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1
Introduction

1.1 OUR VIEW OF THE UNIVERSE

H
UMANS have always wondered about the origin and history of the Universe.
For millennia we have thought that the Earth is in the centre of the Universe
– a fact that was further ingrained in our minds due to Claudius Ptolemy.

This world view started to change around 500 years ago with the works of Nicolaus
Copernicus and Galileo Galilei who showed that actually, it was the Earth that moved
around the Sun, together with the other planets, thus giving rise to the heliocentric
system. With the publication of Isaac Newton’s Principia Mathematica in 1687 the
motion of the planets could be explained by gravitational interaction between them.
Later on, it also became clear that the Sun is just one of many stars in the sky, all of
which constitute the Galaxy. The beginning of the 20th century brought us images
and studies of other faint objects in the sky, called nebulae. Nowadays, we know that
these nebulae imaged by Hubble (1926) are galaxies in their own right, much like our
own Milky Way. With the same nebulae, Lemaître (1927) and Hubble (1929) figured
out that they are moving faster away from us, the further away they are. This again
changed our perspective of the Universe: it is expanding and it is not static as it was
thought before. If the Universe was to be expanding, that also means it had to have
a start. The term for this point in time was coined – the Big Bang. The theory of
the Big Bang is nowadays well established observationally (even though it still has
problems in certain theoretical aspects) and we know to a great precision when the
Universe began: 13.8 billion years ago, thanks to the recent observations of the cosmic
microwave background by WMAP (Hinshaw et al. 2013) and Planck (Planck Collab-
oration et al. 2018) satellites. Another shift in understanding the Universe began to
happen around the same time as the expansion of the Universe was first measured.
In 1933 Fritz Zwicky realised that the mass resulting from the sum of the masses of
individual galaxies in the Coma cluster was not sufficient to explain the mass of the
cluster inferred from a dynamical study of these galaxies (Zwicky 1933). Later on,
Vera Rubin (amongst others, for a review and timeline see Bertone & Hooper 2018)
found that the visible light in galaxies could not explain the high stellar velocities
(Rubin et al. 1980). Both studies provided evidence for the presence of invisible mass
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2 Chapter 1. Introduction

(nowadays we use the term dark matter) or an incomplete understanding of gravity
on those scales. Later on, evidence for dark energy began to emerge, most clearly in
the expansion rate of distant galaxies as measured from Supernovae. If the Universe
is composed only of matter (be it visible or dark), then this will cause the recession
velocities of the galaxies to be slowed down, due to the attractive effect of gravity.
It came as a surprise when two teams (Riess et al. 1998; Perlmutter et al. 1999), who
looked at the fluxes and distances to the type Ia Supernovae, found that they are
in fact accelerating. The observed acceleration might be caused by the cosmological
constant or more generally the dark energy, an unknown energy component of the
Universe. All these discoveries contributed to the emergence of a concordance model
of the Universe that can successfully explain all the observed astrophysical phenom-
ena and can provide accurate theoretical predictions. This model is called ΛCDM, re-
flecting the dominating contents of the Universe: Λ – the cosmological constant, one
possible origin of dark energy, and CDM – cold dark matter, contributing to around
70% and 30% of the Universe energy budget, respectively.

In this thesis, the research focuses on the properties of dark matter and dark mat-
ter haloes and how they connect with the galaxies we can observe in the Universe.
Because of the still unknown nature of dark matter, we tend to study it using the
properties of its distribution and its properties on galactic scales and beyond. The
galaxy–dark matter connection is important for three main reasons, and understand-
ing it helps with answering the largest questions in astrophysics and cosmology to-
day. First question includes the understanding of the physics of galaxy formation.
Secondly, the inference of cosmological parameters – if we want to robustly measure
the cosmological parameters, we have to understand, how the galaxies interplay with
the dark matter, and thirdly, the inference of evolution of matter distribution and
properties of dark matter (Wechsler & Tinker 2018).

In the standard cold dark matter and cosmological constant dominated (ΛCDM)
cosmological framework, structure formation in the Universe is mainly driven by
the dynamics of cold dark matter. The gravitational collapse of dark matter density
fluctuations and their subsequent virialization leads to the formation of dark matter
haloes from the highest density peaks in the initial Gaussian random density field. It
is widely accepted that every galaxy resides in a parent dark matter halo. The galax-
ies that reside in the bottom of the dark matter halo’s potential well are referred to
as central galaxies and galaxies that are orbiting the central galaxy within the halo
are referred to as satellite galaxies. The exact way galaxies populate the dark matter
haloes is still a topic of active research to which this thesis contributed some insights.
Generally, the connection between the population of galaxies and the population of
dark matter haloes is modelled statistically using an extended Press-Schechter for-
malism (Press & Schechter 1974). This formalism postulates that massive galaxies
form in the highest density peaks of the underlying dark matter distribution and that
the connection can be linked with a quantity called galaxy bias. While this formal-
ism predicts the correct number of haloes as a function of mass and also predicts the
clustering of galaxies we observe to high accuracy, it has some shortcomings. More
explicitly, the galaxy bias itself can have non-trivial mass and scale dependence and
is generally accepted to not be linear or deterministic. Moreover, the assembly his-
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Figure 1.1: Left panel: a slice of a cosmological simulation showing the dark matter distribution.
Right panel: The distribution of galaxies in the same simulation. The dark matter–galaxy con-
nection tries to describe and study the details of dark matter distribution using the statistical
properties of galaxies. Picture credit: Wechsler & Tinker (2018).

tory of dark matter haloes will leave signatures in the observed distributions that will
no longer agree with the theoretical predictions. The assembly history, and mecha-
nisms of satellite mass stripping and mergers also leave us with different properties
of the dark matter connection for central and satellite galaxies. Because of all this,
a large variety of different models exist all building on the statistical postulates of
Press-Schechter formalism. Figure 1.1 shows a sketch of the galaxy–dark matter con-
nection.

A popular and successful way to describe the galaxy–dark matter connection is
through the halo occupation distributions (HOD), which specify the probability dis-
tributions for the number of galaxies with a certain property (luminosity or stellar
mass) in a halo, given as a function of halo mass. The halo occupation distributions
are quantified separately for the central galaxies and the satellite galaxies, due to
their fundamental observational differences. Under these assumptions, the standard
HOD is thus fully characterised by its mean occupation number of galaxies residing
in a halo of a mass M. In principle, the HOD can be a function of properties other
than halo mass, which can help us link the galaxies with the assembly history of dark
matter haloes (Wechsler & Tinker 2018).

The HOD models can be further extended to better resemble galaxy observations
and populations. The conditional luminosity (CLF) and conditional stellar mass func-
tions (CSMF) describe the full distribution of galaxy stellar masses and luminosities
as a function of the halo mass. They are, as well, usually separated into contributions
from central galaxies and satellite galaxies and can be directly measured on a sample
of galaxy groups and clusters (van den Bosch et al. 2013; Cacciato et al. 2013).

Both the CLF and the HOD models specify the number of galaxies per halo and
the model predictions can be made in two ways. Most straightforwardly, one can
populate the dark matter halos from an N-body simulation using a Monte Carlo ap-
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proach and then measure the properties of galaxies from the assembled catalogue.
Alternatively, both CLF and HOD can also be combined with an analytic halo model
to predict the observables in a semi-analytic way (Seljak 2000; Cooray & Sheth 2002).
The halo model approach assumes that all the matter in the Universe is in halos that
can be thought of as gravitationally bound objects of matter that have decoupled from
the expansion of the Universe and spherically collapsed, with mass M contained in
a radius where the mean density is 200 times larger than the mean density of the
Universe. The abundance of the dark matter haloes can then be characterised by the
halo mass function, which yields the number of haloes given a mass M. If we take
the results from the N-body simulations where it was found that the density profile
follows a universal mass function (Navarro et al. 1997) and combine them with the
halo mass function and the initial matter power spectrum, as well as the HOD/CLF
models, we are able to predict a plethora of observables, through which we can then
study the galaxy–dark matter connection in greater detail.

Under the assumption that the galaxy and the dark matter halo properties are
closely connected, the most constraining observational measurement for any model
is the abundance of galaxies. The model of the galaxy–dark matter connection, given
the cosmological model, should be able to predict the abundance of galaxies as a
function of their stellar mass or luminosity. Even though this observational property
is the most constraining, it does not account for all the properties of the galaxy–dark
matter connection and can lead to wrong interpretations. To overcome this, one can
also use other probes (together with the galaxy abundance) to get a better perspec-
tive of the galaxy–dark matter connection. The next measurement one can make
use of is the two-point galaxy clustering. As the abundance of dark matter haloes
is strongly connected with their clustering properties, the stellar to halo mass rela-
tion will also predict the clustering properties of the galaxies residing in those haloes.
The two-point galaxy clustering together with the galaxy abundance will thus fully
characterise any model one wants to use to describe the connection between the dark
matter and galaxies, and thus learn about the nature of dark matter.

With the halo model, one can also obtain predictions for the cross-correlation be-
tween galaxies and dark matter (the two-point galaxy clustering describes the cor-
relation between the galaxies). The halo model predicts the galaxy-mass correlation
function ξgm, related to the excess surface mass density ∆Σ, which to the first order
measures the projected dark matter halo profiles, that can in turn be directly mea-
sured using galaxy-galaxy lensing. Galaxy-galaxy lensing is the measurement of the
gravitational lensing effect around single galaxies and the strength of it is directly
proportional to the mass of the dark matter haloes around those galaxies. We will fur-
ther discuss the gravitational lensing in the next Section. The galaxy-galaxy lensing
signal is in most cases quite complicated to interpret as central and satellite galaxies
reside in completely different haloes, thus a full model of the galaxy–dark matter con-
nection is needed. Nevertheless, the galaxy-galaxy lensing measurements provide a
complementary view to the measurements of abundances and two-point clustering
of galaxies. Most importantly, they directly provide the mass estimates of the dark
matter haloes and are also used to break the remaining degeneracies in the model,
namely the galaxy bias.
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1.2 GRAVITATIONAL LENSING

Einstein’s hundred year old theory of General Relativity (Einstein 1916) describes
gravity as a curvature of space-time around a massive object. As light travels along
a straight path through flat space-time, whenever it passes through a curved space-
time the path of a light ray will change. This means, that the light traveling from
distant parts of the Universe, can be affected by the distribution of mass on its way.
The relativistic description can be simplified to form a theory that can be completely
developed in the the Newtonian framework. Because the effect is analogous to optical
lensing, this effect is known as gravitational lensing.

Gravitational lensing can be used to probe the matter distribution of massive ob-
jects in the Universe. In the following few paragraphs we will follow the derivation
of Bartelmann & Schneider (2001), a standard text known to everyone who studies
the gravitational lensing, presenting the basics of this theory.

Figure 1.2 shows us a typical lensing system configuration. A point mass is posi-
tioned at angular diameter distance DL (or redshift zL), which deflects light coming
from a source at distance DS . Angular diameter distance is defined as D = x/θ, where
x is the physical size of the object and θ the angular size as viewed from Earth. The
distance DL is usually obtained from redshifts measured using galaxy spectra but DS

is obtained as an average over photometric redshift (photo-z) distances. The first ap-
proximation that we take into consideration here is that the size of the lensing object
is very small compared to the distances DS , DL and DLS . We can then speak about a
thin lens approximation, which gives us a description of the system quite similar to
geometrical optics. The apparent position of the image of the source object on the sky
can thus be described by the deflection angle ~̂α. Using this, we can write down the
lens equation:

~β = ~θ −
DLS

DS
~̂α ≡ ~θ − ~α , (1.1)

where ~θ is an apparent direction of ray’s arrival and α̂ is the scaled deflection an-
gle. The scaled deflection angle depends on the mass M of the lensing object and
the impact vector ~ξ of the light ray. At linear order (when ξ is large compared to
Schwarzschild radius Rs = 2GM/c2), we can write the deflection angle as:

~α =
4GM
c2ξ

, (1.2)

where G is the gravitational constant and c the speed of light. If one has an extended
lens, more appropriate for the case of galaxies, the deflection angle can be written as:

~̂α =
4G
c2

∫
d2ξ′

∫
dr′3 ρ(ξ′1, ξ

′
2, r
′
3)

~ξ − ~ξ′

|~ξ − ~ξ′|2
, (1.3)

where (ξ1, ξ2, r3) describes a trajectory in space. Since the last factor in Equation 1.3
is independent of r′3, the integration can be carried out by defining the surface mass
density:

Σ(~ξ) =

∫
dr3 ρ(ξ1, ξ2, r3) , (1.4)
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Observer

Lens plane

Source plane

θ

β

ξ

α^

η

D
LS

D
L

D
S

Figure 1.2: Sketch of a typical gravitational lens system. A light ray travels along from the
source plane at the original angle β and is deflected at the lens plane by the angle α̂. All the
distances, denoted Di are angular diameter distances. Figure from Bartelmann & Schneider
(2001).

which is the mass density projected onto a plane perpendicular to the incoming light
ray.

After that, the deflection angle becomes:

~̂α =
4G
c2

∫
d2ξ′ Σ(~ξ)

~ξ − ~ξ′

|~ξ − ~ξ′|2
, (1.5)

where ~ξ = DL~θ. To quantify the strength of the deflection, one typically defines the
dimensionless surface mass density, κ(~θ), as:

κ(~θ) ≡
Σ(DL~θ)

Σcr
, (1.6)

where

Σcr ≡
c2

4πG
DS

DLDLS
. (1.7)
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Σcr is called the critical surface density and also discriminates between the two dif-
ferent lensing regimes – strong and weak. The weak lensing regime is defined as the
region where Σ � Σcr and the converse is true for the strong lensing regime – the
strong lensing regime causes the source galaxies to be heavily distorted into arcs and
rings, causing multiple images of the same object. Using these definitions we can
finally write our scaled deflection angle as:

~α(~θ) =
1
π

∫ 2

R
d2θ′ κ(~θ′)

~θ − ~θ′

|~θ − ~θ′|2
. (1.8)

This also suggests that we can write the deflection angle as a gradient of the deflection
potential α = ∇Ψ, where Ψ is given the following form:

Ψ(~θ) =
1
π

∫
R2

d2θ′ κ(~θ′) ln(|~θ − ~θ′|) , (1.9)

and also satisfies the Poisson equation κ(~θ) = 1
2∇

2Ψ(~θ). The surface brightness of a
lensed object f obs(~θ) can be related to the surface brightness of the unlensed object
f s(~θ) by the following mapping:

f obs(~θ) = f s(A~θ) . (1.10)

The distortion matrixA can be written as:

A =

[
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

]
, (1.11)

where we introduced the complex shear γ ≡ γ1 + iγ2, which is related to the deflection
potential through

γ1 =
1
2

∂2Ψ

∂x2
1

−
∂2Ψ

∂x2
2

 and γ2 =
∂2Ψ

∂x1∂x2
. (1.12)

The observed effect of gravitational lensing on an image of a background galaxy
is to magnify and tidally stretch the original shape. The tidal stretching of the images
is directly proportional to the amount of mass present between such a galaxy and us
as observers and it can be used to measure the masses of dark matter haloes using
the galaxy-galaxy lensing (e.g. Leauthaud et al. 2011; van Uitert et al. 2011; Velander
et al. 2014; Cacciato et al. 2014; Viola et al. 2015). Gravitational lensing can also be
used to study the nature of the Universe with the lensing by the large scale structure
itself, called cosmic shear (Bartelmann & Schneider 2001; Hildebrandt et al. 2017).

If we want to measure the galaxy-galaxy lensing signal and thus the mass es-
timates of the dark matter haloes, we can use the azimuthally averaged tangential
shear. For any mass distribution, it measures the contrast in surface density

〈γT 〉(R) =
Σ(< R) − Σ(R)

Σcr
=

∆Σ(R)
Σcr

, (1.13)
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where we have defined the excess surface density ∆Σ(R), where R is the 2D projected
radius with tangential shear defined as

γT = −[γ1 cos(2φ) + γ2 sin(2φ)] . (1.14)

Here φ is the azimuthal angle around the lens.
Excess surface density can also be computed from the halo model as:

∆Σ(R) =
2

R2

∫ R

0
Σ(R′) R′dR′ − Σ(R), (1.15)

where the Σ(R) is the projected surface density, which is by definition related to
galaxy-matter correlation function, ξgm, projected along the line of sight. In the dis-
tant observer approximation it takes the form of an Abel transform:

Σ(R) = ρm

∫ Rmax

R
ξgm(r)

r dr
√

r2 − R2
. (1.16)

1.3 THE HALO MODEL

In a hierarchical cosmological structure formation formalism, the dark matter parti-
cles are expected to reside in dark matter haloes. This suggests that the dark matter
distribution can be described in the terms of its halo building blocks: on small scales,
the density field is related to the density distribution of individual halos and on large
scales, it reflects the spatial distribution of halos. Furthermore, those haloes can be
observationally linked to the galaxies that reside in their centres.

To describe the clustered structure and matter distribution in the Universe, one
can use the linear theory of structure formation, which describes the terms we will
use in the description of the halo model. Let us consider a part of the Universe with
a mean density ρ. At any position x, we can calculate a local density ρ(x), which, in
general, may be different than the mean density of the Universe. Using these two
quantities, we can build a density contrast (fluctuation) field as:

δm(x) =
ρ(x) − ρ

ρ
. (1.17)

Under gravity a local overdensity will grow (in linear theory) and attract more and
more matter, thus forming massive structures in the Universe. The second moment
of the density contrast field can be written as:

ξmm(x) = 〈δm(r) δm(r + x)〉, (1.18)

where we have in this way defined a two-point correlation function ξmm(x).
If we consider those fluctuations as superpositions of plane waves, they can be

expressed in Fourier space as:

δm(x) =
1

(2π)3

∫
δk e−ik·xd3k, (1.19)
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where δk denotes the density waves and k is the wave vector, related to wavelength
by λ = 2π/|k|.

To quantify the amount of structure at each scale k (k = |k|), one usually defines
a quantity called matter power spectrum. It is defined as the average of the squared
Fourier transform of the density contrast δk over the same waves with scale k:

Pmm(k) ≡ 〈|δk|
2〉k. (1.20)

The power spectrum is directly related to the two-point correlation function ξmm(x)
as:

ξmm(x) =
1

(2π)3

∫
Pmm(k, z) e−ik·x d3k. (1.21)

One can also write a similar density contrast for the population of galaxies using
their number density, which can then be used to estimate the galaxy-galaxy two-
point correlation function ξgg(x), which describes the clustering properties of galaxies,
similarly to how the ξmm(x) describes the clustering properties of all the matter. This
also allows one to study the cross-correlation between the matter and galaxies, simply
by considering the ξgm(x) two-point function. The latter will describe the distribution
of matter around galaxies and can be measured using galaxy-galaxy lensing.

The halo model is built upon the statistical description of the properties of dark
matter haloes (namely the average density profile, large scale bias and abundance) as
well as on the statistical description of the galaxies residing in them. We assume that
dark matter haloes are spherically symmetric, on average, and have density profiles

ρ(r|M) = M uh(r|M) , (1.22)

that depends only on their mass M1, and uh(r|M) is the normalised density profile
of a dark matter halo. The functional form of the power spectrum using the halo
model assumption and accounting for all the possible correlations between dark mat-
ter haloes and galaxies residing in them (for detailed derivations one can consult
Seljak 2000; Cooray & Sheth 2002; Mo et al. 2010; van den Bosch et al. 2013), can be
summarised as

Pxy(k) = P1h
xy(k) + P2h

xy(k) (1.23)

with
P1h

xy(k) =

∫ ∞

0
Hx(k,M)Hy(k,M) n(M) dM , (1.24)

for the 1-halo terms (correlations within one halo), and

P2h
xy(k) = Plin(k)

∫ ∞

0
dM1Hx(k,M1) bh(M1) n(M1)

×

∫ ∞

0
dM2Hy(k,M2) bh(M2) n(M2) , (1.25)

1This assumption is generally used to simplify the halo model, in practice, it can depend on any other
halo or galaxy quantites. Any dependence on a secondary properties is most commonly called assembly
bias (Hearin et al. 2016), which is an important part of the galaxy–dark matter connection. We address it
with a study in a later part of the thesis.
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for the 2-halo terms (correlations between two different haloes), where Plin(k) is the
linear power spectrum, and bh(M, z) is the halo bias function. Here we have defined

Hm(k,M) =
M
ρm

ũh(k|M) , (1.26)

Hc(k,M) =
〈Nc|M〉

nc
, (1.27)

and
Hs(k,M) =

〈Ns|M〉
ns

ũs(k|M) , (1.28)

with ũh(k|M) and ũs(k|M) the Fourier transforms of the halo density profile and the
satellite number density profile, respectively, both normalised to unity [ũ(k=0|M)=1].
Above ‘x’ and ‘y’ are either ‘c’ (for central), ‘s’ (for satellite), or ‘m’ (for matter), and
n(M) is the halo mass function in the following form:

n(M) =
ρm

M2 ν f (ν)
d ln ν
d ln M

, (1.29)

with ν = δc/σ(M), where δc is the critical overdensity for spherical collapse at redshift
z, and σ(M) is the mass variance. For f (ν) one usually uses a fitting function obtained
from numerical simulations. Furthermore, we assume that satellite galaxies in haloes
of mass M follow a spherical number density distribution ns(r|M) = Ns us(r|M), where
us(r|M) is the normalised density profile of satellite galaxies. Central galaxies always
have r = 0. We assume that the density profile of dark matter haloes follows an NFW
profile (Navarro et al. 1997). Since centrals and satellites are distributed differently,
we can write the galaxy-galaxy 1-halo power spectrum as:

Pgg(k) = f 2
c Pcc(k) + 2 fc fsPcs(k) + f 2

s Pss(k) , (1.30)

while the 1-halo galaxy-dark matter cross power spectrum is given by:

Pgm(k) = fcPcm(k) + fsPsm(k) . (1.31)

Here fc = nc/ng and fs = ns/ng = 1 − fc are the central and satellite fractions, respec-
tively, and the average number densities ng, nc and ns follow from:

nx =

∫ ∞

0
〈Nx|M〉 n(M) dM , (1.32)

and here ‘x’ stands for either ‘g’ (for galaxies), ‘c’ (for centrals) or ‘s’ (for satellites).
In this formalism, the matter-matter power spectrum simply reads:

Pmm(k) = P1h
mm(k) + P2h

mm(k) . (1.33)

The two-point correlation functions corresponding to these power-spectra are ob-
tained by simple Fourier transformation:

ξxy(r) =
1

2π2

∫ ∞

0
Pxy(k)

sin kr
kr

k2 dk . (1.34)
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The halo model can, through the two-point correlation functions ξxy predict the clus-
tering of galaxies, cosmic shear signal and the galaxy-galaxy lensing signal. To-
gether with the aforementioned HOD/CLF formalism, which enters the halo model
through the occupational numbers 〈N |M〉, one can constrain the different aspects of
the galaxy–dark matter connection, using a single model but with different observ-
ables. As part of this thesis, I have developed a halo model following the above
formalism and the model is now part of the galaxy-galaxy lensing suite used by the
KiDS collaboration2. Together with the model and following the same formalism, I
have also developed a theoretical covariance matrix, that can provide the covariances
for the galaxy-galaxy lensing signal, galaxy clustering, and cosmic shear and all the
cross-terms between those observables. The halo model and parts of it were used
in several of papers published by the KiDS collaboration and outside collaborators,
including Brouwer et al. (2016, 2017); Dvornik et al. (2017, 2018); Grootes et al. (2018);
Dvornik et al. (2019).

1.4 THE KILO-DEGREE SURVEY

To measure the above-mentioned galaxy-galaxy lensing signal and to constrain the
different aspects of the galaxy–dark matter connection, we need some real observa-
tional data. High-fidelity images of the sky are invaluable for these kinds of studies,
as they can provide the images of galaxies whose shapes can be measured with great
precision and accuracy, and together with the distance information obtained from
different images at different wavelengths one can constrain the effect of gravitational
lensing of large scale structure, individual galaxies, and clusters.

The ESO VLT Survey Telescope (VST; Capaccioli & Schipani 2011) at ESO’s Paranal
observatory was specifically designed for wide-field, optical imaging. Its focal plane
contains a square 268-million pixel CCD mosaic camera OmegaCAM (Kuijken 2011)
that covers a 1 deg2 area, and the observatory site and telescope optics provide for an
image quality that is well suited for weak gravitational lensing studies. Since starting
operations in October 2011, more than half of the available time on the telescope has
been used for a set of three wide-area ‘Public Imaging Surveys’ for the ESO commu-
nity. The Kilo-Degree Survey (KiDS; de Jong et al. 2013) is the deepest of these, and
the one that exploits the best observing conditions (Kuijken et al. 2019).

