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ABSTRACT: An accurate description of reactive scattering of molecules on metal surfaces
often requires the modeling of energy transfer between the molecule and the surface
phonons. Although ab initio molecular dynamics (AIMD) can describe this energy transfer,
AIMD is at present untractable for reactions with reaction probabilities smaller than 1%.
Here, we show that it is possible to use a neural network potential to describe a polyatomic
molecule reacting on a mobile metal surface with considerably reduced computational
effort compared to AIMD. The highly activated reaction of CHD3 on Cu(111) is used as a
test case for this method. It is observed that the reaction probability is influenced
considerably by dynamical effects such as the bobsled effect and surface recoil. A special
dynamical effect for CHD3 + Cu(111) is that a higher vibrational efficacy is obtained for
two quanta in the CH stretch mode than for a single quantum.

Accurately describing molecule−surface reactions is of vital
importance for the understanding of heterogeneously

catalyzed processes such as the Haber−Bosch1 and steam
reforming processes.2 Unfortunately, the complexity of the
interaction between molecules and metals limits the accuracy
of theoretical studies on these kinds of processes.3−8 Often,
chemically accurate results are obtainable at high computa-
tional cost with ab initio molecular dynamics (AIMD)
combined with the so-called Specific Reaction Parameter
(SRP) approach.9−11 However, the investigation of reactions
with low reactivity (<1%) remains challenging due to the need
for a large number of trajectories in combination with a large
computational cost.12 Therefore, neural network approaches
have recently been employed in order to obtain results with the
accuracy of AIMD using density functional theory (DFT), but
with a considerably smaller computational cost.13−18 So far,
these studies either involved diatomic molecules15−17,19 or
they neglected the movement of surface atoms.18,20−23 Very
recently, a high-dimensional neural network potential (HD-
NNP) has been developed for a system in which a linear
triatomic molecule interacts with a metal surface, i.e., CO2 +
Ni(100),24 also including surface atom motion. The neglect of
surface motion can limit the accuracy of these studies due to
the neglect of energy exchange between the molecule and the
surface.4,12,17,19,25−30 This lack of energy exchange represents a
severe approximation for the dynamics of polyatomic
molecules reacting on metal surfaces due to their high
mass.31,32 A modified Shepard interpolation method33 has
also been used to describe the potential of a polyatomic
molecule reacting on a metal surface but again with the neglect
of surface motion. Reactive force field fits have been made that

do include surface motion,34,35 but the quality of these fits
remains unclear. However, no neural network potential has
been employed so far for nonlinear polyatomic molecules
interacting with surfaces that explicitly includes the effect of
surface motion as well.
In this work, we focus on the dissociative chemisorption of

CHD3 on Cu(111) because the system exhibits a low
reactivity,12 making reactive AIMD studies untractable for
most incidence energies achievable in molecular beams.
Moreover, high-quality graphene can be synthesized using
methane dissociation on copper,36−42 and this warrants
additional study of the rate-controlling step, namely, the
breaking of the first CH bond. The Eley−Rideal reaction of D
with CD3 preadsorbed on Cu(111) has also been studied.43

The methane + Cu(111) system shows interesting dynamics in
that the low reactivity of methane on Cu(111) is not only
caused by a high barrier (167 kJ/mol) but also by specific
features of the potential energy surface (PES) such as the
curvature of the minimum energy path (MEP).12 For all of
these reasons, we apply the neural network Behler−Parrinello
approach13,14 for the first time to a nonlinear polyatomic
molecule reacting on a metal surface, which makes accurate
simulations feasible while including surface motion, using
CHD3 + Cu(111) as an example.
In the HD-NNP, the total energy is evaluated as a sum of

atomic contributions that are dependent on their energetically
relevant local environment, which is described by many-body
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atom-centered symmetry functions.44 In total, 38 000 DFT
data points were used to train the HD-NNP, of which 14 000
points were taken from an AIMD study.12 Other data points
included structures sampling the van der Waals well and
transition state regions and the molecule’s vibrational modes.
Finally, dynamically important structures missing from the data
set were identified by running molecular dynamics (MD) on
the (incomplete) HD-NNP and then added to the data set in a
procedure described in ref 14. For the neural network, two
hidden layers were used, each with 15 nodes. The training was
carried out using the RuNNer code,45−47 and the MD was
performed with LAMMPS.48,49

