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4
The case for two-dimensional

galaxy-galaxy lensing

W
E revisit the performance and biases of the two-dimensional approach to
galaxy-galaxy lensing. This method exploits the information for the actual po-
sitions and ellipticities of source galaxies, rather than using only the ensemble

properties of statistically equivalent samples. We compare the performance of this
method with the traditionally used one-dimensional tangential shear signal on a set
of mock data that resemble the current state-of-the-art weak lensing surveys. We find
that under idealised circumstances the confidence regions of joint constraints for the
amplitude and scale parameters of the NFW model in the two-dimensional analysis
can be more than three times tighter than the one-dimensional results. Moreover, this
improvement depends on the lens number density and it is larger for higher densi-
ties. We compare the method against the results from the hydrodynamical EAGLE
simulation in order to test for possible biases that might arise due to lens galaxies
being missed, and find that the method is able to return unbiased estimates of halo
masses when compared to the true properties of the EAGLE galaxies. Because of its
advantage in high galaxy density areas, the method is especially suitable for studying
the properties of satellite galaxies in clusters of galaxies.

A. Dvornik, S. L. Zoutendijk, H. Hoekstra, K. Kuijken
A&A, Volume 627, Issue 1, p. A74 (2019)
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84 Chapter 4. Two-dimensional galaxy-galaxy lensing

4.1 INTRODUCTION

One of the fundamental ingredients needed to understand galaxy formation is the
relation between stellar mass and the host halo mass (e.g. Courteau et al. 2014). How-
ever, inferring the total mass from a galaxy’s emitted light is not feasible. We must
instead rely on different probes to constrain the mass of dark matter haloes around
galaxies one wants to study. A powerful mechanism that can be used for this is grav-
itational lensing, when matter inhomogeneities deflect light rays from distant objects
along their path. As a consequence the images of distant objects (sources) appear
to be tangentially distorted around foreground galaxies (lenses). The strength of the
distortion is proportional to the amount of mass associated with the lenses (and con-
sequently the dark matter haloes) and it is stronger in the proximity of the centre (for
a thorough review, see Bartelmann & Schneider 2001).

Weak gravitational lensing induces a coherent tangential distortion. Under the
assumption that galaxies are randomly oriented, the lensing signal can be inferred
by simply averaging the ellipticities of the source galaxies. The typical change in el-
lipticity due to gravitational lensing is much smaller than the intrinsic ellipticity of
the source, even in the case of clusters of galaxies. The weak gravitational lensing
signal from a single galaxy halo is therefore too weak to be detected, and we must
rely on a statistical approach in which the contributions from different lens galaxies
are stacked, selected by similar observational properties (e.g. stellar masses, lumi-
nosities, size). The usual method used to analyse weak lensing data is to average the
tangential component of the distortion in radial bins. As the signal from a single lens
is purely tangential, this is a succinct way of showing the information contained in
the distortions induced by one lens; there is no information lost in azimuthally av-
eraging a radially symmetric signal and therefore the mass distribution of the lens
can be perfectly determined from this radial profile. Average halo properties, such
as halo masses, are then inferred from the resulting high signal-to-noise ratio mea-
surements. This technique is commonly referred to as galaxy-galaxy lensing, and it
is used as a method to measure statistical properties of dark matter haloes around
galaxies (e.g. Leauthaud et al. 2011; van Uitert et al. 2011; Velander et al. 2014; Cac-
ciato et al. 2014; Viola et al. 2015). The stacking mentioned here is not required per se,
but it provides a convenient and unbiased data compression method that also allows
for separate study of central and satellite galaxies. However, it does typically result
in a loss of information about the halo properties.

For the lenses that do not exist in isolation the signal is not purely tangential. In
this case the distortions around a lens are the sum of the tangential patterns of all
the neighbouring lenses. An azimuthal average of these distortions will discard the
azimuthal information that is present in this case. This non-optimal use of infor-
mation will result in a less precise mass estimation than would be possible with a
two-dimensional method.
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Here we revisit a different method of analysing galaxy-galaxy lensing data, first
proposed by Schneider & Rix (1997), and we make a case for why it should be consid-
ered again: it uses the unique signatures of overlapping regions of lenses to constrain
the halo properties more precisely. Two-dimensional galaxy-galaxy lensing tries to fit
a two-dimensional shear field directly to the galaxy ellipticity measurements. It was
initially named ‘maximum-likelihood galaxy-galaxy lensing’ after the fitting method
it was first studied with (e.g. Schneider & Rix 1997; Hudson et al. 1998; Geiger &
Schneider 1999; Hoekstra et al. 2003, 2004; Han et al. 2015). Maximum-likelihood
galaxy-galaxy lensing is thus a misnomer and in principle one could use any form of
fitting method to infer the desired parameters of the two-dimensional weak lensing
maps, ideally using a fully Bayesian model (Sonnenfeld & Leauthaud 2018).