KiDS was designed as a cosmology survey, to study the galaxy population out to
large redshifts and in particular to measure the effect on galaxy shapes due to weak
gravitational lensing by structure along the line of sight. Combining the imaging
power of KiDS with the highly complete spectroscopic survey Galaxy And Mass As-
sembly (GAMA Driver et al. 2011), allows one to study the galaxy-galaxy lensing and
galaxy clustering and thus tightly constrain the galaxy–dark matter connection using
all the quantities predicted by the halo model, using a consistent set of lenses and
sources for all observables.

2The code can be found at https://github.com/KiDS-WL/KiDS-GGL, currently still as a private reposi-
tory.

https://github.com/KiDS-WL/KiDS-GGL
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To meet its primary science goal KiDS observes over 1350 square degrees of the
sky in four bands: u, g, r and i. The r band data is taken in the best seeing conditions
and are used to make deep images for the measurement of galaxy shapes. To provide
colours for photometric redshift estimates of the same sources, the r-band data are
supplemented with u-band, g-band, and i-band data (Chapter 6).

1.5 THIS THESIS

In this thesis we explore different aspects of the galaxy–dark matter connection that
can be measured using gravitational lensing, more specifically, using galaxy-galaxy
lensing as our primary probe. We use the halo model together with the halo occupa-
tion distributions to statistically describe the galaxy-halo connection and to constrain
assembly bias in rich galaxy groups. The same theoretical framework is also used
to constrain the nature of galaxy bias. Furthermore we re-evaluate the performance
of the two-dimensional approach of galaxy-galaxy lensing and study the biases that
might arise in this different study. Finally, we use the two-dimensional method to
measure the satellite stellar-to-halo mass relation.

In Chapter 2 we investigate possible signatures of halo assembly bias for spec-
troscopically selected galaxy groups from the Galaxy And Mass Assembly (GAMA)
survey using weak lensing measurements from the spatially overlapping regions of
the deeper, high-imaging-quality photometric Kilo-Degree Survey (KiDS). We use
GAMA groups with an apparent richness larger than 4 to identify samples with com-
parable mean host halo masses but with a different radial distribution of satellite
galaxies, which is a proxy for the formation time of the haloes. We measure the weak
lensing signal for groups with a steeper than average and with a shallower than aver-
age satellite distribution and find no sign of halo assembly bias, with the bias ratio of
0.85+0.37

−0.25, which is consistent with the ΛCDM prediction. Our galaxy groups have typ-
ical masses of 1013M�/h, naturally complementing previous studies of halo assembly
bias on galaxy cluster scales.

In Chapter 3 we measure the projected galaxy clustering and galaxy-galaxy lens-
ing signals using the GAMA survey and KiDS survey to study galaxy bias. We use
the concept of non-linear and stochastic galaxy biasing in the framework of halo oc-
cupation statistics to constrain the parameters of the halo occupation statistics and
to unveil the origin of galaxy biasing. The bias function Γgm(rp) is evaluated using
the analytical halo model from which the scale dependence of Γgm(rp), and the origin
of the non-linearity and stochasticity in halo occupation models can be inferred. Our
observations unveil the physical reason for the non-linearity and stochasticity, further
explored using hydrodynamical simulations, with the stochasticity mostly originat-
ing from the non-Poissonian behaviour of satellite galaxies in the dark matter haloes
and their spatial distribution, which does not follow the spatial distribution of dark
matter in the halo. The observed non-linearity is mostly due to the presence of the
central galaxies, as was noted from previous theoretical work on the same topic. We
also see that overall, more massive galaxies reveal a stronger scale dependence, and
out to a larger radius. Our results show that a wealth of information about galaxy
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bias is hidden in halo occupation models. These models should therefore be used to
determine the influence of galaxy bias in cosmological studies.

In Chapter 4 we revisit the performance and biases of the two-dimensional ap-
proach to galaxy-galaxy lensing. This method exploits the information for the ac-
tual positions and ellipticities of source galaxies, rather than using only the ensemble
properties of statistically equivalent samples. We compare the performance of this
method with the traditionally used one-dimensional tangential shear signal on a set
of mock data that resemble the current state-of-the-art weak lensing surveys. We find
that under idealised circumstances, the confidence regions of joint constraints for the
amplitude and scale parameters of the NFW model in the two-dimensional analysis
can be more than 3 times tighter than the one-dimensional results. Moreover, this
improvement depends on the lens number density and it is larger for higher densi-
ties. We compare the method against the results from the hydrodynamical EAGLE
simulation in order to test for possible biases that might arise due to missing lens
galaxies, and find that the method is able to return unbiased estimates of halo masses
when compared to the true properties of the EAGLE galaxies. Because of its advan-
tage in high galaxy density areas, the method is especially suitable for studying the
properties of satellite galaxies in clusters of galaxies.

In Chapter 5 we use data from the Kilo-Degree Survey (KiDS) and the Galaxy
And Mass Assembly (GAMA) surveys to simultaneously constrain the stellar-to-halo
mass relations of both central and satellite galaxies of spectroscopically confirmed
galaxies in galaxy groups using weak lensing. For the analysis we use the traditional
one-dimensional method in the form of the stacked tangential shear measurements
to determine the halo and subhalo masses of our galaxies and to constrain the stellar-
to-halo mass relation, as well as a two-dimensional fit to the full shear field that uses
all the available information about lens galaxies and exact source galaxies positions
and ellipticities. We find that the two-dimensional method performs better than the
one-dimensional method statistically. Both methods lead to similar parameters of the
stellar-to-halo mass relation, which are consistent with previous results found in the
literature, showing that the satellite galaxies have generally lower halo masses than
the central galaxies, given the same stellar mass.

Finally in Chapter 6 we present the fourth public data release of the Kilo Degree
Survey which more than doubles the area of sky covered by data release 3, the data
we were primarily using as our source of gravitational lensing measurements in the
chapters above. My contribution to the paper on which this Chapter is based con-
sisted of leading the ASTRO-WISE photometric data reduction, which was used to
produce stacked images of 1006 pointings in the four bands, from which the photom-
etry in the catalogues is obtained. The exact contribution is described in Chapter 6,
specifically in the Section 6.3.1.
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2
A KiDS weak lensing analysis of

assembly bias in GAMA galaxy groups

W
E investigate possible signatures of halo assembly bias for spectroscopically
selected galaxy groups from the GAMA survey using weak lensing measure-
ments from the spatially overlapping regions of the deeper, high-imaging-

quality photometric KiDS survey. We use GAMA groups with an apparent richness
larger than 4 to identify samples with comparable mean host halo masses but with
a different radial distribution of satellite galaxies, which is a proxy for the formation
time of the haloes. We measure the weak lensing signal for groups with a steeper
than average and with a shallower than average satellite distribution and find no
sign of halo assembly bias, with the bias ratio of 0.85+0.37

−0.25, which is consistent with
the ΛCDM prediction. Our galaxy groups have typical masses of 1013M�/h, naturally
complementing previous studies of halo assembly bias on galaxy cluster scales.

A. Dvornik, M. Cacciato, K. Kuijken, M. Viola, et al.
MNRAS, Volume 468, Issue 3, p. 3251-3265 (2017)
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2.1 INTRODUCTION

In the standard cold dark matter and cosmological constant dominated (ΛCDM) cos-
mological framework, structure formation in the Universe is mainly driven by the dy-
namics of cold dark matter. The gravitational collapse of dark matter density fluctu-
ations and their subsequent virialization leads to the formation of dark matter haloes
from the highest density peaks in the initial Gaussian random density field (e.g. Mo
et al. 2010, and the references therein). As dark matter haloes trace the underlying
mass distribution, the halo bias (the relationship between the spatial distribution of
dark matter haloes and the underlying dark matter density field) is naively expected
to depend only on the halo mass, and can be used to predict the large-scale clustering
of the dark matter haloes (Zentner et al. 2014; Hearin et al. 2016).

However, cosmological N-body simulations have shown that the abundance and
clustering of the haloes depend on properties other than the halo mass alone. These
for instance include formation time and concentration (Wechsler et al. 2006; Gao &
White 2007; Dalal et al. 2008; Wang et al. 2009; Lacerna et al. 2014). The dependence
of the spatial distribution of dark matter haloes on any of those properties, or on any
property beside mass, it is commonly called halo assembly bias (Hearin et al. 2016).

Cosmological N-body simulations indicate that the origin of halo assembly bias
is twofold. While for the high-mass haloes the assembly bias comes purely from the
statistics of density peaks (related to the curvature of Lagrangian peaks in the initial
Gaussian random density field; Dalal et al. 2008), the origin of halo assembly bias
for low-mass haloes is rather a signature of cessation of mass accretion onto haloes
(Wang et al. 2009; Zentner et al. 2014).

As galaxies are biased tracers of the underlying dark matter distribution, halo as-
sembly bias, to some extent, violates the standard halo occupation models, which in
most cases assume that the halo mass alone can completely describe the statistical
properties of galaxies residing in such dark matter haloes at a given time (Leauthaud
et al. 2011; van den Bosch et al. 2013; Cacciato et al. 2014), and are used to connect the
galaxies with their parent haloes in which they are formed. The central quantity upon
which halo occupation models are built, is the probability of a halo hosting a given
number of galaxies, given its halo mass. Assembly bias will thus violate the mass-
only assumption, and those models will introduce systematic errors when predicting
the lensing signal and/or clustering measurements of galaxies, groups and clusters
when split into subsamples of a different secondary observable (for instance, concen-
tration) (Zentner et al. 2014). Because of that, there has been an increased effort in the
last couple of years to accommodate models for assembly bias, by expanding them to
allow for secondary properties to govern the occupational distributions (Hearin et al.
2016).

It has also been shown that assembly bias introduces a bimodality to the halo bias
function – the function relating the clustering of matter with the observed clustering
of haloes (i.e. one gets two functions, whose properties differ by the secondary ob-
servable) – but preserving the overall mass dependence (the more massive the halo,
the larger the split and thus the assembly bias; Gao & White 2007). As halo assembly
bias can be a signature of a multitude of secondary properties (formation time, con-
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centration, host galaxy colour, amongst others), further study across multiple mass
scales (from galaxies to galaxy clusters) using the same proxy is needed, as the mass
dependence of halo assembly bias is not completely determined observationally.

Several studies have presented observational evidence of halo assembly bias.
Yang et al. (2006) showed that at fixed halo mass, galaxy clustering increases with
decreasing star formation rate (SFR) and that the reshuffling of observational quan-
tities (dynamical mass and the total stellar mass) affects the clustering signal by up
to 10%. Their results are in agreement with the findings from Gao et al. (2005), who
used results from the Millennium simulation (Springel et al. 2005). Similar results
were more recently obtained by Tinker et al. (2012) using observations of the COS-
MOS field. They find that the stellar mass of the star-forming galaxies, residing in
galaxy groups, is a factor of 2 lower than for passive galaxies residing in halos with
the same mass. Moreover, a similar trend is observed when they divide the popula-
tion of galaxies by their morphology (for details see the definition therein), empha-
sising the significantly different clustering amplitudes of the two observed samples.
On the other hand, Lin et al. (2016) investigated some of these claims on galaxy scales
using SDSS DR7 data (Abazajian et al. 2009) and found no evidence for halo assembly
bias, concluding that the observed differences in clustering were due to contamina-
tion from satellite galaxies.

More recently, Miyatake et al. (2016) used galaxy-galaxy lensing and clustering
measurements of more than 8000 SDSS galaxy clusters with typical halo masses of
~ 2 × 1014M�/h, found using the redMaPPer method (Rykoff et al. 2014). They di-
vided the clusters into two subsamples according to the radial distribution of the
photometrically selected satellite galaxies from the brightest cluster galaxy. They
found that the halo bias of clusters of the same halo mass but with different spa-
tial distributions of satellite galaxies, differs up to 2.5σ in weak lensing, and up to
4.6σ in clustering measurements. Zu et al. (2017) argue that the detection of halo as-
sembly bias by Miyatake et al. (2016) is driven purely by projection effect, and they
show that the effects is smaller and consistent with ΛCDM predictions.

We aim to investigate whether signatures of halo assembly bias are present in
galaxy groups with typical masses of 1013M�/h, using measurements of the weak
gravitational lensing signal. Specifically we use spectroscopically selected galaxy groups
from the GAMA survey (Driver et al. 2011) and measure the weak lensing signal from
the spatially overlapping regions of the deeper, high imaging quality photometric
KiDS survey (Kuijken et al. 2015; de Jong et al. 2015). As the GAMA survey provides
us with spectroscopic information on the group membership, any potential projection
effects are much more confined. In order to see if the two population of groups have
the clustering properties consistent with what halo masses dictate, we need to know
the halo masses of the two populations. Because of that we interpret the measured
signal in the context of the halo model (Seljak 2000; Cooray & Sheth 2002; van den
Bosch et al. 2013; Cacciato et al. 2014).
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The outline of this paper is as follows. In Section 2.2 we describe the basics of the
weak lensing theory, and we describe the data and sample selection in Section 2.3.
The halo model is described in Section 2.4. In Section 2.5 we present the galaxy-galaxy
lensing results. We conclude and discuss in Section 2.6. Throughout the paper we use
the following cosmological parameters entering in the calculation of the distances
and in the halo model (Planck Collaboration et al. 2013): Ωm = 0.315, ΩΛ = 0.685,
σ8 = 0.829, ns = 0.9603 and Ωbh2 = 0.02205. All the measurements presented in the
paper are in comoving units.

2.2 WEAK GALAXY-GALAXY LENSING THEORY

Matter inhomogeneities deflect light rays of distant objects along their path. This ef-
fect is called gravitational lensing. As a consequence the images of distant objects
(sources) appear to be tangentially distorted around foreground galaxies (lenses).
The strength of the distortion is proportional to the amount of mass associated with
the lenses and it is stronger in the proximity of the centre of the overdensity and be-
comes weaker at larger transverse distances (for a thorough review, see Bartelmann
& Schneider 2001).

Under the assumption that source galaxies have an intrinsically random elliptic-
ity, weak gravitational lensing then introduces a coherent tangential distortion. The
typical change in ellipticity due to gravitational lensing is much smaller than the in-
trinsic ellipticity of the source, even in the case of clusters of galaxies, but this can be
overcome by averaging the shapes of many background galaxies.

Weak gravitational lensing from a galaxy halo of a single galaxy is too weak to
be detected. One therefore relies on a statistical approach in which one stacks the
contributions from different lens galaxies, selected by similar observational proper-
ties (e.g. stellar masses, luminosities or in our case, the properties of the host of the
satellite galaxies). Average halo properties, such as halo masses and large-scale halo
biases, are then inferred from the resulting high signal-to-noise ratio measurements.
This technique is commonly referred to as galaxy-galaxy lensing, and it is used as a
method to measure statistical properties of dark matter halos around galaxies.

Given its statistical nature, galaxy-galaxy lensing can be considered as a measure-
ment of the cross-correlation of galaxies and the matter density field:

ξg,m(|r|) = 〈δg(x)δm(x + r)〉x , (2.1)

where δg is the galaxy density contrast, δm the matter density contrast, r is the three-
dimensional comoving separation and x the position of the galaxy. From equation
(2.1) one can obtain the projected surface mass density around galaxies which, in the
distant observer approximation, takes the form of an Abel transform:

Σ(R) = 2ρm

∫ ∞

R
ξg,m(r)

r dr
√

r2 − R2
, (2.2)
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where R is the comoving projected separation from the galaxy, ρ̄m is the mean comov-
ing density of the Universe and r is the 3D comoving separation.1 Being sensitive
to density contrasts, gravitational lensing is actually a measure of the excess surface
mass density (ESD):

∆Σ(R) = Σ̄(≤ R) − Σ(R) , (2.3)

where Σ̄(≤ R) follows from:

Σ̄(≤ R) =
2

R2

∫ R

0
Σ(R′) R′ dR′ . (2.4)

The ESD can finally be related to the tangential shear γt of background objects, which
is the main lensing observable:

∆Σ(R) = γt(R)Σcr , (2.5)

with

Σcr =
c2

4πG(1 + zl)2

D(zs)
D(zl)D(zl, zs)

, (2.6)

the critical surface mass density, a geometrical factor accounting for the lensing ef-
ficiency. In the above equation, D(zl) is the angular diameter distance to the lens,
D(zl, zs) the angular diameter distance between the lens and the source and D(zs) the
angular diameter distance to the source. In this equation c denotes the speed of light
and G the gravitational constant. In this work, the distances are evaluated using
spectroscopic redshifts for the lenses and photometric redshifts for the sources.

Predictions on ESD profiles can be obtained by using the halo model of structure
formation (Seljak 2000; Peacock & Smith 2000; Cooray & Sheth 2002; van den Bosch
et al. 2013; Mead et al. 2015) and we will base the interpretation of the measurements
on this framework, which is presented in Section 2.4.

2.3 DATA AND SAMPLE SELECTION

2.3.1 LENS GALAXY SELECTION

The foreground galaxies used in this lensing analysis are taken from the Galaxy And
Mass Assembly (hereafter GAMA) survey (Driver et al. 2011). GAMA is a spectro-
scopic survey carried out on the Anglo-Australian Telescope with the AAOmega
spectrograph. Specifically, we use the information of GAMA galaxies from three
equatorial regions, G9, G12 and G15 from the GAMA II data release (Liske et al. 2015).
We do not use the G02 and G23 regions, due to the fact that the first one does not over-
lap with KiDS and the second one uses a different target selection compared to the
one used in the equatorial regions. These equatorial regions encompass ~ 180 deg2,

1Throughout the paper we assume that the averaged mass profile of haloes is spherically symmetric,
since we measure the lensing signal from a stack of many different haloes with different orientations,
which averages out any potential halo triaxiality.
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containing 180 960 galaxies (with nQ > 3, where the nQ is a measure of redshift qual-
ity) and are highly complete down to a Petrosian r-band magnitude r = 19.8. For
weak lensing measurements, we can use all the galaxies in the three equatorial re-
gions as potential lenses.

We use the GAMA galaxy group catalogue version 7 (Robotham et al. 2011) to
separate galaxies into centrals and satellites. The centrals are used as centre of the
haloes in the lensing analysis, while the distribution of satellites is used to sep-
arate haloes with an early and late formation time. The group catalogue is con-
structed with a Friends-of-Friends (FoF) algorithm that takes into account the pro-
jected and line-of-sight separations, and has been carefully calibrated against mock
catalogues (Robotham et al. 2011), which were produced using the Millennium simu-
lation (Springel et al. 2005), populated with galaxies according to the semi-analytical
model by Bower et al. (2006).

We select central galaxies residing in GAMA groups (the definition of the central
galaxy used in this paper is the Brightest Cluster Galaxy2 – BCG) to trace the centres
of the groups. We select all groups with an apparent richness3 (NFoF) larger than
NFoF = 4, covering a redshift range 0.03 ≤ z < 0.33. With this apparent richness
cut we minimise the fraction of spurious groups and the redshift cut provides a more
reliable group sample (above the redshift of z ∼ 0.3, the linking length used in the FoF
algorithm can become excessively large). This selection yields 2061 galaxy groups. If
we include all the GAMA groups up to the redshift of z = 0.5, the final results do not
change significantly, apart from having a higher signal-to-noise ratio in the lensing
measurements, a result of having ~ 200 more galaxies in that sample. We thus opt
for a cleaner sample of galaxy groups, whose membership is better under control.
There exists a possibility that the BCGs in the group sample are not centrals but in
fact satellite galaxies. We have not studied the effect of this misidentification in this
paper.

As a proxy for the halo assembly bias signatures of our galaxy groups we employ
the average projected separation of satellite galaxies, 〈R〉, from the central. The radial
distribution of satellite galaxies is connected to the halo concentration and thus with
the halo formation time, as shown in simulations (Duffy et al. 2008; Bhattacharya
et al. 2011). This measurement is naturally given by the FoF algorithm run on the
GAMA survey.

Furthermore, we use this proxy to split our sample of central galaxies into two.
We take 10 equally linearly spaced bins in z and 15 in NFoF and perform a cubic spline
fit for the median 〈R〉 as a function of z and NFoF (see Figure 2.1).

The spline fit gives us a limit between the central galaxies with satellites that are
on average further apart from (upper half – hereafter 〈R〉+), or closer to (lower half –
hereafter 〈R〉−) the BCG. The 〈R〉+ sample has 987 galaxy groups and the 〈R〉− sample
1074 galaxy groups. This provides us, by construction, with two samples that have
similar redshift, richness and stellar mass distributions, as can be seen in Figure 2.2.

2As shown in Robotham et al. (2011), the iterative centre is the most accurate tracer of the centre of
group, but using BCG as a tracer is not very different from it.

3NFof is defined by the number of GAMA galaxies associated with the group and it is dependent on the
group selection function.
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Figure 2.1: Selection of GAMA groups with apparent richness NFoF ≥ 5 and redshift 0.03 ≤
z < 0.33. In each panel groups are further split by the average projected distance, 〈R〉, of their
satellite galaxies using a spline fit for the median of 〈R〉 (red curves). For brevity, we show only
the apparent richnesses up to 20. We plot the spline fit from the first redshift bin in all other
bins in grey dashed lines. They are used to guide one’s eye to see how spline changes from bin
to bin.

Table 2.1: Overview of median stellar masses of central galaxies, median redshifts and number
of lenses in each selected sample. Stellar masses are taken from version 16 of the stellar mass
catalogue, an updated version of the catalogue created by Taylor et al. (2011).

Sample log
(
〈M?/[M�h−1]〉

)
〈z〉 Number of lenses

Full 11.32 0.188 2061
〈R〉+ 11.33 0.186 987
〈R〉− 11.30 0.190 1074

The median stellar masses and redshifts are listed in Table 2.1. As the dark matter
haloes are located in different cosmic environments, we also want to check for the
presence of apparent trends in our two samples with their environments.

Brouwer et al. (2016) presented a study of galaxies residing in different cosmic
environments and they find a clear correlation of the halo bias with the cosmic en-
vironment of the haloes the galaxies are residing in. We check for the presence of
apparent trends in our two samples, by comparing the distribution of the galaxies
residing in voids, sheets, filaments and knots (for the exact definition of the envi-
ronment classification see Eardley et al. 2015), and we do not see a large difference
(see Figure 2.2). It should be noted that the classification of galaxies in Eardley et al.
(2015) is only evaluated up to redshift z = 0.263, and because of that this test is only
indicative.
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Figure 2.2: Left panel: Redshift distributions of the GAMA groups used in this paper for both
the 〈R〉+ and the 〈R〉− samples, shown as orange and black histograms. Middle left panel: Ap-
parent richness distributions of the GAMA groups used in this paper for both the 〈R〉+ and the
〈R〉− samples. Middle right panel: Stellar mass distributions of the GAMA groups used in this
paper for both the 〈R〉+ and the 〈R〉− samples. Right panel: Distribution of the galaxy groups in
different cosmic environments. The solid orange and black vertical lines indicate the median
of the redshift and stellar mass distributions for the 〈R〉+ and 〈R〉− sample, respectively.

2.3.2 MEASUREMENT OF THE ESD PROFILE

We use imaging data from 180 deg2 of the Kilo-Degree Survey (KiDS; Kuijken et al.
2015; de Jong et al. 2015) that overlaps with the GAMA survey (Driver et al. 2011), to
obtain shape measurements of the galaxies. KiDS is a four-band imaging survey con-
ducted with the OmegaCAM CCD mosaic camera mounted at the Cassegrain focus
of the VLT Survey Telescope (VST); the camera and telescope combination provides
us with a fairly uniform point spread function across the field-of-view.

From the KiDS data we use the r-band based shape measurements of galaxies,
with an average seeing of 0.66 arcsec. The image reduction, photometric redshift
calibration and shape measurement analysis is described in detail in Hildebrandt
et al. (2017).