First, the accuracy of the HD-NNP is tested by comparing
the 2D elbow plot of methane on Cu(111) in which methane
is fixed in all molecular coordinates according to its transition
state geometry, as depicted in Figure 1a, except for Z and r
(the distance between the carbon and surface and the length of
the dissociating CH bond). The HD-NNP is compared
directly with DFT calculations in Figure 1b. Here we see that
the HD-NNP reproduces the DFT data remarkably well, even
though points from the 2D cut are not included in the data set.
When the methane is relaxed in all degrees of freedom other
than r and Z (Figure 1c), the MEP lies slightly closer to the
surface than to the MEP of the constrained methane. Again,
the HD-NNP reproduces the direct DFT calculations quite
well. Moreover, both the electronic and mechanical coupling32

are in good agreement with DFT (see Figure 1d,e), which
means that changes in the barrier height and geometry with
respect to the motion of the surface atom below the
dissociating molecule are described correctly. Furthermore,
using 90% of the DFT data set as the training set and 10% as
the test set, the root-mean-square error (RMSE) is 1.7 kJ/mol
for the test set, which is well within chemical accuracy (4.2 kJ/
mol). (Note that all errors reported in this work are with
respect to the full system, i.e., the total energy.) The high
fitting accuracy is also observed in Figure 2, where the
distributions of the absolute error for the training and test set
are shown and the vast majority of the errors falls within
chemical accuracy. The total energy for all of the structures in
the training and test set obtained with the HD-NNP and direct
DFT calculations is also shown in Figure S1. Moreover, the
RMSE for the forces in the test set is 2.3 kJ/mol/Å. The RMSE
of 1.7 kJ/mol that we obtain here on the basis of 38 000 DFT
points for CHD3 + Cu(111) with the surface atoms allowed to
move compares well with the RMSE of 1.5 kJ/mol obtained for
a recent 15D NN static surface PES for CHD3 + Ni(111) on
the basis of 200 000 DFT points.22,30 We also note that the
approximate modified generalized Langevin oscillator method
used in ref 30 to effectively add surface atom motion to the
problem may run into problems if the molecule−surface
interaction depends on more than just one surface atom
coordinate, as for instance is the case for H2O + Ni(111)50 and
may be the case for methane interacting with stepped metal
surfaces.30

The goal is to make a HD-NNP that is capable of accurately
evaluating the energy and forces on the fly during MD
simulations. Therefore, not only are incidence energies with
low reaction probabilities (<1%) investigated but also regimes
with higher reaction probabilities that are obtainable with
AIMD in order to test the validity of the results obtained with
the HD-NNP. Figure 3 shows the results obtained for the
dissociative chemisorption of CHD3 on Cu(111) with MD
using the HD-NNP and with AIMD12 by simulating a

molecular beam for the rovibrational ground state and under
laser-off and laser-on conditions. Under laser-off conditions,
the molecular beam’s vibrational state population is sampled
according to the nozzle temperature, and under laser-on
conditions, the CH stretch mode ν1 is excited with one or two

Figure 1. (a) Transition state geometry of methane on Cu(111),
indicating the θ, β, and γ angles. (b) Elbow plot of methane on
Cu(111) as a function of Z and r (distance between the carbon and
surface and bond length of the dissociating hydrogen, respectively),
where other degrees of freedom are fixed according to the transition
state geometry. Contour lines are drawn at intervals of 10 kJ/mol
between 0 and 200 kJ/mol. The blue and red lines are NN and DFT
results, respectively. The circles indicate the MEP. (c) Same as (b)
but with all degrees of freedom of the methane relaxed, except Z and
r. (d) Variation of the barrier height as a function of the vertical
displacement Q of a top layer Cu atom. (e) Vertical shift of the barrier
location as a function of the vertical displacement Q of a top layer Cu
atom.
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quanta. In order to describe the reaction probability with good
statistics, 10 000−110 000 quasiclassical trajectories were
computed per incidence condition. Here we see that at high
incidence energy and for vibrationally excited methane, for
four sets of initial conditions resulting in reaction probabilities
obtained with AIMD, good agreement exists between AIMD
and MD performed with the HD-NNP (see also Table 1 and
the statistical analysis in the SI). Moreover, reaction
probabilities as low as 5 × 10−5 have been computed with
the HD-NNP, which was previously not possible using
accurate methods. It is observed that at the highest incidence
energy (181 kJ/mol) the laser-off simulation yields a similar
reaction probability as the ν1 = 1 simulation, which is caused
by the high amount of vibrational excitation in the laser-off
beam due to the high simulated nozzle temperature (Tn = 1000
K). However, it should be noted that sticking probabilities
computed for laser-off conditions and nozzle temperatures
higher than 650 K may be unreliable due to intramolecular
vibrational energy redistribution (IVR) among vibrational
states in which CD bends and stretches are excited.9

