The last subsection is dedicated
to the adjustments one has to make to Hamiltonian, such that segment
codes become feasible to use.

2.7.4.1 Segment sizes

At this point we want to sketch the idea behind the segment sizes (̂︀𝑁 , ̂︀𝑛)
stated during Section 2.4.3.3 in the main part, but first of all we would
like to clearly set up the situation.

We consider vectors 𝜈 ∈ Z⊗𝑁
2 to consist of ̂︀𝑚 smaller vectors ̂︀𝜈𝑖 of

length ̂︀𝑛 + 1, such that 𝜈 =
⨁︀̂︀𝑚

𝑖=1 ̂︀𝜈𝑖. We call those vectors ̂︀𝜈𝑖 segments
of 𝜈. The goal is now to find a code (𝑒, 𝑑) to encode a basis 𝒱 which
contains all vectors 𝜈 with Hamming weight 𝐾. For that purpose we
relate the segment ̂︀𝜈𝑖 to a segment of the code space, ̂︀𝜔𝑖, for all 𝑖 ∈ [𝑁].
The code space segments constitute the code words in a fashion similar
to the previous segmentation of 𝜈: 𝜔 =

⨁︀̂︀𝑚
𝑖=1 ̂︀𝜔𝑖. However, the length of

those binary vectors ̂︀𝜔𝑖 is ̂︀𝑛, such that with 𝑛 = ̂︀𝑚̂︀𝑛 and 𝑁 = ̂︀𝑚(̂︀𝑛+1), the
problem is reduced by ̂︀𝑚 qubits as compared to conventional transforms.
We now introduce the subcodes (̂︀𝑒 : Z⊗(̂︀𝑛+1)

2 ↦→ Z⊗̂︀𝑛
2 , ̂︀𝑑 : Z⊗̂︀𝑛

2 ↦→ Z⊗(̂︀𝑛+1)
2),

with which we encode the 𝑖-th segment ̂︀𝜈𝑖 as ̂︀𝜔𝑖 (see Figure 2.3). Note
that we require the subcodes to inherit all the code properties. In this way
we guarantee the code properties of the global code (𝑒, 𝑑) when appendinĝ︀𝑚 instances of the same subcode:

𝑑

(︃ ̂︀𝑚⨁︁
𝑖=1

̂︀𝜔𝑖

)︃
=

̂︀𝑚⨁︁
𝑖=1

̂︀𝑑(︁̂︀𝜔𝑖
)︁
, 𝑒

(︃ ̂︀𝑚⨁︁
𝑖=1

̂︀𝜈𝑖

)︃
=

̂︀𝑚⨁︁
𝑖=1

̂︀𝑒(︁̂︀𝜈𝑖
)︁
. (2.93)

The orbital number being an integer multiple of the block size is of
course an idealized scenario. One will probably have to add a few other
components in order to compensate for dimensional mismatches.
We now set out to find the smallest segment size ̂︀𝑛. It should be clear that̂︀𝑛 is a function of the targeted Hamming weight 𝐾: this means 𝐾 deter-
mines which segment codes are suitable for the system. The reason for

2.7 Supplement 61

̂︀𝜈1 ̂︀𝜈2 ̂︀𝜈̂︁𝑚

𝑒 𝑑 ̂︀𝑒 ̂︀𝑑 ̂︀𝑒 ̂︀𝑑 ̂︀𝑒 ̂︀𝑑
𝜈 = ̂︀𝜈11 , ̂︀𝜈12 , ̂︀𝜈13 , ̂︀𝜈14 , ̂︀𝜈15 , ̂︀𝜈21 , ̂︀𝜈22 , ̂︀𝜈23 , ̂︀𝜈24 , ̂︀𝜈25 , ̂︀𝜈 ̂︀𝑚

