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3
Unveiling Galaxy Bias via the Halo

Model, KiDS and GAMA

W
E measure the projected galaxy clustering and galaxy-galaxy lensing signals
using the Galaxy And Mass Assembly (GAMA) survey and Kilo-Degree Sur-
vey (KiDS) to study galaxy bias. We use the concept of non-linear and stochas-

tic galaxy biasing in the framework of halo occupation statistics to constrain the pa-
rameters of the halo occupation statistics and to unveil the origin of galaxy biasing.
The bias function Γgm(rp), where rp is the projected comoving separation, is evalu-
ated using the analytical halo model from which the scale dependence of Γgm(rp),
and the origin of the non-linearity and stochasticity in halo occupation models can
be inferred. Our observations unveil the physical reason for the non-linearity and
stochasticity, further explored using hydrodynamical simulations, with the stochas-
ticity mostly originating from the non-Poissonian behaviour of satellite galaxies in
the dark matter haloes and their spatial distribution, which does not follow the spa-
tial distribution of dark matter in the halo. The observed non-linearity is mostly due
to the presence of the central galaxies, as was noted from previous theoretical work
on the same topic. We also see that overall, more massive galaxies reveal a stronger
scale dependence, and out to a larger radius. Our results show that a wealth of infor-
mation about galaxy bias is hidden in halo occupation models. These models should
therefore be used to determine the influence of galaxy bias in cosmological studies.

A. Dvornik, H. Hoekstra, K. Kuijken, P. Schneider, et al.
MNRAS, Volume 479, Issue 1, p. 1240-1259 (2018)
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44 Chapter 3. Galaxy bias in KiDS+GAMA

3.1 INTRODUCTION

In the standard cold dark matter and cosmological constant-dominated (ΛCDM) cos-
mological framework, galaxies form and reside within dark matter haloes, which
themselves form from the highest density peaks in the initial Gaussian random den-
sity field (e.g. Mo et al. 2010, and references therein). In this case one expects that
the spatial distribution of galaxies traces the spatial distribution of the underlying
dark matter. Galaxies are however, biased tracers of the underlying dark matter dis-
tribution, because of the complexity of their evolution and formation (Davis et al.
1985; Dekel & Rees 1987; Cacciato et al. 2012). The relation between the distribution
of galaxies and the underlying dark matter distribution, usually referred as galaxy
bias, is thus important to understand in order to properly comprehend galaxy forma-
tion and interpret studies that use galaxies as tracers of the underlying dark matter,
particularly for those trying to constrain cosmological parameters.

If such a relation can be described with a single number b, the galaxy bias is linear
and deterministic. As galaxy formation is a complex process, it would be naive to as-
sume that the relation between the dark matter density field and galaxies is a simple
one, described only with a single number. Such a relation might be non-linear (the
relation between a galaxy and matter density fields cannot be described with only a
single number), scale dependent (the galaxy bias is different on the different scales
studied) or stochastic (the biasing relation has an intrinsic scatter around the mean
value). Numerous authors have presented various arguments for why simple linear
and deterministic bias is highly questionable (Kaiser 1984; Davis et al. 1985; Dekel &
Lahav 1999). Moreover, cosmological simulations and semi-analytical models sug-
gest that galaxy bias takes a more complicated, non-trivial form (Wang et al. 2008;
Zehavi et al. 2011).

Observationally, there have been many attempts to test if galaxy bias is linear and
deterministic. There have been studies relying on clustering properties of different
samples of galaxies (e.g. Wang et al. 2008; Zehavi et al. 2011), studies measuring high-
order correlation statistics and ones directly comparing observed galaxy distribution
fluctuations with the matter distribution fluctuations measured in numerical simu-
lations (see Cacciato et al. 2012, and references therein). What is more, there have
also been observations combining galaxy clustering with weak gravitational (galaxy-
galaxy) lensing measurements (Hoekstra et al. 2002; Simon et al. 2007; Jullo et al. 2012;
Buddendiek et al. 2016). The majority of the above observations have confirmed that
galaxy bias is neither linear nor deterministic (Cacciato et al. 2012).

Even though the observational results are in broad agreement with theoretical
predictions, until recently there was no direct connection between measurements
and model predictions, mostly because the standard formalism used to define and
predict the non-linearity and stochasticity of galaxy bias is hard to interpret in the
framework of galaxy formation models. Cacciato et al. (2012) introduced a new ap-
proach that allows for intuitive interpretation of galaxy bias, that is directly linked to
galaxy formation theory and various concepts therein. They reformulated the galaxy
bias description (and the non-linearity and stochasticity of the relation between the
galaxies and underlying dark matter distribution) presented by Dekel & Lahav (1999)
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using the formalism of halo occupation statistics. As galaxies are thought to live in
dark matter haloes, halo occupation distributions (a prescription on how galaxies
populate dark matter haloes) are a natural way to describe the galaxy-dark matter
connection, and consequently the nature of galaxy bias. Combining the halo occupa-
tion distributions with the halo model (Seljak 2000; Peacock & Smith 2000; Cooray &
Sheth 2002; van den Bosch et al. 2013; Mead et al. 2015; Wibking et al. 2019), allows
us to compare observations to predictions of those models, which has the potential to
unveil the hidden factors – sources of deviations from the linear and deterministic bias-
ing (Cacciato et al. 2012). Recently Simon & Hilbert (2017) also showed that the halo
model contains important information about galaxy bias. In this paper, however, we
demonstrate how the stochasticity of galaxy bias arises from two different sources;
the first is the relation between dark matter haloes and the underlying dark matter
field, and the second is the manner in which galaxies populate dark matter haloes.
As in Cacciato et al. (2012), we will focus on the second source of stochasticity, which
indeed can be addressed using a halo model combined with halo occupation distri-
butions.

The aim of this paper is to measure the galaxy bias using state of the art galaxy
surveys and constrain the nature of it using the halo occupation distribution formal-
ism. The same formalism can provide us with insights on the sources of deviations
from the linear and deterministic biasing and the results can be used in cosmological
analyses using the combination of galaxy-galaxy lensing and galaxy clustering and
those based on the cosmic shear measurements. In this paper we make use of the pre-
dictions of Cacciato et al. (2012) and apply them to the measurements provided by the
imaging Kilo-Degree Survey (KiDS; Kuijken et al. 2015; de Jong et al. 2015), accompa-
nied by the spectroscopic Galaxy And Mass Assembly (GAMA) survey (Driver et al.
2011) in order to get a grasp of the features of galaxy bias that can be measured us-
ing a combination of galaxy clustering and galaxy-galaxy lensing measurements with
high precision.

The outline of this paper is as follows. In Section 3.2 we recap the galaxy bias-
ing formulation of Cacciato et al. (2012). In Section 3.3 we introduce the halo model,
its ingredients and introduce the main observable, which is a combination of galaxy
clustering and galaxy-galaxy lensing. In Section 3.4 we present the data and measure-
ment methods used in our analysis. We present our galaxy biasing results in Section
3.5, together with comparison with simulations and discuss and conclude in Section
3.6. In the Appendix, we detail the calculation of the analytical covariance matrix, and
provide full pairwise posterior distributions of our derived halo model parameters.
We also provide a detailed derivation of the connection between the galaxy-matter
correlation and the galaxy-galaxy lensing signal, explaining the use of two different
definitions of the critical surface mass density in the literature. We highlight the key
differences between our expressions and those found in several recent papers.
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Throughout the paper we use the following cosmological parameters entering in
the calculation of the distances and in the halo model (Planck Collaboration et al.
2016): Ωm = 0.3089, ΩΛ = 0.6911, σ8 = 0.8159, ns = 0.9667 and Ωb = 0.0486. We also
use ρm as the present day mean matter density of the Universe (ρm = Ωm,0 ρcrit, where
ρcrit = 3H2

0/(8πG) and the halo masses are defined as M = 4πr3
∆
∆ ρm/3 enclosed by the

radius r∆ within which the mean density of the halo is ∆ times ρm, with ∆ = 200). All
the measurements presented in the paper are in comoving units, and log and ln refer
to the 10-based logarithm and the natural logarithm, respectively.

3.2 BIASING

This paper closely follows the biasing formalism presented in Cacciato et al. (2012),
and we refer the reader to that paper for a thorough treatment of the topic. Here
we shortly recap the galaxy biasing formalism of Cacciato et al. (2012) and correct a
couple of typos that we discovered during the study of his work. In this formalism
the mean biasing function b(M) (the equivalent of the mean biasing function b(δm) as
defined by Dekel & Lahav 1999) is, using new variables: the number of galaxies in a
dark matter halo, N, and the mass of a dark matter halo, M:

b(M) ≡
ρm

ng

〈N |M〉
M

, (3.1)

where ng is the average number density of galaxies and 〈N |M〉 is the mean of the halo
occupation distribution for a halo of mass M, defined as:

〈N |M〉 =

∞∑
N=0

N P(N |M) , (3.2)

where P(N |M) is the halo occupation distribution. Note that in this case, the simple
linear, deterministic biasing corresponds to:

N =
ng

ρm
M , (3.3)

which gives the expected value of b(M) = 1. As N is an integer and the quantities
ρm, ng and M are in general non-integer, it is clear that in this formulation the linear,
deterministic bias is unphysical. We define the moments of the bias function b(M) as

b̂ ≡
〈b(M)M2〉

〈M2〉
, (3.4)

and

b̃2 ≡
〈b2(M)M2〉

〈M2〉
, (3.5)
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where 〈...〉1 indicates an effective average (an integral over dark matter haloes) de-
fined in the following form:

〈x〉 ≡
∫ ∞

0
x n(M) dM , (3.6)

where n(M) is the halo mass function and x is a property of the halo or galaxy pop-
ulation. In the case of linear bias, b(M) is a constant and hence b̃/b̂ = 1. The same
ratio, b̃/b̂, is the relevant measure of the non-linearity of the biasing relation (Dekel
& Lahav 1999). Its deviation from unity is a sign of a non-linear galaxy bias. From
equation 3.1 we can see that linear bias corresponds to halo occupation statistics for
which 〈N |M〉 ∝ M.