Our dynamical simulations show that the reaction of
methane is promoted by both translational and vibrational
energy. Plotting the reaction probability as a function of the
total energy (vibrational + translational energy) shows that
putting vibrational energy into the reaction is almost equally or
more efficient than increasing the translational energy,
depending on the amount of quanta in the ν1 CH stretch
mode (see Figure 3b). The vibrational efficacy is equal to or
larger than 0.8, which can be expected for such a late barrier
system51 combined with a MEP of the shape shown in Figure
1c, causing incoming molecules to have to react over
considerably higher barriers because they run off of the
MEP(the “bobsled effect”52,53). This could play a large role at
catalytic conditions, where graphene is produced from
methane using very high temperatures (>1200 K)36,41 and
thus vibrational excitation is prevalent. Interestingly, the
vibrational efficacy54,55 for the excitation from the ν1 = 1 to
2 overtone (ην1=2,1 = 1.7) is considerably higher than that for

the excitation from the ground state to ν1 = 1 (ην1=1,0 = 0.8).
To our knowledge, a higher vibrational efficacy for an overtone
has not been observed before.54−58 In Figure S4, it is observed
that when the incidence energy decreases, for ν1 = 2, reacted
trajectories follow the MEP more closely. In Figure 4a, an
increase of vibrational energy causes trajectories going on to
react to follow the MEP more closely. The dynamical effect
(see Figure 4b) is that, because a higher incidence energy is

Figure 2. Distribution of absolute total energy errors (kJ/mol) of the
HD-NNP compared to the DFT total energy. Blue indicates the
training set, whereas red indicates the test set. The dashed line
indicates chemical accuracy, i.e., 4.2 kJ/mol.

Figure 3. (a) State-selected and molecular beam reaction probabilities
of CHD3 on Cu(111) as a function of the translational energy.
Simulations for laser-off (black), rovibrational ground state (green),
ν1 = 1 (blue), and ν1 = 2 (red), where the circles and diamonds are
HD-NNP and AIMD results, respectively. (b) Same as panel (a), but
here the reaction probability is shown as a function of the total energy
(vibrational + translational energy). (c) Simulations for ν1 = 2 with
(solid line with circles) and without surface motion, where squares
with a dashed line indicate an ideal surface and diamonds with a
dotted line indicate a thermally distorted surface. The error bars
represent 68% confidence intervals.

Table 1. Reaction Probabilities Obtained with the HD-NNP
and AIMDa

⟨Ei⟩ (kJ/mol) quantum state ν1 PR (HD-NNP) PR (AIMD)

160.4 1 0.0007 ± 0.0002 0.000 ± 0.001
160.4 2 0.0246 ± 0.0016 0.024 ± 0.005
181.3 1 0.0025 ± 0.0005 0.005 ± 0.002
181.3 2 0.0486 ± 0.0022 0.048 ± 0.007

aThe error bars represent 68% confidence intervals.
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needed to overcome the barrier for a low ν1, for low ν1, the
carbon atom smashes into the repulsive wall. The hydrogen
moves out while the carbon is still close to the surface, and
therefore, a higher barrier needs to be overcome (see Figure
4). Hence, a higher vibrational efficacy is observed for ν1 = 2
because the bobsled effect will be less prominent and thus
lower barriers need to be overcome.
We already noted that the reaction probabilities at high

incidence energy obtained with the HD-NNP are in good
agreement with AIMD. However, the validity of the
quasiclassical approximation for the low reaction probabilities
needs to be tested by comparison to experiment due to the
possibility of quantum effects and potential problems with
zero-point energy violation, even though it has been shown
that at elevated surface temperature the reaction of methane
happens in a “classical over the barrier fashion” with assistance
of surface atom motion and without the need for tunneling.4,59

