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Chapter 1

Introduction

1.1 Preface

It is believed that quantum computers will help to increase our knowl-
edge about large molecules and strongly correlated materials. There are
many systems in those classes that we do not understand to this day, not
for an inability to comprehend their physics, but because we lack compu-
tational power. In fact, we have accurate models describing the interac-
tions of electrons in molecules, but classical computers are incompatible
in dealing with the quantum properties. While we can easily formulate
the Hamiltonians describing the systems, their spectrum and eigenstates
(in particular, their ground state), that would allow us insight into their
nature, can only be obtained with tremendous efforts. The issue is that
with electrons being quantum-mechanical particles, their eigenstates are
superpositions of all their possible configurations within the host system.
As a consequence, any computer would need to have enough memory
to encode the entirety of the electronic Hilbert space. Since the number
of configurations is typically exponential in the size of the considered
system, the same scaling applies to the resources required for classical
simulation. This is a prohibitive overhead that not only places a cap on
the number of active electrons we are able to simulate, but also on the
simulation accuracy, since increasing the basis set is a means to make a
simulation more precise. Fortunately, electronic systems can be stored
differently on quantum computers, and so Abrams, Lloyd and Feynman
suggested their use as universal quantum simulators [1–3].
A quantum computer is a device with a controllable quantum system as a
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memory. As such, the memory spans an exponential Hilbert space which
can imitate the exponential Hilbert space of an arbitrary electronic sys-
tem. The required memory, which is the minimum number of qubits in
the quantum computer, is thus only linear in the size of the problem. Not
only are quantum states stored more adequately in qubits, but their ma-
nipulation by quantum gates, the elementary operations of the quantum
computer, allows simulating arbitrary quantum-mechanical time evolu-
tions. This approach, in which quantities of interest are calculated using
gate operations rather than only the time evolution of the parent sys-
tem, is commonly referred to as digital quantum simulation. While be-
ing technically more challenging than its analogue counterpart, it allows
us to employ powerful quantum algorithms for the simulation and is
compatible with techniques of quantum error mitigation and correction.
However, since quantum devices have stricter limitations than classical
computers, the feasibility of these amazing algorithms is determined by
the right ‘programming’ of the quantum computer, which leads us to the
subject matter of this thesis. Within these pages, we are going to deal
with three limitations of quantum computing hardware in particular.
Firstly, there is the issue of memory size. Being controllable quantum
systems, qubits are not easy to fabricate (or find) and must therefore be
regarded as a rare commodity. The era of noisy intermediate scale quan-
tum (NISQ) computers, for instance, is said to open with the arrival of
devices containing only around fifty qubits [4]. While the amount of
classical memory required to store the Hilbert space of those devices is
enormous, the amount of qubits is not. Note also that many promising
platforms are currently far from this intermediate scale.

Another issue is the qubit lifetime. Since quantum information can
only be stored fleetingly before its decoherence, feasible algorithms have
to be short. Quantum computation is thus strongly dependent on our
ability to reduce the runtime of quantum algorithms by applying differ-
ent parts of them in parallel. Not only has the need for parallelization
an impact on algorithm design and compilation, but also on the device
itself. Quantum algorithms are often expressed as quantum circuit dia-
grams, in which gate sequences can be grouped into parallel layers, but
there is no guarantee that the parallel execution of such a layer is actually
possible on the hardware level. Even in fault tolerant quantum comput-
ers, where the effect of decoherence is often argued to be diminished,
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it never really vanishes. These devices, that are further developed than
NISQ computers, continuously run cycles of error correction algorithms
that would allow for longer algorithms and so seemingly relax the need
for a parallel operation. However, since the cycles are not exempt from
noise, they also benefit from parallelization. In fact, when error correc-
tion cycles cannot be run within a certain time span, they cause errors
rather than correct them.

Lastly, a quantum device has much stricter geometric constraints.
This is due to the fact that the actual qubit part of the quantum computer
has to be placed inside a dilution refrigerator shielding it from thermal
fluctuations. Geometrical constraints not only limit the number of qubits,
but also their connectivity and control.