In the same manner Cacciato et al. (2012) also define the random halo bias of a
single halo of mass M, that contains N galaxies, as:

εN ≡ N − 〈N|M〉 , (3.7)

which, by definition, will have a zero mean when averaged over all dark matter
haloes, i.e. 〈εN |M〉 = 0. This can be used to define the halo stochasticity function:

σ2
b(M) ≡

(
ρm

ng

)2 〈ε2
N |M〉
〈M2〉

, (3.8)

from which, after averaging over halo mass, one gets the stochasticity parameter:

σ2
b ≡

(
ρm

ng

)2 〈ε2
N〉

〈M2〉
. (3.9)

If the stochasticity parameter σb = 0, then the galaxy bias is deterministic. In addition
to the two bias moments b̃ and b̂, one can also define some other bias parameters,
particularly the ratio of the variances b2

var ≡ 〈δ
2
g〉/〈δ

2
m〉 (Dekel & Lahav 1999; Cacciato

et al. 2012). Using this definition and an HOD-based formulation, Cacciato et al.
(2012) show that:

b2
var =

(
ρm

ng

)2
〈N2〉

〈M2〉
, (3.10)

where the averages are again calculated according to equation (3.6). As the bias pa-
rameter is sensitive to both non-linearity and stochasticity, the total variance of the
bias b2

var can also be written as:

b2
var = b̃2 + σ2

b . (3.11)

Combining equation (3.10) and (3.11) we find a relation for 〈N2〉

〈N2〉 =

(
ng

ρm

)2 [
b̃2 + σ2

b

]
〈M2〉 . (3.12)

1Cacciato et al. (2012) used σ2
M ≡ 〈M

2〉 throughout the paper, and we decided to drop the σ2
M for cleaner

and more consistent equations.
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We can compare this to the covariance, which is obtained directly from equations
(3.1) and (3.3):

〈NM〉 =
ng

ρm
b̂ 〈M2〉 . (3.13)

From all the equations above, it also directly follows that one can define a linear
correlation coefficient as: r ≡ 〈NM〉/[〈N2〉 〈M2〉], such that, combining equations (3.12)
and (3.13), b̂ can be written as: b̂ = bvarr.

This enables us to consider some special cases. The discrete nature of galaxies
does not allow us to have galaxy bias that is both linear and deterministic (Cacciato
et al. 2012). Despite that, halo occupation statistics do allow bias that is linear and
stochastic where;

b̂ = b̃ = b(M) = 1 bvar = (1 + σ2
b)1/2

σb , 0 r = (1 + σ2
b)−1/2 . (3.14)

or non-linear and deterministic;

b̂ , b̃ , 1 bvar = b̃

σb = 0 r = b̂/b̃ , 1 . (3.15)

3.3 HALO MODEL

To express the HOD, we use the halo model, a successful analytic framework used to
describe the clustering of dark matter and its evolution in the Universe (Seljak 2000;
Peacock & Smith 2000; Cooray & Sheth 2002; van den Bosch et al. 2013; Mead et al.
2015). The halo model provides an ideal framework to describe the statistical weak
lensing signal around a selection of galaxies, their clustering and cosmic shear sig-
nal. The halo model is built upon the statistical description of the properties of dark
matter haloes (namely the average density profile, large scale bias and abundance) as
well as on the statistical description of the galaxies residing in them. The halo model
allows us to unveil the hidden sources of bias stochasticity (Cacciato et al. 2012).

3.3.1 HALO MODEL INGREDIENTS

We assume that dark matter haloes are spherically symmetric, on average, and have
density profiles, ρ(r|M) = M uh(r|M), that depend only on their mass M, and uh(r|M)
is the normalised density profile of a dark matter halo. Similarly, we assume that
satellite galaxies in haloes of mass M follow a spherical number density distribution
ns(r|M) = Ns us(r|M), where us(r|M) is the normalised density profile of satellite galax-
ies. Central galaxies always have r = 0. We assume that the density profile of dark
matter haloes follows an NFW profile (Navarro et al. 1997).
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Since centrals and satellites are distributed differently, we write the galaxy-galaxy
power spectrum as:

Pgg(k) = f 2
c Pcc(k) + 2 fc fsPcs(k) + f 2

s Pss(k) , (3.16)

while the galaxy-dark matter cross power spectrum is given by:

Pgm(k) = fcPcm(k) + fsPsm(k) . (3.17)

Here fc = nc/ng and fs = ns/ng = 1 − fc are the central and satellite fractions, respec-
tively, and the average number densities ng, nc and ns follow from:

nx =

∫ ∞

0
〈Nx|M〉 n(M) dM , (3.18)

where ‘x’ stands for ‘g’ (for galaxies), ‘c’ (for centrals) or ‘s’ (for satellites) and n(M) is
the halo mass function in the following form:

n(M) =
ρm

M2 ν f (ν)
d ln ν
d ln M

, (3.19)

with ν = δc/σ(M), where δc is the critical overdensity for spherical collapse at redshift
z, and σ(M) is the mass variance. For f (ν) we use the form presented in Tinker et al.
(2010). In addition, it is common practice to split two-point statistics into a 1-halo
term (both points are located in the same halo) and a 2-halo term (the two points are
located in different haloes). The 1-halo terms are:

P1h
cc (k) =

1
nc
, (3.20)

P1h
ss (k) = β

∫ ∞

0
H2

s (k,M) n(M) dM , (3.21)

and all other terms are given by:

P1h
xy(k) =

∫ ∞

0
Hx(k,M)Hy(k,M) n(M) dM . (3.22)

Here ‘x’ and ‘y’ are either ‘c’ (for central), ‘s’ (for satellite), or ‘m’ (for matter), β is a
Poisson parameter which arises from considering a scatter in the number of satellite
galaxies at fixed halo mass [in this case a free parameter – we define the β in detail
using equations (3.40), (3.41) and (3.42)] and we have defined

Hm(k,M) =
M
ρm

ũh(k|M) , (3.23)

Hc(k,M) =
〈Nc|M〉

nc
, (3.24)
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and
Hs(k,M) =

〈Ns|M〉
ns

ũs(k|M) , (3.25)

with ũh(k|M) and ũs(k|M) the Fourier transforms of the halo density profile and the
satellite number density profile, respectively, both normalised to unity [ũ(k=0|M)=1].
The various 2-halo terms are given by:

P2h
xy(k) = Plin(k)

∫ ∞

0
dM1Hx(k,M1) bh(M1) n(M1)

×

∫ ∞

0
dM2Hy(k,M2) bh(M2) n(M2) , (3.26)

where Plin(k) is the linear power spectrum, obtained using the Eisenstein & Hu (1998)
transfer function, and bh(M, z) is the halo bias function. Note that in this formalism,
the matter-matter power spectrum simply reads:

Pmm(k) = P1h
mm(k) + P2h

mm(k) . (3.27)

The two-point correlation functions corresponding to these power-spectra are ob-
tained by simple Fourier transformation:

ξxy(r) =
1

2π2

∫ ∞

0
Pxy(k)

sin kr
kr

k2 dk , (3.28)

For the halo bias function, bh, we use the fitting function from Tinker et al. (2010),
as it was obtained using the same numerical simulation from which the halo mass
function was obtained. We have adopted the parametrization of the concentration-
mass relation, given by Duffy et al. (2008):

c(M, z) = 10.14 Ac

[
M

(2 × 1012M�/h)

]−0.081

(1 + z)−1.01 , (3.29)

with a free normalisation Ac that accounts for the theoretical uncertainties in the
concentration-mass relation due to discrepancies in the numerical simulations (mostly
resolution and cosmologies) from which this scaling is usually inferred (Viola et al.
2015). We allow for additional normalisation As for satellites, such that

cs(M, z) = As c(M, z) , (3.30)

which governs how satellite galaxies are spatially distributed inside a dark matter
halo and tests the assumption of satellite galaxies following the density distribution
of the dark matter haloes. If As , 1, the galaxy bias will vary on small scales, as
demonstrated by Cacciato et al. (2012).
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3.3.2 CONDITIONAL STELLAR MASS FUNCTION

In order to constrain the cause for the stochasticity, non-linearity and scale depen-
dence of galaxy bias, we model the halo occupation statistics using the Conditional
Stellar Mass Function (CSMF, heavily motivated by Yang et al. 2008; Cacciato et al.
2009, 2013; Wang et al. 2013; van Uitert et al. 2016). The CSMF, Φ(M?|M), specifies
the average number of galaxies of stellar mass M? that reside in a halo of mass M. In
this formalism, the halo occupation statistics of central galaxies are defined via the
function:

Φ(M?|M) = Φc(M?|M) + Φs(M?|M) . (3.31)

In particular, the CSMF of central galaxies is modelled as a log-normal,

Φc(M?|M) =
1

√
2π ln(10)σcM?

exp
[
−

log(M?/M∗c )2

2σ2
c

]
, (3.32)

and the satellite term as a modified Schechter function,

Φs(M?|M) =
φ∗s
M∗s

(
M?