This method went out of fashion due to the unavailability of the galaxy group-
ing information that would accurately classify the galaxies as centrals and satellites
(Hoekstra 2014) as it was realised that these objects need to be modelled separately.
Treating the galaxies as centrals and satellites in a statistical way when considering
the stacked signal could be naturally accounted for with the halo model (Seljak 2000;
Peacock & Smith 2000; Cooray & Sheth 2002), thus overcoming the observational
shortcomings. In recent years the galaxy grouping information has become available
due to the power of wide-field photometric surveys (e.g. KiDS; Kuijken et al. 2015;
de Jong et al. 2015) complemented with spectroscopic group information (from spec-
troscopic surveys like GAMA; Driver et al. 2011; Robotham et al. 2011) that treat the
central and satellite galaxies deterministically (e.g. Sifón et al. 2015; Brouwer et al.
2017). One important advantage of the two-dimensional method is that it exploits all
the information of the actual image configuration (the model predicts the shear for
each individual galaxy image) using various parameters, including the galaxies’ ex-
act positions, ellipticities, magnitudes, luminosities, stellar masses and group mem-
bership information rather than using only the ensemble properties of statistically
equivalent samples (Schneider & Rix 1997). Moreover, the clustering of the lenses is
naturally taken into account, although it is more difficult to account for the expected
diversity in density profiles (Hoekstra 2014).

The outline of this paper is as follows. In Sect. 5.3 we present the maximum
likelihood formalism used for galaxy-galaxy lensing, for both one-dimensional and
two-dimensional methods. In Sect. 5.4 we present the lens model used to construct
the mock observations and investigation of EAGLE galaxies (Schaye et al. 2015; Crain
et al. 2015; McAlpine et al. 2016). The mock observations are further described in Sect.
4.4 where we also test the two-dimensional method and examine the limitations in
the case of masked data. In Sect. 4.5 we examine the EAGLE simulation (Schaye et al.
2015) using the two-dimensional galaxy-galaxy lensing methodology. We conclude
and discuss in Sect. 5.6. Throughout the paper we use the following cosmological
parameters in the calculation of the distances and other relevant properties (Planck
Collaboration et al. 2013, as used in the EAGLE simulation): Ωm = 0.307, ΩΛ = 0.693,
σ8 = 0.8288, ns = 0.9611, Ωb = 0.04825, and h = 0.6777. All the measurements pre-
sented in the paper are in comoving units.
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4.2 2D GALAXY-GALAXY LENSING FORMALISM

The likelihood of a model with a set of parameters θ given data d is parametrised in
the form

L(θ |d) =
1√

(2π)n |C|
exp

[
−

1
2

(m(θ) − d)T C−1 (m(θ) − d)
]
, (4.1)

where m(θ) is the value of d predicted by the model with parameters θ. We assume
the measured data points d = [di, . . . , dn] are drawn from a normal distribution with
a mean equal to the true values of the data. The likelihood function accounts for
correlated data points through the covariance matrix C. The covariance matrix C
consists of two parts, the first arising from the shape noise and the second from the
presence of cosmic structure between the observer and the source (Hoekstra 2003):

C = Cshape + CLSS . (4.2)

Using the Equation 4.1, the parameters of the best-fitting model can be determined
with

θ̃(d) ≡ argmax
θ
L(θ |d) = argmin

θ
χ2(θ |d). (4.3)

For convenience we define
χ2

min(d) ≡ χ2( θ̃ (d) |d) (4.4)

as the value of the chi-square statistic for the best-fitting model, which is also the
minimal value of the chi-square statistic.

When fitting one-dimensional tangential shear profiles stacked over a sample of
lenses, the likelihood function can be written as

L(Mh,M?, c | γobs
t ) =

∏
i

1

σγt,i
√

2π
exp

−1
2

γt,i(Mh,R, z) − γobs
t,i

σγt,i

2 , (4.5)

where we use mi = γt,i(Mh,R, z) as the model prediction given halo mass Mh, radial
bin R, and redshift of the lens z, and the di = γobs

t,i as the tangentially averaged shear
of a sample of lenses measured from observations. Here we also use the (statistical)
uncertainty on our measurement given by the σγt,i calculated from the intrinsic shape
noise of sources in each radial bin. Moreover, we assume that the variance σ2 is the
diagonal of the full covariance matrix

σ =
√
|C| ; (4.6)

i.e., we only account for the error due to the shape noise. Similarly, the likelihood
function can be defined for the case when fitting the two-dimensional shear field

L(Mh,M?, c | εobs) =
∏

i

1

σε,i
√

2π
exp

−1
2

gi(Mh, θ, z) − εobs
i

σε,i

2 , (4.7)
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where gi(Mh, θ, z) are the reduced shears evaluated at each source position θ, εobs
i are

the observed elipticities of real galaxies, and σε,i is the intrinsic shape noise of our
galaxy sample per component, and is the same as the σγt,i. In practice, the two-
dimensional fit to the ellipticities is carried out for each cartesian component of el-
lipticity ε1 and ε2 with respect to the equatorial coordinate system of the real data or
mock catalogues used in our validation study.