Running a simulation algorithm, all of these peculiarities of quantum
hardware need to be taken into account. Let us take a look on how these
constraints can enter and influence a computation. Quantum computing
is conceptually different from its classical counterpart, even though there
are similarities in the way they are applied: for a classical computation,
a user would pass problem-specific arguments to pre-existing, standard
routines to obtain a result. When concerned with a ground state problem,
for instance, a user would initially choose a matrix representation of the
Hamiltonian in order to pass it to a diagonalization routine.

The situation is quite similar for digital quantum simulation, where
algorithms like quantum phase estimation or the variational quantum eigen-
solver [5–7] can be regarded as predefined routines a user has to feed with
problem-specific input. Since the problem is finding the ground state the
input is, like in the classical case, a representation of the Hamiltonian. It
can however not be a matrix, since its sheer dimension would not make
it through classical preprocessing. Instead, the Hamiltonian is submitted
in a form that the quantum computer can process, as a sum of operators
acting on the exponential Hilbert space. To run quantum algorithms,
the computer must be able to implement those operations as black box
routines on its qubits and they therefore take the form of low-level quan-
tum gates. Typically, the input Hamiltonian is a sum of weighted Pauli
strings, where each of them is a product of Pauli operators on different
qubits with a real coefficient. Note that with this construction the quan-
tity preventing us from simulating arbitrarily-sized systems is no longer
the matrix dimension, but the number of terms in the qubit Hamilto-
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nian. The Pauli strings and their associated coefficients are subsequently
turned into gate instructions in the quantum algorithm approximating
the ground state. Algorithms based on Trotterization or qubitization, for
instance, require that Pauli strings of the Hamiltonian are applied to the
system directly [8–10], while in variational quantum eigensolvers they
are measured on the memory. In this way, the input Hamiltonian will
determine the performance of the applied algorithm, and the number
of qubits required for the computation. In order to gain control over
those quantities, an amount of pre-processing is required. A visualiza-
tion of the entire quantum simulation process can be found in Figure 1.1,
starting from a fermionic Hamiltonian in second quantization. Consid-
erations about the basis set and truncation of the problem are inherent
in this operator, which is to be regarded as a fixed quantity. However, as
long as it is a valid representation of the fermionic Hamiltonian, the qubit
Hamiltonian can be chosen freely. With that choice, we can influence the
performance and requirements of the quantum algorithm that the qubit
Hamiltonian feeds into. The transform between the fermionic operators
and gate instructions, as well as the correspondence between fermionic
occupations and qubit configurations, will be referred to as fermion-to-
qubit mapping. Since a mapping directly relates the fermionic problem to
the computer’s memory, it would ideally be tailored to its device. The
transform of the Hamiltonians, depicted in Figure 1.1, can be done using
classical software readily available [11–13].

1.2 Fermion-to-qubit mappings

Definitions – Qubit basis and Pauli operators

§1 The state of a single qubit shall be a linear combination of the basis states |0⟩
and |1⟩, which we will also refer to as computational basis. The (single-
qubit) Pauli operators 𝑋 , 𝑌 and 𝑍 shall be defined such that they are
hermitian and unitary.

𝑍 = |0⟩⟨0| − |1⟩⟨1| (1.1)
𝑋 = |1⟩⟨0|+ |0⟩⟨1| (1.2)
𝑌 = 𝑖 |1⟩⟨0| − 𝑖 |0⟩⟨1| (1.3)

§2 To characterize the basis of 𝑛 qubits, we are going to introduce binary vectors
𝜔 = (𝜔1, 𝜔2, ... , 𝜔𝑛)

⊤, where each component 𝜔𝑖 is a binary number:
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𝜔𝑖 ∈ {0, 1} =: Z2. We thus write 𝜔 ∈ Z⊗𝑛
2 . For convenience, we are

going to use a binary (modular) addition when adding two such binary
vectors: 𝜔+𝜇 =