M∗s

)αs

exp

− (
M?

M∗s

)2 , (3.33)

where σc is the scatter between stellar mass and halo mass and αs governs the power
law behaviour of satellite galaxies. Note that M∗c , σc, φ∗s , αs and M∗s are, in principle,
all functions of halo mass M. We assume that σc and αs are independent of the halo
mass M. Inspired by Yang et al. (2008), we parametrise M∗c , M∗s and φ∗s as:

M∗c (M) = M0
(M/M1)γ1

[1 + (M/M1)]γ1−γ2
. (3.34)

M∗s (M) = 0.56 M∗c (M) , (3.35)

and
log[φ∗s(M)] = b0 + b1(log m12) , (3.36)

where m12 = M/(1012M�h−1). The factor of 0.56 is also inspired by Yang et al. (2008)
and further tests by van Uitert et al. (2016) showed that using this assumption does
not significantly affect the results. We can see that the stellar to halo mass relation for
M � M1 behaves as M∗c ∝ Mγ1 and for M � M1, M∗c ∝ Mγ2 , where M1 is a characteristic
mass scale and M0 is a normalisation. Here γ1, γ2, b0 and b1 are all free parameters.

From the CSMF it is straightforward to compute the halo occupation numbers.
For example, the average number of galaxies with stellar masses in the range M?,1 ≤

M? ≤ M?,2 is thus given by:

〈N|M〉 =

∫ M?,2

M?,1

Φ(M?|M) dM? . (3.37)
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The distinction we have made here, by splitting galaxies into centrals or satellites,
is required to illustrate the main source of non-linearity and scale dependence of
galaxy bias (see results in Section 3.5). To explore this, we follow Cacciato et al. (2012),
and define the random halo biases following similar procedure as in equation (3.7):

εc ≡ Nc − 〈Nc|M〉 and εs ≡ Ns − 〈Ns|M〉 , (3.38)

and the halo stochasticity functions for centrals and satellites are given by:

〈ε2
c |M〉 =

∞∑
Nc=0

(Nc − 〈Nc|M〉)2 P(Nc|M)

= 〈N2
c |M〉 − 〈Nc|M〉2

= 〈Nc|M〉 − 〈Nc|M〉2 , (3.39)

〈ε2
s |M〉 =

∞∑
Ns=0

(Ns − 〈Ns|M〉)2 P(Ns|M)

= 〈N2
s |M〉 − 〈Ns|M〉2 , (3.40)

where we have used the fact that 〈N2
c |M〉 = 〈Nc|M〉, which follows from the fact that

Nc is either zero or unity. We can see that central galaxies only contribute to the
stochasticity if 〈Nc|M〉 < 1. If 〈Nc|M〉 = 1, then the HOD is deterministic and the
stochasticity function 〈ε2

c |M〉 = 0. The CSMF, however, only specifies the first moment
of the halo occupation distribution P(N |M). For central galaxies this is not a problem,
as 〈N2

c |M〉 = 〈Nc|M〉. For satellite galaxies, we use that

〈N2
s |M〉 = β(M)〈Ns|M〉2 + 〈Ns|M〉 , (3.41)

where β(M) is the mass dependent Poisson parameter defined as:

β(M) ≡
〈Ns(Ns − 1)|M〉
〈Ns|M〉2

, (3.42)

which is unity if P(Ns|M) is given by a Poisson distribution, larger than unity if the
distribution is wider than a Poisson distribution (also called super-Poissonian distri-
bution) or smaller than unity if the distribution is narrower than a Poisson distribu-
tion (also called sub-Poissonian distribution). If β(M) is unity, then equation (3.40)
takes a simple form 〈ε2

s |M〉 = 〈Ns|M〉. In what follows we limit ourselves to cases
in which β(M) is independent of halo mass, i.e., β(M) = β, and we treat β as a free
parameter.

Even without an application to the data, we can already learn a lot about the na-
ture of galaxy bias from combining the HOD and halo model approaches to galaxy
biasing as described in Section 3.2. As realistic HODs (as formulated above) differ
strongly from the simple scaling 〈N |M〉 ∝ M (equation 3.3, which gives the linear and
deterministic galaxy bias), they will inherently predict a galaxy bias that is strongly
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non-linear. Moreover, this seems to be mostly the consequence of central galaxies for
which 〈Nc|M〉 never follows a power law. Even the satellite occupation distribution
〈Ns|M〉 is never close to the power law form, due to a cut-off at the low mass end,
as galaxies at certain stellar mass require a minimum mass for their host halo (Cac-
ciato et al. 2012, see also Figure 2 therein). Given the behaviour of the halo model
and the HOD, the stochasticity of the galaxy bias could most strongly arise from the
non-zero σc in equation (3.32) and the possible non-Poissonian nature of the satellite
galaxy distribution for less massive galaxies. For more massive galaxies the main
source of stochasticity can be shot noise, which dominates the stochasticity function,
σb in equation (3.9), when the number density of galaxies is small. We use those free
parameters of the HOD in a fit to the data (see Section 3.4), to constrain the cause for
the stochasticity, non-linearity and scale dependence of galaxy bias.

3.3.3 PROJECTED FUNCTIONS

We can project the 3D bias functions as defined by Dekel & Lahav (1999); Cacciato
et al. (2012) into two-dimensional, projected analogues, which are more easily ac-
cessible observationally. We start by defining the matter-matter, galaxy-matter, and
galaxy-galaxy projected surface densities as:

Σxy(rp) = 2ρm

∫ ∞

rp

ξxy(r)
r dr√
r2 − r2

p

, (3.43)

where ‘x’ and ‘y’ stand either for ‘g’ or ‘m’, and rp is the projected separation, with the
change from standard line-of-sight integration to the integration along the projected
separation using an Abel tranformation. We also define Σxy(< rp) as its average inside
rp:

Σxy(< rp) =
2
r2

p

∫ rp

0
Σxy(R′)R′ dR′ , (3.44)

which we use to define the excess surface densities (ESD)

∆Σxy(rp) = Σxy(< rp) − Σxy(rp) . (3.45)

We include the contribution of the stellar mass of galaxies to the lensing signal as a
point mass approximation, which we can write as:

∆Σ
pm
gm(rp) =

M?,med

πr2
p

, (3.46)

where M?,med is the median stellar mass of the selected galaxies obtained directly
from the GAMA catalogue (Taylor et al. 2011, see Section 3.4.1 and Table 3.1 for more
details). This stellar mass contribution is fixed by each of our samples. According
to the checks performed, the inclusion of the stellar mass contribution to the lensing
signal does not affect our conclusions.
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The obtained projected surface densities can subsequently be used to define the
projected, 2D analogues of the 3D bias functions (b3D

g , R3D
gm and Γ3D

gm, Dekel & Lahav
1999; Cacciato et al. 2012) as:

bg(rp) ≡

√
∆Σgg(rp)
∆Σmm(rp)

, (3.47)

Rgm(rp) ≡
∆Σgm(rp)√

∆Σgg(rp) ∆Σmm(rp)
, (3.48)

and

Γgm(rp) ≡
bg(rp)
Rgm(rp)

=
∆Σgg(rp)
∆Σgm(rp)

. (3.49)

In what follows we shall refer to these as the ‘projected bias functions’.
In the case of the galaxy-dark matter cross correlation, the excess surface density

∆Σgm(rp) = γt(rp) Σcr,com, where γt(rp) is the tangential shear, which can be measured
observationally using galaxy-galaxy lensing, and Σcr,com is the comoving critical sur-
face mass density:2:

Σcr,com =
c2

4πG(1 + zl)2

D(zs)
D(zl)D(zl, zs)

, (3.50)

where D(zl) is the angular diameter distance to the lens, D(zl, zs) is the angular di-
ameter distance between the lens and the source and D(zs) is the angular diameter
distance to the source. In Appendix 3.C we discuss the exact derivation of equation
(3.50) and the implications of using different coordinates. In the case of the galaxy-
galaxy autocorrelation we can write that

∆Σgg(rp) = ρm

 2
r2

p

∫ rp

0
wp(R′) R′ dR′ − wp(rp)

 , (3.51)

where wp(rp) is the projected galaxy correlation function, and wp(rp) = Σgg(rp)/ρm.
It is immediately clear that ∆Σgg(rp) can be obtained from the projected correlation
function wp(rp), which is routinely measured in large galaxy redshift surveys.