4.3 LENS MODEL

The most widely assumed density profile for dark matter haloes is the Navarro-
Frenk-White (NFW) profile (Navarro et al. 1996). Using simple scaling relations this
profile can be matched to simulated dark matter haloes over a wide range of masses
and was found to be consistent with observations (Navarro et al. 1996). It is defined
as

ρNFW(r) =
δc ρm

(r/rs) (1 + r/rs)2 , (4.8)

where the free parameters δc and rs are called the overdensity and the scale radius,
respectively, and ρm is the mean density of the universe, where ρm = Ωmρc and ρc is
the critical density of the universe, defined by

ρc ≡
3H2

0

8πG
, (4.9)

where H0 is the present day Hubble parameter.
The NFW profile in its usual parametrisation has two free parameters for each

halo, halo mass Mh, and concentration c, and using these parameters is the conven-
tional way of modelling halo profiles. However, having two free parameters for each
halo is computationally very expensive. Instead, we would like to describe these
parameters through relations that depend on halo properties, and then fit to a few
free parameters in these global relations instead of hundreds or thousands of free,
halo-specific parameters.

To this end, we adopt the halo mass–concentration relation of Duffy et al. (2008),
which is also an adequate description of the measured halo mass–concentration re-
lation of central and satellite galaxies in the EAGLE simulation (Schaye et al. 2015;
Schaller et al. 2015)

c(Mh, z) = 10.14
[

Mh

(2 × 1012M�/h)

]−0.081

(1 + z)−1.01 . (4.10)

We also adopt the stellar mass-to-halo mass relation, as measured in the EAGLE sim-
ulation, using the functional form presented in Matthee et al. (2017),

log(M?/M�) = α − eγ (Mh/M�) β log(e) , (4.11)

where α = 11.50, β = −0.86, and γ = 10.58.
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After removing all halo-specific degrees of freedom, we introduce two new, global
degrees of freedom in order to avoid recalculating the shape of the profile in every
single model evaluation. They are introduced in the form of the factors f and g,
which scale the values of the scale radius rs and product δcrs relative to the values
r̃s(M?) and δ̃c(M?) r̃s(M?) expected from a lens with a stellar mass M? through the
two scaling relations for c and Mh:

rs = f r̃s(M?),
δcrs = g δ̃c(M?) r̃s(M?). (4.12)

Our two parameters thus correspond to a scaling of the amplitude and scale of the
NFW profile. This makes the interpretation of results straightforward and is the most
general parametrisation of the NFW profile. These parameters are expected to be of
order unity. While the scaling relations were measured on the EAGLE simulation,
which we use to validate the method, the slight differences on exact definitions of
quantities as measured on the simulations and what weak gravitational lensing in-
fers (and scatter around the mean of those distributions) might cause slight changes
in the value of the fiducial parameters. We do not expect to see any in the case of
simulated, toy model observations. These lens models can be generalised to account
for scatter (e.g. in the stellar mass-to-halo mass relation or in the concentration–mass
relation) by making it fully Bayesian, similar to the model presented in Sonnenfeld &
Leauthaud (2018).

The gravitational shear and convergence profiles are then calculated using the
equations presented by Wright & Brainerd (2000), from which the predicted elliptici-
ties for all the lenses are calculated according to the weak lensing relations presented
in Schneider (2003). We first calculate the reduced shear for our NFW profiles,

g(θ, zs) =
γ(θ, zs)

1 − κ(θ, zs)
, (4.13)

from which the ellipticities are calculated according to

ε =

g |g| ≤ 1
1/g∗ |g| > 1

, (4.14)

where we assume that the intrinsic ellipticities of the sources average to 0, due to
their random nature. In practice, we avoid the strong lensing regime by removing
these sources from our catalogue.
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4.4 PROOF OF CONCEPT

We created the mock catalogues in a semi-empirical manner. In order to test the
method on a realistic dataset, the mock catalogues were made to closely resemble the
Kilo Degree Survey (KiDS) properties (de Jong et al. 2015; Kuijken et al. 2015). We
randomly placed 30 700 sources at a redshift of 0.7 in a 1 deg2 field. This corresponds
to the size of one KiDS tile with the number of sources reflecting the observed number
density (Hildebrandt et al. 2017) at the median redshift for the whole survey.

We did not assign any intrinsic orientation or ellipticity to our sources; this uncer-
tainty can be accommodated for directly in our maximum likelihood fits by scaling
the covariance matrix (or in this case the variance used in the likelihood functions) so
that the intrinsic source ellipticity uncertainty is representative of the shape noise in
the KiDS survey, considering the overlap with the Galaxy and Mass Assembly survey
(GAMA; Liske et al. 2015).