⨂︀𝑛
𝑖=1(𝜔𝑖+𝜇𝑖 mod2). The modulus shall be implicitly

applied also to matrix and scalar products of binary vectors. Within this
thesis we use those vectors to define the multi-qubit computational basis
states as

|𝜔⟩ =

𝑛⨂︁
𝑖=1

|𝜔𝑖⟩ = |𝜔1⟩ ⊗ |𝜔2⟩ ⊗ · · · ⊗ |𝜔𝑛⟩ , (1.4)

such that an 𝑛-qubit quantum state |𝜙⟩ takes the generic form

|𝜙⟩ =
∑︁

𝜔∈Z⊗𝑛
2

𝑎𝜔 |𝜔⟩ , (1.5)

where there are 2𝑛 complex, normalized coefficients 𝑎𝜔:
∑︀

𝜔 |𝑎𝜔|2 = 1.

§3 Products of Pauli operators will be referred to as Pauli strings. To distinguish
operators (1.1)-(1.3) acting on different qubits, we brand them with qubit
indices. The operator 𝑋𝑖 for instance acts as an 𝑋-operator on qubit 𝑖,
and as the identity (I) on the rest. In general, we want to omit single-qubit
identities and use the following shorthand for Pauli strings 𝑍 ⊗ I⊗ 𝑍 =
𝑍1 ⊗ 𝑍3 =

⨂︀
𝑖∈{1,3} 𝑍𝑖, though we will use I for the identity operation

on the entire system. A qubit Hamiltonian is typically a weighted sum of
Pauli strings. In the second chapter, for instance, we find the following
Hamiltonian for the hydrogen molecule in a minimal basis (for atoms at
their bond distance, in units of Hartree):

𝐻 = − 0.34 I + 0.18129𝑋1 ⊗𝑋2 + 0.394𝑍1

+ 0.0112𝑍1 ⊗ 𝑍2 + 0.394𝑍2 . (1.6)

Definitions – Fermionic operators

§4 Within this thesis, we denote fermionic creation and annihilation operators
by 𝑐†𝑗 and 𝑐𝑗 , where 𝑗 denotes the index of the fermion orbital, the combi-
nation of spatial wave function and spin indices. When speaking outside
a context of electrons, we also refer to orbitals as fermionic modes, in par-
ticular when we replace those indices with coordinates on a hypothetical,
two-dimensional embedding of the system. To account for their fermionic
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nature, creation and annihilation operators satisfy the following anticom-
mutation relations:[︁

𝑐𝑖 , 𝑐𝑗

]︁
+
= 0,

[︁
𝑐†𝑖 , 𝑐

†
𝑗

]︁
+
= 0,

[︁
𝑐𝑖 , 𝑐

†
𝑗

]︁
+
= 𝛿𝑖𝑗 , (1.7)

where [𝐴,𝐵]+ = 𝐴𝐵 +𝐵𝐴.

§5 To avoid confusion with qubit configurations, we will denote the vacuum
state, in which all fermion modes (orbitals) are unoccupied, by |Θ⟩. States
are subsequently defined as products like 𝑐†𝑖1𝑐

†
𝑖2
...𝑐†𝑖𝑀 |Θ⟩.

§6 While second quantization makes for some redundancy in the ordering of
the creation operators, it allows us to express many-body Hamiltonians in
a concise form. The Hamiltonians of the electronic structure problem, that
we are interested in, are following the pattern of∑︁

𝑖𝑗

𝑡𝑖𝑗 𝑐
†
𝑖𝑐𝑗⏟  ⏞  

kinetic / hopping

and nuclear terms

+
∑︁
𝑖𝑗𝑘𝑙

𝑉𝑖𝑗𝑘𝑙 𝑐†𝑖𝑐
†
𝑗𝑐𝑘𝑐𝑙 ,⏟  ⏞  

two-body interactions

(1.8)

where the sums extend over all mode indices. The coefficients 𝑡𝑖𝑗 and 𝑉𝑖𝑗𝑘𝑙

are numbers (integrals depending on the chosen basis) that are generally
complex, but related with respect to their indices such that the Hamilto-
nian is hermitian. Note that by the structure of (1.8), all of its terms
conserve the number of particles of a state 𝑐†𝑖1𝑐

†
𝑖2
... 𝑐†𝑖𝑀 |Θ⟩, and most of

the terms commute with one another.