In terms of the classical 3D bias functions b3D
g , R3D

gm and Γ3D
gm (Cacciato et al. 2012),

the galaxies can be unbiased with respect to the underlying dark matter distribution,
if and only if the following conditions are true: they are not central galaxies, the oc-
cupation number of satellite galaxies obeys Poisson statistics (β = 1), the normalised
number density profile of satellite galaxies is identical to the one of the dark mat-
ter, and the occupational number of satellites is directly proportional to halo mass as
〈Ns〉 = Mns/ρ. When central galaxies are added to the above conditions, one expects
a strong scale dependence on small scales, due to the fact that central galaxies are
strongly biased with respect to dark matter haloes. In the case of a non-Poissonian

2In Chapter 2, the same definition was used in all the calculations and plots shown, but erroneously
documented in the paper. The equations (6) and (9) of that paper should have the same form as equations
(3.50) and (3.54), as discussed in Appendix 3.C.
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satellite distribution, one still expects b3D
g = 1 on large scales, but with a transition

from 1 to β, roughly at the virial radius when moving towards the centre of the halo
(see also Figure 3 in Cacciato et al. 2012). The same also holds for the case where the
density profile of satellites follows that of dark matter (Cacciato et al. 2012).

Given all these reasons, as already pointed out by Cacciato et al. (2012), one ex-
pects scale independence on large scales (at a value dependent on halo model ingre-
dients), with the transition to scale dependence on small scales (due to the effects
of central galaxies) around the 1-halo to 2-halo transition. The same holds for the
projected bias functions (bg, Rgm and Γgm), which also carry a wealth of information
regarding the non-linearity and stochasticity of halo occupation statistics, and conse-
quently, galaxy formation.

This is demonstrated in Figure 3.1 where we show the influence of different val-
ues of σc, As, αs and β on the bias function Γgm as a function of stellar mass. From the
predictions one can clearly see how the different halo model ingredients influence
the bias function. The halo model predicts, as mentioned before, scale independence
above 10 Mpc/h and a significant scale dependence of galaxy bias on smaller scales,
with the parameters αs, As and β having a significant influence at those scales. Any
deviation from a pure Poissonian distribution of satellite galaxies will result in quite
a significant feature at intermediate scales, therefore it would be a likely explanation
for detected signs of stochasticity [as the deviation from unity will drive the stochas-
ticity function σb or alternatively ε away from 0, as can be seen from equations (3.38)
to (3.42)]. In Figure 3.1 we also test the influence of having different Ωm and σ8 on
the Γgm bias function, as generally, any bias function is a strong function of those
two parameters (Dekel & Lahav 1999; Sheldon et al. 2004). We test this by picking 4
combinations of Ωm and σ8 drawn from the 1σ confidence contours of Planck Collab-
oration et al. (2016) measurements of the two parameters. Given the uncertainties of
those parameters and their negligible influence on the Γgm bias function, the decision
to fix the cosmology seems to be justified.

We would like to remind the reader, that our implementation of the halo model
does not include the scale dependence of the halo bias and the halo-exclusion (mutual
exclusiveness of the spatial distribution of the haloes). Not including those effects
can introduce errors on the 1-halo to 2-halo transition region that can be as large as
50% (Cacciato et al. 2012; van den Bosch et al. 2013). However, the bias functions as
defined using equations (3.47) to (3.49) are much more accurate and less susceptible
to the uncertainties in the halo model, by being defined as ratios of the two-point
correlation functions (Cacciato et al. 2012).

Despite of this, we decided to estimate the halo model parameters and the nature
of galaxy bias using the fit to the ∆Σgm(rp) and wp(rp) signals separately, rather than
the ratio of the two (using the Γgm bias function directly). This approach will still
suffer from a possible bias due to the fact that we do not include the scale dependent
halo bias or the halo-exclusion in our model. This choice is motivated purely by the
fact that the covariance matrix that would account for the cross-correlations between
the lensing and clustering measurements cannot be properly taken into account when
fitting the Γgm bias function directly. We investigate the possible bias in our results in
Section 3.5.2.
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Figure 3.1: Model predictions of scale dependence of the galaxy bias function Γgm (equation
3.49) for three stellar mass bins (defined in Table 3.1), with stellar masses given in units of[
log(M?/[M�/h2])

]
. With the black solid line we show our fiducial halo model (with other pa-

rameters adapted from Cacciato et al. 2013), and the different green and violet lines show dif-
ferent values of σc, αs, β, As and combinations of Ωm and σ8, row-wise, with values indicated
in the legend. The full set of our fiducial parameters can be found in Table 3.2.
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3.4 DATA AND SAMPLE SELECTION

3.4.1 LENS GALAXY SELECTION

The foreground galaxies used in this lensing analysis are taken from the Galaxy And
Mass Assembly (hereafter GAMA) survey (Driver et al. 2011). GAMA is a spectro-
scopic survey carried out on the Anglo-Australian Telescope with the AAOmega
spectrograph. Specifically, we use the information of GAMA galaxies from three
equatorial regions, G9, G12 and G15 from GAMA II (Liske et al. 2015). We do not use
the G02 and G23 regions, because the first one does not overlap with KiDS and the
second one uses a different target selection compared to the one used in the equato-
rial regions. These equatorial regions encompass ~ 180 deg2, contain 180 960 galaxies
(with nQ ≥ 3, where the nQ is a measure of redshift quality) and are highly complete
down to a Petrosian r-band magnitude r = 19.8. For the weak lensing measurements,
we use all the galaxies in the three equatorial regions as potential lenses. To measure
their average lensing and projected clustering signals, we group GAMA galaxies in
stellar mass bins, following previous lensing measurements by van Uitert et al. (2016)
and Velliscig et al. (2017). The bin ranges were chosen this way to achieve a good
signal-to-noise ratio in all bins and to measure the galaxy bias as a function of differ-
ent stellar mass. The selection of galaxies can be seen in Figure 5.1, and the properties
we use in the halo model are shown in Table 3.1. Stellar masses are taken from ver-
sion 19 of the stellar mass catalogue, an updated version of the catalogue created
by Taylor et al. (2011), who fitted Bruzual & Charlot (2003) synthetic stellar popula-
tion SEDs to the broadband SDSS photometry assuming a Chabrier (2003) IMF and a
Calzetti et al. (2000) dust law. The stellar masses in Taylor et al. (2011) agree well with
MagPhys derived estimates, as shown by Wright et al. (2017). Despite the differences
in the range of filters, star formation histories, obscuration laws, the two estimates
agree within 0.2 dex for 95 percent of the sample.

Table 3.1: Overview of the median stellar masses of galaxies, median redshifts and number of
galaxies/lenses in each selected bin, which are indicated in the second column. Stellar masses
are given in units of

[
log(M?/[M�/h2])

]
.

Sample Range M?,med zmed # of lenses

Bin 1 (10.3, 10.6] 10.46 0.244 26224
Bin 2 (10.6, 10.9] 10.74 0.284 20452
Bin 3 (10.9, 12.0] 11.13 0.318 10178
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Figure 3.2: Stellar mass versus redshift of
galaxies in the GAMA survey that overlap
with KiDS. The full sample is shown with
hexagonal density plot and the dashed lines
show the cuts for the three stellar mass bins
used in our analysis.

Figure 3.3: A comparison between the red-
shift distribution of galaxies in the data and
the matched galaxies in GAMA random cata-
logue (Farrow et al. 2015) for our three stellar
mass bins. We use the same set of randoms
for both galaxy clustering and galaxy-galaxy
lensing measurements.

3.4.2 MEASUREMENT OF THE ∆ΣGM(rP) SIGNAL

We use imaging data from 180 deg2 of KiDS (Kuijken et al. 2015; de Jong et al. 2015)
that overlaps with the GAMA survey (Driver et al. 2011) to obtain shape measure-
ments of background galaxies. KiDS is a four-band imaging survey conducted with
the OmegaCAM CCD mosaic camera mounted at the Cassegrain focus of the VLT
Survey Telescope (VST); the camera and telescope combination provide us with a
fairly uniform point spread function across the field-of-view.

We use shape measurements based on the r-band images, which have an aver-
age seeing of 0.66 arcsec. The image reduction, photometric redshift calibration and
shape measurement analysis is described in detail in Hildebrandt et al. (2017).

We measure galaxy shapes using calibrated lensfit shape catalogs (Miller et al.
2013) (see also Fenech Conti et al. 2017, where the calibration methodology is de-
scribed), which provides galaxy ellipticities (ε1, ε2) with respect to an equatorial co-
ordinate system. For each source-lens pair we compute the tangential εt and cross
component ε× of the source’s ellipticity around the position of the lens:[

εt
ε×

]
=

[
− cos(2φ) − sin(2φ)

sin(2φ) − cos(2φ)

] [
ε1
ε2

]
, (3.52)

where φ is the angle between the x-axis and the lens-source separation vector.
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The azimuthal average of the tangential ellipticity of a large number of galaxies in
the same area of the sky is an unbiased estimate of the shear. On the other hand, the
azimuthal average of the cross ellipticity over many sources is unaffected by grav-
itational lensing and should average to zero (Schneider 2003). Therefore, the cross
ellipticity is commonly used as an estimator of possible systematics in the measure-
ments such as non-perfect PSF deconvolution, centroid bias and pixel level detector
effects (Mandelbaum 2017). Each lens-source pair is then assigned a weight

w̃ls = ws

(
Σ̃−1

cr,ls

)2
, (3.53)

which is the product of the lensfit weight ws assigned to the given source ellipticity
and the square of Σ̃−1

cr,ls – the effective inverse critical surface mass density, which
is a geometric term that downweights lens-source pairs that are close in redshift.
We compute the effective inverse critical surface mass density for each lens using
the spectroscopic redshift of the lens zl and the full normalised redshift probability
density of the sources, n(zs), calculated using the direct calibration method presented
in Hildebrandt et al. (2017).

