

Inhibition and dynamics of a β -lactamase

Elings, W.

Citation

Elings, W. (2019, November 19). *Inhibition and dynamics of a \beta-lactamase*. Retrieved from https://hdl.handle.net/1887/80412

Version: Publisher's Version

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/80412

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The following handle holds various files of this Leiden University dissertation: $\underline{\text{http://hdl.handle.net/1887/80412}}$

Author: Elings, W.

Title: Dynamics of a β -lactamase

Issue Date: 2019-11-19

Propositions

Stellingen behorend bij het proefschrift "Inhibition and dynamics of a β-lactamase"

Wouter Elings

- 1. The Ω -loop is not the only mobile part of a β -lactamase.
- 2. Inhibitor binding increases millisecond dynamics in BlaC.
- 3. Clavulanic acid destabilises BlaC.
- 4. Introduction of asparagine 132 in BlaC yields two surprisingly balanced conformations.
- 5. Dynamics are not required for β -lactamase function.
- 6. Fast conformational dynamics are more conserved in proteins than slow conformational dynamics are.
- 7. The effect of antibiotics on society is similar to that of fossil fuels.
- 8. The use of antibiotics in agriculture presents not only a problem but also an opportunity for research into resistance evolution under drug pressure that should be exploited.
- 9. The term 'resting state' is an apt name for BlaC in solution.
- 10. The term 'excited state' to describe a lowly populated conformation is a misnomer, it should be called 'exciting state'.
- 11. One should wonder if it is wise to purposely develop novel drug resistance.