The generated source field was then used to calculate the weak lensing effect of
the foreground lenses that we placed in the same field. We calculated the effect of
each lens according to the model presented in Sec. 5.4, using only one stellar mass for
all the lens galaxies placed in the mock catalogue. We decided to assign a stellar mass
of M? = 1012M� and f = g = 1. We positioned all the lenses at the same redshift of 0.2,
which is around the median redshift of the GAMA survey commonly used in KiDS
galaxy-galaxy lensing studies (Viola et al. 2015; Sifón et al. 2015; van Uitert et al. 2016;
Brouwer et al. 2016; Dvornik et al. 2018, amongst others). The contributions from
multiple lenses to the shear (and consequently ellipticity) of one source galaxy can be
summed together linearly, i.e.

γ(θ, zs)i =
∑

j

γ(θ, zs)i j , (4.15)

where the sum goes over the j lenses in the catalogue, with shear evaluated at each
source position i.1 This means that we actually allow for contributions of neighbour-
ing haloes, which will become evident later on in the paper. We also assume that each
lens galaxy is exactly at the centre of its dark matter halo, ignoring the possibility of
miscentring. When placing the lenses in our mock field, we draw their positions in
the same way as for the sources, but we do not allow for exact spatial overlap of any
lens. The number of lenses that we add to the KiDS-like field varies between 1 and
720 (the latter reflects the typical density of the GAMA galaxies) in order to study the
performance of the method as a function of galaxy number density so we can test the
effects of the neighbouring haloes.

When working with ground-based observations we would never have included
strongly lensed sources in the analysis as in the majority of cases these sources are
also blended with the lens galaxy (the typical Einstein radius for GAMA galaxies is
smaller than 5 arcsec); the simulated mock observations can have sources that are
strongly lensed because we distributed them randomly. To eliminate this problem,
all the sources with |g| > 0.3 were removed from the catalogue in order to limit our

1We first calculate the γ(θ, zs) and the κ(θ, zs), then use Equation 5.10 to calculate the reduced shear.
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Figure 4.1: Confidence areas of the scale parameter f and amplitude parameter g (left panel)
and the confidence areas of the halo mass Mh and halo concentration c jointly derived from the
constraints on the f and g parameters (right panel) for an analysis of the mock KiDS+GAMA
area. Orange contours show the maximum likelihood fit on the stacked tangential shear pro-
files, and the blue contours the maximum likelihood fit as it was performed on the ellipticities
of sources used directly, using all the galaxies in the mock field simultaneously. Shown are the
best-fitting values for each method (orange and blue crosses) and the fiducial lens model (red
circle). The contours correspond to the case with 50 lenses per deg2 in the simulated field.

analysis to the weak lensing regime. This threshold is quite low, but it makes sure we
always stay in the weak lensing regime that motivates the use of Equation 4.15.

Using these mock catalogues, we test our lens model and compare the results
obtained using the one-dimensional stacked tangential shear method against the two-
dimensional method that uses measured ellipticities directly. At the same time, this
allows us to study the two methods under known conditions and makes the results
easier to understand.

The main question we want to address here is how the effective lens galaxy
density influences the performance of the two-dimensional galaxy-galaxy lensing
method as the unique signatures caused by the spatial lens configuration on the shear
field result in information gain for the inference of halo masses and halo concentra-
tions.

The second question we want to address is the sensitivity of the two-dimensional
method to incompleteness in the lens sample. This bias can be induced by lenses
outside of the observed field (or masked from the data), and corrections to account for
this effect were already studied in the past (Hudson et al. 1998). We applied a typical
KiDS data mask to the generated mock catalogues and also studied the unmasked
mock catalogues, but purposefully ignored a number of lenses that are present in the
field.
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We first applied both methods to the same source sample in which we varied the
number of lenses from 1 to 720 deg−2. We assigned the uncertainty of the measured
shapes to σε = 0.3. For the one-dimensional method, each source’s uncertainty was
further weighted by

√
N, where N is the number of lenses that contribute to the to-

tal shear of that source, to account for proper covariance between the sources. This
is naturally captured by the two-dimensional galaxy-galaxy lensing method. Fur-
thermore, we limited ourselves to a subset of sources that we use in both methods.
The subset of sources is selected by the smallest and largest annuli (Rmax) in which
we calculate the tangentially averaged shear profiles of our galaxies. This allows us
to directly compare the methods, as for the case of one lens. Given that we use the
same source galaxies, the results from the two methods should be exactly the same.
At the same time, we also select the lens galaxies that are at least Rmax from the field
edge to minimise the effects of missing source galaxies beyond our simulated field.
We fit the data using Equations 5.3 and 5.5 for the tangential shears measured on
the data and the ellipticities as created in our mock catalogues, respectively. In the
fit we vary the parameters f and g, which scale the reference NFW profile for the
typical scale and amplitude. We sample the values of f and g on a Latin hypercube
grid (McKay et al. 1979) using 500 points. We compare the inferred best-fit values
and the 1σ and 2σ contours obtained from a χ2 surface, which is in turn computed
from the aforementioned grid using a interpolation on a finer linearly spaced grid.
Using this information we calculate a figure of merit (FoM) which is defined as an in-
verse of the 68% confidence level area and we study the ratio of the FoM between the
one-dimensional stacked tangential shear method and the two-dimensional method.