1 ,̂︀𝜈 ̂︀𝑚
2 , ̂︀𝜈 ̂︀𝑚

3 , ̂︀𝜈 ̂︀𝑚
4 , ̂︀𝜈 ̂︀𝑚

5· · ·
𝜔 = ̂︀𝜔1

1 , ̂︀𝜔1
2 , ̂︀𝜔1

3 , ̂︀𝜔1
4̂︀𝜔1 ̂︀𝜔2 ̂︀𝜔̂︁𝑚

̂︀𝜔2
1 , ̂︀𝜔2

2 , ̂︀𝜔2
3 , ̂︀𝜔2

4 ̂︀𝜔 ̂︀𝑚
1 , ̂︀𝜔 ̂︀𝑚

2 , ̂︀𝜔 ̂︀𝑚
3 , ̂︀𝜔 ̂︀𝑚

4, , · · ·
Figure 2.3. Visualization of (2.93) for ̂︀𝑛 = 4. The global code (𝑒, 𝑑) relates the
occupation vectors to the global code words 𝜈 ↔ 𝜔. The an instance of the
subcode (̂︀𝑒, ̂︀𝑑) relates 𝑖-th block in 𝜈, ̂︀𝜈𝑖, to the 𝑖-th segment in the code words,̂︀𝜔𝑖.

this is that we need to encode all vectors with weight 0 to 𝐾 inside every
segment, taking into account for the up to 𝐾 particles on the orbitals in-
side one segment. In order to include weight-𝐾 vectors, the size of each
segment must be at least 𝐾. If the segment size would be exactly 𝐾, on
the other hand, we end up encoding the entire Fock space again. In do-
ing so, we are not making any qubit savings. The segments must thus be
larger than 𝐾. In other words, we look for an integer ̂︀𝑛 > 𝐾, where the
sum of all combinations ̂︀𝜈 ∈ Z⊗(̂︀𝑛+1)

2 with wH (̂︀𝜈) ≤ 𝐾 is smaller equal
2̂︀𝑛.

2̂︀𝑛 ≥
𝐾∑︁
𝑘=0

(︂̂︀𝑛+ 1

𝑘

)︂
(2.94)

In the case ̂︀𝑛 = 2𝐾, the condition is fulfilled as identity, since exactly half
of all 2̂︀𝑛+1 combinations are included in the sum.

2.7.4.2 Subcodes

This subsection offers a closer look at the construction of the segment
subcodes (̂︀𝑒, ̂︀𝑑). Let us start by considering the decoding ̂︀𝑑 in order to
explore the nature of the binary switch 𝑓(̂︀𝜔), that occurs in (2.37). One

62 Chapter 2. Saving qubits with classical codes

observes the two (affine) linear
(︁
Z⊗̂︀𝑛
2 ↦→ Z⊗(̂︀𝑛+1)

2

)︁
-maps

̂︀𝜔 ↦→

⎡⎢⎢⎢⎣
1

. . .
1

0 . . . 0

⎤⎥⎥⎥⎦ ̂︀𝜔 , ̂︀𝜔 ↦→

⎡⎢⎢⎢⎣
1

. . .
1

0 . . . 0

⎤⎥⎥⎥⎦ ̂︀𝜔 +

⎛⎜⎜⎜⎜⎝
1
...
...
1

⎞⎟⎟⎟⎟⎠ . (2.95)

to produce together all the vectors with weight equal or smaller than 𝐾,
if we input all ̂︀𝜔 with wH (̂︀𝜔) ≤ 𝐾 into the first, and the remaining cases
with wH (̂︀𝜔) > 𝐾 into the second one. Note that the last component is
always zero in outputs of the first function and one in the second. There-
fore, the inverse of both maps is always a linear map with the matrix
[I | 𝐼 ̂︀𝑛]︀. We take this inverse as encoding (2.38), and the two maps (2.95)
are merged into the decoding (2.37). In order to switch between these
two maps we define the binary function 𝑓(̂︀𝜔) : Z⊗̂︀𝑛

2 ↦→ Z2 such that

𝑓(̂︀𝜔) =

{︃
1 for wH (̂︀𝜔) > 𝐾

0 otherwise .
(2.96)

In general, one can define this binary switch in a brute-force way by

𝑓 (̂︀𝜔) =
2𝐾∑︁

𝑘=𝐾+1

∑︁
𝑡∈Z⊗2𝐾

2

wH(𝑡)=𝑘

2𝐾∏︁
𝑚=1

(̂︀𝜔𝑚 + 1 + 𝑡𝑚) . (2.97)

For the case 𝐾 = 1 (̂︀𝑛 = 2), the switch equals 𝑓(𝜔) = 𝜔1𝜔2, and for the
code we recover a version of binary addressing codes, where the vector
(0, 0, 0) is encoded.