We measure galaxy shapes using lensfit (Miller et al. 2013; Fenech Conti et al.
2017, where the method calibration is described), which provides measurements of
the galaxy ellipticities (ε1, ε2) with respect to an equatorial coordinate system. For
each source-lens pair we compute the tangential εt and cross component ε× of the
source’s ellipticity around the position of the lens:[

εt
ε×

]
=

[
− cos(2φ) − sin(2φ)

sin(2φ) − cos(2φ)

] [
ε1
ε2

]
, (2.7)

where φ is the angle between the x-axis and the lens-source separation vector.
The azimuthal average of the tangential ellipticity of a large number of galaxies in

the same area of the sky is an unbiased estimate of the shear. On the other hand, the
azimuthal average of the cross ellipticity over many sources should average to zero
(Schneider 2003). Therefore, the cross ellipticity is commonly used as an estimator
of possible systematics in the measurements such as non-perfect PSF deconvolution,
centroid bias and pixel level detector effects.
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Each lens-source pair is then assigned a weight

w̃ls = ws

(
Σ̃−1

cr,ls

)2
, (2.8)

which is the product of the lensfit weight ws assigned to the given source ellipticity
and Σ̃−1

cr,ls – the effective inverse critical surface mass density, which is a geometric
term that downweights lens-source pairs that are close in redshift. We compute the
effective inverse critical surface mass density for each lens using the spectroscopic
redshift of the lens zl and the full redshift probability distribution of the sources, n(zs),
calculated using a direct calibration method presented in Hildebrandt et al. (2017).
This is different from what was presented in Viola et al. (2015) and used in previous
studies on KiDS DR1/2 data, where they used individual p(zs) per source galaxy. The
effective inverse critical surface density can be written as:

Σ̃−1
cr,ls =

4πG
c2 (1 + zl)2D(zl)

∫ ∞

zl+δz

D(zl, zs)
D(zs)

n(zs) dzs , (2.9)

where δz is an offset to mitigate the effects of contamination from the group galax-
ies (see Appendix 2.A). We determine the n(zs) for every lens redshift separately, by
selecting all galaxies in the spectroscopic sample with a zs larger than zl + δz, with
δz = 0.2. The same cut is applied to the photometric redshifts zs of the sources enter-
ing the calculation of the lensing signal. This condition was not necessary in Viola
et al. (2015) as the individual p(zs) accounted for the possible cases when the sources
would be in front of the lens. Thus, the ESD can be directly computed [using equation
(2.5)] in bins of projected distance R to the lenses as:

∆Σ(R) =

[∑
ls w̃lsεt,sΣ

′
cr,ls∑

ls w̃ls

]
1

1 + µ
. (2.10)

where Σ′cr,ls ≡ 1/Σ̃−1
cr,ls and the sum is over all source-lens pairs in the distance bin, and

µ =

∑
i w′imi∑

i w′i
, (2.11)

is an average correction to the ESD profile that has to be applied to correct for the mul-
tiplicative bias m in the lensfit shear estimates. The sum goes over thin redshift slices
for which m is obtained using the method presented in Fenech Conti et al. (2017),
weighted by w′ = wsD(zl, zs)/D(zs) for a given lens-source sample. The value of µ is
around −0.014, independent of the scale at which it is computed. Estimates of m for
each redshift slice used in the calculation are presented in Figure 2.10.

It should be noted that the photometric redshift calibration and shape measure-
ment steps differ significantly from the methods used in Viola et al. (2015) and thus
we have to examine the possible systematic errors and biases. In order to do so,
we devise a number of tests to see how the data behave in different observational
limits, and the results are presented in Appendix 2.A. We test for the presence of
additive bias as well as for the presence of cross shear over a wide range of scales.
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Furthermore, we check how much the GAMA galaxy group members contaminate
our source population, and what differences are introduced by the use of a global
n(zs) instead of individual p(zs) per galaxy. We conclude that one should use comov-
ing scales between 70 kpc/h and 10 Mpc/h (this range is motivated by the signifi-
cant contamination by the GAMA group galaxies on the source population on small
scales, and non-vanishing cross-term and additive biases present in the lensing signal
calculated around random points on large scales), and use between 5 and 20 radial
bins, depending on the choice of error estimation technique and the maximum scale,
which is dictated by the number of independent regions one can use to estimate the
bootstrap errors and the number of independent entries in the resulting covariance
matrix (see further motivation in Section 2.3.3). Here, we use 8 radial bins between 70
kpc/h and 10 Mpc/h. For the sources we adopt the redshift range [0.1, 0.9], motivated
by Hildebrandt et al. (2017).

2.3.3 COVARIANCE MATRIX ESTIMATION

Statistical error estimates on the lensing signal are obtained in two ways. First we fol-
low the prescription used in Viola et al. (2015) which was shown to be valid in Sifón
et al. (2015), van Uitert et al. (2016) and Brouwer et al. (2016), where we calculate the
analytical covariance matrix from the contribution of each source in radial bins. This
prescription accounts for shape noise of source galaxies and includes information
about the survey geometry (including the masking of the lens and source galaxies).
However, this method does not account for sample variance, but Viola et al. (2015)
showed that this prescription works sufficiently well up to 2 Mpc/h. As we calculate
the lensing signal up to 10 Mpc/h, we use the bootstrap method, as the analytical co-
variance tends to underestimate the errors on scales greater than 2 Mpc/h (see Figure
2.3, where we compare the different methods for estimating the errors). We first test
the bootstrap method by bootstrapping the lensing signal measured around lenses in
each of the 1 deg2 KiDS tiles. We randomly select 180 of these tiles with replacement
and stack the signals. We repeat this procedure 105 times. The covariance matrix is
well constrained by the 180 KiDS tiles used in this analysis, as the number of inde-
pendent entries in the covariance matrix is equal to 36.

As the physical size of the tile is comparable to the maximum separations we
are considering (one degree at the median redshift of our sample corresponds to
~ 8 Mpc/h), there is a concern that the KiDS tiles might not well describe the errors
on scales larger than 2 Mpc/h, because the tiles are not truly independent from each
other. In fact, the sources in neighbouring tiles do contribute to the lensing signal
of a group in a certain tile and the tiles are thus not independent on scales above 8
Mpc/h. We thus repeat the above exercise and calculate the bootstrapped covariance
matrix using 4 deg2 KiDS patches (by combining 4 adjacent KiDS tiles), which leaves
us with 45 independent bootstrap regions (which is still enough to constrain the 36
independent entries in our covariance matrix). The square root of diagonal elements
compared to the result of the analytical covariance can be seen in Figure 2.3 and the
full bootstrap correlation matrix in Figure 2.4. For a shape noise dominated measure-
ment one would expect that all three methods yield the same results on scales smaller
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Figure 2.3: Ratios of the errors obtained us-
ing a bootstrap method and the errors ob-
tained from the analytical covariance. Ra-
tions for 1 deg2 KiDS tiles and 4 deg2 patches
are shown in solid and dashed black lines.
The errors are taken as the square root of the
diagonal of the respective covariance matri-
ces.

Figure 2.4: The ESD correlation matrix be-
tween different radial bins estimated using
a bootstrap technique. Bootstrap covariance
accounts both for shape noise and cosmic
variance. In the upper triangle we show the
correlation matrix when using 1 deg2 tiles,
and in the lower triangle the correlation ma-
trix when using 4 deg2 patches (as indicated).

than 2 Mpc/h. While this holds for all methods on small scales, it certainly does not
hold at scales larger than 2 Mpc/h for the analytical and bootstrap covariances, when
taking only 1 deg2 tiles. The main issue here is that one lacks large enough inde-
pendent regions to properly sample the error distribution on large scales, and thus
the resulting errors are highly biased. Taking all this considerations into account,
we decide to use the bootstrapping over 4 deg2 patches as our preferred method of
estimating the errors of our lensing measurements. Due to noise, the inverse covari-
ance matrix calculated from the covariance matrix, C−1

∗ , is not an unbiased estimate
of the true inverse covariance matrix C−1 (Hartlap et al. 2007). In order to derive an
unbiased estimate of the inverse covariance we need to apply a correction so that
C−1 = αC−1

∗ . In the case of Gaussian errors and statistically independent data vectors,
this correction factor is:

α =
n − p − 2

n − 1
, (2.12)

where n is the total number of independent bootstrap patches, i.e. 45 in our case, and
p is the number of data points we use, i.e. in our case 8. Hartlap et al. (2007) also
show that for p/n . 0.8 (in our case we have p/n = 0.18) this correction produces an
unbiased estimate of the inverse covariance matrix C−1 and we use this correction in
our analysis.
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When fitting the halo model to the data, we use the inverse covariance matrix
from the bootstrap using 4 deg2 patches. One could use more sophisticated meth-
ods to precisely estimate the errors on very large scales. For instance, the analytical
covariance method from Hildebrandt et al. (2017) can be adapted for galaxy-galaxy
lensing or using galaxy-galaxy lensing specific mock catalogues to estimate the co-
variance matrix. Future studies using the KiDS data, expanding the analysis over
greater separations or simply having more data points should employ methods like
that one, but for the purposes of this study, the covariance matrix presented here is
sufficient.

2.4 HALO MODEL

A successful analytic framework to describe the clustering of dark matter and its evo-
lution in the Universe is the halo model (Seljak 2000; Peacock & Smith 2000; Cooray &
Sheth 2002; van den Bosch et al. 2013; Mead et al. 2015). The halo model provides an
ideal framework to describe the statistical weak lensing signal around a selection of
galaxies. One of the assumptions of the halo model is that halo bias is only a function
of halo mass, an assumption we want to test in this work. The halo model is built
upon the statistical description of the properties of dark matter haloes (namely the
average density profile, large scale bias and abundance) as well as on the statistical
description of the galaxies residing in them.

The mass of a dark matter halo in the halo model framework is defined as:

M =
4π
3

r3
∆∆ρm , (2.13)

enclosed by the radius r∆ within which the mean density of the halo is ∆ times ρm.
Throughout the paper we use ρm as the mean comoving matter density of the Uni-
verse (ρm = Ωm,0 ρcrit, where ρcrit = 3H2

0/8πG and ∆ = 200). We assume that the density
profile of dark matter haloes follows an NFW profile (Navarro et al. 1997).

2.4.1 MODEL SPECIFICS

The ESD profile as defined in equation (2.3), which is related to the galaxy-matter
cross-correlation function ξg,m(r, z), can be obtained by Fourier transforming the galaxy-
matter power spectrum Pg,m(k, z):

ξg,m(r, z) =
1

2π2

∫ ∞

0
Pg,m(k, z)

sin kr
kr

k2 dk , (2.14)

where k is the wavenumber and the subscripts m and g stand for matter and galaxy.
Equation (2.14) can be expressed as a sum of a term that describes the small scales
(one-halo, 1h), and one describing the large scales (two-halo, 2h) (see equation 2.15).
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As we calculate the stacked ESD profile around the central galaxies of the GAMA
groups, the only contribution to the one-halo term arises from central galaxies. The
contribution of satellite galaxies is not modelled as it does not induce coherent dis-
tortions in our stacked measurements. As galaxies are not isolated at large scales,
the signal there is dominated by the clustering of dark matter halos. This so-called
two-halo term will play an important role in characterising halo assembly bias. Thus,
we write the power spectrum as:

Pg,m(k, z) = P1h,c
g,m (k, z) + P2h,c

g,m (k, z) , (2.15)

where:
P1h,c

g,m (k, z) =
1

ρmng

∫
dM

dn(M, z)
d ln M

ug(k|M)〈Nc
g|M〉 , (2.16)

and dn(M,z)
d ln M is the halo mass function (number density of haloes as a function of their

mass), 〈Nc
g|M〉 is an average number of central galaxies residing in a halo with given

mass M and the ug(k|M) is the normalised Fourier transform of the group density
profile. For the halo mass function we use the analytical function presented in Tinker
et al. (2010). Furthermore we define the comoving number density of groups ng as:

ng =

∫
〈Nc

g|M〉
dn(M, z)
d ln M

dM
M

. (2.17)

We require that the halo mass function obeys the following normalization relation:∫ ∞

0
dM

dn(M, z)
d ln M

= ρm , (2.18)

which is satisfied in the case of using the halo mass function from Tinker et al. (2010).
The two-halo term can be written as:

P2h,c
g,m (k, z) = b Pm(k, z) , (2.19)

where b = Ab bg and bg is given by:

bg =
1
ng

∫
〈Nc

g|M〉bh(M, z)
dn(M, z)
d ln M

dM
M

, (2.20)

where Ab is a free parameter that we fit for, bh(M, z) is the halo bias function and
Pm(k, z) is the linear matter-matter power spectrum. For the halo bias function we
use the fitting function from Tinker et al. (2010), as it was obtained using the same
numerical simulation from which the halo mass function was calibrated. This form
of the two-halo term is motivated by the fact that the halo density contrast and mat-
ter density contrast can be related with a halo bias function that can be linearised
(van den Bosch et al. 2013). The extra free parameter Ab is introduced, because any
signature of halo assembly bias will break the mass-only Ansatz of the halo model
precisely at this point.
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We have adopted the parametrization of the concentration-mass relation, given
by Duffy et al. (2008):

c(M, z) = fc × 10.14
[

M
(2 × 1012M�/h)

]−0.081

(1 + z)−1.01 , (2.21)

with a free normalisation fc.
The halo occupation statistics of central galaxies are defined via the function

〈Nc
g|M〉, the average number of galaxies as a function of halo mass M. We model

〈Nc
g|M〉 as a error function characterised by a minimum mass, log[M1/(h−1M�)], and a

scatter σc:

〈Nc
g|M〉 =

1
2

[
1 + erf

(
log M − log M1

σc

)]
. (2.22)

We caution the reader against over-interpreting the physical meaning of this parametri-
sation. This functional form mainly serves the purpose of assigning a distribution of
halo masses around a mean halo mass value.

As in Viola et al. (2015) we assume that the degree of miscentering of the groups
in three dimensions is proportional to the halo scale radius rs, a function of halo mass
and redshift, and we parametrise the probability that a central galaxy is miscentered
as poff . This gives

ug(k|M) = um(k|M)
(
1 − poff + poff e[−0.5k2(rsRoff )2]) , (2.23)

where um(k|M) is the Fourier transform of the normalised dark matter density profile,
which is assumed to follow an NFW profile (Navarro et al. 1997), and Roff the typical
miscentering distance.

We include the contribution of the stellar mass of the BCGs to the lensing signal
as a point mass approximation, which we can write as:

∆Σpm =
〈M?〉

πR2 , (2.24)

where 〈M?〉 is the average stellar mass of the selected galaxies obtained directly from
the GAMA catalogue. Stellar masses are taken from version 16 of the stellar mass cat-
alogue, an updated version of the catalogue created by Taylor et al. (2011), who fitted
Bruzual & Charlot (2003) synthetic stellar spectra to the broadband SDSS photometry
assuming a Chabrier (2003) IMF and a Calzetti et al. (2000) dust law. This stellar mass
contribution is kept fixed for all of our samples.

The free model parameters for each sample are λ = [ fc , poff ,Roff , log(M1) , σc , b],
and when fitting we also store the derived parameter log(Mh) – an effective mean
halo mass:

Mh =
1
ng

∫
〈Nc

g|M〉
dn(M, z)
d ln M

dM , (2.25)

which accounts for weighting of the given fitted masses by the halo mass function.
We use this mean halo mass when reporting our results.
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2.4.2 FITTING PROCEDURE

We fit this model to each of our two samples (〈R〉+ and 〈R〉−) with independent pa-
rameters and covariance matrices. This gives us a total of 12 free parameters. We
use a Bayesian inference method in order to obtain full posterior probabilities using a
Monte Carlo Markov Chain (MCMC) technique; more specifically we use the emcee
Python package (Foreman-Mackey et al. 2013). The likelihood L is given by

L ∝ exp
[
−

1
2

(Oi − Mi)T C−1
i j (O j − M j)

]
, (2.26)

where Oi and Mi are the measurements and model predictions in radial bin i, C−1
i j is

the element of the inverse covariance matrix that accounts for the correlation between
radial bins i and j. In the fitting procedure we use the inverse covariance matrix as de-
scribed in Section 2.3.3. We use wide flat priors for all the parameters, and the ranges
can be seen in Table 5.2. The halo model (halo mass function and the power spec-
trum) is evaluated at the median redshift for each sample. We run the sampler using
120 walkers, each with 2000 steps (for the combined number of 240 000 samples), out
of which we discard the first 600 burn-in steps (72 000 samples). The resulting MCMC
chains are well converged according to the integrated autocorrelation time test.

Figure 2.5 shows the stacked ESD profile for all 2061 galaxy groups (full sam-
ple). In comparison to Viola et al. (2015), this sample has around ~ 40% more galaxy
groups, given by the fact we are using the full equatorial KiDS and GAMA overlap.
We calculate the lensing signal for all our samples according to the procedure de-
scribed in Section 2.3.2. In the same figure, we also show the halo model fit to the
data, as described in this section.

2.5 RESULTS

We fit the halo model as presented in Section 2.4.1 to the two subsamples (〈R〉+ – sam-
ple with more dispersed satellite galaxies and 〈R〉− – sample with more concentrated
satellite galaxies). The fits have a reduced χ2

red (= χ2/d.o.f) equal to 1.31 and 1.41 for
the 〈R〉+ and 〈R〉− sample, respectively, and the best fit models are presented in Fig-
ure 2.6, plotted with the 16 and 84 percentile confidence intervals. We also plot the
stacked ESD profiles for both samples of galaxies, with 1σ error bars, which are ob-
tained by taking the square root of the diagonal elements of the bootstrap covariance
matrix.

The measured parameters are summarised in Table 5.2, and their full posterior
distributions are shown in Figure 2.18. The various parameters show similar results
between the 〈R〉+ and 〈R〉− subsamples. The normalisations of the concentration-halo
mass relations fc are f +

c = 1.08+0.99
−0.58 and f −c = 1.61+0.99

−0.53 for 〈R〉+ and 〈R〉− respectively, in
accordance with the results for the full sample (see Table 5.2). Furthermore the scatter
in halo masses, σc is constrained to ~ 0.6 for both samples and it is also consistent
with the results for the full sample (see Table 5.2). We observe lower probabilities
for miscentering of the central galaxy than reported in Viola et al. (2015), but with a
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Figure 2.5: Stacked ESD profiles measured around the central galaxies of GAMA groups from
the full sample of galaxies used in this study. The solid red lines represent the best-fitting halo
model as obtained using a MCMC fit, with the 68% confidence interval indicated with a shaded
region. Dashed, dash-dotted and dotted lines represent the one-halo term, two-halo term and
stellar contribution, respectively (see Section 2.4.1).

10-1 100 101

Radius (Mpc/h)

100

101

102

∆
Σ

(R
)

(M
¯
h
/p
c2

)

〈
R
〉

+〈
R
〉
−

Figure 2.6: Stacked ESD profiles measured around the central galaxies of GAMA groups, se-
lected according to the average separation of satellite galaxies (see Section 2.3.1). The solid
orange and black lines represent the best-fitting halo model as obtained using a MCMC fit,
with the 68% confidence interval indicated with a shaded region. Dashed, dash-dotted and
dotted lines represent the one-halo term, two-halo term and stellar contribution, respectively.
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Figure 2.7: The posterior distributions of the
average projected offset αoff and the normal-
isation of the concentration-halo mass rela-
tion fc. The contours indicate 1σ and 2σ con-
fidence regions.

Figure 2.8: The posterior distributions of the
halo model parameters Mh, fc and b. The pos-
terior distributions clearly show a slight dif-
ference in the obtained halo masses as well
as no difference in the obtained halo biases.
The contours indicate 1σ and 2σ confidence
regions.

larger miscentering distance. It should be noted, that the average projected offset αoff
(αoff = poff×Roff) is highly degenerate with the concentration normalisation fc and the
posterior probability distribution is shown in Figure 2.7. The resulting degeneracy is
similar to the one presented in Viola et al. (2015). Since we consider ESD profiles
out to 10 Mpc/h, the halo masses are well constrained by the inner-most part of the
same ESD profile (r200 associated with the this mass scale is significantly smaller than
10 Mpc/h). The contribution to the ESD profile beyond 2 Mpc/h can be associated
purely with the two-halo term (see Figure 2.6). The ratio of the obtained halo biases is
b+/b− = 0.85+0.37

−0.25. The posterior probability distributions of the obtained halo masses
and biases can be seen in Figures 2.8 and 2.18.

With the lensing measurements providing us the same halo masses for the two
samples (within the errors), we report a null detection of halo assembly bias on galaxy
groups scales. Our result is in accordance with what one would expect if halo bias is
only a function of mass (see Figure 2.9). In Figure 2.9, we also compare our results
with the biases obtained by Miyatake et al. (2016) and to the predictions for a concen-
tration dependent halo bias from Wechsler et al. (2006). To account for the slightly dif-
ferent masses of our two samples one can also compare the difference arising purely
from the normalisation of the bias Ab [as defined in equation (2.19)]. The ratio of
obtained normalisations is still compatible with a null detection; A+

b/A
−
b = 0.86+0.43

−0.28
(0.4σ).
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Table 2.2: Summary of the lensing results obtained using MCMC halo model fit to the data. All
the parameters are defined in Section 2.4.1. fc is the normalisation of the concentration-halo
mass relation, poff the miscentering probability, Roff the miscentering distance, M1 central mass
used to parametrise the HOD, σc scatter in HOD distribution and b bias.

Sample log(Mh[M�/h]) fc poff Roff log(M1[M�/h]) σc b

Priors – [0.0, 6.0] [0.0, 1.0] [0.0, 3.5] [11.0, 17.0] [0.05, 1.5] [0.0, 10.0]

〈R〉+ 13.32+0.13
−0.13 1.08+0.99

−0.58 0.58+0.27
−0.36 2.10+0.99

−1.23 13.07+0.19
−0.18 0.60+0.05

−0.05 2.77+0.78
−0.73

〈R〉− 13.34+0.10
−0.11 1.61+0.99

−0.53 0.37+0.24
−0.23 2.40+0.81

−1.50 13.10+0.17
−0.16 0.61+0.05

−0.05 3.25+0.74
−0.74

Full 13.42+0.09
−0.08 1.03+0.63

−0.35 0.42+0.21
−0.24 2.46+0.73

−1.24 13.22+0.14
−0.13 0.60+0.05

−0.05 3.05+0.72
−0.75

If the halo assembly bias due to different spatial distributions of satellite galax-
ies traces the halo bias due to different halo concentrations, then one would expect
that the halo assembly bias would follow the predictions presented in Wechsler et al.
(2006), and would also not be significant near the halo collapse mass Mc. The halo col-
lapse masses for our two samples are Mc = 2.12× 1012M�/h and Mc = 2.02× 1012M�/h
for the 〈R〉+ and 〈R〉− subsamples, which are ~ 8σ below the obtained halo masses.
The cancelation effect of the halo assembly bias due to the predicted sign change
(clearly seen in Figure 2.9) of the concentration dependent halo bias near the Mc can-
not be the cause of the null detection of halo assembly bias, as none of our lenses have
halo masses that are below the Mc. We however acknowledge that the differences in
predicted halo bias following Wechsler et al. (2006) for c′ (as defined therein) of our
two samples at the obtained halo masses are rather small (halo bias ratio of 1.06) and
challenging to observe in the first place.

As the results can potentially depend on the choice of the concentration-mass rela-
tion, and to see if the choice of our fiducial Duffy et al. (2008) concentration-mass rela-
tion does not significantly influence our results, we perform a test where we change
the fiducial concentration-mass relation to a parameter that is constant with mass
and free to fit. The obtained concentrations for the 〈R〉+ and 〈R〉− subsamples are
c+ = 5.64+3.64

−2.57 and c− = 8.36+2.38
−2.14 – again highly degenerate with the average projected

offset αoff. The ratio of obtained halo biases in this case is b+/b− = 0.86+0.41
−0.28 and the

ratio of obtained normalisations is A+
b/A

−
b = 0.89+0.45

−0.31. We further check if the method
presented can detect a bias ratio different than unity using a sample which is known
to have one. For this we split our full sample into two samples with different ap-
parent richnesses by making a cut at NFoF = 10 (in order to have two samples with
comparable S/N). We fit the halo model as presented in Section 4.1 to obtain the
posterior distributions of the halo biases.
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As expected, the two samples have significantly different halo masses with the
high richness sample having a halo mass of log(Mh[M�/h]) = 13.72+0.13

−0.11 and the low
richness sample having a halo mass of log(Mh[M�/h]) = 13.24+0.09

−0.09. The obtained halo
bias ratio is, as expected, different than unity bhigh/blow = 2.84+1.75

−1.01, which is also true
when one accounts for the fact that the samples have different halo masses. In this
case, the ratio of obtained normalisations is Ahigh

b /Alow
b = 2.14+1.42

−0.85, which is 1.3σ away
from unity. The lensing signal and posterior distributions for this test can be seen in
Figures 2.16 and 2.17.