The effective inverse critical surface density can be written as:

Σ̃−1
cr,ls =

4πG
c2 (1 + zl)2D(zl)

∫ ∞

zl

D(zl, zs)
D(zs)

n(zs) dzs . (3.54)

The galaxy source sample is specific to each lens redshift with a minimum photomet-
ric redshift zs = zl + δz, with δz = 0.2, where δz is an offset to mitigate the effects of
contamination from the group galaxies (for details see also the methods section and
Appendix of Chapter 2). We determine the source redshift distribution n(zs) for each
sample, by applying the sample photometric redshift selection to a spectroscopic cat-
alogue that has been weighted to reproduce the correct galaxy colour-distributions in
KiDS (for details see Hildebrandt et al. 2017).

Thus, the ESD can be directly computed in bins of projected distance rp to the
lenses as:

∆Σgm(rp) =

∑ls w̃lsεt,sΣ
′
cr,ls∑

ls w̃ls

 1
1 + m

. (3.55)

where Σ′cr,ls ≡ 1/Σ̃−1
cr,ls and the sum is over all source-lens pairs in the distance bin, and

m =

∑
i w′imi∑

i w′i
, (3.56)

is an average correction to the ESD profile that has to be applied to correct for the mul-
tiplicative bias m in the lensfit shear estimates. The sum goes over thin redshift slices
for which m is obtained using the method presented in Fenech Conti et al. (2017),
weighted by w′ = wsD(zl, zs)/D(zs) for a given lens-source sample. The value of m is
around −0.014, independent of the scale at which it is computed. Furthermore, we
subtract the signal around random points using the random catalogues from Farrow
et al. (2015) (for details see analysis in the Appendix of Chapter 2).
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3.4.3 MEASUREMENT OF THE wP(rP) PROFILE

We compute the three-dimensional autocorrelation function of our three lens samples
using the Landy & Szalay (1993) estimator. For this we use the same random cata-
logue and procedure as described in Farrow et al. (2015), applicable to the GAMA
data. To minimise the effect of redshift-space distortions in our analysis, we project
the three dimensional autocorrelation function along the line of sight:

wp(rp) = 2
∫ Πmax=100 Mpc/h

0
ξ(rp,Π) dΠ . (3.57)

For practical reasons, the above integral is evaluated numerically. This calls for con-
sideration of our integration limits, particularly the choice of Πmax. Theoretically one
would like to integrate out to infinity in order to completely remove the effect of
redshift space distortions and to encompass the full clustering signal on large scales.
We settle for Πmax = 100 Mpc/h, in order to project the correlation function on the
separations we are interested in (with a maximum rp = 10 Mpc/h). We use the pub-
licly available code SWOT3 (Coupon et al. 2012) to compute ξ(rp,Π) and wp(rp), and
to get bootstrap estimates of the covariance matrix on small scales. The code was
tested against results from Farrow et al. (2015) using the same sample of galaxies and
updated random catalogues (internal version 0.3), reproducing the results in detail.
Randoms generated by Farrow et al. (2015) contain around 750 times more galaxies
than those in GAMA samples. Figure 3.3 shows the good agreement between the
redshift distributions of the GAMA galaxies and the random catalogues for the three
stellar mass bins.

The clustering signal wp(rp) as well as the lensing signal ∆Σgm(rp) are shown in
Figure 3.4, in the right and left panel, respectively. They are shown together with
MCMC best-fit profiles as described in Section 3.4.5, using the halo model as de-
scribed in Section 3.3. The best-fit is a single model used for all stellar masses and not
independent for the three bins we are using. In order to obtain the galaxy bias func-
tion Γgm(rp) (equation 3.49) we project the clustering signal according to the equation
(3.57). The plot of this resulting function can be seen in Figure 3.5.

3http://jeancoupon.com/swot

http://jeancoupon.com/swot
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3.4.4 COVARIANCE MATRIX ESTIMATION

Statistical error estimates on the lensing signal and projected galaxy clustering sig-
nal are obtained using an analytical covariance matrix. As shown in Chapter 2, es-
timating the covariance matrix from data can become challenging given the small
number of independent data patches in GAMA. This becomes even more challeng-
ing when one wants to include in the mixture the covariance for the projected galaxy
clustering and all the possible cross terms between the two. The analytical covari-
ance matrix we use is composed of three main parts: a Gaussian term, non-Gaussian
term and the super-sample covariance (SSC) which accounts for all the modes out-
side of our KiDSxGAMA survey window. It is based on previous work by Takada &
Jain (2009), Joachimi et al. (2008), Pielorz et al. (2010), Takada & Hu (2013), Li et al.
(2014a), Marian et al. (2015), Singh et al. (2017) and Krause & Eifler (2017), and ex-
tended to support multiple lens bins and cross terms between lensing and projected
galaxy clustering signals. The covariance matrix was tested against published results
in these individual papers, as well as against real data estimates on small scales and
mocks as used by van Uitert et al. (2018a). Further details and terms used can be
found in Appendix 3.A. We first evaluate our covariance matrix for a set of fiducial
model parameters and use this in our MCMC fit and then take the best-fit values and
re-evaluate the covariance matrix for the new best-fit halo model parameters. After
carrying out the re-fitting procedure, we find out that the updated covariance matrix
and halo model parameters do not affect the results of our fit, and thus the original
estimate of the covariance matrix is appropriate to use throughout the analysis.

3.4.5 FITTING PROCEDURE

The free parameters for our model are listed in Table 3.2, together with their fiducial
values. We use a Bayesian inference method in order to obtain full posterior prob-
abilities using a Monte Carlo Markov Chain (MCMC) technique; more specifically
we use the emcee Python package (Foreman-Mackey et al. 2013). The likelihood L is
given by

L ∝ exp
[
−

1
2

(Oi − Mi)T C−1
i j (O j − M j)

]
, (3.58)

where Oi and Mi are the measurements and model predictions in radial bin i, and
C−1

i j is the element of the inverse covariance matrix that accounts for the correlation
between radial bins i and j. In the fitting procedure we use the inverse covariance
matrix as described in Section 3.4.4 and Appendix 3.A. We use wide flat priors for
all the parameters (given in Table 3.2). The halo model (halo mass function and the
power spectrum) is evaluated at the median redshift for each sample.

We run the sampler using 120 walkers, each with 12 000 steps (for a combined
number of 14 400 000 samples), out of which we discard the first 1000 burn-in steps
(120 000 samples). The resulting MCMC chains are well converged according to the
integrated autocorrelation time test.
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Table 3.2: Summary of the lensing results obtained using MCMC halo model fit to the data.
Here M0 is the normalisation of the stellar to halo mass relation, M1 is the characteristic mass
scale of the same stellar to halo mass relation, Ac is the normalisation of the concentration-mass
relation, σc is the scatter between the stellar and halo mass, γ1 and γ2 are the low and high-mass
slopes of the stellar to halo mass relation, As is the normalisation of the concentration-mass re-
lation for satellite galaxies, αs, b0 and b1 govern the behaviour of the CSMF of satellite galaxies,
and β is the Poisson parameter. All parameters are defined in Section 3.3, using equations (3.29)
to (3.42).

log(M0/[M�/h2]) log(M1/[M�/h]) Ac σc γ1 γ2

Fiducial 9.6 11.25 1.0 0.35 3.41 0.99
Priors [7.0, 13.0] [9.0, 14.0] [0.0, 5.0] [0.05, 2.0] [0.0, 10.0] [0.0, 10.0]

Posteriors 8.75+1.62
−1.28 11.13+1.10

−1.11 1.33+0.20
−0.19 0.25+0.24

−0.18 2.16+4.43
−1.52 1.32+0.51

−0.34

As αs b0 b1 β

Fiducial 1.0 −1.34 −1.15 0.59 1.0
Priors [0.0, 5.0] [−5.0, 5.0] [−5.0, 5.0] [−5.0, 5.0] [0.0, 2.0]

Posteriors 0.24+0.30
−0.14 −1.36+0.19

−0.13 −0.71+0.34
−0.55 0.13+0.29

−0.30 1.67+0.15
−0.16

3.5 RESULTS

3.5.1 KIDS AND GAMA RESULTS

We fit the halo model as described in Section 3.4.5 to the measured projected galaxy
clustering signal wp(rp) and the galaxy-galaxy lensing signal ∆Σgm(rp), using the co-
variance matrix as described in Section 3.4.4. The resulting best fits are presented
in Figure 3.4 (together with the measurements and their respective 1σ errors ob-
tained by taking the square root of the diagonal elements of the analytical covariance
matrix). The measured halo model parameters, together with the 1σ uncertainties
are summarised in Table 3.2. Their full posterior distributions are shown in Figure
3.9. The fit of our halo model to both the galaxy-galaxy lensing signal and projected
galaxy clustering signal, using the full covariance matrix accounting for all the pos-
sible cross-correlations, has a reduced χ2

red(≡ χ2/d.o.f.) equal to 1.15, which is an ap-
propriate fit, given the 33 degrees of freedom (d.o.f.). We urge readers not to rely
on the “chi-by-eye” in Figures 3.4 and 3.5 due to highly correlated data points (the
correlations of which can be seen in Figure 3.8) and the joint fit of the halo model to
the data.