̂︀𝑑 (̂︀𝜔) =

⎛⎝̂︀𝜔1 (̂︀𝜔2 + 1)
(̂︀𝜔1 + 1) ̂︀𝜔2̂︀𝜔1̂︀𝜔2

⎞⎠ , ̂︀𝑒 (̂︀𝜈) = [︂1 0 1
0 1 1

]︂ ̂︀𝜈 . (2.98)

In the 𝐾 = 2 (̂︀𝑛 = 4) case, this binary switch is found to be 𝑓 (̂︀𝜔) =̂︀𝜔1̂︀𝜔2̂︀𝜔3 + ̂︀𝜔1̂︀𝜔2̂︀𝜔4 + ̂︀𝜔1̂︀𝜔3̂︀𝜔4 + ̂︀𝜔2̂︀𝜔3̂︀𝜔4 + ̂︀𝜔1̂︀𝜔2̂︀𝜔3̂︀𝜔4.

2.7.4.3 Hamiltonian adjustments

As mentioned in Section 2.4.3.3, in the main part, segment codes are not
automatically compatible with all particle-number-conserving Hamilto-
nians. We show here, how certain adjustments can be made to these

2.7 Supplement 63

· · ·· · · 𝑖 𝑗

Segment A Segment B

Figure 2.4. (Filled) Circles represent (occupied) fermionic orbitals, where 𝐾 = 2
segment codes are used in the indicated blocks. This occupational case is prob-
lematic for the codes, as the operator 𝑐†𝑖 𝑐𝑗 acting on this state leaves the encoded
space.

Hamiltonians, such that their action on the space ℋ𝐾
𝑁 is not changed,

but segment codes become feasible to describe them with. In order to
understand this issue, we begin by examining the encoded space. For
that purpose we reprise the situation of (2.93), where we have appended̂︀𝑚 instances of the same subcode. With segment codes, the basis 𝒱 con-
tains vectors with Hamming weights from 0 to ̂︀𝑚𝐾. We have encoded
all possible vectors 𝜈 with 0 ≤ wH (𝜈) ≤ 𝐾, but although we have some,
not all vectors with wH (𝜈) > 𝐾 are encoded. We can illustrate that point
rather quickly: each segment has length 2𝐾+1, but the subcode encodes
vectors ̂︀𝜈 with only wH (̂︀𝜈) ≤ 𝐾. The (global) basis 𝒱 is thus deprived of
vectors 𝜈 = (

⨁︀
𝑖 ̂︀𝜈𝑖) where for any segment 𝑖, wH

(︀̂︀𝜈𝑖
)︀
> 𝐾.

We now turn our attention to terms, which, when present in a Hamilto-
nian, make segment codes infeasible to use. Note, that 𝒱-vectors with
wH (𝜈) ̸= 𝐾, are not corresponding to fermionic states we are interested
in. In particular it is a certain subset of states with wH (𝜈) > 𝐾, which
can lead out of the encoded space (into the states previously mentioned)
when acted upon with certain fermionic operators. Let us consider the
operator 𝑐†𝑖𝑐𝑗 as an example, where 𝑖 and 𝑗 are in different segments (let
us call these segments A and B). Now a basis state as depicted in Figure
2.4, is not annihilated by 𝑐†𝑖𝑐𝑗 , and leads into a state with 3 particles in
segment A. The problem is that the initial state is encoded in the (𝐾 = 2)
segment codes, whereas the updated state (with the 3 particles in A) is
not. In general, operators ̂︀ℎ𝑎𝑏, that change occupations in between seg-
ments, will cause some basis states with wH (𝜈) > 𝐾 to leave the en-
coded space. We can however adjust these terms ̂︀ℎ𝑎𝑏 → ̂︀ℎ′𝑎𝑏, such that̂︀ℎ′𝑎𝑏 : span(ℬ) ↦→ span(ℬ), where ℬ is the basis encoded by the segment
codes. We now sketch the idea behind those adjustments, before we re-
consider the situation of Figure 2.4. Note that after these adjustments