The results using 50 lenses per deg2 can be seen in Fig. 4.1, where we show the
fiducial value of the f and g parameters, the best-fit values, and the 1σ and 2σ un-
certainty contours on the derived best-fit values. Similarly, in Fig. 4.1, we show
the constraints on the halo mass Mh and halo concentration c, as derived from the
constraints on parameters f and g. The best-fit values with the individual 68% con-
fidence intervals are listed in Table 4.1, for the parameters f and g, and for the halo
mass Mh and halo concentration c. Both methods are capable of recovering the input
values. What is more, the contours for the two-dimensional method are noticeably
smaller. This can be seen more clearly in Fig. 4.2 where the orange line shows the
FoM as function of number of lens galaxies in our mock field. This figure shows that
information is gained as the contributions of neighbouring dark matter haloes leave
unique shear configuration signatures that can only be accounted for using a two-
dimensional galaxy-galaxy lensing method. At low lens densities we expect the two
methods to perform identically (with FoM ratio = 1) as the separation of the galaxies
is large enough for us to assume that the lenses are isolated, such that γt contains
all lensing information. The same effect (ratio of FoM = 1) should also be observed
if two lenses are exactly on the same line of sight. We note that we consider here a
noiseless mock dataset, with shape noise accounted through the covariance matrix,
and this means that the signal-to-noise ratio at low densities does not influence our
ability to constrain contribution of individual haloes, and consequently allows us to
obtain the ideal case of FoM = 1 for the case of one lens. The figure of merit stays
close to 1 as long as the separations are large enough for contributions of neighbour-
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Table 4.1: Best-fit values for the f and g parameters and for the halo mass Mh and halo concen-
tration c, together with their individual 68% confidence intervals for the model using 50 lenses
per deg2 in mock KiDS and GAMA like data.

f g Mh[1013M�] c

1D 1.0±0.14
0.19 0.98±0.22

0.11 2.13±0.37
0.43 6.76±2.26

1.28

2D 1.01±0.08
0.11 0.98±0.11

0.07 2.15±0.24
0.25 6.75±1.18

0.86

ing lenses to remain sufficiently low. With large lens galaxy number densities the
lenses start overlapping, we gain less information, and the figure of merit starts lev-
elling off. This is caused by the source number density that stays the same for any
number of lens galaxies we add to the field, which limits the available signal-to-noise
ratio of the measured source ellipticities.

We now focus on the second question in our investigation, whether there is any
bias introduced when not all lensing galaxies are accounted for. To this end, we use
the same KiDS-like mock field with 720 lens galaxies, but now we remove one lens in
each iteration, thus effectively accounting for the possible bias we might introduce in
real observations by not accounting for galaxies just outside of our observed field or
not accounting for lens galaxies that were masked out of the data. Figure 4.2 shows
the shift of the best-fit parameters away from the fiducial model as a function of the
field completeness, averaged over five different realisations of the lens distribution.
What is immediately clear is that the NFW fit to the one-dimensional tangential shear
profiles recovers the true input parameters (as it is essentially removing any config-
uration information from the sample by the tangential averaging), also for the cases
of low completeness. The two-dimensional method can only do this successfully at
high completeness values; any small deviation and unexpected features in the field
caused by the presence of lenses not accounted for drives the recovered values of the
input parameters away from the truth as the model tries to accommodate the missing
lenses.

We also study the effect of the masking introduced by a realistic KiDS survey
mask, shown in Fig. 4.3. We apply this mask to our mock catalogues and repeat the
fitting of our model to the lenses and sources that remain in the mock catalogues.
We again change the number of lenses in the field and the results of this exercise can
be seen in Fig. 4.2 (blue line). What can be observed is that the two-dimensional
method, even in the case of masking, is still more precise, and that the difference in
precision is a direct result of the amount of masked area. The accuracy of the method
due to masking behaves in a similar way to that shown in Fig. 4.2, but the observed
bias is smaller because a larger number of lenses remain in the field. A typical KiDS
survey mask reduces the number of lenses by about 20% (Kuijken et al. 2015; de Jong
et al. 2015; Hildebrandt et al. 2017), which can bias the fitted parameters up to 10%, as
shown in Fig. 4.2 (vertical grey line). This needs to be accounted for in an application
to real data.
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Figure 4.2: Left panel: Figure of merit as a function of lens number density in a simulated 1 deg2

field. The orange line shows the case where we consider all the galaxies in the field, and thus
gives us an estimate of improvement in precision when using a two-dimensional method. The
improvement levels off at a value of around 5, which indicates that in dense galaxy fields, the
loss of signal-to-noise ratio due to the limited number of sources cannot be overcome. The blue
line shows the case where we apply a typical KiDS survey mask to our mock catalogues. Right
panel: Relative shift of the halo mass Mh (top) and halo concentration c (bottom) derived from the
constraints on the f and g parameters from the fiducial model as a function of completeness.
Shown are the shift of the recovered parameters for the one-dimensional method (solid lines)
and the shift of the recovered parameters for the two-dimensional method (dashed lines). Also
shown is a typical completeness due to a mask in a KiDS like survey (vertical grey line).