Due to the fact that we are only using samples with relatively high stellar masses,
we are unable to sample the low-mass portion of the stellar mass function, evident in
our inability to properly constrain the γ1 parameter, which describes the behaviour of
the stellar mass function at low halo mass. Mostly because of this, our results for the
HOD parameters are different compared to those obtained by van Uitert et al. (2016),
who analysed the full GAMA sample. There is also a possible difference arising due
to the available overlap of KiDS and GAMA surveys used in van Uitert et al. (2016)
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Figure 3.4: The stacked ESD profile (left panel) and projected galaxy clustering signal (right
panel) of the 3 stellar mass bins in the GAMA galaxy sample defined in Table 3.1. The solid
lines represent the best-fitting halo model as obtained using an MCMC fit, with the 68 percent
confidence interval indicated with a shaded region. Using those two measurements we obtain
the bias function Γgm(rp). We do not use the measurements in the grey band in our fit, as
the clustering measurements are affected by blending in this region. The best-fit halo model
parameters are listed in Table 3.2.

and our analysis, as van Uitert et al. (2016) used the lensing data from only 100 deg2 of
the KiDS data, released before the shear catalogues used by Hildebrandt et al. (2017)
and in Chapter 2, amongst others, became available. Our inferred HOD parameters
are also in broad agreement with the ones obtained by Cacciato et al. (2014) for a
sample of SDSS galaxies.

The main result of this work is the Γgm(rp) bias function, presented in Figure 3.5,
together with the best fit MCMC result – obtained by projecting the measured galaxy
clustering result according to equation (3.57) – and combining with the galaxy-galaxy
lensing result according to equation (3.49). The obtained Γgm(rp) bias function from
the fit is scale dependent, showing a clear transition around 2 Mpc/h, in the 1-halo
to 2-halo regime, where the function slowly transitions towards a constant value on
even larger scales, beyond the range studied here (as predicted in Cacciato et al. 2012).
Given the parameters obtained using the halo model fit to the data, the preferred
value of β is larger than unity with β = 1.67+0.15

−0.16, which indicates that the satellite
galaxies follow a super-Poissonian distribution inside their host dark matter haloes,
and are thus responsible for the deviations from constant in our Γgm(rp) bias function
at intermediate scales. Following the formulation by Cacciato et al. (2012), this also
means that the galaxy bias, as measured, is highly non-deterministic. As seen by the
predictions shown in Figure 3.1, the deviation of β from unity alone is not sufficient
to explain the full observed scale dependence of the Γgm(rp) bias function. Given the
best-fit parameter values using the MCMC fit of the halo model, the non-unity of
the mass-concentration relation normalisation As and other CSMF parameters (but
most importantly the αs parameter, which governs the power law behaviour of the
satellite CSMF) are also responsible for the total contribution to the observed scale
dependence, and thus the stochastic behaviour of the galaxy bias on all scales ob-
served.
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Figure 3.5: The Γgm(rp) bias function as measured using a combination of projected galaxy clus-
tering and galaxy-galaxy lensing signals, shown for the 3 stellar mass bins as used throughout
this paper. The solid lines represent the best-fitting halo model as obtained using an MCMC
fit to the projected galaxy clustering and galaxy-galaxy lensing signal, combined to obtain
Γgm(rp), as described in Section 3.3. The colour bands show the 68 percent confidence interval
propagated from the best-fit model. Error bars on the data are obtained by propagating the
appropriate sub-diagonals of the covariance matrix and thus do not show the correct corre-
lations between the data points and also overestimate the sample variance and super-sample
covariance contributions.
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Figure 3.6: The Γgm(rp) bias function as measured using the combination of projected galaxy
clustering and galaxy-galaxy lensing signals, shown for the 3 stellar mass bins as used through-
out this paper. The solid lines represent the same measurement repeated on the EAGLE simu-
lation, with the colour bands showing the 1σ errors. Note that those measurements are noisy
due to the fact that the EAGLE simulation box is rather small, resulting in a relatively low
number of galaxies in each bin (factor of around 26 lower, compared to the data). Due to the
box size, we can also only show the measurement to about 2 Mpc/h.
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3.5.2 INVESTIGATION OF THE POSSIBLE BIAS IN THE RESULTS

Due to the fact that we have decided to fit the model to the ∆Σgm(rp) and wp(rp) sig-
nals, we investigate how this choice might have biased our results. To check this we
repeat our analysis using the Γgm(rp) bias function directly. As our data vector we
take the ratio of the projected signals as shown in Figure 3.5 and we use the appro-
priately propagated sub-diagonals of the covariance matrix as a rough estimate of
the total covariance matrix. Such a covariance matrix does not show the correct cor-
relations between the data points (and the bins) and also overestimates the sample
variance and super-sample covariance contributions. Nevertheless the ratio of the
diagonals as an estimate of the errors is somewhat representative of the errors on the
measured Γgm(rp) bias function. The fit procedure (except for a different data vector,
covariance and output of the model) follows the method presented in Section 3.4.5.
Using this, we obtain the best-fit values that are shown in Figure 3.9, marked with
blue points and lines, together with the full posterior distributions from the initial fit.
The resulting fit has a χ2

red equal to 1.29, with 9 degrees of freedom. As the results are
consistent with the results that we obtain using a fit to the ∆Σgm(rp) and wp(rp) signals
separately, it seems that, at least for this study, the halo model as described does not
bias the overall conclusions of our analysis.

3.5.3 COMPARISON WITH EAGLE SIMULATION

In Figure 3.6 we compare our measurements of the GAMA and KiDS data to the
same measurements made using the hydrodynamical EAGLE simulation (Schaye
et al. 2015; McAlpine et al. 2016). EAGLE consists of state-of-the-art hydrodynamical
simulations, including sub-grid interaction mechanisms between stellar and galac-
tic energy sources. EAGLE is optimised such that the simulations reproduce a uni-
verse with the same stellar mass function as our own (Schaye et al. 2015). We follow
the same procedure as with the data, by separately measuring the projected galaxy
clustering signal and the galaxy-galaxy lensing signal and later combining the two
accordingly. We measure the 3D galaxy clustering using the Landy & Szalay (1993)
estimator, closely following the procedure outlined in Artale et al. (2017). We adopt
the same Πmax = 34 Mpc/h as used by Artale et al. (2017) in order to project the 3D
galaxy clustering ξ(rp,Π) to wp(rp), which represents ∼ L/2 of the EAGLE box (Artale
et al. 2017); see also equation (3.57). This limits the EAGLE measurements to a maxi-
mum scales of rp < 2 Mpc/h. As we do not require an accurate covariance matrix for
the EAGLE results (we do not fit any model to it), we adopt a Jackknife covariance es-
timator using 8 equally sized sub-volumes. The measured EAGLE projected galaxy
clustering signal is in good agreement with the GAMA measurements in detail, a
result also found in Artale et al. (2017).

To estimate the galaxy-galaxy lensing signal of galaxies in EAGLE, we use the ex-
cess surface density (i.e., lensing signal) of galaxies in EAGLE calculated by Velliscig
et al. (2017). We again select the galaxies in the three stellar mass bins, but in order to
mimic the magnitude-limited sample we have adopted in our measurements of the
galaxy-galaxy lensing signal on GAMA and KiDS, we have to weight our galaxies in
the selection according to the satellite fraction as presented in Velliscig et al. (2017).
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Figure 3.7: Distribution of satellite galaxies in a halo of fixed mass within 12.0 < log(M/M�) <
12.2 (histogram). This can be compared to a Poisson distribution with the same mean (solid
curve) and a Gaussian distribution with the same mean and standard deviation as the data
(dot-dashed curve).

Our two measurements (projected galaxy clustering and the galaxy-galaxy lens-
ing) are then combined according to the definition of the Γgm(rp) bias function, which
is shown in Figure 3.6. There we directly compare the bias function as measured
in the KiDS and GAMA data to the one obtained from the EAGLE hydrodynamical
simulation (shown with full lines). The results from EAGLE are noisy, due to the fact
that one is limited by the number of galaxies present in EAGLE.

Using the EAGLE simulations, we can directly access the properties of the satellite
galaxies residing in the main halos present in the simulation. We select a narrow
bin in halo masses of groups present in the simulation (between 12.0 and 12.2 in
log(M/M�) and count the number of subhalos (galaxies). The resulting histogram,
showing the relative abundance of satellite galaxies can be seen in Figure 3.7. We also
show the Poisson distribution with the same mean as the EAGLE data, as well as the
Gaussian distribution with the same mean and standard deviation as the distribution
of the satellite galaxies in our sample. It can be immediately seen that the distribution
of satellite galaxies at a fixed halo mass does not follow a Poisson distribution, and it
is significantly wider (thus indeed being super-Poissonian).
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The comparison nevertheless shows that the galaxy bias is intrinsically scale de-
pendent and the shape of it suggests that it can be attributed to the non-Poissonian
behaviour of satellite galaxies (and to lesser extent also to the precise distribution of
satellites in the dark matter halo, governed by αs and As in the halo model).