∙

Let us take the qubit requirements as an example of mappings dealing
with hardware limitations. The number of qubits storing the problem’s
Hilbert space is determined by the Hamiltonian: to solve a problem, we
need as many qubits as the Hamiltonian acts on. For devices with few
(logical) qubits, we are interested in keeping these qubit requirements to
a minimum which is determined by the problem’s degrees of freedom.
Neglecting symmetries like the conservation of particles, mappings typ-
ically use more qubits than absolutely necessary. Indeed we need mini-
mally 16 qubits to encode all possible occupations of 16 fermionic modes,
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Fermion-to-qubit mapping

Simulation algorithm

∑︀
𝑖𝑗 𝑡𝑖𝑗 𝑐

†
𝑖𝑐𝑗 +

∑︀
𝑖𝑗𝑘𝑙 𝑉𝑖𝑗𝑘𝑙 𝑐†𝑖𝑐

†
𝑗𝑐𝑘𝑐𝑙

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fermionic Hamiltonian

𝐻 = 0.18129𝑋1 ⊗𝑋2

+ 0.394𝑍1 + ...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Qubit Hamiltonian

∙ 𝑉 ∙

𝑈1 𝑈2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quantum circuit

Quantum computer

|GS⟩ , ⟨GS|𝐻 |GS⟩
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Approx. ground state/ spectrum

Figure 1.1. Simulating fermions on a quantum computer, depicted as a flow
chart. The process starts with a problem Hamiltonian and results in the ground
state and its energy being approximated by a quantum computer. However,
that ground state problem refers not to the initial Hamiltonian, but rather to a
prudently chosen qubit version of it. In combination with the simulation algo-
rithm, the qubit Hamiltonian then determines the quantum circuit, that can be
compiled into a program that the quantum computer runs.
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but typically not all of those configurations are relevant. Information
about the number of fermions in the system is usually given besides the
Hamiltonian as either a constraint or from real-life observation of the sys-
tem. Let us say there is only one particle hopping around in the system
given, then the basis of the problem is spanned by 16 configurations with
the fermion sitting in a different mode in every basis state. Following
combinatorial arguments, these degrees of freedom could be encoded by
4 qubits, and so 12 qubits saved. This of course just an example, but a
relevant one since for all particle-number conserving problems, modes
are at most half filled (with particles or holes). While encoding all par-
ticle numbers usually yields a, in some sense, simpler Hamiltonian, one
might be interested in bringing the required number of qubits closer to
the minimum. This is the subject of the second chapter of this thesis,
in which we consider the impact of classical code layers on fermion-to-
qubit mappings. Typically, improvements in the qubit number will have
some negative influence on the Hamiltonian. As we will see in the sec-
ond chapter, this manifests in the choice between either making the gates
in the Hamiltonian terms more complex, or accepting a larger number
of Pauli string terms instead. Clearly, trading qubits is expensive in the
runtime of the simulation algorithm. In fact, one might even consider
employing more qubits if only the algorithmic performance could be im-
proved. At least to some degree, this turns out to be possible. While it
seems difficult to reduce the number of terms in a Hamiltonian, we can
at least make sure they act on the qubit system in a way that would allow
us to parallelize the algorithm.
This path is taken in the third chapter, where fermion-to-qubit mappings
are enhanced by adding a quantum code layer, for which a number of
additional qubits is required. While in the second chapter we have been
considering small quantum devices, the focus is now shifted to devices
with a larger number of qubits. However we do not want to forgo the
aforementioned limitations and assume those devices to contain an un-
limited amount of qubits. Instead, let us think of them as being from
the NISQ era. With that in mind we will cling to two reasonable strate-
gies. Firstly, we have to compromise between resource requirements and
parallelization. With additional qubits to spare, one might for instance
be tempted to encode the interactions of the fermionic Hamiltonian di-
rectly, but the problem with that is their number, and therefore the num-
ber of qubits, usually grows much faster with the system size. Secondly,
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due to the connectivity, the quantum device is not going to be able to
perform operations between any two qubits. Thus simulated Hamilto-
nians should ideally only have terms involving coupled qubits, that can
be entangled without disturbing others. The quantum codes used in the
fermion-to-qubit mappings should thus be defined locally on a realistic
layout for a quantum device.
The quantum codes found in the third chapter incorporate both of these
strategies: they are local and planar on a square lattice and require a
number of qubits that scales with the system size, rather than the Hamil-
tonian. Note that the square lattice appears to be a natural choice, as it is
also the canvas for surface code spurring efforts to build transmon chips
in this layout. While we focus on mappings that provide a geometrical
embedding of qubit Hamiltonians, their codes would also allow for the
application of error mitigation techniques. While those strategies might
help improve results in the short term, scalable simulation algorithms
are believed to require quantum error correction. The difference between
the two is that error mitigation is aiming to filter noise from the obtained
data, whereas with error correction, one is aiming to prevent errors dur-
ing the computation. Practically, quantum error correction codes would
constitute a code layer that is unlike the codes in the third chapter. In
quantum error correction, physical gate instructions are replaced with
their logical counterparts and quantum circuits with their fault-tolerant
versions. The entire computation embedded in error correction cycles, in
which stabilizers are measured and syndromes are extracted. The prob-
lem is that running such cycles is technically challenging even without a
computation happening in between.