64 Chapter 2. Saving qubits with classical codes

have been made to all Hamiltonian terms in question, the segment codes
are compatible with the new Hamiltonian. The idea is to switch those
terms off for states, that already have 𝐾 particles inside the segments, to
which particles will be added. We have to take care to do this in a way
that leaves the Hamiltonian hermitian on the level of second quantiza-
tion, i.e. we have to adjust the terms ̂︀ℎ𝑎𝑏 and ̂︀ℎ†𝑎𝑏 into ̂︀ℎ′𝑎𝑏 and (̂︀ℎ†𝑎𝑏)′,
such that ̂︀ℎ′𝑎𝑏 + (̂︀ℎ†𝑎𝑏)′ is hermitian. For the 𝐾 = 2 code of Figure 2.4, we
can make the following adjustments:

𝑐†𝑖𝑐𝑗 ↦→

⎛⎝1−
∑︁

𝑙,𝑘<𝑙∈ B

𝑐†𝑘𝑐𝑘𝑐
†
𝑙 𝑐𝑙

⎞⎠ 𝑐†𝑖𝑐𝑗

⎛⎝1−
∑︁

𝑤,𝑣<𝑤∈ A

𝑐†𝑣𝑐𝑣𝑐
†
𝑤𝑐𝑤

⎞⎠ . (2.99)

2.8 Notations

[...] The set of integers from 1 to the argument.

=̂

Relation used to express the correspondence between fermionic
operators/states to qubit counterparts (according to some
fermion-to-qubit mapping).

𝑎
Element of [𝑁]⊗𝑙. Length-𝑙 𝑁 -ary vector parametrizing orbitals in
the Hamiltonian terms ̂︀ℎ𝑎𝑏.

𝐴(−1)
A (𝑁 × 𝑁) binary matrix defining a conventional encoding (de-
coding).

𝑏
Element of Z⊗𝑙

2 . A length-𝑙 binary vector determining operator
types in ̂︀ℎ𝑎𝑏.

ℬ
The basis of a space of fermions on 𝑁 orbitals, which is possibly
smaller than the Fock-space basis.

𝑐
(†)
𝑗

An element of ℒ(ℱ𝑁). A fermionic annihilation (creation) opera-
tor.

(C2)⊗𝑛
The vector space of 𝑛-qubit states.

𝑑 A binary vector function Z⊗𝑛
2 ↦→ Z⊗𝑁

2 . The decoding function.

𝑒 Binary vector function Z⊗𝑁
2 ↦→ Z⊗𝑛

2 . The encoding function.

𝜀𝑞
A binary vector function Z⊗𝑛

2 ↦→ Z⊗𝑛
2 . The update function which

plays a role for nonlinear encodings, see (2.29).

2.8 Notations 65

ℱ𝑁 The fermionic Fock space restricted on 𝑁 orbitals.

𝐹 (𝑗) A Subset of [𝑛] The flip set with respect to orbital 𝑗, see (2.12).

̂︀ℎ𝑎𝑏 A fermion operator span(ℬ) ↦→ span(ℬ). A generic term in a
fermionic Hamiltonian, see (2.10).

ℋ𝑀
𝑁

The antisymmetrized Hilbert space of 𝑀 indistinguishable
fermions on 𝑁 orbitals.

I The identity operator on arbitrary spaces.

𝐾
An element of [𝑁] The targeted Hamming weight of the vectors
encoded in a binary code.

𝑙 The length of a sequence of fermionic operators in ̂︀ℎ𝑎𝑏.

𝐿 The weight of a Pauli string.

ℒ(...) Denotes linear operators on the argument vector space.

𝑀 The total number of particles in a system of 𝑁 orbitals.

𝑛 The number of qubits.

𝑁 The number of fermionic orbitals.

𝜈
An element of 𝒱 ⊆ Z⊗𝑁

2 . The 𝑁 -orbital occupation vector repre-
senting a fermionic basis state, see (2.17).

𝜔
An element of Z⊗𝑛

2 . A binary vector representing a product state
in the 𝑛-qubit basis, see (2.18).

𝑝 Binary vector function Z⊗𝑛
2 ↦→ Z⊗𝑁

2 The parity function,used for
the parity operators.

𝑃 (𝑗) A subset of [𝑛]. The parity set of orbital 𝑗, see (2.12).

𝒫 Set of single-qubit Pauli operators {𝑋, 𝑌, 𝑍}.

𝑞 An element of Z⊗𝑁
2 . Binary vector denoting the occupational

change of a vector 𝜈 by a term ̂︀ℎ𝑎𝑏.

𝑅
A binary (𝑁 ×𝑁) matrix, where the lower triangle (excluding the
diagonal) is filled with ones, see (2.13).