The main goal of applying the Behler−Parrinello method to
polyatomic molecules is to be able to explicitly include surface
motion. Therefore, to evaluate the effect of surface motion,
reaction probabilities for ν1 = 2 have also been computed using
a static surface model, where the surface was kept in its ideal
relaxed static configuration (note that the lattice expansion
corresponding to a surface temperature of 550 K was kept).
This effectively removes energy transfer between the molecule
and the surface and the corrugation in barrier heights and
positions related to surface motion. Reaction probabilities for
this frozen surface are a factor 2 higher than those when

surface motion is allowed (see Figure 3c). Furthermore, when
the distortions of a hot surface are included while still
excluding surface motion, i.e., modeling a static thermally
disordered surface (similar to the so-called static corrugation
model60), reaction probabilities are increased by 50%
compared to the frozen ideal surface at low incidence energies.
At high incidence energies, no difference is observed between
the results for the static ideal and the distorted surface, with
the latter including the effect of the electronic coupling (or the
so-called β-coupling).32 Our observation that explicitly
including surface motion at these high incidence energies
lowers the reaction probabilities suggests that the reaction
probabilities are decreased due to energy transfer to the surface
as the molecule first impacts on the surface (Figure 4b) and
possibly also due to surface recoil (mechanical coupling).4,32

Because the surface recoil effect (which is due to surface atom
vibrational averaging) tends to be small,32 we suspect that the
energy transfer is most important. This effect can only be
addressed with explicit modeling of the surface motion and not
by the sudden and energy averaging methods typically used
with quantum dynamics simulations.32

To summarize, in this work, the Behler−Parrinello approach
was used to develop a HD-NNP that describes a polyatomic
molecule reacting on a mobile metal surface, i.e., CHD3 +
Cu(111). The HD-NNP was found to be in good agreement
with DFT, which means that MD can be performed with the
accuracy of AIMD but with a considerably lower computa-
tional effort. Using this HD-NNP, reaction probabilities as low
as 5 × 10−5 were obtained, which was untractable with
previous accurate methods such as AIMD, while including
surface motion. It was found that vibrational excitation plays a
major role in the reactivity, where the overtone has a higher
vibrational efficacy than the fundamental vibrational excitation.
Moreover, allowing energy transfer from the molecule to the
surface considerably reduces the overall reactivity. Hence,
surface motion needs to be included explicitly in simulations in
order to obtain quantitative results for molecular beam
simulations of methane reacting on copper. More work is
still required to investigate the effect of surface temperature on
the reaction of CHD3 on Cu(111) as we addressed only one
surface temperature (550 K). Finally, the quasiclassical
approximation needs to be tested for low reaction probabilities
by comparison to experiments due to the possibility of
quantum effects and zero-point energy violation. However, this
would not be an intrinsic problem of the HD-NNP as good
agreement with DFT has been shown.

■ COMPUTATIONAL METHOD

The DFT calculations used the same computational setup that
was used in an earlier AIMD study,12 which is summarized
here. A 3 × 3 Cu supercell with five layers and 13 Å vacuum
distance is used, where the bottom two layers are fixed and the
metal atoms in the other layers are allowed to move in order to
simulate a surface temperature of 550 K. Furthermore, a plane
wave cutoff of 350 eV and a 6 × 6 × 1 Γ-centered k-point grid
are used. All calculations are performed with the Vienna Ab-
initio Simulation Package (VASP version 5.3.5)61−65 with the
SRP32-vdW functional.9−12,29,66−68

Figure 4. (a) Distributions of the height of the carbon when a
hydrogen bond dissociates, i.e., r = r‡, for the rovibrational ground
state, ν1 = 1 and 2 at incidence energies with comparable reaction
probabilities (about 0.03%). The transition state geometry value for Z
is indicated by the dashed line. (b) Elbow plot of methane on
Cu(111) obtained with the HD-NNP, where Z and r (distance
between the carbon and surface and bond length of the dissociating
hydrogen, respectively) are variable and all other degrees of freedom
are relaxed. Contour lines are drawn at intervals of 10 kJ/mol between
0 and 180 kJ/mol. Typical trajectories that go on to react for P =
0.03% are indicated by the blue (ground state), green (ν1 = 1), and
red (ν1 = 2) lines. The black square indicates the highest point along
the MEP.
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