1.3 Quantum error correction

Definitions – Quantum error correction codes

§7 A quantum stabilizer code is a mapping between two systems with a different
qubit number, where the smaller system is encoded by the larger one. Let
us say that the smaller system has 𝑛1 qubits, and the larger one 𝑛2, then
a [[𝑛2, 𝑛1, 𝑑]] quantum code maps every state of the former system |𝜙⟩
to a state on the larger system |𝜙⟩: |𝜙⟩ ↦→ |𝜙⟩. The integer 𝑑 is called
code distance, and will be explained in §10. For the encoding to be a one-
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to-one mapping, these quantum codes constrain 𝑛2 − 𝑛1 qubits worth of
degrees of freedom by so-called stabilizer conditions. That is, there is a set
of commuting Pauli strings such that for each member 𝑆 we find

𝑆 |𝜙⟩ = |𝜙⟩ , (1.9)

for all encoded states |𝜙⟩. 𝑆 is called a stabilizer. Considering that the
identity is part of the stabilizer set, it forms a group generated by 𝑛2 − 𝑛1

Pauli strings (using the operator product).

§8 Not just the states, but also the operators of the smaller system are encoded.
For every physical operator 𝒪 in the smaller, there exist ‘logical’ operators
𝒪 in the larger system, such that

𝒪 |𝜙⟩ ↦→ 𝒪 |𝜙⟩ . (1.10)

Note that there are several logical operators for one physical operator, since
their action on the code space is equivalent by the multiplication with sta-
bilizers, i.e. 𝒪 and 𝑆 · 𝒪 have the same effect. Logical operators generally
preserve the encoded subspace, i.e. they commute with the stabilizers.

§9 Stabilizer codes are the workhorse of quantum error correction, since Pauli
errors that might occur in a noisy device can either be identified when
they anticommute with stabilizers, or are stabilizers themselves and their
action therefore trivial. Continuously measuring stabilizers, the system
is projected into the subspaces corresponding to outcomes ⟨𝑆⟩ = ±1.
Flipped expectation values, referred to as syndromes, can then be attempted
to be corrected.

§10 With [[𝑛2, 𝑛1, 𝑑]] error correction codes, one can correct for all conceivable
Pauli errors up to a certain weight (the number of nontrivial Pauli oper-
ators in the string). Assuming that lower-weight Pauli errors occur with
a much higher rate, quantum information is preserved by being stored
nonlocally. It is thus unsurprising that the maximal weight of correctable
Pauli errors is connected to the minimal weight of logical operators, which
is the code distance 𝑑. While we can always correct for errors of weight up
to (𝑑 − 1)/2, they can be detected up to a weight of 𝑑 − 1. In the latter
case, the errors that occurred can no longer be discerned, but syndromes
may still serve as an indication to discard the outcome of this particular
computation. In an error correction setting, Pauli errors with a weight
higher than (𝑑− 1)/2 will generally cause an error on the logical system,
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such that the physical error rate is translated into a logical one. An error
correction code is of course only useful if the latter is lower then the for-
mer, but there is a threshold of physical errors above which the code causes
the rate to increase. Is the noise of a device above this threshold, the goal
of fault tolerance, to decrease the logical noise until it becomes negligible,
cannot be achieved.