Thus far we have ignored systematic biases in the galaxy shape measurements.
They can be split into a multiplicative bias, which leads to an overall scaling of
the signal, and an additive bias that manifests as a preferred orientation of galax-
ies. As the former simply scales the signal, the impact on the one-dimensional and
two-dimensional analyses is the same. The situation is different in the case of ad-
ditive bias: a constant signal will simply vanish when we consider the azimuthally
averaged tangential shear (in the limit of no edge effects). Even a spatially varying
additive bias is expected to vanish because it typically does not align with the line
connecting the lens and the source. In contrast, in the two-dimensional case we ex-
pect the χ2 to become poor as the systematic signal contributes to it. To examine
whether this has any impact on the recovered model parameters we mimic a sys-
tematic shape measurement error by adding a constant uniform shear to our mock
dataset and repeat our analysis. We find that the overall χ2 surface indeed becomes
offset by a constant (positive) value; however, we are nonetheless able to recover the
input parameters exactly as in our fiducial case.2

2This can be explicitly seen by writing out the χ2 with the added constant shear, χ2 ∝ (γt +c−m)2, where
c is the constant shear and m the model prediction. The cross terms in the expanded form average to 0 and
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Figure 4.3: Typical KiDS survey r-band mask
used to evaluate the effect of masking on the
inference of best-fit parameters, and the pos-
sible bias masking might introduce.

Figure 4.4: Segment of the shear map de-
rived from the EAGLE particle data. A num-
ber of notable features of weak lensing are
visible in this plot. The ellipticites are tan-
gentially aligned with the lenses and the
strength of gravitational lensing diminishes
with distance from the lens. The lens config-
uration creates a unique pattern that contains
information about mass distribution that is
otherwise lost when tangentially averaging
the observed shears.

4.5 EVALUATION OF THE TWO METHODS WITH THE EA-
GLE SIMULATION

Motivated by the success of the two-dimensional galaxy-galaxy lensing method from
the previous section, we now focus on more realistic tests using the EAGLE hydro-
dynamical simulation (Schaye et al. 2015; Crain et al. 2015; McAlpine et al. 2016)
as our input data. Studying a simulation gives us the ability to compare our two-
dimensional galaxy-galaxy lensing results against the truth, properties as measured
directly from particle properties in the simulation. We note that for the purpose of
this study we do not use a lightcone generated from the EAGLE simulation. Al-
though we include complexities of neighbouring galaxies, we do not capture pro-
jections along the line of sight or missing galaxies, for example. We use the AGN
simulation AGNdT9L0050N0752, which has 7523 dark matter particles and a box size
of 50 comoving Mpc (Schaye et al. 2015), and it is calibrated in such a way that it

we gain a constant term c2, which worsens the overall χ2, but does not inhibit the ability to minimise the
(γt − m)2 difference.
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reproduces global observables of our Universe. The EAGLE simulation was also
shown to correctly predict the galaxy-galaxy lensing signal when compared to the
KiDS+GAMA data (Velliscig et al. 2017), for both central and satellite galaxies. We
take the full particle information in a box with a comoving size of 50 Mpc which is
then binned to 8195 × 8195 × 8195 pixels. The box is then projected along the axes,
yielding three different mass maps of the EAGLE simulation. To calculate the shear
at each location, we first position the mass map at redshift of 0.2 (by scaling it comov-
ingly), calculate the density map using the mean density of the Universe, and use the
Kaiser & Squires (1993) prescription to calculate the shear, rolling the edges of the
map. Because we want the sources to be positioned at a redshift that resembles the
typical source redshift in the KiDS survey, we calculate the convergence map using
the critical surface mass density at redshift of 0.7. A small portion of an EAGLE shear
map is shown in Fig. 4.6. The whole EAGLE map corresponds to a 60 deg2 patch of
sky.

Further information about the properties of the lens galaxies are queried from the
public EAGLE database (McAlpine et al. 2016), such as the total halo mass, centre
of mass, centre of potential, stellar mass, stellar mass within certain aperture, group
memberships, and group properties. From the database we select galaxies with stel-
lar masses ranging from 109.6M� to 1011.2M�, which is a range that allows us to have
enough galaxies in finer stellar mass bins (which we will use for our fiducial stacked
tangential shear method) and ensures that the galaxies in EAGLE are well defined in
terms of simulation particle mass. From this selection of galaxies we take both the
centrals and satellite galaxies. Inclusion of satellite galaxies in the study is crucial for
the two-dimensional method, as otherwise the results can be substantially biased (up
to 10% for typical survey masks), as demonstrated in the previous section and in Fig.
4.2, and at the same time it allows their properties to be studied, as was previously
done using the one-dimensional method, by Sifón et al. (2015), amongst others. In to-
tal, after applying all the selection criteria, we are left with 859 galaxies (520 centrals
and 339 satellites).