Figure 2.9: Comparison between the halo bias b and the predictions from the halo bias function
from Tinker et al. (2010) and the concentration dependent halo bias from Wechsler et al. (2006),
as a function of halo mass Mh. Here circles with error bars show the best fit value for b for each
sample and diamonds show the results from Miyatake et al. (2016). The halo bias function from
Tinker et al. (2010) is shown with a red line and the predictions from Wechsler et al. (2006) for
different values of c′ and a halo collapse mass Mc = 2.1 × 1012 M�/h (as defined therein). The
dashed and dash-dotted lines are predictions for c′ derived for our two samples, 〈R〉+ and 〈R〉−,
respectively. Note that the biases are normalised by the Afull.
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2.6 DISCUSSION AND CONCLUSIONS

We have measured the galaxy-galaxy lensing signal of a selection of GAMA groups
split into two samples according to the radial distribution of their satellite galaxies.
We use the radial distribution of the satellite galaxies as a proxy for the halo assembly
time, and report no evidence for halo assembly bias on galaxy group scales (typical
masses of 1013M�/h). We use a halo model fit to constrain the halo masses and the
large scale halo bias in order to see if the halo biases are consistent with those dictated
solely by their halo masses. In this analysis, we used the KiDS data covering 180
deg2 of the sky (Hildebrandt et al. 2017), that fully overlaps with the three GAMA
equatorial patches (G9, G12 and G15). As the photometric calibration and shape
measurements analysis differ significantly from the previous KiDS data releases, we
also perform additional tests for any possible systematic errors and biases that the
new procedures might introduce (see Appendix 2.A).

Our findings are in agreement with the results from Zu et al. (2017), who re-
analysed the SDSS redMaPPer clusters sample used in Miyatake et al. (2016) and
found no evidence for halo assembly bias as previously claimed by Miyatake et al.
(2016). They argue that that analysis suffered from misidentification of cluster mem-
bers due to projection effects (Zu et al. 2017), which are minimised in the case when
one uses spectroscopic information on cluster or group membership.

It is unlikely that our analysis suffers from the mis-identification of the GAMA
galaxy groups members and/or contamination from background galaxies to the de-
gree present in the SDSS case (up to 40%, Zu et al. 2017), and thus artificially changing
the radial distribution of the satellite galaxies. The projection effects in our case come
only from peculiar velocities (and mismatching from the FoF algorithm), whereas the
projection effects in Miyatake et al. (2016) are dominated by photo-z uncertainties and
errors, which are much larger than peculiar velocities. If that would be the case, this
would indeed have a larger effect on groups with a low number of member galaxies
(and thus in the same regime we are using for our study). The GAMA groups are,
due to available spectroscopic redshifts, highly pure and robust – for groups with
NFoF ≥ 5 the purity approaches 90% as assessed using a mock catalogue (Robotham
et al. 2011). An issue that remains is the possible fragmentation of the GAMA galaxy
groups by the FoF algorithm and a full assessment of this potential issue is beyond
the scope of this paper and we defer these topics to a study in the future.

Additionally, the assumption of a NFW profile as our fiducial dark matter density
profile can potentially affect the results. Exploration of different profiles is beyond
the scope of this paper, but one would not expect that the different profiles would
introduce differences in the obtained halo biases. The dark matter density profile
does not enter into predictions for the two-halo term which carries all the biasing
information. Moreover, any systematic effects due to the differences in profile would
enter into both samples in the same way, and when taking the ratio of any quantities,
they would to a large extent cancel out.
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In order to reach a better precision in our lensing measurements, we could use
the full KiDS-450 survey area. This is limited however by the lack of spectroscopy
to create a group catalogue. The GAMA survey will be expanded into a newer and
upcoming spectroscopic survey named WAVES (Driver et al. 2016)4, which is planned
to cover the southern half of the KiDS survey (700 deg2) and provide redshifts for up
to 2 million galaxies, which should provide us with enough statistical power not
only to access the signatures of assembly bias in those galaxies but to extend the
observational evidence also to galaxy scales.
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This work has made use of Python (http://www.python.org), including the pack-
ages numpy (http://www.numpy.org) and scipy (http://www.scipy.org). The halo
model is built upon hmf Python package by Murray et al. (2013). Plots have been
produced with matplotlib (Hunter 2007) and corner.py (Foreman-Mackey 2016).

2.A SYSTEMATICS TESTS

We show here additional systematic tests performed as the image reduction proce-
dure, photometric redshift calibration and shape measurement steps differ signifi-
cantly from the methods used in Viola et al. (2015). We devise a number of tests to
see how the obtained data behaves in different observational limits, and the results
are presented in the following paragraphs.

2.A.1 MULTIPLICATIVE BIAS

The estimates of the average multiplicative bias m for each redshift slice used in the
calculation are obtained using a method presented in Fenech Conti et al. (2017). They
are further weighted by the weight w′ = wsD(zl, zs)/D(zs) for a given lens-source sam-
ple. Typically, the value of the µ correction is around −0.014, independent of the scale
at which it is computed. Figure 2.10 shows the estimates of the average multiplicative
bias m for each redshift slice used in the calculation.

2.A.2 ADDITIVE BIAS

Secondly, we test for the presence of the additive shear bias, by checking the tan-
gential shear component measured around random points. This is calculated by per-
forming lensing measurements around 10 million random points in RA and DEC (for
all three GAMA patches), which have the same assigned redshift distribution as the
GAMA galaxies. We use version 1 of the GAMA random catalogue, created as de-
scribed in Farrow et al. (2015). Like the cross component of the measured ellipticities,
also the azimuthally averaged tangential shear signal around random points should
equal to zero. Figures 3.3 and 2.12 show significant systematic errors on scales larger
than 1 Mpc/h as well as patch-dependent systematic errors. We perform the analysis
on three patches separately (G9, G12 and G15). As discussed in Hildebrandt et al.
(2017) and Fenech Conti et al. (2017), the correction for the additive bias obtained
using image simulations should only be obtained for individual KiDS patches, due
to specific systematics associated with each patch. We also check for the behaviour
of the cross shear component. Any presence of the cross component signal points
towards the presence of systematic errors and thus measurements on scales with sig-
nificant cross component signal have to be corrected before using them for scientific
purposes.

http://www.python.org
http://www.numpy.org
http://www.scipy.org
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Figure 2.10: Multiplicative bias calculated using the resampling technique of Fenech Conti et al.
(2017, chapter 5.1) in the redshift slices used in this analysis. The hatched area indicates the
requirement on the knowledge of the multiplicative bias for KiDS-450 cosmic shear analysis
(Hildebrandt et al. 2017).

One could estimate the additive bias using image simulations (using a method
shown in Fenech Conti et al. 2017), but that will only account for the PSF effects.
We correct for the additive bias using the results obtained from the random signal
as the additive bias might arise because of spurious objects (including asteroids, stel-
lar spikes, pixel defects, etc.) in our lensing data, apart from PSF effects. It is thus
important to correct for it using the data. Correction of additive bias is performed
by subtracting the random signal obtained for each patch from the true ESD mea-
surement in the same patches. Doing so, that also gives better covariance matrix
estimates (Singh et al. 2017). The final ESD profile is calculated by combining the
random-subtracted signals from all three patches.

2.A.3 GROUP MEMBER CONTAMINATION OF THE SOURCE GALAXIES

The next important test we perform is to check how much the GAMA galaxy group
members contaminate our source population (the so-called boost factor; Miyatake et al.
2015; van Uitert et al. 2017). Those galaxies will dilute the lensing signal (as they are
not lensed). The resulting lensing signal will be biased (Figure 2.13) on small scales
with the source over-density up to 30% at 75 kpc/h (Figure 2.13). We can impose a
more stringent cut than the cut zs > zl used in previous studies on KiDS and GAMA
data, by adding an offset δz to the cut on the source population. As seen in Figure
2.13, using a conservative cut with δz = 0.1 still leaves a 10% over-density in the
source sample. More conservative cuts lower the observed over-density, as expected.
They also suppress the contamination, but this is not ideal as real source galaxies are
removed as well, since it decreases the lensing signal-to-noise. On the small scales
(below 75 kpc/h) the decrease of the source density is connected with the fact that
the source galaxies become obscured by the host BCG of the GAMA group. The ESD
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Figure 2.11: Shear signal around 10 million
random points having the same redshift dis-
tribution as GAMA galaxies, split between
the three GAMA patches. Shown are both
tangential (γt, upper panel) and cross (γ×
lower panel) components. We use these mea-
surements to correct for the additive bias in
our measured ESD signal.

Figure 2.12: Lensing signal computed from
the cross component of measured elliptici-
ties, around all GAMA galaxies in the three
equatorial patches (G9, G12 and G15). One
can see, that the systematic errors signifi-
cantly affect the signal below 70 kpc/h and
above 10 Mpc/h, with the G12 patch being
the least affected, even after subtracting the
signal computed around random points.

signals in Figure 2.13 are corrected with the boost factor using the factors shown in
the top panel of the same figure and have lensing efficiency calculated separately for
each redshift cut. We find that for a redshift offset of δz = 0.2 the boost correction is
not necessary.

2.A.4 SOURCE REDSHIFT DISTRIBUTION

The significant difference between this analysis and previous method presented in
Viola et al. (2015) is the usage of full redshift probability distribution of the sources,
n(zs), compared to Viola et al. (2015) where each source is given its own posterior
redshift distribution p(zs) obtained from BPZ. With the following tests we want to
see what the difference between having only the global n(zs) has on the error budget
and the resulting lensing signals. The observable lensing signal depends on the an-
gular diameter distances to the lens and source galaxies (equation 2.9). The redshifts
to the lens galaxies are known from the GAMA spectroscopic survey, while for the
sources we need to resort to the photometric redshifts derived using multi-band im-
ages (in ugri photometric bands) of the KiDS survey. The colors obtained using those
images are a basis for the photometric redshift estimates, which also provides us the
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Figure 2.13: Top panel: The overdensity of
KiDS source galaxies around GAMA galaxy
groups with richness NFoF ≥ 5. The various
lines correspond to different redshift cuts ap-
plied to the source sample. Even for a con-
servative cut of zs > zl + 0.1, we find a resid-
ual contamination of group members in the
source sample of up to 10% at 75 kpc. Bot-
tom panel: The ESD signal around GAMA
galaxy groups with richness NFoF ≥ 5 up to
2 Mpc/h. The various lines correspond to
different redshift cuts applied to the source
sample. The redshift cut does not signifi-
cantly affect the lensing signal, but one re-
moves any possible problems due to group
contamination. The lensing signals are com-
puted using different lensing efficiencies and
are corrected with the boost factor using the
factors shown in the top panel.

Figure 2.14: Top panel: Comparison of
the n(zs) as given by the direct calibration
method (DIR) and the stacked p(zs) obtained
from BPZ (Hildebrandt et al. 2017). As al-
ready noted in Hildebrandt et al. (2017), the
stacked p(zs) does not accurately reproduce
the features seen in the DIR method, and its
usage is discouraged. Bottom panel: Differ-
ence between the lensing signal using three
different source redshift distributions. p(zs)
represents the method as used in Viola et al.
(2015), compared to the stacked p(zs) and
the n(zs) obtained using DIR (for all 180, 960
GAMA galaxies). Within the error budget,
all the methods are in agreement (the orange
area is the error on the lensing signal calcu-
lated using the n(zs)).



40 Chapter 2. Assembly bias in KiDS+GAMA

10-1 100

Radius (Mpc/h)

10-3

10-2

10-1

100

σ
(∆

Σ
(R

))
/
∆

Σ
(R

)

n(zs) uncertainty

Bootstrap

Figure 2.15: Relative error estimates of the n(zs) uncertainty compared to the uncertainty as
obtained using the bootstrap method on the lensing signal (including shape noise and cosmic
variance contributions), calculated for the full sample of GAMA galaxies in the three equatorial
patches (G9, G12 and G15). It can be seen that the contribution to the total error budget from
the uncertainty of the redshift distribution is negligible.

full redshift probability distribution of the sources, n(zs), obtained using the direct
calibration method (for more information and comparison with other techniques see
Hildebrandt et al. 2017). Comparison between the final lensing signals using the in-
dividual p(zs), the stack of p(zs) and the global n(zs) can be seen in the bottom panel
of Figure 2.14 and the difference between the stacked p(zs) and n(zs) probability dis-
tributions in the top panel of the same Figure. The resulting lensing signals do not
change much, and are all in agreement within the error budget of the lensing signal
of all the GAMA galaxies. Following Hildebrandt et al. (2017), we adopt the redshift
range [0.1, 0.9], which is the same as the covered range by the 4 tomographic bins
used in Hildebrandt et al. (2017).

The uncertainty on the n(zs) contributes to the total error budget of the lensing sig-
nal. As the errors due to this uncertainty can affect the conclusions of the quantitative
results, we look into how much the actual contribution is. We take 1000 bootstrap re-
alisations of the weighted spectroscopic catalogue (Hildebrandt et al. 2017) giving
us 1000 different realisations of n(zs), for which we calculate the lensing signal. This
gives us enough samples to constrain the uncertainty on the lensing signal due to the
uncertainty on the n(zs). We compare the given 1σ errors with the total error on our
lensing signal. The results can be seen in Figure 2.15, where it is clearly seen that the
uncertainty on n(zs) is sub-dominant to the whole error budget.
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Figure 2.16: Stacked ESD profiles mea-
sured around the central galaxies of GAMA
groups, selected according to the apparent
richness of the groups. The solid orange
and black lines represent the best-fitting halo
model as obtained using a MCMC fit, with
the 68% confidence interval indicated with a
shaded region.

Figure 2.17: The posterior distributions of
the halo model parameters Mh, fc and b for
the sample of lenses split according to their
apparent richness. The posterior distribution
clearly shows a difference in the obtained
halo masses as well as a significant difference
in the obtained halo biases. The contours in-
dicate 1σ and 2σ confidence regions.

2.B FULL POSTERIOR DISTRIBUTIONS

Figures 2.16 and 2.17 show lensing signal and posterior distributions of the addi-
tional test of splitting the full sample to two samples with high and low richnesses
(as discussed in Section 2.5). In Figure 2.18 we show the full posterior probability
distribution for all fitted parameters in our MCMC fit as discussed in Sections 2.4.1
and 2.5.
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Figure 2.18: The full posterior distributions of the halo model parameters Mh, fc poff, Roff , M1, σc

and b. The posterior distribution clearly shows a slight difference in the obtained halo masses
as well as no difference in the obtained halo biases, the miscentering parameters and the nor-
malisation of concentration-halo mass relation. The contours indicate 1σ and 2σ confidence
regions. Priors used in the MCMC fit can be found in Section 2.4.1.



3
Unveiling Galaxy Bias via the Halo

Model, KiDS and GAMA

W
E measure the projected galaxy clustering and galaxy-galaxy lensing signals
using the Galaxy And Mass Assembly (GAMA) survey and Kilo-Degree Sur-
vey (KiDS) to study galaxy bias. We use the concept of non-linear and stochas-

tic galaxy biasing in the framework of halo occupation statistics to constrain the pa-
rameters of the halo occupation statistics and to unveil the origin of galaxy biasing.
The bias function Γgm(rp), where rp is the projected comoving separation, is evalu-
ated using the analytical halo model from which the scale dependence of Γgm(rp),
and the origin of the non-linearity and stochasticity in halo occupation models can
be inferred. Our observations unveil the physical reason for the non-linearity and
stochasticity, further explored using hydrodynamical simulations, with the stochas-
ticity mostly originating from the non-Poissonian behaviour of satellite galaxies in
the dark matter haloes and their spatial distribution, which does not follow the spa-
tial distribution of dark matter in the halo. The observed non-linearity is mostly due
to the presence of the central galaxies, as was noted from previous theoretical work
on the same topic. We also see that overall, more massive galaxies reveal a stronger
scale dependence, and out to a larger radius. Our results show that a wealth of infor-
mation about galaxy bias is hidden in halo occupation models. These models should
therefore be used to determine the influence of galaxy bias in cosmological studies.

A. Dvornik, H. Hoekstra, K. Kuijken, P. Schneider, et al.
MNRAS, Volume 479, Issue 1, p. 1240-1259 (2018)
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3.1 INTRODUCTION

In the standard cold dark matter and cosmological constant-dominated (ΛCDM) cos-
mological framework, galaxies form and reside within dark matter haloes, which
themselves form from the highest density peaks in the initial Gaussian random den-
sity field (e.g. Mo et al. 2010, and references therein). In this case one expects that
the spatial distribution of galaxies traces the spatial distribution of the underlying
dark matter. Galaxies are however, biased tracers of the underlying dark matter dis-
tribution, because of the complexity of their evolution and formation (Davis et al.
1985; Dekel & Rees 1987; Cacciato et al. 2012). The relation between the distribution
of galaxies and the underlying dark matter distribution, usually referred as galaxy
bias, is thus important to understand in order to properly comprehend galaxy forma-
tion and interpret studies that use galaxies as tracers of the underlying dark matter,
particularly for those trying to constrain cosmological parameters.

If such a relation can be described with a single number b, the galaxy bias is linear
and deterministic. As galaxy formation is a complex process, it would be naive to as-
sume that the relation between the dark matter density field and galaxies is a simple
one, described only with a single number. Such a relation might be non-linear (the
relation between a galaxy and matter density fields cannot be described with only a
single number), scale dependent (the galaxy bias is different on the different scales
studied) or stochastic (the biasing relation has an intrinsic scatter around the mean
value). Numerous authors have presented various arguments for why simple linear
and deterministic bias is highly questionable (Kaiser 1984; Davis et al. 1985; Dekel &
Lahav 1999). Moreover, cosmological simulations and semi-analytical models sug-
gest that galaxy bias takes a more complicated, non-trivial form (Wang et al. 2008;
Zehavi et al. 2011).

Observationally, there have been many attempts to test if galaxy bias is linear and
deterministic. There have been studies relying on clustering properties of different
samples of galaxies (e.g. Wang et al. 2008; Zehavi et al. 2011), studies measuring high-
order correlation statistics and ones directly comparing observed galaxy distribution
fluctuations with the matter distribution fluctuations measured in numerical simu-
lations (see Cacciato et al. 2012, and references therein). What is more, there have
also been observations combining galaxy clustering with weak gravitational (galaxy-
galaxy) lensing measurements (Hoekstra et al. 2002; Simon et al. 2007; Jullo et al. 2012;
Buddendiek et al. 2016). The majority of the above observations have confirmed that
galaxy bias is neither linear nor deterministic (Cacciato et al. 2012).

Even though the observational results are in broad agreement with theoretical
predictions, until recently there was no direct connection between measurements
and model predictions, mostly because the standard formalism used to define and
predict the non-linearity and stochasticity of galaxy bias is hard to interpret in the
framework of galaxy formation models. Cacciato et al. (2012) introduced a new ap-
proach that allows for intuitive interpretation of galaxy bias, that is directly linked to
galaxy formation theory and various concepts therein. They reformulated the galaxy
bias description (and the non-linearity and stochasticity of the relation between the
galaxies and underlying dark matter distribution) presented by Dekel & Lahav (1999)
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using the formalism of halo occupation statistics. As galaxies are thought to live in
dark matter haloes, halo occupation distributions (a prescription on how galaxies
populate dark matter haloes) are a natural way to describe the galaxy-dark matter
connection, and consequently the nature of galaxy bias. Combining the halo occupa-
tion distributions with the halo model (Seljak 2000; Peacock & Smith 2000; Cooray &
Sheth 2002; van den Bosch et al. 2013; Mead et al. 2015; Wibking et al. 2019), allows
us to compare observations to predictions of those models, which has the potential to
unveil the hidden factors – sources of deviations from the linear and deterministic bias-
ing (Cacciato et al. 2012). Recently Simon & Hilbert (2017) also showed that the halo
model contains important information about galaxy bias. In this paper, however, we
demonstrate how the stochasticity of galaxy bias arises from two different sources;
the first is the relation between dark matter haloes and the underlying dark matter
field, and the second is the manner in which galaxies populate dark matter haloes.
As in Cacciato et al. (2012), we will focus on the second source of stochasticity, which
indeed can be addressed using a halo model combined with halo occupation distri-
butions.

The aim of this paper is to measure the galaxy bias using state of the art galaxy
surveys and constrain the nature of it using the halo occupation distribution formal-
ism. The same formalism can provide us with insights on the sources of deviations
from the linear and deterministic biasing and the results can be used in cosmological
analyses using the combination of galaxy-galaxy lensing and galaxy clustering and
those based on the cosmic shear measurements. In this paper we make use of the pre-
dictions of Cacciato et al. (2012) and apply them to the measurements provided by the
imaging Kilo-Degree Survey (KiDS; Kuijken et al. 2015; de Jong et al. 2015), accompa-
nied by the spectroscopic Galaxy And Mass Assembly (GAMA) survey (Driver et al.
2011) in order to get a grasp of the features of galaxy bias that can be measured us-
ing a combination of galaxy clustering and galaxy-galaxy lensing measurements with
high precision.

The outline of this paper is as follows. In Section 3.2 we recap the galaxy bias-
ing formulation of Cacciato et al. (2012). In Section 3.3 we introduce the halo model,
its ingredients and introduce the main observable, which is a combination of galaxy
clustering and galaxy-galaxy lensing. In Section 3.4 we present the data and measure-
ment methods used in our analysis. We present our galaxy biasing results in Section
3.5, together with comparison with simulations and discuss and conclude in Section
3.6. In the Appendix, we detail the calculation of the analytical covariance matrix, and
provide full pairwise posterior distributions of our derived halo model parameters.
We also provide a detailed derivation of the connection between the galaxy-matter
correlation and the galaxy-galaxy lensing signal, explaining the use of two different
definitions of the critical surface mass density in the literature. We highlight the key
differences between our expressions and those found in several recent papers.
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Throughout the paper we use the following cosmological parameters entering in
the calculation of the distances and in the halo model (Planck Collaboration et al.
2016): Ωm = 0.3089, ΩΛ = 0.6911, σ8 = 0.8159, ns = 0.9667 and Ωb = 0.0486. We also
use ρm as the present day mean matter density of the Universe (ρm = Ωm,0 ρcrit, where
ρcrit = 3H2

0/(8πG) and the halo masses are defined as M = 4πr3
∆
∆ ρm/3 enclosed by the

radius r∆ within which the mean density of the halo is ∆ times ρm, with ∆ = 200). All
the measurements presented in the paper are in comoving units, and log and ln refer
to the 10-based logarithm and the natural logarithm, respectively.

3.2 BIASING

This paper closely follows the biasing formalism presented in Cacciato et al. (2012),
and we refer the reader to that paper for a thorough treatment of the topic. Here
we shortly recap the galaxy biasing formalism of Cacciato et al. (2012) and correct a
couple of typos that we discovered during the study of his work. In this formalism
the mean biasing function b(M) (the equivalent of the mean biasing function b(δm) as
defined by Dekel & Lahav 1999) is, using new variables: the number of galaxies in a
dark matter halo, N, and the mass of a dark matter halo, M:

b(M) ≡
ρm

ng

〈N |M〉
M

, (3.1)

where ng is the average number density of galaxies and 〈N |M〉 is the mean of the halo
occupation distribution for a halo of mass M, defined as:

〈N |M〉 =

∞∑
N=0

N P(N |M) , (3.2)

where P(N |M) is the halo occupation distribution. Note that in this case, the simple
linear, deterministic biasing corresponds to:

N =
ng

ρm
M , (3.3)

which gives the expected value of b(M) = 1. As N is an integer and the quantities
ρm, ng and M are in general non-integer, it is clear that in this formulation the linear,
deterministic bias is unphysical. We define the moments of the bias function b(M) as

b̂ ≡
〈b(M)M2〉

〈M2〉
, (3.4)

and

b̃2 ≡
〈b2(M)M2〉

〈M2〉
, (3.5)
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where 〈...〉1 indicates an effective average (an integral over dark matter haloes) de-
fined in the following form:

〈x〉 ≡
∫ ∞

0
x n(M) dM , (3.6)

where n(M) is the halo mass function and x is a property of the halo or galaxy pop-
ulation. In the case of linear bias, b(M) is a constant and hence b̃/b̂ = 1. The same
ratio, b̃/b̂, is the relevant measure of the non-linearity of the biasing relation (Dekel
& Lahav 1999). Its deviation from unity is a sign of a non-linear galaxy bias. From
equation 3.1 we can see that linear bias corresponds to halo occupation statistics for
which 〈N |M〉 ∝ M.