Definitions – Surface code

§11 An important example of quantum error correction codes is the surface
code. The code is popular due to its high threshold [14] and the availability
of efficient decoding algorithms [15]. Surface code is the planar version of
Kitaev’s toric code [16], that in its ‘rotated’ version [17], is an [[𝑑2, 1, 𝑑]]
code for an arbitrary odd-valued distance. The 𝑑 = 3 and 𝑑 = 5 version of
the code, as well as the logical operators are depicted in Figure 1.2(b)-(d).
Excluded from that count are 𝑑2 − 1 measurement qubits, that can help
perform the syndrome measurements fault-tolerantly, see Figure 1.2(a).
The code is planar on a square lattice, where the stabilizer generators are
overlapping plaquettes that have the structure of 𝑍⊗4 and 𝑋⊗4. With the
logical operators 𝑋 and 𝑍 being defined as 𝑍- and 𝑋-strings from one
boundary to the other, the protection of the logical qubit increases with the
diameter of the code patch.

∙

Quantum error correction not only requires many physical qubits, but
also precise operations on all of them in parallel. At this point, engi-
neering problems clash with theoretical proposals. In the third chapter
we consider two operations parallelizable if they do not use common re-
sources like qubits and couplers (or whatever mediates two-qubit gates),
but for real quantum devices, even that is not entirely true. In reality, pro-
cesses (that for instance implement quantum gates) might not just share
quantum resources, but also their control elements: let us say that the
qubits are connected to their classical control by some sort of lines. While
there has to be a method to select one individual qubit for a quantum
gate, it is naı̈ve to assume that a line would not be connected to a number
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Figure 1.2. Rotated surface code. (a) Connectivity graph of the distance-three
code. Two stabilizers are highlighted, where for each stabilizer the parity of
the involved physical qubits (white), in Z- or X-basis, is collected on the mea-
surement qubit (gray). For that purpose, two-qubit gates have to be performed
along the highlighted edges. (b) & (c) Stabilizer tiles for the distance three and
five code, where every tile is a separate stabilizer with the Pauli operators close
to the location of the physical qubits. (d) Logical operators of the distance-five
code. For rotated surface code, logical operators are Pauli strings across the code
patch. 𝑋 and 𝑍 operators in the figure overlap on exactly one qubit, on which
one acts as 𝑋 , the other as 𝑍 such that the logicals anticommute with each other,
but commute with all stabilizers.
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of qubits at once. Given the sheer amount of qubits, not all of them can
possibly be wired individually. In a more realistic scheme, each qubit
would have several line contacts and an individual interaction would
take place only when multiple of them are operated, see Figure 1.3(a).
This allows for individual qubit control, but ultimately has repercussions
on parallelization. Imagine two operations in different places where the
control lines used for the first and second operation happen to interface at
another qubit that is to be left unaffected. Unfortunately, this is only guar-
anteed as long as the two operations are done sequentially, as paralleliz-
ing them will have spurious effects on the qubit at the crossing, shown in
Figure 1.3(b). This example is not only far from being unlikely but gen-
eralizes into a major drawback of the scheme. However, the reduction of
classical control architecture on the quantum device could be regarded
as more important. A scalable architecture is a prerequisite for bringing
as many qubits as possible onto the same device and into a fridge. As
long as those refrigerators do not grow substantially in size over the next
years, it will not alone be the amount of control elements to determine
whether fault tolerance can be achieved, but also the spatial size of the
qubits. The qubit density is of course specific to each platform, and while
transmons are a popular technology at the moment, they might eventu-
ally be made obsolete by spin qubits in semiconductor quantum dots, for
which a much higher density is expected to be achieved [18].