3.6 DISCUSSION AND CONCLUSIONS

We have measured the projected galaxy clustering signal and galaxy-galaxy lensing
signal for a sample of GAMA galaxies as a function of their stellar mass. In this anal-
ysis, we use the KiDS data covering 180 deg2 of the sky (Hildebrandt et al. 2017), that
fully overlaps with the three equatorial patches from the GAMA survey that we use
to determine three stellar mass selected lens galaxy samples. We have combined our
results to obtain the Γgm(rp) bias function in order to unveil the hidden factors and
origin of galaxy biasing in light of halo occupation models and the halo model, as
presented in the theoretical work of Cacciato et al. (2012). We have used that formal-
ism to fit to the data to constrain the parameters that contribute to the observed scale
dependence of the galaxy bias, and see which parameters exactly carry information
about the stochasticity and non-linearity of the galaxy bias, as observed. Due to the
limited area covered by the both surveys, the covariance matrix used in this analy-
sis was estimated using an analytical prescription, for which details can be found in
Appendix 3.A.

Our results show a clear trend that galaxy bias cannot be simply treated with
a linear and/or deterministic approach. We find that the galaxy bias is inherently
stochastic and non-linear due to the fact that satellite galaxies do not strictly follow
a Poissonian distribution and that the spatial distribution of satellite galaxies also
does not follow the NFW profile of the host dark matter halo. The main origin of
the non-linearity of galaxy bias can be attributed to the fact that the central galaxy
itself is heavily biased with respect to the dark matter halo in which it is residing.
Those findings give additional support for the predictions presented by Cacciato et al.
(2012), as their conclusions, based only on some fiducial model, are in line with our
finding for a real subset of galaxies. We observe the same trends in the cosmological
hydrodynamical simulation EAGLE, albeit out to smaller scales. We have also shown
that the Γgm(rp) bias function can, by itself, measure the properties of galaxy bias that
would otherwise require the full knowledge of the bg(rp) and Rgm(rp) bias functions.

Our results are also in a broad agreement with recent findings of Gruen et al.
(2018); Friedrich et al. (2018), who used the density split statistics to measure the cos-
mological parameters in SDSS (Rozo et al. 2015) and DES (Drlica-Wagner et al. 2018)
data, and as a byproduct, also the b and r functions directly (at angular scales around
20 arcmin, which correspond to 3.5 − 7 Mpc/h at redshifts of 0.2 − 4.5). They find
that the SDSS and DES data strongly prefer a stochastic bias with super-Poissonian
behaviour. To obtain an independent measurement of galaxy bias and to further con-
firm our results we could use this method on our selection of galaxies, as well as the
reconstruction method of Simon & Hilbert (2017). This work is, however, out of the
scope of this paper.
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Our findings show a remarkable wealth of information that halo occupation mod-
els are carrying in regard of understanding the nature of galaxy bias and its influence
on cosmological analyses using the combination of galaxy-galaxy lensing and galaxy
clustering. These results also show that the theoretical framework, as presented by
Cacciato et al. (2012), is able to translate the constraints on galaxy biasing into con-
straints on galaxy formation and measurements of cosmological parameters. As an
extension of this work, we could fold in the cosmic shear measurements of the same
sample of galaxies, and thus constrain the galaxy bias and the sources of non-linearity
and stochasticity further. This would allow a direct measurement of all three bias
functions [Γgm(rp), bg(rp) and Rgm(rp)], which could then be used directly in cosmo-
logical analyses. On the other hand, for a more detailed study of the HOD beyond
those parameters that influence the galaxy bias, we could include the stellar mass (or
luminosity) function in the joint fit. We leave such exercises open for future studies.
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Figure 3.8: The full analytical correlation matrix for the lensing and clustering signals and their
cross terms. Individual combinations between all the bins are marked above the corresponding
block matrices, with indices 1,2 and 3 corresponding to the stellar mass bins as defined in Table
3.1. We do not use the covariance estimates in the hatched areas in our fit, as the clustering
measurements are affected by the blending on these scales.

3.B FULL POSTERIOR DISTRIBUTIONS

In Figure 3.9 we show the full posterior probability distribution for all fitted parame-
ters in our MCMC fit as discussed in Section 3.4.
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Figure 3.9: The full posterior distributions of the halo model parameters (where the priors are
listed in Table 3.2). The contours indicate 1σ and 2σ confidence regions.
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3.C RELATION BETWEEN THE LENSING SIGNAL AND THE

GALAXY-MATTER CROSS-CORRELATION FUNCTION

In this appendix, we provide a step-by-step derivation of the relation between the
galaxy-galaxy lensing signal and the galaxy-matter cross-correlation function. As a
side-product, we motivate the two different definitions of the critical surface mass
density that are used in this field. Finally, we compare our results with those in some
recent papers, pointing out differences, and discussing their implications. Since the
results of this appendix apply to several papers, we choose to use a slightly more
explicit notation here in comparison to the rest of this paper.

3.C.1 DERIVATION

The equivalent weak lensing convergence κ for a three-dimensional mass distribution
characterized by the fractional density contrast δ, for sources at comoving distance χs,
is given by (e.g., Bartelmann & Schneider 2001; Schneider 2006)

κ(θ) =
3H2

0Ωm

2c2

∫ χs

0
dχ

χ (χs − χ)
χs a(χ)

δ(χθ, χ) = ρm
4πG
c2

∫ χs

0
dχ

χ (χs − χ)
χs a(χ)

δ(χθ, χ) , (3.81)

where we assumed for notational simplicity a spatially flat cosmological model.
Here, ρm is the current mean matter density in the Universe, and we used the re-
lation between mass density and density parameter in the second step, i.e., ρm =

3H2
0Ωm/(8πG). The relation (3.81) is valid in the framework of the Born approxima-

tion and by neglecting lens-lens coupling (see, e.g. Hilbert et al. 2009; Krause & Hirata
2010, for the impact of these effects).

Let δg be the three-dimensional fractional density contrast of galaxies of a given
type. Their fractional density contrast on the sky, κg(θ) = [n(θ)− n]/n, with n being the
mean number density, is related to δg by

κg(θ) =

∫
dχ pf(χ) δg(χθ, χ) , (3.82)

where pf(χ) is the probability distribution of the selected ‘foreground’ galaxy popu-
lation in comoving distance, equivalent to a redshift probability distribution. For the
following we will assume that this distribution is a very narrow one around redshift
zl, and thus approximate pf(χ) = δD(χ − χl). We assume throughout that χl < χs. The
correlator between κ and κg then becomes

〈
κg(θ) κ(θ + ϑ)

〉
= ρm

4πG
c2

∫ χs

0
dχ

χ (χs − χ)
χs a(χ)

∫
dχ′ δD(χ′ − χl)

〈
δg

(
χ′θ, χ′

)
δ
[
χ
(
θ + ϑ

)
, χ

]〉
= ρm

4πG
c2

∫ χs

0
dχ

χ (χs − χ)
χs a(χ)

〈
δg (χlθ, χl) δ

[
χ
(
θ + ϑ

)
, χ

]〉
. (3.83)
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Since the correlator is significantly non-zero only over a small interval in χ around
χl, the prefactor in the integrand can be considered to be constant over this interval
and taken out of the integral. This yields〈

κg(θ) κ(θ + ϑ)
〉

=
4πG
c2

χl (χs − χl)
χs a(χl)

ρm

∫ χs

0
dχ ξgm

(√
χ2

l |ϑ|
2 + (χ − χl)2

)
= Σ−1

cr,com Σcom(χl|θ|) , (3.84)

where the galaxy-matter cross-correlation function ξgm (at fixed redshift zl) is defined
through 〈

δ(x) δg(x + y)
〉

= ξgm(|y|) , (3.85)

in which x and y are comoving spatial vectors, and the sole dependence on |y| is due
to the assumed homogeneity and isotropy of the density fields in the Universe. Fur-
thermore, we have defined the comoving critical surface mass density Σcr,com through

Σ−1
cr,com =

4πG
c2

χl (χs − χl)
χs a(χl)

H(χs − χl) , (3.86)

with H(x) being the Heaviside unit step function,4 and the comoving surface mass
density as

Σcom(Rcom) = ρm

∫ χs

0
dχ ξgm

(√
R2

com + (χ − χl)2

)
, (3.87)

as a function of the comoving projected separation Rcom. In this paper, Σcr,com is termed
Σcrit – see equation (3.50), and Rcom and Σcom are called rp and Σgm – see equation (3.43).

The interpretation of equation (3.84) is then that ρmξgm is the average comoving
overdensity of matter around galaxies, caused by the correlation between them, and
that the integral over comoving distance then yields the comoving surface mass den-
sity of this excess matter. The corresponding convergence is then obtained by scaling
with the comoving critical surface mass density Σcr,com.