In the same manner Cacciato et al. (2012) also define the random halo bias of a
single halo of mass M, that contains N galaxies, as:

εN ≡ N − 〈N|M〉 , (3.7)

which, by definition, will have a zero mean when averaged over all dark matter
haloes, i.e. 〈εN |M〉 = 0. This can be used to define the halo stochasticity function:

σ2
b(M) ≡

(
ρm

ng

)2 〈ε2
N |M〉
〈M2〉

, (3.8)

from which, after averaging over halo mass, one gets the stochasticity parameter:

σ2
b ≡

(
ρm

ng

)2 〈ε2
N〉

〈M2〉
. (3.9)

If the stochasticity parameter σb = 0, then the galaxy bias is deterministic. In addition
to the two bias moments b̃ and b̂, one can also define some other bias parameters,
particularly the ratio of the variances b2

var ≡ 〈δ
2
g〉/〈δ

2
m〉 (Dekel & Lahav 1999; Cacciato

et al. 2012). Using this definition and an HOD-based formulation, Cacciato et al.
(2012) show that:

b2
var =

(
ρm

ng

)2
〈N2〉

〈M2〉
, (3.10)

where the averages are again calculated according to equation (3.6). As the bias pa-
rameter is sensitive to both non-linearity and stochasticity, the total variance of the
bias b2

var can also be written as:

b2
var = b̃2 + σ2

b . (3.11)

Combining equation (3.10) and (3.11) we find a relation for 〈N2〉

〈N2〉 =

(
ng

ρm

)2 [
b̃2 + σ2

b

]
〈M2〉 . (3.12)

1Cacciato et al. (2012) used σ2
M ≡ 〈M

2〉 throughout the paper, and we decided to drop the σ2
M for cleaner

and more consistent equations.
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We can compare this to the covariance, which is obtained directly from equations
(3.1) and (3.3):

〈NM〉 =
ng

ρm
b̂ 〈M2〉 . (3.13)

From all the equations above, it also directly follows that one can define a linear
correlation coefficient as: r ≡ 〈NM〉/[〈N2〉 〈M2〉], such that, combining equations (3.12)
and (3.13), b̂ can be written as: b̂ = bvarr.

This enables us to consider some special cases. The discrete nature of galaxies
does not allow us to have galaxy bias that is both linear and deterministic (Cacciato
et al. 2012). Despite that, halo occupation statistics do allow bias that is linear and
stochastic where;

b̂ = b̃ = b(M) = 1 bvar = (1 + σ2
b)1/2

σb , 0 r = (1 + σ2
b)−1/2 . (3.14)

or non-linear and deterministic;

b̂ , b̃ , 1 bvar = b̃

σb = 0 r = b̂/b̃ , 1 . (3.15)

3.3 HALO MODEL

To express the HOD, we use the halo model, a successful analytic framework used to
describe the clustering of dark matter and its evolution in the Universe (Seljak 2000;
Peacock & Smith 2000; Cooray & Sheth 2002; van den Bosch et al. 2013; Mead et al.
2015). The halo model provides an ideal framework to describe the statistical weak
lensing signal around a selection of galaxies, their clustering and cosmic shear sig-
nal. The halo model is built upon the statistical description of the properties of dark
matter haloes (namely the average density profile, large scale bias and abundance) as
well as on the statistical description of the galaxies residing in them. The halo model
allows us to unveil the hidden sources of bias stochasticity (Cacciato et al. 2012).

3.3.1 HALO MODEL INGREDIENTS

We assume that dark matter haloes are spherically symmetric, on average, and have
density profiles, ρ(r|M) = M uh(r|M), that depend only on their mass M, and uh(r|M)
is the normalised density profile of a dark matter halo. Similarly, we assume that
satellite galaxies in haloes of mass M follow a spherical number density distribution
ns(r|M) = Ns us(r|M), where us(r|M) is the normalised density profile of satellite galax-
ies. Central galaxies always have r = 0. We assume that the density profile of dark
matter haloes follows an NFW profile (Navarro et al. 1997).



3.3 Halo model 49

Since centrals and satellites are distributed differently, we write the galaxy-galaxy
power spectrum as:

Pgg(k) = f 2
c Pcc(k) + 2 fc fsPcs(k) + f 2

s Pss(k) , (3.16)

while the galaxy-dark matter cross power spectrum is given by:

Pgm(k) = fcPcm(k) + fsPsm(k) . (3.17)

Here fc = nc/ng and fs = ns/ng = 1 − fc are the central and satellite fractions, respec-
tively, and the average number densities ng, nc and ns follow from:

nx =

∫ ∞

0
〈Nx|M〉 n(M) dM , (3.18)

where ‘x’ stands for ‘g’ (for galaxies), ‘c’ (for centrals) or ‘s’ (for satellites) and n(M) is
the halo mass function in the following form:

n(M) =
ρm

M2 ν f (ν)
d ln ν
d ln M

, (3.19)

with ν = δc/σ(M), where δc is the critical overdensity for spherical collapse at redshift
z, and σ(M) is the mass variance. For f (ν) we use the form presented in Tinker et al.
(2010). In addition, it is common practice to split two-point statistics into a 1-halo
term (both points are located in the same halo) and a 2-halo term (the two points are
located in different haloes). The 1-halo terms are:

P1h
cc (k) =

1
nc
, (3.20)

P1h
ss (k) = β

∫ ∞

0
H2

s (k,M) n(M) dM , (3.21)

and all other terms are given by:

P1h
xy(k) =

∫ ∞

0
Hx(k,M)Hy(k,M) n(M) dM . (3.22)

Here ‘x’ and ‘y’ are either ‘c’ (for central), ‘s’ (for satellite), or ‘m’ (for matter), β is a
Poisson parameter which arises from considering a scatter in the number of satellite
galaxies at fixed halo mass [in this case a free parameter – we define the β in detail
using equations (3.40), (3.41) and (3.42)] and we have defined

Hm(k,M) =
M
ρm

ũh(k|M) , (3.23)

Hc(k,M) =
〈Nc|M〉

nc
, (3.24)
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and
Hs(k,M) =

〈Ns|M〉
ns

ũs(k|M) , (3.25)

with ũh(k|M) and ũs(k|M) the Fourier transforms of the halo density profile and the
satellite number density profile, respectively, both normalised to unity [ũ(k=0|M)=1].
The various 2-halo terms are given by:

P2h
xy(k) = Plin(k)

∫ ∞

0
dM1Hx(k,M1) bh(M1) n(M1)

×

∫ ∞

0
dM2Hy(k,M2) bh(M2) n(M2) , (3.26)

where Plin(k) is the linear power spectrum, obtained using the Eisenstein & Hu (1998)
transfer function, and bh(M, z) is the halo bias function. Note that in this formalism,
the matter-matter power spectrum simply reads:

Pmm(k) = P1h
mm(k) + P2h

mm(k) . (3.27)

The two-point correlation functions corresponding to these power-spectra are ob-
tained by simple Fourier transformation:

ξxy(r) =
1

2π2

∫ ∞

0
Pxy(k)

sin kr
kr

k2 dk , (3.28)

For the halo bias function, bh, we use the fitting function from Tinker et al. (2010),
as it was obtained using the same numerical simulation from which the halo mass
function was obtained. We have adopted the parametrization of the concentration-
mass relation, given by Duffy et al. (2008):

c(M, z) = 10.14 Ac

[
M

(2 × 1012M�/h)

]−0.081

(1 + z)−1.01 , (3.29)

with a free normalisation Ac that accounts for the theoretical uncertainties in the
concentration-mass relation due to discrepancies in the numerical simulations (mostly
resolution and cosmologies) from which this scaling is usually inferred (Viola et al.
2015). We allow for additional normalisation As for satellites, such that

cs(M, z) = As c(M, z) , (3.30)

which governs how satellite galaxies are spatially distributed inside a dark matter
halo and tests the assumption of satellite galaxies following the density distribution
of the dark matter haloes. If As , 1, the galaxy bias will vary on small scales, as
demonstrated by Cacciato et al. (2012).
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3.3.2 CONDITIONAL STELLAR MASS FUNCTION

In order to constrain the cause for the stochasticity, non-linearity and scale depen-
dence of galaxy bias, we model the halo occupation statistics using the Conditional
Stellar Mass Function (CSMF, heavily motivated by Yang et al. 2008; Cacciato et al.
2009, 2013; Wang et al. 2013; van Uitert et al. 2016). The CSMF, Φ(M?|M), specifies
the average number of galaxies of stellar mass M? that reside in a halo of mass M. In
this formalism, the halo occupation statistics of central galaxies are defined via the
function:

Φ(M?|M) = Φc(M?|M) + Φs(M?|M) . (3.31)

In particular, the CSMF of central galaxies is modelled as a log-normal,

Φc(M?|M) =
1

√
2π ln(10)σcM?

exp
[
−

log(M?/M∗c )2

2σ2
c

]
, (3.32)

and the satellite term as a modified Schechter function,

Φs(M?|M) =
φ∗s
M∗s

(
M?

M∗s

)αs

exp

− (
M?

M∗s

)2 , (3.33)

where σc is the scatter between stellar mass and halo mass and αs governs the power
law behaviour of satellite galaxies. Note that M∗c , σc, φ∗s , αs and M∗s are, in principle,
all functions of halo mass M. We assume that σc and αs are independent of the halo
mass M. Inspired by Yang et al. (2008), we parametrise M∗c , M∗s and φ∗s as:

M∗c (M) = M0
(M/M1)γ1

[1 + (M/M1)]γ1−γ2
. (3.34)

M∗s (M) = 0.56 M∗c (M) , (3.35)

and
log[φ∗s(M)] = b0 + b1(log m12) , (3.36)

where m12 = M/(1012M�h−1). The factor of 0.56 is also inspired by Yang et al. (2008)
and further tests by van Uitert et al. (2016) showed that using this assumption does
not significantly affect the results. We can see that the stellar to halo mass relation for
M � M1 behaves as M∗c ∝ Mγ1 and for M � M1, M∗c ∝ Mγ2 , where M1 is a characteristic
mass scale and M0 is a normalisation. Here γ1, γ2, b0 and b1 are all free parameters.

From the CSMF it is straightforward to compute the halo occupation numbers.
For example, the average number of galaxies with stellar masses in the range M?,1 ≤

M? ≤ M?,2 is thus given by:

〈N|M〉 =

∫ M?,2

M?,1

Φ(M?|M) dM? . (3.37)
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The distinction we have made here, by splitting galaxies into centrals or satellites,
is required to illustrate the main source of non-linearity and scale dependence of
galaxy bias (see results in Section 3.5). To explore this, we follow Cacciato et al. (2012),
and define the random halo biases following similar procedure as in equation (3.7):

εc ≡ Nc − 〈Nc|M〉 and εs ≡ Ns − 〈Ns|M〉 , (3.38)

and the halo stochasticity functions for centrals and satellites are given by:

〈ε2
c |M〉 =

∞∑
Nc=0

(Nc − 〈Nc|M〉)2 P(Nc|M)

= 〈N2
c |M〉 − 〈Nc|M〉2

= 〈Nc|M〉 − 〈Nc|M〉2 , (3.39)

〈ε2
s |M〉 =

∞∑
Ns=0

(Ns − 〈Ns|M〉)2 P(Ns|M)

= 〈N2
s |M〉 − 〈Ns|M〉2 , (3.40)

where we have used the fact that 〈N2
c |M〉 = 〈Nc|M〉, which follows from the fact that

Nc is either zero or unity. We can see that central galaxies only contribute to the
stochasticity if 〈Nc|M〉 < 1. If 〈Nc|M〉 = 1, then the HOD is deterministic and the
stochasticity function 〈ε2

c |M〉 = 0. The CSMF, however, only specifies the first moment
of the halo occupation distribution P(N |M). For central galaxies this is not a problem,
as 〈N2

c |M〉 = 〈Nc|M〉. For satellite galaxies, we use that

〈N2
s |M〉 = β(M)〈Ns|M〉2 + 〈Ns|M〉 , (3.41)

where β(M) is the mass dependent Poisson parameter defined as:

β(M) ≡
〈Ns(Ns − 1)|M〉
〈Ns|M〉2

, (3.42)

which is unity if P(Ns|M) is given by a Poisson distribution, larger than unity if the
distribution is wider than a Poisson distribution (also called super-Poissonian distri-
bution) or smaller than unity if the distribution is narrower than a Poisson distribu-
tion (also called sub-Poissonian distribution). If β(M) is unity, then equation (3.40)
takes a simple form 〈ε2

s |M〉 = 〈Ns|M〉. In what follows we limit ourselves to cases
in which β(M) is independent of halo mass, i.e., β(M) = β, and we treat β as a free
parameter.

Even without an application to the data, we can already learn a lot about the na-
ture of galaxy bias from combining the HOD and halo model approaches to galaxy
biasing as described in Section 3.2. As realistic HODs (as formulated above) differ
strongly from the simple scaling 〈N |M〉 ∝ M (equation 3.3, which gives the linear and
deterministic galaxy bias), they will inherently predict a galaxy bias that is strongly
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non-linear. Moreover, this seems to be mostly the consequence of central galaxies for
which 〈Nc|M〉 never follows a power law. Even the satellite occupation distribution
〈Ns|M〉 is never close to the power law form, due to a cut-off at the low mass end,
as galaxies at certain stellar mass require a minimum mass for their host halo (Cac-
ciato et al. 2012, see also Figure 2 therein). Given the behaviour of the halo model
and the HOD, the stochasticity of the galaxy bias could most strongly arise from the
non-zero σc in equation (3.32) and the possible non-Poissonian nature of the satellite
galaxy distribution for less massive galaxies. For more massive galaxies the main
source of stochasticity can be shot noise, which dominates the stochasticity function,
σb in equation (3.9), when the number density of galaxies is small. We use those free
parameters of the HOD in a fit to the data (see Section 3.4), to constrain the cause for
the stochasticity, non-linearity and scale dependence of galaxy bias.

3.3.3 PROJECTED FUNCTIONS

We can project the 3D bias functions as defined by Dekel & Lahav (1999); Cacciato
et al. (2012) into two-dimensional, projected analogues, which are more easily ac-
cessible observationally. We start by defining the matter-matter, galaxy-matter, and
galaxy-galaxy projected surface densities as:

Σxy(rp) = 2ρm

∫ ∞

rp

ξxy(r)
r dr√
r2 − r2

p

, (3.43)

where ‘x’ and ‘y’ stand either for ‘g’ or ‘m’, and rp is the projected separation, with the
change from standard line-of-sight integration to the integration along the projected
separation using an Abel tranformation. We also define Σxy(< rp) as its average inside
rp:

Σxy(< rp) =
2
r2

p

∫ rp

0
Σxy(R′)R′ dR′ , (3.44)

which we use to define the excess surface densities (ESD)

∆Σxy(rp) = Σxy(< rp) − Σxy(rp) . (3.45)

We include the contribution of the stellar mass of galaxies to the lensing signal as a
point mass approximation, which we can write as:

∆Σ
pm
gm(rp) =

M?,med

πr2
p

, (3.46)

where M?,med is the median stellar mass of the selected galaxies obtained directly
from the GAMA catalogue (Taylor et al. 2011, see Section 3.4.1 and Table 3.1 for more
details). This stellar mass contribution is fixed by each of our samples. According
to the checks performed, the inclusion of the stellar mass contribution to the lensing
signal does not affect our conclusions.
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The obtained projected surface densities can subsequently be used to define the
projected, 2D analogues of the 3D bias functions (b3D

g , R3D
gm and Γ3D

gm, Dekel & Lahav
1999; Cacciato et al. 2012) as:

bg(rp) ≡

√
∆Σgg(rp)
∆Σmm(rp)

, (3.47)

Rgm(rp) ≡
∆Σgm(rp)√

∆Σgg(rp) ∆Σmm(rp)
, (3.48)

and

Γgm(rp) ≡
bg(rp)
Rgm(rp)

=
∆Σgg(rp)
∆Σgm(rp)

. (3.49)

In what follows we shall refer to these as the ‘projected bias functions’.
In the case of the galaxy-dark matter cross correlation, the excess surface density

∆Σgm(rp) = γt(rp) Σcr,com, where γt(rp) is the tangential shear, which can be measured
observationally using galaxy-galaxy lensing, and Σcr,com is the comoving critical sur-
face mass density:2:

Σcr,com =
c2

4πG(1 + zl)2

D(zs)
D(zl)D(zl, zs)

, (3.50)

where D(zl) is the angular diameter distance to the lens, D(zl, zs) is the angular di-
ameter distance between the lens and the source and D(zs) is the angular diameter
distance to the source. In Appendix 3.C we discuss the exact derivation of equation
(3.50) and the implications of using different coordinates. In the case of the galaxy-
galaxy autocorrelation we can write that

∆Σgg(rp) = ρm

 2
r2

p

∫ rp

0
wp(R′) R′ dR′ − wp(rp)

 , (3.51)

where wp(rp) is the projected galaxy correlation function, and wp(rp) = Σgg(rp)/ρm.
It is immediately clear that ∆Σgg(rp) can be obtained from the projected correlation
function wp(rp), which is routinely measured in large galaxy redshift surveys.

In terms of the classical 3D bias functions b3D
g , R3D

gm and Γ3D
gm (Cacciato et al. 2012),

the galaxies can be unbiased with respect to the underlying dark matter distribution,
if and only if the following conditions are true: they are not central galaxies, the oc-
cupation number of satellite galaxies obeys Poisson statistics (β = 1), the normalised
number density profile of satellite galaxies is identical to the one of the dark mat-
ter, and the occupational number of satellites is directly proportional to halo mass as
〈Ns〉 = Mns/ρ. When central galaxies are added to the above conditions, one expects
a strong scale dependence on small scales, due to the fact that central galaxies are
strongly biased with respect to dark matter haloes. In the case of a non-Poissonian

2In Chapter 2, the same definition was used in all the calculations and plots shown, but erroneously
documented in the paper. The equations (6) and (9) of that paper should have the same form as equations
(3.50) and (3.54), as discussed in Appendix 3.C.
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satellite distribution, one still expects b3D
g = 1 on large scales, but with a transition

from 1 to β, roughly at the virial radius when moving towards the centre of the halo
(see also Figure 3 in Cacciato et al. 2012). The same also holds for the case where the
density profile of satellites follows that of dark matter (Cacciato et al. 2012).

Given all these reasons, as already pointed out by Cacciato et al. (2012), one ex-
pects scale independence on large scales (at a value dependent on halo model ingre-
dients), with the transition to scale dependence on small scales (due to the effects
of central galaxies) around the 1-halo to 2-halo transition. The same holds for the
projected bias functions (bg, Rgm and Γgm), which also carry a wealth of information
regarding the non-linearity and stochasticity of halo occupation statistics, and conse-
quently, galaxy formation.

This is demonstrated in Figure 3.1 where we show the influence of different val-
ues of σc, As, αs and β on the bias function Γgm as a function of stellar mass. From the
predictions one can clearly see how the different halo model ingredients influence
the bias function. The halo model predicts, as mentioned before, scale independence
above 10 Mpc/h and a significant scale dependence of galaxy bias on smaller scales,
with the parameters αs, As and β having a significant influence at those scales. Any
deviation from a pure Poissonian distribution of satellite galaxies will result in quite
a significant feature at intermediate scales, therefore it would be a likely explanation
for detected signs of stochasticity [as the deviation from unity will drive the stochas-
ticity function σb or alternatively ε away from 0, as can be seen from equations (3.38)
to (3.42)]. In Figure 3.1 we also test the influence of having different Ωm and σ8 on
the Γgm bias function, as generally, any bias function is a strong function of those
two parameters (Dekel & Lahav 1999; Sheldon et al. 2004). We test this by picking 4
combinations of Ωm and σ8 drawn from the 1σ confidence contours of Planck Collab-
oration et al. (2016) measurements of the two parameters. Given the uncertainties of
those parameters and their negligible influence on the Γgm bias function, the decision
to fix the cosmology seems to be justified.

We would like to remind the reader, that our implementation of the halo model
does not include the scale dependence of the halo bias and the halo-exclusion (mutual
exclusiveness of the spatial distribution of the haloes). Not including those effects
can introduce errors on the 1-halo to 2-halo transition region that can be as large as
50% (Cacciato et al. 2012; van den Bosch et al. 2013). However, the bias functions as
defined using equations (3.47) to (3.49) are much more accurate and less susceptible
to the uncertainties in the halo model, by being defined as ratios of the two-point
correlation functions (Cacciato et al. 2012).

Despite of this, we decided to estimate the halo model parameters and the nature
of galaxy bias using the fit to the ∆Σgm(rp) and wp(rp) signals separately, rather than
the ratio of the two (using the Γgm bias function directly). This approach will still
suffer from a possible bias due to the fact that we do not include the scale dependent
halo bias or the halo-exclusion in our model. This choice is motivated purely by the
fact that the covariance matrix that would account for the cross-correlations between
the lensing and clustering measurements cannot be properly taken into account when
fitting the Γgm bias function directly. We investigate the possible bias in our results in
Section 3.5.2.
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Figure 3.1: Model predictions of scale dependence of the galaxy bias function Γgm (equation
3.49) for three stellar mass bins (defined in Table 3.1), with stellar masses given in units of[
log(M?/[M�/h2])

]
. With the black solid line we show our fiducial halo model (with other pa-

rameters adapted from Cacciato et al. 2013), and the different green and violet lines show dif-
ferent values of σc, αs, β, As and combinations of Ωm and σ8, row-wise, with values indicated
in the legend. The full set of our fiducial parameters can be found in Table 3.2.
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3.4 DATA AND SAMPLE SELECTION

3.4.1 LENS GALAXY SELECTION

The foreground galaxies used in this lensing analysis are taken from the Galaxy And
Mass Assembly (hereafter GAMA) survey (Driver et al. 2011). GAMA is a spectro-
scopic survey carried out on the Anglo-Australian Telescope with the AAOmega
spectrograph. Specifically, we use the information of GAMA galaxies from three
equatorial regions, G9, G12 and G15 from GAMA II (Liske et al. 2015). We do not use
the G02 and G23 regions, because the first one does not overlap with KiDS and the
second one uses a different target selection compared to the one used in the equato-
rial regions. These equatorial regions encompass ~ 180 deg2, contain 180 960 galaxies
(with nQ ≥ 3, where the nQ is a measure of redshift quality) and are highly complete
down to a Petrosian r-band magnitude r = 19.8. For the weak lensing measurements,
we use all the galaxies in the three equatorial regions as potential lenses. To measure
their average lensing and projected clustering signals, we group GAMA galaxies in
stellar mass bins, following previous lensing measurements by van Uitert et al. (2016)
and Velliscig et al. (2017). The bin ranges were chosen this way to achieve a good
signal-to-noise ratio in all bins and to measure the galaxy bias as a function of differ-
ent stellar mass. The selection of galaxies can be seen in Figure 5.1, and the properties
we use in the halo model are shown in Table 3.1. Stellar masses are taken from ver-
sion 19 of the stellar mass catalogue, an updated version of the catalogue created
by Taylor et al. (2011), who fitted Bruzual & Charlot (2003) synthetic stellar popula-
tion SEDs to the broadband SDSS photometry assuming a Chabrier (2003) IMF and a
Calzetti et al. (2000) dust law. The stellar masses in Taylor et al. (2011) agree well with
MagPhys derived estimates, as shown by Wright et al. (2017). Despite the differences
in the range of filters, star formation histories, obscuration laws, the two estimates
agree within 0.2 dex for 95 percent of the sample.

Table 3.1: Overview of the median stellar masses of galaxies, median redshifts and number of
galaxies/lenses in each selected bin, which are indicated in the second column. Stellar masses
are given in units of

[
log(M?/[M�/h2])

]
.

Sample Range M?,med zmed # of lenses

Bin 1 (10.3, 10.6] 10.46 0.244 26224
Bin 2 (10.6, 10.9] 10.74 0.284 20452
Bin 3 (10.9, 12.0] 11.13 0.318 10178
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Figure 3.2: Stellar mass versus redshift of
galaxies in the GAMA survey that overlap
with KiDS. The full sample is shown with
hexagonal density plot and the dashed lines
show the cuts for the three stellar mass bins
used in our analysis.

Figure 3.3: A comparison between the red-
shift distribution of galaxies in the data and
the matched galaxies in GAMA random cata-
logue (Farrow et al. 2015) for our three stellar
mass bins. We use the same set of randoms
for both galaxy clustering and galaxy-galaxy
lensing measurements.

3.4.2 MEASUREMENT OF THE ∆ΣGM(rP) SIGNAL

We use imaging data from 180 deg2 of KiDS (Kuijken et al. 2015; de Jong et al. 2015)
that overlaps with the GAMA survey (Driver et al. 2011) to obtain shape measure-
ments of background galaxies. KiDS is a four-band imaging survey conducted with
the OmegaCAM CCD mosaic camera mounted at the Cassegrain focus of the VLT
Survey Telescope (VST); the camera and telescope combination provide us with a
fairly uniform point spread function across the field-of-view.