To make use of this density, a crossbar architecture for shared con-
trol of spin qubits in silicon quantum dots is proposed in [18]. As we
show in the fourth chapter, its limited control mechanisms are sufficient
to run quantum error correction cycles without spurious effects. For that
purpose we introduce a model of how the quantum dot processor can
be controlled from the periphery of the chip. With the focus on bridg-
ing the gap between device operations (like control pulses) and quantum
circuits, irrelevant details about the device physics are omitted in this
model. Taking into account the peculiarities of the system, we discuss
parallelization of the available gate operations while providing program-
matic steps for the native implementation of surface and color codes. To
achieve high fidelity gates, we even restrict the parallelization further.
Still, our estimates suggest that a large enough system will be able to
suppress the error such that it does not fail more often than a classical
memory.
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(a)

(b)

spurious

intended
intended

Figure 1.3. Shared control of elements on a chip. (a) Each control line connects
to several elements. From the periphery, two lines (thickened) are operated to
address a single element at their crossing. (b) When attempting to address two
elements in parallel, the operated lines cross and can cause spurious effects at
an unintended crossing.
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1.4 This thesis

In this section, we will give a description of the objective in each chapter,
and summarize our methods and findings. Each chapter’s main contri-
bution is specified. Before we start however, a few words on the structure
of this thesis: the individual chapters are opened with a Background sec-
tion and a more detailed discussion about its results. Each chapter’s main
text is followed by a section called Supplement holding additional infor-
mation referenced in the text, and a table of relevant notations. Scientific
progress does not stop while students write their theses, and so a Fur-
ther work section is added to the second and third chapter, describing the
latest developments on their respective subjects. This thesis ends with a
Summary in english and in dutch, the Curriculum Vitae of its author and a
list of publications.

1.4.1 Chapter two

In the second chapter, we will get in touch with the Jordan-Wigner trans-
form [19] in its function as a fermion-to-qubit mapping. It is a simple
method, in which each mode is assigned a qubit, indicating fermionic
occupation when in the configuration |1⟩. Let us consider the example
of Figure 1.4(a), where the modes are represented by small bins and the
balls that fill them represent fermions. Beneath the modes, a register of
six qubits is shown encoding the state 𝑐†1𝑐

†
2𝑐

†
5 |Θ⟩. With the Jordan-Wigner

transform, the entire Fock space of six orbitals can be encoded in states
|𝜈⟩ where 𝜈 is any binary vector with, in this case, six components. How-
ever, a mere subset of vectors 𝜈 is usually needed to describe the system,
which means the Jordan-Wigner transform is inviting unphysical states.
In fact, with only the physical states, a number of qubits could be saved.
With the resource requirements in mind, we develop a framework for
classical encodings of the Jordan-Wigner transform: the idea is to repre-
sent only the set of physical configurations 𝜈, but use all possible config-
urations |𝜔⟩ to do so. Encoding fewer degrees of freedom, such a map-
ping requires fewer qubits. Mathematically, it is defined by an encoding
function 𝑒(𝜈) = 𝜔 and its inverse, the decoding. Since, in particular, the
decoding function can be nonlinear with respect to its input 𝜔, the op-
erator transform is re-expressed in terms of a superoperator X, that can
output gate instructions even for those codes. On code examples, we dis-
cuss the trade-offs between resource requirements and Hamiltonian size.
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The main contribution of this chapter is a general approach for fermion-
to-qubit mapping using classical codes.