𝜃𝑖𝑗
A function [𝑁]⊗2 ↦→ Z2. The discrete version of the Heaviside
function, see (2.13).

𝑢𝑗
A binary vector in Z⊗𝑁

2 or Z⊗𝑛
2 . The 𝑗-th unit vector, in which just

component 𝑗 is one.

66 Chapter 2. Saving qubits with classical codes

𝑈(𝑗) A subset of [𝑛] The update set of orbital 𝑗, see (2.12).

𝒰𝑎 A linear operator: ℒ
(︀
(C2)⊗𝑛

)︀
. Update operator with respect to an

occupation of 𝑎, see (2.31) and (2.32).

𝒱 A subset of Z⊗𝑁
2 . The set of all allowed occupation vectors 𝜈,

implementing the basis ℬ, see (2.17).

wH (·) A function Z⊗𝑁
2 ↦→ [𝑁] ∪ {0}. The Hamming weight of a binary

vector, which is the sum of its components.

X

A map
(︀
Z⊗𝑛
2 ↦→ Z2

)︀
↦→ ℒ

(︀
(C2)⊗𝑛

)︀
. The extraction superopera-

tor, which relates binary functions to quantum gates, see (2.19) -
(2.27).

Z2 The set of binary digits: {0, 1}.

2.9 Further work

Tapering qubits off

There is another approach that can help reducing the number of qubits by
exploiting symmetries. Let us consider that a qubit Hamiltonian has a set
of stabilizers. As stabilizer conditions constrain degrees of freedom, they
can be taken into account to eliminate an equivalent number of qubits.
In fact, we find that per stabilizer condition eliminated one qubit can be
tapered off, which means removing a number of qubits equivalent to the
number of stabilizer generators. In [34], where this idea was developed, a
quantum algorithm is devised to render the action of the problem Hamil-
tonian trivial on the qubits to be removed. However, in the wake of [43],
we have developed a perhaps simpler method, with which qubits can be
tapered off a Hamiltonian 𝐻 , given only the generating set of stabilizers.
While those stabilizers have to take the form of Pauli strings, we might
have to simulate the system in the negative subspace of some of them,
which effectively corresponds to those stabilizers being defined with a
minus sign: 𝑆 ∈ ±{I, 𝑋, 𝑌, 𝑍}⊗𝑛. Note that those stabilizers might
not be a product of natural symmetries. Our original motivation was
to test logical Hamiltonians, as they appear in the next chapter. These
are Hamiltonians of systems in which stabilizer conditions are defined as
part of a quantum code, but like before we can regard the stabilizers as

2.9 Further work 67

𝜏∖𝜎 𝑋 𝑌 𝑍

I ℎ ℎ ℎ
𝑋 ±ℎ · 𝑝 ±𝑖ℎ · 𝑝 ℎ
𝑌 ∓𝑖ℎ · 𝑝 ±ℎ · 𝑝 ±𝑖ℎ · 𝑝
𝑍 ℎ ℎ ±ℎ · 𝑝

Table 2.3. Removing one qubit from a Pauli string 𝜏 ⊗ ℎ, by eliminating a stabi-
lizer generator ±𝜎⊗𝑝. Here 𝑝 and ℎ are Pauli strings on 𝑛−1 qubits, and 𝜎, 𝜏 are
Pauli operators on an isolated qubit. The entries of the table show the (𝑛 − 1)-
qubit equivalents of 𝜏 ⊗ ℎ for various instances of 𝜏 (rows) and 𝜎 (columns).

boundary conditions imposed on a physical system of spins. Testing the
Hamiltonian spectra, and thus the code space, is therefore not possible
unless we somehow include these conditions. At this point, qubit taper-
ing can be used to eliminate all stabilizer conditions and turn a logical
Hamiltonian into a physical one. The spectrum of the latter can then be
matched with its expectation to verify the subspace.
We will now describe our procedure in detail. It relies on a routine that ta-
pers off one qubit for each stabilizer generator so the following scheme is
to be repeated until no stabilizers are left. In the beginning, we isolate one
qubit on which the selected stabilizer acts non-trivially as 𝜎 ∈ {𝑋, 𝑌, 𝑍}.
Let us write the stabilizer as 𝑆 = ±𝜎 ⊗ 𝑝, where the first register denotes
the isolated qubit, and the second register is comprised of the remain-
ing qubits, on which the stabilizer acts as the Pauli string ±𝑝. We now
replace all logical operators (and remaining stabilizers), 𝜏 ⊗ ℎ, with the
entries (corresponding to the concrete instances of 𝜏 and 𝜎) in Table 2.3.