We calculate the tangential shear signal for each galaxy in our sample using the
tangential εt component of the source’s ellipticity around the position of the lens.
The azimuthal average of the tangential ellipticity is then our unbiased estimate of
the tangential shear. For the two-dimensional method, we use the ε1 and ε2 values
directly. The tangential shear profiles and their averages for the 1010.8 to 1011.0M�
stellar mass bin can be seen in Fig. 4.6. The noisiness of the the individual profiles
can be directly attributed to the fact that we are azimuthally averaging the data on a
square grid.

The central and satellite galaxies in the EAGLE simulation follow a different
stellar-to-halo mass relation, and we also account for this in the model. For this we
use the same relation used in Sec. 5.4 and we fit it to the halo masses derived from
the NFW fits to the convergence field of individual galaxies, both centrals and satel-
lites (this is done in order to use the same definition of the halo mass for both galaxy
types). The two stellar-to-halo mass relations are shown in Fig. 4.5, and the param-
eters obtained are listed in Table 4.2. The different stellar-to-halo mass relations are
then accounted for in the modified lens model that differentiates between the central
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Figure 4.5: Stellar-to-halo mass relation for
the central galaxies in the EAGLE simulation
(orange) and for the satellites (blue). With
full orange and blue lines we show the me-
dian stellar-to-halo mass relation with the
corresponding scatter shown with the filled
areas of the same colours. The dashed or-
ange and blue lines are the models for the
stellar-to-halo mass relation as used in the
analysis.

Figure 4.6: Stacked tangential shear profiles
for the lenses selected from the EAGLE sim-
ulation (shown with blue lines) in the 1010.8

to 1011.0 M� stellar mass bin. The dashed or-
ange, red and black lines we show the signals
as predicted by our fiducial lens model us-
ing f = 1 and g = 1. The total best-fitting
model is shown with the solid orange line
and the best-fitting model for centrals and
satellites in full black and red lines, respec-
tively. The corresponding halo masses and
concentrations of input models and the best
fit results are listed in Table 4.3.

and satellite galaxies for the one-dimensional method and for the two-dimensional
method. From the same fit we note that the concentrations of the haloes are generally
lower than the prediction from Duffy et al. (2008). While they still follow the same
trend, the normalisation of the relation is lower for both centrals and satellites, with a
normalisation of 0.6 for centrals and 0.25 for satellites, with the lower values arising
because we include all the haloes, not only the relaxed ones. This is consistent with
what was found by Viola et al. (2015).

We fit the two lens models3 to the mean tangential shear profiles per bin and to
the full ellipticity data using Equations 5.3 and 5.5. To account for the uncertainty in
our ellipticity measurements we again assign the standard deviation of 0.3, scaled
to the typical number density of GAMA and KiDS set-up due to the size of the
pixel in our mass maps. This results in an uncertainty of σε = 0.015. The gain in

3One for centrals and one for satellites, for a combined set of four parameters; each model has a set of
( f , g) parameters.
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Table 4.2: Parameters of the stellar-to-halo mass relation used in the analysis of the EAGLE
simulation, used together with the functional form presented in Equation 5.9, and the normal-
isations of the concentration–mass relation.

α β γ c/c Duffy

Centrals 11.81 -0.68 8.69 0.6
Satellites 11.72 -0.79 9.44 0.25

Table 4.3: Central values of the input and best-fit halo masses and concentrations for the 1010.8

to 1011.0 M� stellar mass bin. The input values are a median of the halo masses and concen-
trations of haloes in that bin measured from the convergence fit to the EAGLE data and the
output values are the predictions from the best-fit one-dimensional model, which can be seen
in Fig. 4.6.

Input Mh Best-fit Mh Input c Best-fit c

Centrals 7.17 6.62 5.62 6.08
Satellites 1.33 1.30 2.72 2.96

precision is 3.9, which is the ratio of the area of the 68% confidence level contours
( FoM2D/FoM1D = 3.9 ). We show the separate credibility contours for the halo mass
and concentration in Fig. 4.7 for the one-dimensional and two-dimensional meth-
ods, separated into contributions from central and satellite galaxies; both values are
scaled with the input stellar-to-halo mass relation and the concentration–mass rela-
tion, which then show the relative change of the halo masses and concentration from
fiducial values obtained from the simulation.