We use shape measurements based on the r-band images, which have an aver-
age seeing of 0.66 arcsec. The image reduction, photometric redshift calibration and
shape measurement analysis is described in detail in Hildebrandt et al. (2017).

We measure galaxy shapes using calibrated lensfit shape catalogs (Miller et al.
2013) (see also Fenech Conti et al. 2017, where the calibration methodology is de-
scribed), which provides galaxy ellipticities (ε1, ε2) with respect to an equatorial co-
ordinate system. For each source-lens pair we compute the tangential εt and cross
component ε× of the source’s ellipticity around the position of the lens:[

εt
ε×

]
=

[
− cos(2φ) − sin(2φ)

sin(2φ) − cos(2φ)

] [
ε1
ε2

]
, (3.52)

where φ is the angle between the x-axis and the lens-source separation vector.
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The azimuthal average of the tangential ellipticity of a large number of galaxies in
the same area of the sky is an unbiased estimate of the shear. On the other hand, the
azimuthal average of the cross ellipticity over many sources is unaffected by grav-
itational lensing and should average to zero (Schneider 2003). Therefore, the cross
ellipticity is commonly used as an estimator of possible systematics in the measure-
ments such as non-perfect PSF deconvolution, centroid bias and pixel level detector
effects (Mandelbaum 2017). Each lens-source pair is then assigned a weight

w̃ls = ws

(
Σ̃−1

cr,ls

)2
, (3.53)

which is the product of the lensfit weight ws assigned to the given source ellipticity
and the square of Σ̃−1

cr,ls – the effective inverse critical surface mass density, which
is a geometric term that downweights lens-source pairs that are close in redshift.
We compute the effective inverse critical surface mass density for each lens using
the spectroscopic redshift of the lens zl and the full normalised redshift probability
density of the sources, n(zs), calculated using the direct calibration method presented
in Hildebrandt et al. (2017).

The effective inverse critical surface density can be written as:

Σ̃−1
cr,ls =

4πG
c2 (1 + zl)2D(zl)

∫ ∞

zl

D(zl, zs)
D(zs)

n(zs) dzs . (3.54)

The galaxy source sample is specific to each lens redshift with a minimum photomet-
ric redshift zs = zl + δz, with δz = 0.2, where δz is an offset to mitigate the effects of
contamination from the group galaxies (for details see also the methods section and
Appendix of Chapter 2). We determine the source redshift distribution n(zs) for each
sample, by applying the sample photometric redshift selection to a spectroscopic cat-
alogue that has been weighted to reproduce the correct galaxy colour-distributions in
KiDS (for details see Hildebrandt et al. 2017).

Thus, the ESD can be directly computed in bins of projected distance rp to the
lenses as:

∆Σgm(rp) =

∑ls w̃lsεt,sΣ
′
cr,ls∑

ls w̃ls

 1
1 + m

. (3.55)

where Σ′cr,ls ≡ 1/Σ̃−1
cr,ls and the sum is over all source-lens pairs in the distance bin, and

m =

∑
i w′imi∑

i w′i
, (3.56)

is an average correction to the ESD profile that has to be applied to correct for the mul-
tiplicative bias m in the lensfit shear estimates. The sum goes over thin redshift slices
for which m is obtained using the method presented in Fenech Conti et al. (2017),
weighted by w′ = wsD(zl, zs)/D(zs) for a given lens-source sample. The value of m is
around −0.014, independent of the scale at which it is computed. Furthermore, we
subtract the signal around random points using the random catalogues from Farrow
et al. (2015) (for details see analysis in the Appendix of Chapter 2).
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3.4.3 MEASUREMENT OF THE wP(rP) PROFILE

We compute the three-dimensional autocorrelation function of our three lens samples
using the Landy & Szalay (1993) estimator. For this we use the same random cata-
logue and procedure as described in Farrow et al. (2015), applicable to the GAMA
data. To minimise the effect of redshift-space distortions in our analysis, we project
the three dimensional autocorrelation function along the line of sight:

wp(rp) = 2
∫ Πmax=100 Mpc/h

0
ξ(rp,Π) dΠ . (3.57)

For practical reasons, the above integral is evaluated numerically. This calls for con-
sideration of our integration limits, particularly the choice of Πmax. Theoretically one
would like to integrate out to infinity in order to completely remove the effect of
redshift space distortions and to encompass the full clustering signal on large scales.
We settle for Πmax = 100 Mpc/h, in order to project the correlation function on the
separations we are interested in (with a maximum rp = 10 Mpc/h). We use the pub-
licly available code SWOT3 (Coupon et al. 2012) to compute ξ(rp,Π) and wp(rp), and
to get bootstrap estimates of the covariance matrix on small scales. The code was
tested against results from Farrow et al. (2015) using the same sample of galaxies and
updated random catalogues (internal version 0.3), reproducing the results in detail.
Randoms generated by Farrow et al. (2015) contain around 750 times more galaxies
than those in GAMA samples. Figure 3.3 shows the good agreement between the
redshift distributions of the GAMA galaxies and the random catalogues for the three
stellar mass bins.

The clustering signal wp(rp) as well as the lensing signal ∆Σgm(rp) are shown in
Figure 3.4, in the right and left panel, respectively. They are shown together with
MCMC best-fit profiles as described in Section 3.4.5, using the halo model as de-
scribed in Section 3.3. The best-fit is a single model used for all stellar masses and not
independent for the three bins we are using. In order to obtain the galaxy bias func-
tion Γgm(rp) (equation 3.49) we project the clustering signal according to the equation
(3.57). The plot of this resulting function can be seen in Figure 3.5.

3http://jeancoupon.com/swot

http://jeancoupon.com/swot
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3.4.4 COVARIANCE MATRIX ESTIMATION

Statistical error estimates on the lensing signal and projected galaxy clustering sig-
nal are obtained using an analytical covariance matrix. As shown in Chapter 2, es-
timating the covariance matrix from data can become challenging given the small
number of independent data patches in GAMA. This becomes even more challeng-
ing when one wants to include in the mixture the covariance for the projected galaxy
clustering and all the possible cross terms between the two. The analytical covari-
ance matrix we use is composed of three main parts: a Gaussian term, non-Gaussian
term and the super-sample covariance (SSC) which accounts for all the modes out-
side of our KiDSxGAMA survey window. It is based on previous work by Takada &
Jain (2009), Joachimi et al. (2008), Pielorz et al. (2010), Takada & Hu (2013), Li et al.
(2014a), Marian et al. (2015), Singh et al. (2017) and Krause & Eifler (2017), and ex-
tended to support multiple lens bins and cross terms between lensing and projected
galaxy clustering signals. The covariance matrix was tested against published results
in these individual papers, as well as against real data estimates on small scales and
mocks as used by van Uitert et al. (2018a). Further details and terms used can be
found in Appendix 3.A. We first evaluate our covariance matrix for a set of fiducial
model parameters and use this in our MCMC fit and then take the best-fit values and
re-evaluate the covariance matrix for the new best-fit halo model parameters. After
carrying out the re-fitting procedure, we find out that the updated covariance matrix
and halo model parameters do not affect the results of our fit, and thus the original
estimate of the covariance matrix is appropriate to use throughout the analysis.

3.4.5 FITTING PROCEDURE

The free parameters for our model are listed in Table 3.2, together with their fiducial
values. We use a Bayesian inference method in order to obtain full posterior prob-
abilities using a Monte Carlo Markov Chain (MCMC) technique; more specifically
we use the emcee Python package (Foreman-Mackey et al. 2013). The likelihood L is
given by

L ∝ exp
[
−

1
2

(Oi − Mi)T C−1
i j (O j − M j)

]
, (3.58)

where Oi and Mi are the measurements and model predictions in radial bin i, and
C−1

i j is the element of the inverse covariance matrix that accounts for the correlation
between radial bins i and j. In the fitting procedure we use the inverse covariance
matrix as described in Section 3.4.4 and Appendix 3.A. We use wide flat priors for
all the parameters (given in Table 3.2). The halo model (halo mass function and the
power spectrum) is evaluated at the median redshift for each sample.

We run the sampler using 120 walkers, each with 12 000 steps (for a combined
number of 14 400 000 samples), out of which we discard the first 1000 burn-in steps
(120 000 samples). The resulting MCMC chains are well converged according to the
integrated autocorrelation time test.
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Table 3.2: Summary of the lensing results obtained using MCMC halo model fit to the data.
Here M0 is the normalisation of the stellar to halo mass relation, M1 is the characteristic mass
scale of the same stellar to halo mass relation, Ac is the normalisation of the concentration-mass
relation, σc is the scatter between the stellar and halo mass, γ1 and γ2 are the low and high-mass
slopes of the stellar to halo mass relation, As is the normalisation of the concentration-mass re-
lation for satellite galaxies, αs, b0 and b1 govern the behaviour of the CSMF of satellite galaxies,
and β is the Poisson parameter. All parameters are defined in Section 3.3, using equations (3.29)
to (3.42).

log(M0/[M�/h2]) log(M1/[M�/h]) Ac σc γ1 γ2

Fiducial 9.6 11.25 1.0 0.35 3.41 0.99
Priors [7.0, 13.0] [9.0, 14.0] [0.0, 5.0] [0.05, 2.0] [0.0, 10.0] [0.0, 10.0]

Posteriors 8.75+1.62
−1.28 11.13+1.10

−1.11 1.33+0.20
−0.19 0.25+0.24

−0.18 2.16+4.43
−1.52 1.32+0.51

−0.34

As αs b0 b1 β

Fiducial 1.0 −1.34 −1.15 0.59 1.0
Priors [0.0, 5.0] [−5.0, 5.0] [−5.0, 5.0] [−5.0, 5.0] [0.0, 2.0]

Posteriors 0.24+0.30
−0.14 −1.36+0.19

−0.13 −0.71+0.34
−0.55 0.13+0.29

−0.30 1.67+0.15
−0.16

3.5 RESULTS

3.5.1 KIDS AND GAMA RESULTS

We fit the halo model as described in Section 3.4.5 to the measured projected galaxy
clustering signal wp(rp) and the galaxy-galaxy lensing signal ∆Σgm(rp), using the co-
variance matrix as described in Section 3.4.4. The resulting best fits are presented
in Figure 3.4 (together with the measurements and their respective 1σ errors ob-
tained by taking the square root of the diagonal elements of the analytical covariance
matrix). The measured halo model parameters, together with the 1σ uncertainties
are summarised in Table 3.2. Their full posterior distributions are shown in Figure
3.9. The fit of our halo model to both the galaxy-galaxy lensing signal and projected
galaxy clustering signal, using the full covariance matrix accounting for all the pos-
sible cross-correlations, has a reduced χ2

red(≡ χ2/d.o.f.) equal to 1.15, which is an ap-
propriate fit, given the 33 degrees of freedom (d.o.f.). We urge readers not to rely
on the “chi-by-eye” in Figures 3.4 and 3.5 due to highly correlated data points (the
correlations of which can be seen in Figure 3.8) and the joint fit of the halo model to
the data.

Due to the fact that we are only using samples with relatively high stellar masses,
we are unable to sample the low-mass portion of the stellar mass function, evident in
our inability to properly constrain the γ1 parameter, which describes the behaviour of
the stellar mass function at low halo mass. Mostly because of this, our results for the
HOD parameters are different compared to those obtained by van Uitert et al. (2016),
who analysed the full GAMA sample. There is also a possible difference arising due
to the available overlap of KiDS and GAMA surveys used in van Uitert et al. (2016)
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Figure 3.4: The stacked ESD profile (left panel) and projected galaxy clustering signal (right
panel) of the 3 stellar mass bins in the GAMA galaxy sample defined in Table 3.1. The solid
lines represent the best-fitting halo model as obtained using an MCMC fit, with the 68 percent
confidence interval indicated with a shaded region. Using those two measurements we obtain
the bias function Γgm(rp). We do not use the measurements in the grey band in our fit, as
the clustering measurements are affected by blending in this region. The best-fit halo model
parameters are listed in Table 3.2.

and our analysis, as van Uitert et al. (2016) used the lensing data from only 100 deg2 of
the KiDS data, released before the shear catalogues used by Hildebrandt et al. (2017)
and in Chapter 2, amongst others, became available. Our inferred HOD parameters
are also in broad agreement with the ones obtained by Cacciato et al. (2014) for a
sample of SDSS galaxies.

The main result of this work is the Γgm(rp) bias function, presented in Figure 3.5,
together with the best fit MCMC result – obtained by projecting the measured galaxy
clustering result according to equation (3.57) – and combining with the galaxy-galaxy
lensing result according to equation (3.49). The obtained Γgm(rp) bias function from
the fit is scale dependent, showing a clear transition around 2 Mpc/h, in the 1-halo
to 2-halo regime, where the function slowly transitions towards a constant value on
even larger scales, beyond the range studied here (as predicted in Cacciato et al. 2012).
Given the parameters obtained using the halo model fit to the data, the preferred
value of β is larger than unity with β = 1.67+0.15

−0.16, which indicates that the satellite
galaxies follow a super-Poissonian distribution inside their host dark matter haloes,
and are thus responsible for the deviations from constant in our Γgm(rp) bias function
at intermediate scales. Following the formulation by Cacciato et al. (2012), this also
means that the galaxy bias, as measured, is highly non-deterministic. As seen by the
predictions shown in Figure 3.1, the deviation of β from unity alone is not sufficient
to explain the full observed scale dependence of the Γgm(rp) bias function. Given the
best-fit parameter values using the MCMC fit of the halo model, the non-unity of
the mass-concentration relation normalisation As and other CSMF parameters (but
most importantly the αs parameter, which governs the power law behaviour of the
satellite CSMF) are also responsible for the total contribution to the observed scale
dependence, and thus the stochastic behaviour of the galaxy bias on all scales ob-
served.
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Figure 3.5: The Γgm(rp) bias function as measured using a combination of projected galaxy clus-
tering and galaxy-galaxy lensing signals, shown for the 3 stellar mass bins as used throughout
this paper. The solid lines represent the best-fitting halo model as obtained using an MCMC
fit to the projected galaxy clustering and galaxy-galaxy lensing signal, combined to obtain
Γgm(rp), as described in Section 3.3. The colour bands show the 68 percent confidence interval
propagated from the best-fit model. Error bars on the data are obtained by propagating the
appropriate sub-diagonals of the covariance matrix and thus do not show the correct corre-
lations between the data points and also overestimate the sample variance and super-sample
covariance contributions.



3.5 Results 65

10−1 100 101

rp (Mpc/h)

−1

0

1

2

3

4

Γ
gm

(r
p
)

Bin 1

Bin 2

Bin 3

Figure 3.6: The Γgm(rp) bias function as measured using the combination of projected galaxy
clustering and galaxy-galaxy lensing signals, shown for the 3 stellar mass bins as used through-
out this paper. The solid lines represent the same measurement repeated on the EAGLE simu-
lation, with the colour bands showing the 1σ errors. Note that those measurements are noisy
due to the fact that the EAGLE simulation box is rather small, resulting in a relatively low
number of galaxies in each bin (factor of around 26 lower, compared to the data). Due to the
box size, we can also only show the measurement to about 2 Mpc/h.
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3.5.2 INVESTIGATION OF THE POSSIBLE BIAS IN THE RESULTS

Due to the fact that we have decided to fit the model to the ∆Σgm(rp) and wp(rp) sig-
nals, we investigate how this choice might have biased our results. To check this we
repeat our analysis using the Γgm(rp) bias function directly. As our data vector we
take the ratio of the projected signals as shown in Figure 3.5 and we use the appro-
priately propagated sub-diagonals of the covariance matrix as a rough estimate of
the total covariance matrix. Such a covariance matrix does not show the correct cor-
relations between the data points (and the bins) and also overestimates the sample
variance and super-sample covariance contributions. Nevertheless the ratio of the
diagonals as an estimate of the errors is somewhat representative of the errors on the
measured Γgm(rp) bias function. The fit procedure (except for a different data vector,
covariance and output of the model) follows the method presented in Section 3.4.5.
Using this, we obtain the best-fit values that are shown in Figure 3.9, marked with
blue points and lines, together with the full posterior distributions from the initial fit.
The resulting fit has a χ2

red equal to 1.29, with 9 degrees of freedom. As the results are
consistent with the results that we obtain using a fit to the ∆Σgm(rp) and wp(rp) signals
separately, it seems that, at least for this study, the halo model as described does not
bias the overall conclusions of our analysis.

3.5.3 COMPARISON WITH EAGLE SIMULATION

In Figure 3.6 we compare our measurements of the GAMA and KiDS data to the
same measurements made using the hydrodynamical EAGLE simulation (Schaye
et al. 2015; McAlpine et al. 2016). EAGLE consists of state-of-the-art hydrodynamical
simulations, including sub-grid interaction mechanisms between stellar and galac-
tic energy sources. EAGLE is optimised such that the simulations reproduce a uni-
verse with the same stellar mass function as our own (Schaye et al. 2015). We follow
the same procedure as with the data, by separately measuring the projected galaxy
clustering signal and the galaxy-galaxy lensing signal and later combining the two
accordingly. We measure the 3D galaxy clustering using the Landy & Szalay (1993)
estimator, closely following the procedure outlined in Artale et al. (2017). We adopt
the same Πmax = 34 Mpc/h as used by Artale et al. (2017) in order to project the 3D
galaxy clustering ξ(rp,Π) to wp(rp), which represents ∼ L/2 of the EAGLE box (Artale
et al. 2017); see also equation (3.57). This limits the EAGLE measurements to a maxi-
mum scales of rp < 2 Mpc/h. As we do not require an accurate covariance matrix for
the EAGLE results (we do not fit any model to it), we adopt a Jackknife covariance es-
timator using 8 equally sized sub-volumes. The measured EAGLE projected galaxy
clustering signal is in good agreement with the GAMA measurements in detail, a
result also found in Artale et al. (2017).

To estimate the galaxy-galaxy lensing signal of galaxies in EAGLE, we use the ex-
cess surface density (i.e., lensing signal) of galaxies in EAGLE calculated by Velliscig
et al. (2017). We again select the galaxies in the three stellar mass bins, but in order to
mimic the magnitude-limited sample we have adopted in our measurements of the
galaxy-galaxy lensing signal on GAMA and KiDS, we have to weight our galaxies in
the selection according to the satellite fraction as presented in Velliscig et al. (2017).
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Figure 3.7: Distribution of satellite galaxies in a halo of fixed mass within 12.0 < log(M/M�) <
12.2 (histogram). This can be compared to a Poisson distribution with the same mean (solid
curve) and a Gaussian distribution with the same mean and standard deviation as the data
(dot-dashed curve).

Our two measurements (projected galaxy clustering and the galaxy-galaxy lens-
ing) are then combined according to the definition of the Γgm(rp) bias function, which
is shown in Figure 3.6. There we directly compare the bias function as measured
in the KiDS and GAMA data to the one obtained from the EAGLE hydrodynamical
simulation (shown with full lines). The results from EAGLE are noisy, due to the fact
that one is limited by the number of galaxies present in EAGLE.

Using the EAGLE simulations, we can directly access the properties of the satellite
galaxies residing in the main halos present in the simulation. We select a narrow
bin in halo masses of groups present in the simulation (between 12.0 and 12.2 in
log(M/M�) and count the number of subhalos (galaxies). The resulting histogram,
showing the relative abundance of satellite galaxies can be seen in Figure 3.7. We also
show the Poisson distribution with the same mean as the EAGLE data, as well as the
Gaussian distribution with the same mean and standard deviation as the distribution
of the satellite galaxies in our sample. It can be immediately seen that the distribution
of satellite galaxies at a fixed halo mass does not follow a Poisson distribution, and it
is significantly wider (thus indeed being super-Poissonian).
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The comparison nevertheless shows that the galaxy bias is intrinsically scale de-
pendent and the shape of it suggests that it can be attributed to the non-Poissonian
behaviour of satellite galaxies (and to lesser extent also to the precise distribution of
satellites in the dark matter halo, governed by αs and As in the halo model).

3.6 DISCUSSION AND CONCLUSIONS

We have measured the projected galaxy clustering signal and galaxy-galaxy lensing
signal for a sample of GAMA galaxies as a function of their stellar mass. In this anal-
ysis, we use the KiDS data covering 180 deg2 of the sky (Hildebrandt et al. 2017), that
fully overlaps with the three equatorial patches from the GAMA survey that we use
to determine three stellar mass selected lens galaxy samples. We have combined our
results to obtain the Γgm(rp) bias function in order to unveil the hidden factors and
origin of galaxy biasing in light of halo occupation models and the halo model, as
presented in the theoretical work of Cacciato et al. (2012). We have used that formal-
ism to fit to the data to constrain the parameters that contribute to the observed scale
dependence of the galaxy bias, and see which parameters exactly carry information
about the stochasticity and non-linearity of the galaxy bias, as observed. Due to the
limited area covered by the both surveys, the covariance matrix used in this analy-
sis was estimated using an analytical prescription, for which details can be found in
Appendix 3.A.

Our results show a clear trend that galaxy bias cannot be simply treated with
a linear and/or deterministic approach. We find that the galaxy bias is inherently
stochastic and non-linear due to the fact that satellite galaxies do not strictly follow
a Poissonian distribution and that the spatial distribution of satellite galaxies also
does not follow the NFW profile of the host dark matter halo. The main origin of
the non-linearity of galaxy bias can be attributed to the fact that the central galaxy
itself is heavily biased with respect to the dark matter halo in which it is residing.
Those findings give additional support for the predictions presented by Cacciato et al.
(2012), as their conclusions, based only on some fiducial model, are in line with our
finding for a real subset of galaxies. We observe the same trends in the cosmological
hydrodynamical simulation EAGLE, albeit out to smaller scales. We have also shown
that the Γgm(rp) bias function can, by itself, measure the properties of galaxy bias that
would otherwise require the full knowledge of the bg(rp) and Rgm(rp) bias functions.

Our results are also in a broad agreement with recent findings of Gruen et al.
(2018); Friedrich et al. (2018), who used the density split statistics to measure the cos-
mological parameters in SDSS (Rozo et al. 2015) and DES (Drlica-Wagner et al. 2018)
data, and as a byproduct, also the b and r functions directly (at angular scales around
20 arcmin, which correspond to 3.5 − 7 Mpc/h at redshifts of 0.2 − 4.5). They find
that the SDSS and DES data strongly prefer a stochastic bias with super-Poissonian
behaviour. To obtain an independent measurement of galaxy bias and to further con-
firm our results we could use this method on our selection of galaxies, as well as the
reconstruction method of Simon & Hilbert (2017). This work is, however, out of the
scope of this paper.
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Our findings show a remarkable wealth of information that halo occupation mod-
els are carrying in regard of understanding the nature of galaxy bias and its influence
on cosmological analyses using the combination of galaxy-galaxy lensing and galaxy
clustering. These results also show that the theoretical framework, as presented by
Cacciato et al. (2012), is able to translate the constraints on galaxy biasing into con-
straints on galaxy formation and measurements of cosmological parameters. As an
extension of this work, we could fold in the cosmic shear measurements of the same
sample of galaxies, and thus constrain the galaxy bias and the sources of non-linearity
and stochasticity further. This would allow a direct measurement of all three bias
functions [Γgm(rp), bg(rp) and Rgm(rp)], which could then be used directly in cosmo-
logical analyses. On the other hand, for a more detailed study of the HOD beyond
those parameters that influence the galaxy bias, we could include the stellar mass (or
luminosity) function in the joint fit. We leave such exercises open for future studies.

ACKNOWLEDGEMENTS

We thank the anonymous referee for their very useful comments and suggestions.
AD would like to thank Marcello Cacciato for all the useful discussions, support and
the hand written notes provided on the finer aspects of the theory used in this paper.

KK acknowledges support by the Alexander von Humboldt Foundation. HHo
acknowledges support from Vici grant 639.043.512, financed by the Netherlands Or-
ganisation for Scientific Research (NWO). This work is supported by the Deutsche
Forschungsgemeinschaft in the framework of the TR33 ‘The Dark Universe’. CH
acknowledges support from the European Research Council under grant number
647112. HHi is supported by an Emmy Noether grant (No. Hi 1495/2-1) of the
Deutsche Forschungsgemeinschaft. AA is supported by a LSSTC Data Science Fel-
lowship. RN acknowledges support from the German Federal Ministry for Economic
Affairs and Energy (BMWi) provided via DLR under project no. 50QE1103.

This research is based on data products from observations made with ESO Tele-
scopes at the La Silla Paranal Observatory under programme IDs 177.A-3016, 177.A-
3017 and 177.A-3018, and on data products produced by Target/OmegaCEN, INAF-
OACN, INAF-OAPD and the KiDS production team, on behalf of the KiDS consor-
tium.