Obviously, the isolated qubit has been removed, and the stabilizer 𝑆
is discarded. Let us prove this method. The idea is that by the stabi-
lizer, a Pauli string 𝜏 ⊗ ℎ is re-expressed as either I⊗ ℎ′ or 𝜋 ⊗ ℎ′′, where
𝜋 ∈ {𝑋, 𝑌, 𝑍}/{𝜎}. In the table, we have have conventionally chosen to
fixed 𝜋 = 𝑍 in cases 𝜎 ∈ {𝑋, 𝑌 } and 𝜋 = 𝑋 for the case 𝜎 = 𝑍. This
is achieved by multiplying 𝜏 ⊗ ℎ with 𝜎 ⊗ 𝑝 in case 𝜏 /∈ {I, 𝜋}. Since
now each term is acting on the isolated qubit as either 𝜋 or I, it can be
disregarded from the underlying eigenvalue problem, as it must be in
the ±-eigenstate of 𝜋. To save qubits, we just replace it with its eigen-
value ±1: I ⊗ ℎ′ ↦→ ⊗ℎ′ and 𝜋 ⊗ ℎ′′ ↦→ ±ℎ′′. Note that the concrete
choice between the two eigenvalues is irrelevant: the case in which the
tapering is performed within the (−1) eigenspace produces a Hamilto-

68 Chapter 2. Saving qubits with classical codes

nian 𝐻 ↦→ 𝐻−, that is related to its (+1) counterpart, 𝐻+, by the unitary
transform: 𝐻+ = 𝑝 𝐻−𝑝, which means 𝐻+ and 𝐻− are isospectral.

Term reduction

When applying the tapering, the number of Hamiltonian terms is not
increased by the procedure outlined above. However, it can very well
decrease. Two Hamiltonian terms, ℎ0 and ℎ1, can for instance be related
by the condition ℎ1 = ±ℎ0 · 𝑆. After 𝑆 is eliminated by tapering, the
two terms will not stay distinct, but rather be added or subtracted ac-
cording to the sign, meaning that at least one or even both terms vanish.
Even without eliminating qubits, this feature can be utilized to reduce
the number of Hamiltonian terms. This is particularly useful for logical
Hamiltonians, since for transforms concatenated with quantum codes,
the number of terms tends to proliferate.2 The problem is that while
many of those terms are equivalent up to the multiplication by stabiliz-
ers, however they are not identical, such that classical software cannot
merge or cancel them. We have defined a classical routine to eliminate
redundant terms while maintaining the code space. Like before, we be-
gin by choosing a qubit on which the first stabilizer acts as 𝜎1, and by
multiplication fix each logical term as well as the remaining stabilizer
generators to act on it as 𝜋1 ̸= 𝜎1 or I, the identity. However, while dis-
carding the first stabilizer we are not going to remove the selected qubit –
a procedure that is repeated for every stabilizers in the list of generators.
Note that we always have to select a qubit that is distinct from the ones
already fixed. For a total of 𝑟 stabilizer generators, we end up with each
logical Pauli string ℎ transformed into 𝜆ℎ ⊗ 𝜂ℎ, where 𝜆ℎ ∈

⨂︀𝑟
𝑖=1{I, 𝜋𝑖}

is a fixed string on the 𝑟 qubits selected, and 𝜂ℎ the ‘free’ remainder of ℎ
on the 𝑛− 𝑟 qubits left. When every Hamiltonian string ℎ is brought into
this form, redundant terms cancel or merge. However, the Hamiltonian
strings probably had an optimized Pauli weight as ℎ, that is likely to be
not conserved in 𝜆ℎ ⊗ 𝜂ℎ. To keep the weight optimized, we perform the
above procedure within a table, such that in the end each original string
ℎ is stored together with its fixed form. We have thus obtained a look-up
table with which every remaining string 𝜆ℎ ⊗ 𝜂ℎ of the Hamiltonian can
be mapped back to ℎ, retrieving its optimized weight.

2Unpublished observations.