1.4.2 Chapter three

In the third chapter, we touch upon the subject of the Jordan-Wigner
transform of operators. We remark that physical Hamiltonians like (1.8)
are build from products 𝑐†𝑖𝑐𝑗 , through which they conserve the number
of particles. What terms like 𝑐†𝑖𝑐𝑗 do is to move fermions from mode 𝑗 to
mode 𝑖, so the way to imitate this behavior for the Jordan-Wigner trans-
form is to flip the corresponding qubits. However, since the 𝑐†𝑖𝑐𝑗 may an-
ticommute with creation operators of 𝑐†𝑖1𝑐

†
𝑖2
...𝑐†𝑖𝑀 |Θ⟩, and so minus signs

have to be accounted for. It follows that Pauli strings, translated from
hopping terms like 𝑐†𝑖𝑐𝑗 , not only flip qubits 𝑖 and 𝑗, but also scan for
anticommutations using 𝑍 operators on all qubits in between them. In
Figure 1.4(b) it is shown how a fermion hopping from modes 1 to 6 ac-
quires two minus signs from passing particles in modes 2 and 5.
The Pauli string encoding this event is 𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗ 𝑍5 ⊗ 𝑋6.
Note that this substring of 𝑍-operators does not occur in local hoppings.
However, this is a statement about locality in one dimension. In the
third chapter, we are interested in harnessing the connectivity of two-
dimensional qubit arrays for quantum simulation – a domain in which
the Jordan-Wigner transform fails to map local interactions into local
gates. A nonlocal string that results from a hopping interaction crossing
several rows (when the modes are ordered along a winding pattern from
row to row) is shown in Figure 1.4(c). As a one-dimensional fermion-
to-qubit mapping, the Jordan-Wigner transform is bound to have non-
local connections in two dimensions. However, two-dimensionality can
be achieved by concatenation with a suitable quantum code. By adding
auxiliary qubits and re-constraining them in stabilizers 𝑆, an arbitrary
state of the memory (1.5) is mapped into something proportional to
[
∏︀

𝑆(1 + 𝑆)] |𝜙⟩ ⊗ |𝜒⟩. Since the stabilizers 𝑆 have an effect on |𝜒⟩, the
configuration of the auxiliary qubits, one could argue that they store the
effect 𝑆 on |𝜙⟩. By the non-uniqueness of logical operators, we multiply
nonlocal strings with stabilizers 𝑆, which, if the stabilizers are chosen
appropriately, leads to the cancellation of the entire 𝑍-substring. What
remains of the logical operator is a local term on the original qubits and a
contribution on the auxiliaries. Ensuring these remainders are local is one
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of the many tasks covered in the third chapter, in which we also general-
ize the notion of locality to long-range interactions. The main contribu-
tion of this chapter is a novel fermion-to-qubit mapping using quantum
codes to manipulate operators.
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1.4.3 Chapter four

In the fourth chapter, we adapt surface and color code algorithms to the
proposed architecture of [18], consisting of a grid of quantum dots on a
silicon substrate and physical gates as sketched in Figure 4.1. A quan-
tum dot is a physical site that can confine a single electron serving as a
qubit. A square lattice of them is steered by shared control elements con-
tacted from the grid’s perimeter. Adjacent dots, for instance, are isolated
by barrier gates extending horizontally and vertically over the grid. In
this way, one barrier is shared by an entire row or column of dot pairs.
To perform a two-qubit quantum gate, the barrier voltage on the barrier
between the corresponding dot pairs must be changed, but the operation
also affects all parallel dot pairs. This is however not all, since for two-
qubit gates, the potential of one of the dots must be changed. The dot
potential is manipulated via a type of physical gate, connecting quan-
tum dots diagonally with respect to the direction of the barriers. Only
where the diagonal crosses with the barrier, the two-qubit gate is per-
formed. Also, the type and fidelity of the gates varies with the direction
the dot pair is aligned. Fortunately, qubit positions can be changed by co-
herent shuttling [20], such that we can solely rely on high-fidelity gates.
The shuttling is instigated by the manipulation of barrier and potentials,
such that it can be performed by using the barrier and diagonal gate lines.
Shuttling also has a part in performing single-qubit quantum gates at an
individual address, since the system only allows to perform these opera-
tions globally, on exactly half of the dots. These operations are sufficient
to run quantum error correction codes in a highly parallelized fashion,
but a higher fidelity is expected when the operation are performed such
that parallel two-qubit gates can have individual durations. All of these
considerations are considered in the logical error analysis. The main con-
tribution of this chapter is a road map for scalable quantum error correc-
tion in silicon quantum dots.
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