There is another form in which equation (3.84) can be written by rearranging fac-
tors of a(χl), namely〈

κg(θ) κ(θ + ϑ)
〉

=
4πG
c2

χl (χs − χl) a(χl)
χs

ρm a−2(χl)
∫ χs

0
dχ ξgm

(√
χ2

l |ϑ|
2 + (χ − χl)2

)
=: Σ−1

cr Σ(χl|θ|) , (3.88)

where we defined the (proper) critical surface mass density Σcr through

Σ−1
cr =

4πG
c2

χl (χs − χl) a(χl)
χs

H(χs − χd) =
4πG
c2

DlDls

Ds
, (3.89)

4The corresponding expression for a general curvature parameter reads

Σ−1
cr,com =

4πG
c2

fK (χl) fK (χs − χl)
fK (χs) a(χl)

H(χs − χl) ,

where fK (χ) is the comoving angular-diameter distance to a comoving distance χ, and either the identity
for spatially flat models, or a sin or sinh function for closed or open models, respectively.
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and in the last step we introduced the angular-diameter distances Dl = D(0, zl),
Ds = D(0, zs) and Dds = D(zl, zs), with D(z1, z2) = a(z2)

[
χ(z2) − χ(z1)

]
H(z2 − z1) being

the angular-diameter distance of a source at redshift z2 as seen from an observer at
redshift z1.5 Furthermore,

Σ(Rcom) = ρm(χl)
∫ χs

0
dχ a(χ) ξgm

(√
R2

com + (χ − χl)2

)
. (3.90)

We note that, due to the assumed localized nature of the correlation function, we
could write a(χ) into the integrand in equation (3.90). The interpretation of equation
(3.88) is now that the (proper) overdensity around galaxies caused by the galaxy-
matter cross-correlation, ρm(χl)ξgm = ρm(1 + zl)3ξgm, is integrated along the l.o.s. in
proper coordinates, drprop = a dχ, and the resulting (proper) surface mass density
is scaled by the critical surface mass density Σcr. We note that the argument of the
(proper) surface mass density Σ is a comoving transverse separation, since the corre-
lation function is a function of comoving separation.

The relation between the two different equations (3.86) and (3.89) of the critical
surface mass density is

Σcr,com = a2(χl) Σcr , (3.91)

so that the comoving critical surface density is smaller by a factor a2(χl). This makes
sense: for a given lens, the comoving surface mass density (mass per unit comoving
area) is smaller than the proper surface mass density,

Σcom(Rcom) = a2(χl) Σ(Rcom) , (3.92)

since the comoving area is larger than the proper one by a factor a−2. Correspond-
ingly, since the convergence, or the correlation function in equation (3.84), is indepen-
dent of whether proper or comoving measures are used, the comoving critical surface
mass density is smaller by the same factor.

If N lensing galaxies at redshift zl are located at positions θi within a solid angle ω,
the corresponding fractional number density contrast reads

κg(θ) =
1
n

N∑
i=1

δD(θ − θi) − 1 , (3.93)

where for large N and ω, n = N/ω. To evaluate the correlator of equation (3.83) in
this case, we replace the ensemble average with an angular average, as is necessarily
done in any practical estimation,

〈
κg(θ) κ(θ + ϑ)

〉
≈

1
ω

∫
ω

d2θ κg(θ) κ(θ + ϑ) =
1
ω

∫
ω

d2θ

1
n

N∑
i=1

δD(θ − θi)

 κ(θ + ϑ) =
1
N

N∑
i=1

κ(θi + ϑ) ,

(3.94)
valid for separations ϑ which are much smaller than the linear angular extent

√
ω of

the region (to neglect boundary effects), and we employed the fact that the ensemble

5For a model with free curvature, D(z1, z2) = a(z2)
{
fK

[
χ(z2) − χ(z1)

]}
H(z2 − z1).
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average – and in the same approximation as above, the angular average – of κ(ϑ)
vanishes. We thus see that the correlator

〈
κgκ

〉
can be obtained from the average

convergence around the foreground galaxies, a quantity probed by the shear. Thus
we find the relations

γt(θ) = Σ−1
cr ∆Σ(χlθ) = Σ−1

cr,com ∆Σcom(χlθ) , (3.95)

where

∆Σ(Rcom) =
2

R2
com

∫ Rcom

0
dR R Σ(R) − Σ(Rcom) , (3.96)

and the analogous definition for ∆Σcom.
A further subtlety and potential source of confusion is that frequently, the surface

mass density Σ is considered a function of proper transverse separation R = a(χl)Rcom.
For the purpose of this appendix, we call this function Σp, which is related to Σ by

Σp(R) = Σ[R/a(χl)] , or Σ(Rcom) = Σp[a(χl)Rcom] , (3.97)

yielding
γt(θ) = Σ−1

cr ∆Σ(χlθ) = Σ−1
cr ∆Σp(Dlθ) . (3.98)

We argue that the definition used should depend on the science case. For example,
when considering the mean density profile of galaxies, it is more reasonable to use
proper transverse separations – as that density profile is expected to be approximately
stationary in proper coordinates. For larger-scale correlations between galaxies and
matter, however, the use of comoving transverse separations is more meaningful,
since the shape of the cross-correlation function on large scales is expected to be ap-
proximately preserved.

3.C.2 RELATION TO PREVIOUS WORK

In the literature on galaxy-galaxy lensing, one finds relations that differ from the ones
derived above; we shall comment on some of these differences here.

The first aspect is that in several papers (e.g. Mandelbaum et al. 2010; Viola et al.
2015; de la Torre et al. 2017), the integrand in equation (3.84) is replaced by 1+ξgm, im-
plying that the corresponding Σcom contains the line-of-sight integrated mean density
of the Universe, in addition to the correlated density. This constant term is, how-
ever, not justified by the derivation in Appendix 3.C.1. While such a constant drops
out in the definition of ∆Σcom, and thus does not impact on quantitative results, it
nevertheless causes a principal flaw: its inclusion would imply that the convergence
κ = Σ−1

cr,comΣcom for all lines-of-sight to redshifts zs ∼ 1 would be several tenths, caus-
ing a large difference between shear and reduced shear [g = γ/(1 + κ)], which is the
observable in weak lensing. That is, it would strongly modify the relation between γ
and the observable image ellipticities, yielding significant biases in all weak lensing
studies. Indeed, the mean density of the Universe is already taken into account by
the Robertson–Walker metric: the fact that the angular-diameter distance is a non-
monotonic function of redshift can be considered as being due to the gravitational
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light deflection by the mean mass density of the Universe – the convergence part
in the optical tidal equation (see, e.g. Seitz et al. 1994). Howewer, this is usually not
called ‘lensing’, but ‘curvature of the metric’. Lensing is usually ascribed solely to the
effect caused by density inhomogeneities. But in any case: the mean cosmic density
can not be accounted for twice, once for the metric [and thus the use of (comoving)
angular-diameter distances in a FRW model], and a second time for the convergence
on such a background model.

A second issue in some of the recent GGL papers is mixing the use of the comov-
ing surface mass density, Σcom (equation 3.87), with the proper critical surface mass
density, Σcr (equation 3.89). For example, de la Torre et al. (2017) in their equation (18)
(apart from the constant term discussed above) define Σcom as in equation (3.89), but
use in their equations (9) and (10) the proper critical surface mass density Σcr to relate
the tangential shear to Σcom. Hence, this relation would cause an offset by a factor
(1 + zl)2 from the correct result. However, the inconsistency appears only in the text
of the paper and not in the code or calculations performed (de la Torre 2018, private
communication).

The same issue occurs in the write-up in several earlier publications of our KiDS
team. For example, the equations (2,5,6) in Viola et al. (2015) show this inconsistency
(where we also point out a typo in the integration limits of equation 2), as well as
equations (1,2,3) in van Uitert et al. (2016) and, as mentioned already in the main
text, equations (1,2,3) in Chapter 2. We have checked the codes that were used to
derive the quantitative results in these papers to see whether they employ the same
inconsistent use of quantities. We found that there is an inconsistency present only
in writing, namely in equation (2) of Viola et al. (2015) and not in the code that was
used to produce the results. As pointed out above the correlation function is given
in comoving coordinates, while the extraction of the galaxy-galaxy lensing signal is
calculated in proper coordinates. Thus, the equation (2) of Viola et al. (2015) should
correctly read as (using their notation):

Σ(R) = 2ρm (1 + 〈zl〉)2
∫ πs

0
ξgm(

√
R2 + Π2)dΠ . (3.99)

Put differently, while the data were indeed extracted in proper coordinates, the out-
puts of the halo model were not reported to be scaled to the coordinates used by the
data (Cacciato 2016, private communication). Secondly, the equations (6) and (9) in
Chapter 2 should have the same form as equation (3.50) and (3.54) in this paper, again
having a mistake only in writing. The exact same correction should also be applied
to the equation (3) of Velliscig et al. (2017).

The erroneous formulation also occurred in a previous paper from van Uitert et al.
(2016). Their equation (2), should read correctly as equation (3.50), which is (again,
using their notation):

Σcrit =
c2

4πG(1 + z)2

DS

DLDLS
. (3.100)
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Further KiDS analyses from Amon et al. (2018a) and Amon et al. (2018b) measure
large-scale galaxy-mass correlations using the comoving critical surface mass density.
The definitions, presented in these two papers are consistent with the data and the
equations derived in Appendix 3.C.1.

On the other hand, the KiDS analyses from Sifón et al. (2015), Brouwer et al. (2016)
and Brouwer et al. (2017) use a separate NFW stacking method that does not rely on
the halo model, and all use proper coordinates that are consistent with the data.
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