GAMA is a joint European-Australasian project based around a spectroscopic
campaign using the Anglo-Australian Telescope. The GAMA input catalogue is
based on data taken from the Sloan Digital Sky Survey and the UKIRT Infrared Deep
Sky Survey. Complementary imaging of the GAMA regions is being obtained by a
number of independent survey programs including GALEX MIS, VST KiDS, VISTA
VIKING, WISE, Herschel-ATLAS, GMRT and ASKAP providing UV to radio cover-
age. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO, and the
participating institutions. The GAMA website is http://www.gama-survey.org.

This work has made use of Python (http://www.python.org), including the pack-
ages numpy (http://www.numpy.org) and scipy (http://www.scipy.org). The halo
model is built upon the hmf Python package by Murray et al. (2013). Plots have been
produced with matplotlib (Hunter 2007) and corner.py (Foreman-Mackey 2016).

http://www.gama-survey.org
http://www.python.org
http://www.numpy.org
http://www.scipy.org


70 Chapter 3. Galaxy bias in KiDS+GAMA
3.

A
A

N
A

LY
T

IC
A

L
C

O
V

A
R

IA
N

C
E

M
A

T
R

IX

H
er

e
w

e
pr

es
en

tt
he

ex
pr

es
si

on
s

fo
rt

he
co

va
ri

an
ce

of
th

e
au

to
-c

or
re

la
ti

on
an

d
cr

os
s-

co
rr

el
at

io
n

fu
nc

ti
on

of
tw

o
ob

se
rv

ab
le

s,
in

ou
r

ca
se

sp
ec

ifi
ca

lly
fo

r
th

e
ga

la
xy

-g
al

ax
y,

ga
la

xy
-m

as
s

au
to

-c
or

re
la

ti
on

fu
nc

ti
on

s
an

d
th

e
cr

os
s-

co
rr

el
at

io
n

fu
nc

ti
on

be
tw

ee
n

th
e

tw
o.

Th
e

ex
pr

es
si

on
s

ar
e

an
ex

te
ns

io
n

to
th

e
G

au
ss

ia
n

pa
rt

of
th

e
co

va
ri

an
ce

as
pr

es
en

te
d

in
Si

ng
h

et
al

.(
20

17
)

an
d

in
cl

ud
e

th
e

no
n-

G
au

ss
ia

n
te

rm
s

an
d

th
e

su
pe

r-
sa

m
pl

e
co

va
ri

an
ce

te
rm

s
th

at
ar

e
by

th
em

se
lv

es
an

ex
te

ns
io

n
(K

ra
us

e
&

Ei
fle

r2
01

7)
to

th
e

no
n-

G
au

ss
ia

n
te

rm
s

as
pr

ev
io

us
ly

de
sc

ri
be

d
fo

rc
os

m
ic

sh
ea

ro
nl

y
by

Ta
ka

da
&

H
u

(2
01

3)
;L

ie
ta

l.
(2

01
4a

).
W

e
fo

llo
w

Si
ng

h
et

al
.(

20
17

);
M

ar
ia

n
et

al
.(

20
15

)
fo

r
th

e
G

au
ss

ia
n

te
rm

s,
bu

t
ex

cl
ud

in
g

th
e

ad
di

ti
on

al
co

nt
ri

bu
ti

on
s

th
at

ar
is

e
du

e
to

no
t

su
bt

ra
ct

in
g

th
e

si
gn

al
ob

ta
in

ed
us

in
g

ra
nd

om
po

si
ti

on
s

on
th

e
sk

y,
as

in
ou

r
an

al
ys

is
th

is
is

pe
rf

or
m

ed
du

ri
ng

th
e

si
gn

al
ex

tr
ac

ti
on

.
In

ge
ne

ra
l,

th
e

co
va

ri
an

ce
m

at
ri

x
be

tw
ee

n
tw

o
ob

se
rv

ab
le

s
ca

n
be

w
ri

tt
en

as
:

C
ov

(X
,Y

)
=

C
ov

G
(X
,Y

)+
C

ov
N

G
(X
,Y

)+
C

ov
SS

C
(X
,Y

),
(3

.5
9)

w
he

re
X

an
d

Y
ar

e
ei

th
er

w
p
(r

p
)

or
∆

Σ
gm

(r
p
),

an
d

th
e

G
st

an
ds

fo
r

th
e

G
au

ss
ia

n
te

rm
,N

G
fo

r
th

e
no

n-
G

au
ss

ia
n

te
rm

an
d

SS
C

st
an

ds
fo

r
th

e
co

nt
ri

bu
ti

on
s

fr
om

th
e

su
pe

r-
sa

m
pl

e
co

va
ri

an
ce

.
Fu

rt
he

rm
or

e,
fo

llo
w

in
g

Si
ng

h
et

al
.

(2
01

7,
st

ar
ti

ng
w

it
h

eq
ua

ti
on

A
18

)
an

d
M

ar
ia

n
et

al
.(

20
15

,u
si

ng
th

e
de

ri
va

ti
on

s
in

th
ei

r
A

pp
en

di
x)

,t
he

G
au

ss
ia

n
te

rm
s

fo
r

ea
ch

au
to

-
co

rr
el

at
io

n
or

cr
os

s-
co

rr
el

at
io

n
ca

n
be

w
ri

tt
en

as
(w

he
re

in
di

ce
s

i,
js

ta
nd

fo
r

in
di

vi
du

al
pr

oj
ec

te
d

ra
di

al
bi

ns
an

d
in

di
ce

s
n,

m
st

an
d

fo
r

in
di

vi
du

al
ga

la
xy

sa
m

pl
e

bi
ns

):

C
ov

G
[w

n p
,w

m p
](

r p
,i
,r

p,
j)

=
2
A

W
,2

(r
p,

i,
r p
,j

)
A

W
,1

(r
p,

i)
A

W
,1

(r
p,

j)

∫ dk
k

2π
J 0

(k
r p
,i
)J

0(
kr

p,
j)
     Pn gg

(k
)+

δ n
m

1 nn g

          Pm gg
(k

)+
δ n

m
1 nm g

     ,
(3

.6
0)

C
ov

G
[∆

Σ
n gm
,∆

Σ
m gm

](
r p
,i
,r

p,
j)

=
ρ

2 m
A

W
,2

(r
p,

i,
r p
,j

)
A

W
,1

(r
p,

i)
A

W
,1

(r
p,

j)

∫ dk
k

2π
J 2

(k
r p
,i
)J

2(
kr

p,
j)
     Pn gg

(k
)+

δ n
m

1 nn g

     ( P
m m

m
(k

)+
δ n

m
1 n γ

)
+
ρ

2 m
A

W
,2

(r
p,

i,
r p
,j

)
A

W
,1

(r
p,

i)
A

W
,1

(r
p,

j)

∫ dk
k

2π
J 2

(k
r p
,i
)J

2(
kr

p,
j)

P
n gm

(k
)P

m gm
(k

),
(3

.6
1)

C
ov

G
[w

n p
,∆

Σ
m p

](
r p
,i
,r

p,
j)

=
ρ

m
A

W
,2

(r
p,

i,
r p
,j

)
A

W
,1

(r
p,

i)
A

W
,1

(r
p,

j)

∫ dk
k

2π
J 0

(k
r p
,i
)J

2(
kr

p,
j)
          Pn gg

(k
)+

δ n
m

1 nn g

     Pn gm
+

     Pm gg
(k

)+
δ n

m
1 nm g

     Pm gm

     , (3
.6

2)



3.A Analytical covariance matrix 71

w
he

re

A
W
,1

(r
p
)

=

∫ dk
k

2π
J 0

(k
r p

)W̃
2 (k

)
(3

.6
3)

an
d

A
W
,2

(r
p,

i,
r p
,j

)
=

∫ dk
k

2π
J 0

(k
r p
,i
)J

0(
kr

p,
j)

W̃
2 (k

)
(3

.6
4)

ar
e

th
e

pr
e-

fa
ct

or
s

ar
is

in
g

fr
om

th
e

su
rv

ey
ge

om
et

ry
,w

it
h

J n
be

in
g

Be
ss

el
fu

nc
ti

on
of

th
e

n-
th

ki
nd

,W̃
(k

)
is

th
e

w
in

do
w

fu
nc

ti
on

de
fin

ed
in

eq
ua

ti
on

(3
.6

6)
,δ

nm
is

th
e

K
ro

ne
ck

er
de

lt
a

sy
m

bo
l,

n g
th

e
nu

m
be

r
de

ns
it

y
of

ga
la

xi
es

in
th

e
bi

n
n,

P
xy

(k
)

ar
e

in
di

vi
du

al
po

w
er

sp
ec

tr
a

as
de

fin
ed

in
Se

ct
io

n
3.

3.
1,

an
d

th
e

n γ
is

th
e

sh
ap

e
no

is
e

gi
ve

n
by

(s
ee

al
so

M
ar

ia
n

et
al

.2
01

5,
eq

ua
ti

on
C

2)
:

1 n γ
=
σ

2 γ n s

Σ
2 cr

,c
om

ρ
2 m

D
2 (z

l)
2Π

m
ax
,

(3
.6

5)

w
he

re
σ
γ

is
th

e
sh

ap
e

va
ri

an
ce

of
th

e
so

ur
ce

s
us

ed
in

th
e

an
al

ys
is

,t
he

n s
is

th
e

so
ur

ce
de

ns
it

y
gi

ve
n

by
H

ild
eb

ra
nd

t
et

al
.

(2
01

7)
in

ga
l/

ar
cm

in
2

(c
on

ve
rt

ed
to

ra
di

an
s)

,t
he

D
(z

l)
is

th
e

an
gu

la
r

di
am

et
er

di
st

an
ce

at
z l

an
d

Π
m

ax
is

th
e

pr
oj

ec
ti

on
le

ng
th

us
ed

th
ro

ug
ho

ut
th

is
w

or
k.

Th
e

va
lu

e
n g

an
d
σ
γ

ar
e

m
ea

su
re

d
fr

om
th

e
le

ns
an

d
so

ur
ce

ga
la

xi
es

us
ed

in
ou

r
3

sa
m

pl
es

,
re

sp
ec

ti
ve

ly
.W

e
as

su
m

e
a

ci
rc

ul
ar

su
rv

ey
ge

om
et

ry
w

it
h

a
w

in
do

w
fu

nc
ti

on
:

W̃
(k

)
=

2π
R

2
J 1

(k
R

)
kR

,
(3

.6
6)

w
he

re
R

is
th

e
ra

di
us

of
th

e
ci

rc
ul

ar
w

in
do

w
w

it
h

ar
ea

co
ve

ri
ng

18
0

de
g2 .T

he
Σ

cr
,c

om
is

ca
lc

ul
at

ed
us

in
g

th
e

sa
m

e
pr

es
cr

ip
-

ti
on

as
de

fin
ed

in
eq

ua
ti

on
(3

.5
4)

.
To

pr
oj

ec
t

ou
r

co
va

ri
an

ce
m

at
ri

ce
s,

w
e

us
e

th
e

Li
m

be
r

ap
pr

ox
im

at
io

n
as

de
m

on
st

ra
te

d
by

M
ar

ia
n

et
al

.(
20

15
),

us
in

g
th

e
sl

ig
ht

ly
m

or
e

ac
cu

ra
te

su
rv

ey
ar

ea
no

rm
al

is
at

io
n

by
Si

ng
h

et
al

.(
20

17
).

Th
e

su
pe

r-
sa

m
pl

e
co

va
ri

an
ce

te
rm

s
ar

e
gi

ve
n

by
th

e
fo

llo
w

in
g

ex
pr

es
si

on
s:

C
ov

SS
C

[w
n p
,w

m p
](

r p
,i
,r

p,
j)

=
A

W
,2

(r
p,

i,
r p
,j

)
A

W
,1

(r
p,

i)
A

W
,1

(r
p,

j)

∫ dk
k

2π
J 0

(k
r p
,i
)J

0(
kr

p,
j)
∂

P
n gg

(k
)

∂
δ b

∂
P

m gg
(k

)

∂
δ b

σ
2 s,

nm
,

(3
.6

7)

C
ov

SS
C

[∆
Σ

n gm
,∆

Σ
m gm

](
r p
,i
,r

p,
j)

=
ρ

2 m
A

W
,2

(r
p,

i,
r p
,j

)
A

W
,1

(r
p,

i)
A

W
,1

(r
p,

j)

∫ dk
k

2π
J 2

(k
r p
,i
)J

2(
kr

p,
j)
∂

P
n gm

(k
)

∂
δ b

∂
P

m gm
(k

)

∂
δ b

σ
2 s,

nm
,

(3
.6

8)



72 Chapter 3. Galaxy bias in KiDS+GAMA

C
ov

SS
C

[w
n p
,∆

Σ
m p

](
r p
,i
,r

p,
j)

=
ρ

m
A

W
,2

(r
p,

i,
r p
,j

)
A

W
,1

(r
p,

i)
A

W
,1

(r
p,

j)

∫ dk
k

2π
J 0

(k
r p
,i
)J

2(
kr

p,
j)
∂

P
n gg

(k
)

∂
δ b

∂
P

m gm
(k

)

∂
δ b

σ
2 s,

nm
,

(3
.6

9)

w
he

re
th

e
re

sp
on

se
s
∂

P
xy

(k
)

∂
δ b

ar
e

gi
ve

n
by

th
e

fo
llo

w
in

g
eq

ua
ti

on
s

[f
ol

lo
w

in
g

ga
la

xy
-m

at
te

r
an

d
ga

la
xy

-g
al

ax
y

ex
te

ns
io

ns
to

th
e

m
at

te
r-

m
at

te
r

on
ly

re
sp

on
se

s
in

Ta
ka

da
&

H
u

(2
01

3)
;L

ie
ta

l.
(2

01
4a

)a
s

de
ri

ve
d

by
K

ra
us

e
&

Ei
fle

r
(2

01
7)

]:

∂
P

gg
(k

)
∂
δ b

=

( 68 21
−

1 3
d

ln
k3

P
lin

(k
)

d
ln

k

) I1 g
(k

)I
1 g
(k

)P
lin

(k
)+

I1 gg
(k
,k

)−
2b

g,
1
P

gg
(k

),
(3

.7
0)

∂
P

gm
(k

)
∂
δ b

=

( 68 21
−

1 3
d

ln
k3

P
lin

(k
)

d
ln

k

) I1 g
(k

)I
1 m

(k
)P

lin
(k

)+
I1 gm

(k
,k

)−
b g

,1
P

gm
(k

),
(3

.7
1)

∂
P

m
m

(k
)

∂
δ b

=

( 68 21
−

1 3
d

ln
k3

P
lin

(k
)

d
ln

k

) I1 m
(k

)I
1 m

(k
)P

lin
(k

)+
I1 m

m
(k
,k

),
(3

.7
2)

w
he

re
w

e
ha

ve
in

tr
od

uc
ed

th
e

ha
lo

m
od

el
in

te
gr

al
s

Iα x
(k

)a
nd

Iα xy
(k
,k
′
)a

s:

Iα x
(k

)
=

∫ H
x(

k,
M

)b
i,α

n(
M

)d
M
,

(3
.7

3)

Iα xy
(k
,k
′
)

=

∫ H
x(

k,
M

)H
y
(k
′
,M

)b
i,α

n(
M

)d
M
.

(3
.7

4)

In
th

e
ca

se
w

he
n

‘x
’e

qu
al

s
‘g

’,
H

g
(k
,M

)i
s

th
e

su
m

of
th

e
H

c(
k,

M
)a

nd
H

s(
k,

M
)f

un
ct

io
ns

.
Bi

as
fu

nc
ti

on
s

b i
,α

ar
e

ei
th

er
0

if
α

=
0,

1
if

i=
m

an
d
α

=
1,

an
d

∫ d
M
H

g
(k
,M

)b
h
(M

)n
(M

)/
n g

if
i=

g
an

d
α

=
1.

N
ot

e
th

at
th

es
e

su
bs

cr
ip

ts
ar

e
no

tr
el

at
ed

to
th

e
on

es
us

ed
in

Se
ct

io
n

3.
3.

1.
In

th
e

eq
ua

ti
on

s
(3

.6
7)

,(
3.

68
)a

nd
(3

.6
9)

,w
e

ha
ve

al
so

us
ed

th
e

su
rv

ey
va

ri
an

ce
de

fin
ed

as
:

σ
2 s

=
1

A
W
,1

(R
)

∫ dk
k2

2π
2

W̃
2 (k

)P
lin

(k
).

(3
.7

5)

Th
e

co
nn

ec
te

d,
no

n-
G

au
ss

ia
n

te
rm

s
of

th
e

co
va

ri
an

ce
m

at
ri

x
ca

n
be

w
ri

tt
en

as
(a

ga
in

fo
llo

w
in

g
th

e
ex

te
ns

io
n

to
th

e
m

at
te

r-
m

at
te

r
on

ly
de

ri
va

ti
on

by
K

ra
us

e
&

Ei
fle

r
20

17
)(

se
e

al
so

C
oo

ra
y

&
Sh

et
h

20
02

;T
ak

ad
a

&
Ja

in
20

09
):

C
ov

N
G

[w
n p
,w

m p
](

r p
,i
,r

p,
j)

=
A

W
,2

(r
p,

i,
r p
,j

)
A

W
,1

(r
p,

i)
A

W
,1

(r
p,

j)

∫ dk
ik

i
√

2π

∫ dk
jk

j
√

2π
J 0

(k
ir

p,
i)

J 0
(k

jr
p,

j)
·
T

nm gg
gg

(k
i,
−

k i
,k

j,
−

k j
),

(3
.7

6)



3.A Analytical covariance matrix 73

C
ov

N
G

[∆
Σ

n gm
,∆

Σ
m gm

](
r p
,i
,r

p,
j)

=
ρ

2 m
A

W
,2

(r
p,

i,
r p
,j

)
A

W
,1

(r
p,

i)
A

W
,1

(r
p,

j)

∫ dk
ik

i
√

2π

∫ dk
jk

j
√

2π
J 2

(k
ir

p,
i)

J 2
(k

jr
p,

j)
·
T

nm gm
gm

(k
i,
−

k i
,k

j,
−

k j
),

(3
.7

7)

C
ov

N
G

[w
n p
,∆

Σ
m p

](
r p
,i
,r

p,
j)

=
ρ

m
A

W
,2

(r
p,

i,
r p
,j

)
A

W
,1

(r
p,

i)
A

W
,1

(r
p,

j)

∫ dk
ik

i
√

2π

∫ dk
jk

j
√

2π
J 0

(k
ir

p,
i)

J 2
(k

jr
p,

j)
·
T

nm gg
gm

(k
i,
−

k i
,k

j,
−

k j
),

(3
.7

8)

w
he

re
th

e
in

di
vi

du
al

T x
yz

w
te

rm
s

ar
e

gi
ve

n
by

th
e

co
m

bi
na

ti
on

of
1-

ha
lo

m
at

te
r

tr
is

pe
ct

ru
m

an
d

(2
+

3
+

4)
-h

al
o

m
at

te
r

tr
is

pe
ct

ru
m

as
:

T
nm xy

zw
(k

i,
−

k i
,k

j,
−

k j
)

=
(b

xb
y
b z

b w
)nm

T
2h

+
3h

+
4h

m
(k

i,
−

k i
,k

j,
−

k j
)+

T
1h
,n

m
xy

zw
(k

i,
k i
,k

j,
k j

),
(3

.7
9)

w
he

re
b x

is
th

e
sa

m
e

bi
as

us
ed

in
eq

ua
ti

on
s

(3
.7

3)
an

d
(3

.7
4)

.
Th

e
1-

ha
lo

m
at

te
r

tr
is

pe
ct

ru
m

is
gi

ve
n

by
th

e
fo

llo
w

in
g

in
te

gr
al

ov
er

ha
lo

m
od

el
bu

ild
in

g
bl

oc
ks

:

T
1h
,n

m
xy

zw
(k

i,
k i
,k

j,
k j

)
=

∫ d
M

n(
M

)H
n x
(k

i,
M

)H
n y
(k

i,
M

)H
m z

(k
j,

M
)H

m w
(k

j,
M

),
(3

.8
0)

an
d

th
e

(2
+

3
+

4)
-h

al
o

m
at

te
r

tr
is

pe
ct

ru
m

T
2h

+
3h

+
4h

m
is

ca
lc

ul
at

ed
ac

co
rd

in
g

to
th

e
es

ti
m

at
e

pr
es

en
te

d
in

Pi
el

or
z

et
al

.(
20

10
).

A
dd

it
io

na
lly

,t
he

re
su

lt
in

g
co

va
ri

an
ce

m
at

ri
x

is
bi

n
av

er
ag

ed
ac

co
rd

in
g

to
th

e
sa

m
e

ra
di

al
bi

nn
in

g
sc

he
m

e
as

us
ed

w
it

h
ou

r
da

ta
.

T
he

re
su

lt
in

g
co

va
ri

an
ce

m
at

ri
x

ob
ta

in
ed

us
in

g
th

e
an

al
yt

ic
al

pr
es

cr
ip

ti
on

pr
es

en
te

d
he

re
ca

n
be

se
en

in
Fi

gu
re

3.
8

(s
ho

w
n

as
a

co
rr

el
at

io
n

m
at

ri
x)

,w
hi

ch
sh

ow
s

th
e

au
to

-c
or

re
la

ti
on

be
tw

ee
n

th
e

3
bi

ns
fo

rt
he

le
ns

in
g

si
gn

al
,c

lu
st

er
in

g
si

gn
al

an
d

th
e

cr
os

s-
co

rr
el

at
io

n
be

tw
ee

n
th

e
tw

o
ob

se
rv

ab
le

s
in

th
e

of
f-

di
ag

on
al

3
×

3
bl

oc
ks

.I
nd

iv
id

ua
lc

om
bi

na
ti

on
s

be
tw

ee
n

al
l

th
e

bi
ns

ar
e

m
ar

ke
d

ab
ov

e
th

e
co

rr
es

po
nd

in
g

bl
oc

k
m

at
ri

ce
s.



74 Chapter 3. Galaxy bias in KiDS+GAMA

∆Σgm,1(rp) × ∆Σgm,1(rp)

10−1

100

101

∆Σgm,1(rp) × ∆Σgm,2(rp) ∆Σgm,1(rp) × ∆Σgm,3(rp) ∆Σgm,1(rp) × wp,1(rp) ∆Σgm,1(rp) × wp,2(rp) ∆Σgm,1(rp) × wp,3(rp)

∆Σgm,2(rp) × ∆Σgm,1(rp)

10−1

100

101

∆Σgm,2(rp) × ∆Σgm,2(rp) ∆Σgm,2(rp) × ∆Σgm,3(rp) ∆Σgm,2(rp) × wp,1(rp) ∆Σgm,2(rp) × wp,2(rp) ∆Σgm,2(rp) × wp,3(rp)

∆Σgm,3(rp) × ∆Σgm,1(rp)

10−1

100

101

∆Σgm,3(rp) × ∆Σgm,2(rp) ∆Σgm,3(rp) × ∆Σgm,3(rp) ∆Σgm,3(rp) × wp,1(rp) ∆Σgm,3(rp) × wp,2(rp) ∆Σgm,3(rp) × wp,3(rp)

wp,1(rp) × ∆Σgm,1(rp)

10−1

100

101

wp,1(rp) × ∆Σgm,2(rp) wp,1(rp) × ∆Σgm,3(rp) wp,1(rp) × wp,1(rp) wp,1(rp) × wp,2(rp) wp,1(rp) × wp,3(rp)

wp,2(rp) × ∆Σgm,1(rp)

10−1

100

101

wp,2(rp) × ∆Σgm,2(rp) wp,2(rp) × ∆Σgm,3(rp) wp,2(rp) × wp,1(rp) wp,2(rp) × wp,2(rp) wp,2(rp) × wp,3(rp)

10−1 100 101

wp,3(rp) × ∆Σgm,1(rp)

10−1

100

101

10−1 100 101

wp,3(rp) × ∆Σgm,2(rp)

10−1 100 101

wp,3(rp) × ∆Σgm,3(rp)

10−1 100 101

wp,3(rp) × wp,1(rp)

10−1 100 101

wp,3(rp) × wp,2(rp)

10−1 100 101

wp,3(rp) × wp,3(rp)

0.0

0.2

0.4

0.6

0.8

1.0

rp (Mpc/h)

r p
(M

p
c/
h

)

C
ij

√
C
ii
C
jj

Figure 3.8: The full analytical correlation matrix for the lensing and clustering signals and their
cross terms. Individual combinations between all the bins are marked above the corresponding
block matrices, with indices 1,2 and 3 corresponding to the stellar mass bins as defined in Table
3.1. We do not use the covariance estimates in the hatched areas in our fit, as the clustering
measurements are affected by the blending on these scales.