At first sight it might seem that the results are somewhat biased with regard to
the actual measured scaling relation of the EAGLE galaxies, but we do observe an
almost equal effect on the f and g parameters for the two methods. This is not neces-
sarily due to a bias in the analysis. After all, the intrinsic scatter in the concentration–
mass relation and in the stellar mass-to-halo mass relation are not accounted for in
the model and are the most likely cause of small shifts in the methods presented.
Both methods also give robust estimates for the properties of central and satellite
galaxies and given the results, the two-dimensional method is much more precise
in constraining the two fitted parameters than the one-dimensional method. Given
the large uncertainty on the recovered parameters of the one-dimensional method for
satellite galaxies, the one-dimensional method is unable to robustly capture the con-
tribution from satellites in the KiDS+GAMA data, as was also demonstrated by Sifón
et al. (2015). Given the results of this exercise, we expect to capture the contribution
from satellites when we apply the two-dimensional method to the data.
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Figure 4.7: Left panel: Confidence areas of the halo mass Mh and concentration c of central galax-
ies for the analysis of the EAGLE simulation using the one-dimensional method and the two-
dimensional method, scaled with the input stellar-to-halo mass relation and the concentration–
mass relation. Right panel: Confidence areas of the halo mass Mh and concentration c of
satellite galaxies for the analysis of the EAGLE simulation using the one-dimensional method
and the two-dimensional method, scaled with the input stellar-to-halo mass relation and the
concentration–mass relation. The contours show the results of the maximum likelihood fit on
the central galaxies (red and purple) and satellite galaxies (orange and green). Crosses (in cor-
responding colours) show the best-fitting values for each method and galaxy sample, and the
red circles show the fiducial models. The contours are calculated from the contours obtained
as a fit of the f and g parameters.

4.6 DISCUSSION AND CONCLUSIONS

We have investigated the precision and bias of one and two-dimensional galaxy-
galaxy lensing analyses of weak lensing data, using tangential averaged shear pro-
files and ellipticities, respectively, keeping in mind current and upcoming state-of-
the-art large weak lensing galaxy surveys. The main difference between the two
methods lies in the fact that the two-dimensional approach uses all the available in-
formation in an observed field. While the one-dimensional method uses only the
ellipticities of source galaxies to infer the stacked tangential shear signal, the two-
dimensional method uses actual relative positions of all the lens galaxies in a field and
the ellipticities of all the sources in the field. Because the two-dimensional galaxy-
galaxy lensing accounts for spatial configuration of the lens galaxies, the unique sig-
natures in the shear field caused by overlapping regions of influence contain more
information about the halo properties of the lenses we want to study and result in a
significant improvement over the traditional one-dimensional stacking methods.
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We tested the method on mock observations generated in a semi-empirical way
where we assumed a model with the gravitational lenses represented by the NFW
profiles with properties determined from observable quantities such as stellar mass,
taking into account a typical configuration and properties of KiDS and GAMA sur-
veys. We find that the two-dimensional method gives better constraints on those
same parameters: the FoM is more than three times larger compared to the results
from stacked tangential shear profiles. This suggests that there can be an equal
amount of information hidden in the exact configuration of the lenses and their over-
laps, which is lost when a one-dimensional method is used. The precision gain also
depends on the lens density. In denser fields of gravitational lenses, the gain in pre-
cision from using the two-dimensional method is larger, as the signal becomes more
heavily influenced by neighbouring gravitational lenses. We also studied the case
where we removed a significant fraction of galaxies present in a mock field from
our analysis, and while the two-dimensional method still gives us better constraints
on the NFW parameters, the accuracy of these parameters starts to suffer because
the modelling of the lenses does not account for the contributions of shears that are
caused by the galaxies we left out of our analysis. While this indeed produces a no-
ticeable bias, and thus needs to be corrected to properly recover the true values of
the parameters we study, the case where such a large fraction of galaxies would be
missed is rather severe. This effect of correlated structure—undetected galaxies that
are clustered with the observed galaxies and the matter distribution on group scale—
is in reality negligibly small (as discussed in detail already by Hudson et al. 1998).

We assumed a model where lenses are represented by the NFW profiles, up to con-
stant pre-factors for the lensing signal amplitude and scale. We used the same lens
model as well for the study on the EAGLE simulation (Schaye et al. 2015; McAlpine
et al. 2016). As we used the concentration–mass relation that closely describes the
one measured in the EAGLE simulation and a stellar-to-halo mass relation of the EA-
GLE central and satellite galaxies in our lens model, we expected both methods to
recover the input parameters values. We find that the two methods are able to al-
most perfectly recover these values, and the small differences can be attributed to the
non-ideal modelling of the galaxies in the EAGLE simulation. The two-dimensional
method does indeed perform better.

Given that the two-dimensional galaxy-galaxy lensing method requires knowl-
edge of group (and/or cluster) membership, preferentially inferred from spectro-
scopic data, we identify two cases where using the two-dimensional method could
be preferred over the one-dimensional method. The most obvious one is studying
the group properties as a function of halo mass, where using the two-dimensional
method can give better constraints on scaling relations of group halo mass with lu-
minosity of central galaxies, their stellar mass, size, X-ray gas emission, and the con-
centration of such haloes. As we have precise membership information of galaxies
in clusters and because of the increased number density of these galaxies, the second
case is to study the sub-halo mass function of galaxy clusters to a high precision. The
two-dimensional galaxy-galaxy lensing, together with the group or cluster member-
ship information that is available by using highly complete spectroscopic surveys is
an obvious choice for galaxy-galaxy studies on dense galaxy fields in general.
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