3.B FULL POSTERIOR DISTRIBUTIONS

In Figure 3.9 we show the full posterior probability distribution for all fitted parame-
ters in our MCMC fit as discussed in Section 3.4.
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Figure 3.9: The full posterior distributions of the halo model parameters (where the priors are
listed in Table 3.2). The contours indicate 1σ and 2σ confidence regions.
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3.C RELATION BETWEEN THE LENSING SIGNAL AND THE

GALAXY-MATTER CROSS-CORRELATION FUNCTION

In this appendix, we provide a step-by-step derivation of the relation between the
galaxy-galaxy lensing signal and the galaxy-matter cross-correlation function. As a
side-product, we motivate the two different definitions of the critical surface mass
density that are used in this field. Finally, we compare our results with those in some
recent papers, pointing out differences, and discussing their implications. Since the
results of this appendix apply to several papers, we choose to use a slightly more
explicit notation here in comparison to the rest of this paper.

3.C.1 DERIVATION

The equivalent weak lensing convergence κ for a three-dimensional mass distribution
characterized by the fractional density contrast δ, for sources at comoving distance χs,
is given by (e.g., Bartelmann & Schneider 2001; Schneider 2006)

κ(θ) =
3H2

0Ωm

2c2

∫ χs

0
dχ

χ (χs − χ)
χs a(χ)

δ(χθ, χ) = ρm
4πG
c2

∫ χs

0
dχ

χ (χs − χ)
χs a(χ)

δ(χθ, χ) , (3.81)

where we assumed for notational simplicity a spatially flat cosmological model.
Here, ρm is the current mean matter density in the Universe, and we used the re-
lation between mass density and density parameter in the second step, i.e., ρm =

3H2
0Ωm/(8πG). The relation (3.81) is valid in the framework of the Born approxima-

tion and by neglecting lens-lens coupling (see, e.g. Hilbert et al. 2009; Krause & Hirata
2010, for the impact of these effects).

Let δg be the three-dimensional fractional density contrast of galaxies of a given
type. Their fractional density contrast on the sky, κg(θ) = [n(θ)− n]/n, with n being the
mean number density, is related to δg by

κg(θ) =

∫
dχ pf(χ) δg(χθ, χ) , (3.82)

where pf(χ) is the probability distribution of the selected ‘foreground’ galaxy popu-
lation in comoving distance, equivalent to a redshift probability distribution. For the
following we will assume that this distribution is a very narrow one around redshift
zl, and thus approximate pf(χ) = δD(χ − χl). We assume throughout that χl < χs. The
correlator between κ and κg then becomes

〈
κg(θ) κ(θ + ϑ)

〉
= ρm

4πG
c2

∫ χs

0
dχ

χ (χs − χ)
χs a(χ)

∫
dχ′ δD(χ′ − χl)

〈
δg

(
χ′θ, χ′

)
δ
[
χ
(
θ + ϑ

)
, χ

]〉
= ρm

4πG
c2

∫ χs

0
dχ

χ (χs − χ)
χs a(χ)

〈
δg (χlθ, χl) δ

[
χ
(
θ + ϑ

)
, χ

]〉
. (3.83)
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Since the correlator is significantly non-zero only over a small interval in χ around
χl, the prefactor in the integrand can be considered to be constant over this interval
and taken out of the integral. This yields〈

κg(θ) κ(θ + ϑ)
〉

=
4πG
c2

χl (χs − χl)
χs a(χl)

ρm

∫ χs

0
dχ ξgm

(√
χ2

l |ϑ|
2 + (χ − χl)2

)
= Σ−1

cr,com Σcom(χl|θ|) , (3.84)

where the galaxy-matter cross-correlation function ξgm (at fixed redshift zl) is defined
through 〈

δ(x) δg(x + y)
〉

= ξgm(|y|) , (3.85)

in which x and y are comoving spatial vectors, and the sole dependence on |y| is due
to the assumed homogeneity and isotropy of the density fields in the Universe. Fur-
thermore, we have defined the comoving critical surface mass density Σcr,com through

Σ−1
cr,com =

4πG
c2

χl (χs − χl)
χs a(χl)

H(χs − χl) , (3.86)

with H(x) being the Heaviside unit step function,4 and the comoving surface mass
density as

Σcom(Rcom) = ρm

∫ χs

0
dχ ξgm

(√
R2

com + (χ − χl)2

)
, (3.87)

as a function of the comoving projected separation Rcom. In this paper, Σcr,com is termed
Σcrit – see equation (3.50), and Rcom and Σcom are called rp and Σgm – see equation (3.43).

The interpretation of equation (3.84) is then that ρmξgm is the average comoving
overdensity of matter around galaxies, caused by the correlation between them, and
that the integral over comoving distance then yields the comoving surface mass den-
sity of this excess matter. The corresponding convergence is then obtained by scaling
with the comoving critical surface mass density Σcr,com.

There is another form in which equation (3.84) can be written by rearranging fac-
tors of a(χl), namely〈

κg(θ) κ(θ + ϑ)
〉

=
4πG
c2

χl (χs − χl) a(χl)
χs

ρm a−2(χl)
∫ χs

0
dχ ξgm

(√
χ2

l |ϑ|
2 + (χ − χl)2

)
=: Σ−1

cr Σ(χl|θ|) , (3.88)

where we defined the (proper) critical surface mass density Σcr through

Σ−1
cr =

4πG
c2

χl (χs − χl) a(χl)
χs

H(χs − χd) =
4πG
c2

DlDls

Ds
, (3.89)

4The corresponding expression for a general curvature parameter reads

Σ−1
cr,com =

4πG
c2

fK (χl) fK (χs − χl)
fK (χs) a(χl)

H(χs − χl) ,

where fK (χ) is the comoving angular-diameter distance to a comoving distance χ, and either the identity
for spatially flat models, or a sin or sinh function for closed or open models, respectively.
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and in the last step we introduced the angular-diameter distances Dl = D(0, zl),
Ds = D(0, zs) and Dds = D(zl, zs), with D(z1, z2) = a(z2)

[
χ(z2) − χ(z1)

]
H(z2 − z1) being

the angular-diameter distance of a source at redshift z2 as seen from an observer at
redshift z1.5 Furthermore,

Σ(Rcom) = ρm(χl)
∫ χs

0
dχ a(χ) ξgm

(√
R2

com + (χ − χl)2

)
. (3.90)

We note that, due to the assumed localized nature of the correlation function, we
could write a(χ) into the integrand in equation (3.90). The interpretation of equation
(3.88) is now that the (proper) overdensity around galaxies caused by the galaxy-
matter cross-correlation, ρm(χl)ξgm = ρm(1 + zl)3ξgm, is integrated along the l.o.s. in
proper coordinates, drprop = a dχ, and the resulting (proper) surface mass density
is scaled by the critical surface mass density Σcr. We note that the argument of the
(proper) surface mass density Σ is a comoving transverse separation, since the corre-
lation function is a function of comoving separation.

The relation between the two different equations (3.86) and (3.89) of the critical
surface mass density is

Σcr,com = a2(χl) Σcr , (3.91)

so that the comoving critical surface density is smaller by a factor a2(χl). This makes
sense: for a given lens, the comoving surface mass density (mass per unit comoving
area) is smaller than the proper surface mass density,

Σcom(Rcom) = a2(χl) Σ(Rcom) , (3.92)

since the comoving area is larger than the proper one by a factor a−2. Correspond-
ingly, since the convergence, or the correlation function in equation (3.84), is indepen-
dent of whether proper or comoving measures are used, the comoving critical surface
mass density is smaller by the same factor.

If N lensing galaxies at redshift zl are located at positions θi within a solid angle ω,
the corresponding fractional number density contrast reads

κg(θ) =
1
n

N∑
i=1

δD(θ − θi) − 1 , (3.93)

where for large N and ω, n = N/ω. To evaluate the correlator of equation (3.83) in
this case, we replace the ensemble average with an angular average, as is necessarily
done in any practical estimation,

〈
κg(θ) κ(θ + ϑ)

〉
≈

1
ω

∫
ω

d2θ κg(θ) κ(θ + ϑ) =
1
ω

∫
ω

d2θ

1
n

N∑
i=1

δD(θ − θi)

 κ(θ + ϑ) =
1
N

N∑
i=1

κ(θi + ϑ) ,

(3.94)
valid for separations ϑ which are much smaller than the linear angular extent

√
ω of

the region (to neglect boundary effects), and we employed the fact that the ensemble

5For a model with free curvature, D(z1, z2) = a(z2)
{
fK

[
χ(z2) − χ(z1)

]}
H(z2 − z1).
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average – and in the same approximation as above, the angular average – of κ(ϑ)
vanishes. We thus see that the correlator

〈
κgκ

〉
can be obtained from the average

convergence around the foreground galaxies, a quantity probed by the shear. Thus
we find the relations

γt(θ) = Σ−1
cr ∆Σ(χlθ) = Σ−1

cr,com ∆Σcom(χlθ) , (3.95)

where

∆Σ(Rcom) =
2

R2
com

∫ Rcom

0
dR R Σ(R) − Σ(Rcom) , (3.96)

and the analogous definition for ∆Σcom.
A further subtlety and potential source of confusion is that frequently, the surface

mass density Σ is considered a function of proper transverse separation R = a(χl)Rcom.
For the purpose of this appendix, we call this function Σp, which is related to Σ by

Σp(R) = Σ[R/a(χl)] , or Σ(Rcom) = Σp[a(χl)Rcom] , (3.97)

yielding
γt(θ) = Σ−1

cr ∆Σ(χlθ) = Σ−1
cr ∆Σp(Dlθ) . (3.98)

We argue that the definition used should depend on the science case. For example,
when considering the mean density profile of galaxies, it is more reasonable to use
proper transverse separations – as that density profile is expected to be approximately
stationary in proper coordinates. For larger-scale correlations between galaxies and
matter, however, the use of comoving transverse separations is more meaningful,
since the shape of the cross-correlation function on large scales is expected to be ap-
proximately preserved.

3.C.2 RELATION TO PREVIOUS WORK

In the literature on galaxy-galaxy lensing, one finds relations that differ from the ones
derived above; we shall comment on some of these differences here.

The first aspect is that in several papers (e.g. Mandelbaum et al. 2010; Viola et al.
2015; de la Torre et al. 2017), the integrand in equation (3.84) is replaced by 1+ξgm, im-
plying that the corresponding Σcom contains the line-of-sight integrated mean density
of the Universe, in addition to the correlated density. This constant term is, how-
ever, not justified by the derivation in Appendix 3.C.1. While such a constant drops
out in the definition of ∆Σcom, and thus does not impact on quantitative results, it
nevertheless causes a principal flaw: its inclusion would imply that the convergence
κ = Σ−1

cr,comΣcom for all lines-of-sight to redshifts zs ∼ 1 would be several tenths, caus-
ing a large difference between shear and reduced shear [g = γ/(1 + κ)], which is the
observable in weak lensing. That is, it would strongly modify the relation between γ
and the observable image ellipticities, yielding significant biases in all weak lensing
studies. Indeed, the mean density of the Universe is already taken into account by
the Robertson–Walker metric: the fact that the angular-diameter distance is a non-
monotonic function of redshift can be considered as being due to the gravitational
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light deflection by the mean mass density of the Universe – the convergence part
in the optical tidal equation (see, e.g. Seitz et al. 1994). Howewer, this is usually not
called ‘lensing’, but ‘curvature of the metric’. Lensing is usually ascribed solely to the
effect caused by density inhomogeneities. But in any case: the mean cosmic density
can not be accounted for twice, once for the metric [and thus the use of (comoving)
angular-diameter distances in a FRW model], and a second time for the convergence
on such a background model.

A second issue in some of the recent GGL papers is mixing the use of the comov-
ing surface mass density, Σcom (equation 3.87), with the proper critical surface mass
density, Σcr (equation 3.89). For example, de la Torre et al. (2017) in their equation (18)
(apart from the constant term discussed above) define Σcom as in equation (3.89), but
use in their equations (9) and (10) the proper critical surface mass density Σcr to relate
the tangential shear to Σcom. Hence, this relation would cause an offset by a factor
(1 + zl)2 from the correct result. However, the inconsistency appears only in the text
of the paper and not in the code or calculations performed (de la Torre 2018, private
communication).

The same issue occurs in the write-up in several earlier publications of our KiDS
team. For example, the equations (2,5,6) in Viola et al. (2015) show this inconsistency
(where we also point out a typo in the integration limits of equation 2), as well as
equations (1,2,3) in van Uitert et al. (2016) and, as mentioned already in the main
text, equations (1,2,3) in Chapter 2. We have checked the codes that were used to
derive the quantitative results in these papers to see whether they employ the same
inconsistent use of quantities. We found that there is an inconsistency present only
in writing, namely in equation (2) of Viola et al. (2015) and not in the code that was
used to produce the results. As pointed out above the correlation function is given
in comoving coordinates, while the extraction of the galaxy-galaxy lensing signal is
calculated in proper coordinates. Thus, the equation (2) of Viola et al. (2015) should
correctly read as (using their notation):

Σ(R) = 2ρm (1 + 〈zl〉)2
∫ πs

0
ξgm(

√
R2 + Π2)dΠ . (3.99)

Put differently, while the data were indeed extracted in proper coordinates, the out-
puts of the halo model were not reported to be scaled to the coordinates used by the
data (Cacciato 2016, private communication). Secondly, the equations (6) and (9) in
Chapter 2 should have the same form as equation (3.50) and (3.54) in this paper, again
having a mistake only in writing. The exact same correction should also be applied
to the equation (3) of Velliscig et al. (2017).

The erroneous formulation also occurred in a previous paper from van Uitert et al.
(2016). Their equation (2), should read correctly as equation (3.50), which is (again,
using their notation):

Σcrit =
c2

4πG(1 + z)2

DS

DLDLS
. (3.100)
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Further KiDS analyses from Amon et al. (2018a) and Amon et al. (2018b) measure
large-scale galaxy-mass correlations using the comoving critical surface mass density.
The definitions, presented in these two papers are consistent with the data and the
equations derived in Appendix 3.C.1.

On the other hand, the KiDS analyses from Sifón et al. (2015), Brouwer et al. (2016)
and Brouwer et al. (2017) use a separate NFW stacking method that does not rely on
the halo model, and all use proper coordinates that are consistent with the data.
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4
The case for two-dimensional

galaxy-galaxy lensing

W
E revisit the performance and biases of the two-dimensional approach to
galaxy-galaxy lensing. This method exploits the information for the actual po-
sitions and ellipticities of source galaxies, rather than using only the ensemble

properties of statistically equivalent samples. We compare the performance of this
method with the traditionally used one-dimensional tangential shear signal on a set
of mock data that resemble the current state-of-the-art weak lensing surveys. We find
that under idealised circumstances the confidence regions of joint constraints for the
amplitude and scale parameters of the NFW model in the two-dimensional analysis
can be more than three times tighter than the one-dimensional results. Moreover, this
improvement depends on the lens number density and it is larger for higher densi-
ties. We compare the method against the results from the hydrodynamical EAGLE
simulation in order to test for possible biases that might arise due to lens galaxies
being missed, and find that the method is able to return unbiased estimates of halo
masses when compared to the true properties of the EAGLE galaxies. Because of its
advantage in high galaxy density areas, the method is especially suitable for studying
the properties of satellite galaxies in clusters of galaxies.

A. Dvornik, S. L. Zoutendijk, H. Hoekstra, K. Kuijken
A&A, Volume 627, Issue 1, p. A74 (2019)
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4.1 INTRODUCTION

One of the fundamental ingredients needed to understand galaxy formation is the
relation between stellar mass and the host halo mass (e.g. Courteau et al. 2014). How-
ever, inferring the total mass from a galaxy’s emitted light is not feasible. We must
instead rely on different probes to constrain the mass of dark matter haloes around
galaxies one wants to study. A powerful mechanism that can be used for this is grav-
itational lensing, when matter inhomogeneities deflect light rays from distant objects
along their path. As a consequence the images of distant objects (sources) appear
to be tangentially distorted around foreground galaxies (lenses). The strength of the
distortion is proportional to the amount of mass associated with the lenses (and con-
sequently the dark matter haloes) and it is stronger in the proximity of the centre (for
a thorough review, see Bartelmann & Schneider 2001).

Weak gravitational lensing induces a coherent tangential distortion. Under the
assumption that galaxies are randomly oriented, the lensing signal can be inferred
by simply averaging the ellipticities of the source galaxies. The typical change in el-
lipticity due to gravitational lensing is much smaller than the intrinsic ellipticity of
the source, even in the case of clusters of galaxies. The weak gravitational lensing
signal from a single galaxy halo is therefore too weak to be detected, and we must
rely on a statistical approach in which the contributions from different lens galaxies
are stacked, selected by similar observational properties (e.g. stellar masses, lumi-
nosities, size). The usual method used to analyse weak lensing data is to average the
tangential component of the distortion in radial bins. As the signal from a single lens
is purely tangential, this is a succinct way of showing the information contained in
the distortions induced by one lens; there is no information lost in azimuthally av-
eraging a radially symmetric signal and therefore the mass distribution of the lens
can be perfectly determined from this radial profile. Average halo properties, such
as halo masses, are then inferred from the resulting high signal-to-noise ratio mea-
surements. This technique is commonly referred to as galaxy-galaxy lensing, and it
is used as a method to measure statistical properties of dark matter haloes around
galaxies (e.g. Leauthaud et al. 2011; van Uitert et al. 2011; Velander et al. 2014; Cac-
ciato et al. 2014; Viola et al. 2015). The stacking mentioned here is not required per se,
but it provides a convenient and unbiased data compression method that also allows
for separate study of central and satellite galaxies. However, it does typically result
in a loss of information about the halo properties.

For the lenses that do not exist in isolation the signal is not purely tangential. In
this case the distortions around a lens are the sum of the tangential patterns of all
the neighbouring lenses. An azimuthal average of these distortions will discard the
azimuthal information that is present in this case. This non-optimal use of infor-
mation will result in a less precise mass estimation than would be possible with a
two-dimensional method.
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Here we revisit a different method of analysing galaxy-galaxy lensing data, first
proposed by Schneider & Rix (1997), and we make a case for why it should be consid-
ered again: it uses the unique signatures of overlapping regions of lenses to constrain
the halo properties more precisely. Two-dimensional galaxy-galaxy lensing tries to fit
a two-dimensional shear field directly to the galaxy ellipticity measurements. It was
initially named ‘maximum-likelihood galaxy-galaxy lensing’ after the fitting method
it was first studied with (e.g. Schneider & Rix 1997; Hudson et al. 1998; Geiger &
Schneider 1999; Hoekstra et al. 2003, 2004; Han et al. 2015). Maximum-likelihood
galaxy-galaxy lensing is thus a misnomer and in principle one could use any form of
fitting method to infer the desired parameters of the two-dimensional weak lensing
maps, ideally using a fully Bayesian model (Sonnenfeld & Leauthaud 2018).

This method went out of fashion due to the unavailability of the galaxy group-
ing information that would accurately classify the galaxies as centrals and satellites
(Hoekstra 2014) as it was realised that these objects need to be modelled separately.
Treating the galaxies as centrals and satellites in a statistical way when considering
the stacked signal could be naturally accounted for with the halo model (Seljak 2000;
Peacock & Smith 2000; Cooray & Sheth 2002), thus overcoming the observational
shortcomings. In recent years the galaxy grouping information has become available
due to the power of wide-field photometric surveys (e.g. KiDS; Kuijken et al. 2015;
de Jong et al. 2015) complemented with spectroscopic group information (from spec-
troscopic surveys like GAMA; Driver et al. 2011; Robotham et al. 2011) that treat the
central and satellite galaxies deterministically (e.g. Sifón et al. 2015; Brouwer et al.
2017). One important advantage of the two-dimensional method is that it exploits all
the information of the actual image configuration (the model predicts the shear for
each individual galaxy image) using various parameters, including the galaxies’ ex-
act positions, ellipticities, magnitudes, luminosities, stellar masses and group mem-
bership information rather than using only the ensemble properties of statistically
equivalent samples (Schneider & Rix 1997). Moreover, the clustering of the lenses is
naturally taken into account, although it is more difficult to account for the expected
diversity in density profiles (Hoekstra 2014).

The outline of this paper is as follows. In Sect. 5.3 we present the maximum
likelihood formalism used for galaxy-galaxy lensing, for both one-dimensional and
two-dimensional methods. In Sect. 5.4 we present the lens model used to construct
the mock observations and investigation of EAGLE galaxies (Schaye et al. 2015; Crain
et al. 2015; McAlpine et al. 2016). The mock observations are further described in Sect.
4.4 where we also test the two-dimensional method and examine the limitations in
the case of masked data. In Sect. 4.5 we examine the EAGLE simulation (Schaye et al.
2015) using the two-dimensional galaxy-galaxy lensing methodology. We conclude
and discuss in Sect. 5.6. Throughout the paper we use the following cosmological
parameters in the calculation of the distances and other relevant properties (Planck
Collaboration et al. 2013, as used in the EAGLE simulation): Ωm = 0.307, ΩΛ = 0.693,
σ8 = 0.8288, ns = 0.9611, Ωb = 0.04825, and h = 0.6777. All the measurements pre-
sented in the paper are in comoving units.
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4.2 2D GALAXY-GALAXY LENSING FORMALISM

The likelihood of a model with a set of parameters θ given data d is parametrised in
the form

L(θ |d) =
1√

(2π)n |C|
exp

[
−

1
2

(m(θ) − d)T C−1 (m(θ) − d)
]
, (4.1)

where m(θ) is the value of d predicted by the model with parameters θ. We assume
the measured data points d = [di, . . . , dn] are drawn from a normal distribution with
a mean equal to the true values of the data. The likelihood function accounts for
correlated data points through the covariance matrix C. The covariance matrix C
consists of two parts, the first arising from the shape noise and the second from the
presence of cosmic structure between the observer and the source (Hoekstra 2003):

C = Cshape + CLSS . (4.2)

Using the Equation 4.1, the parameters of the best-fitting model can be determined
with

θ̃(d) ≡ argmax
θ
L(θ |d) = argmin

θ
χ2(θ |d). (4.3)

For convenience we define
χ2

min(d) ≡ χ2( θ̃ (d) |d) (4.4)

as the value of the chi-square statistic for the best-fitting model, which is also the
minimal value of the chi-square statistic.

When fitting one-dimensional tangential shear profiles stacked over a sample of
lenses, the likelihood function can be written as

L(Mh,M?, c | γobs
t ) =

∏
i

1

σγt,i
√

2π
exp

−1
2

γt,i(Mh,R, z) − γobs
t,i

σγt,i

2 , (4.5)

where we use mi = γt,i(Mh,R, z) as the model prediction given halo mass Mh, radial
bin R, and redshift of the lens z, and the di = γobs

t,i as the tangentially averaged shear
of a sample of lenses measured from observations. Here we also use the (statistical)
uncertainty on our measurement given by the σγt,i calculated from the intrinsic shape
noise of sources in each radial bin. Moreover, we assume that the variance σ2 is the
diagonal of the full covariance matrix

σ =
√
|C| ; (4.6)

i.e., we only account for the error due to the shape noise. Similarly, the likelihood
function can be defined for the case when fitting the two-dimensional shear field

L(Mh,M?, c | εobs) =
∏

i

1

σε,i
√

2π
exp

−1
2

gi(Mh, θ, z) − εobs
i

σε,i

2 , (4.7)
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where gi(Mh, θ, z) are the reduced shears evaluated at each source position θ, εobs
i are

the observed elipticities of real galaxies, and σε,i is the intrinsic shape noise of our
galaxy sample per component, and is the same as the σγt,i. In practice, the two-
dimensional fit to the ellipticities is carried out for each cartesian component of el-
lipticity ε1 and ε2 with respect to the equatorial coordinate system of the real data or
mock catalogues used in our validation study.

4.3 LENS MODEL

The most widely assumed density profile for dark matter haloes is the Navarro-
Frenk-White (NFW) profile (Navarro et al. 1996). Using simple scaling relations this
profile can be matched to simulated dark matter haloes over a wide range of masses
and was found to be consistent with observations (Navarro et al. 1996). It is defined
as

ρNFW(r) =
δc ρm

(r/rs) (1 + r/rs)2 , (4.8)

where the free parameters δc and rs are called the overdensity and the scale radius,
respectively, and ρm is the mean density of the universe, where ρm = Ωmρc and ρc is
the critical density of the universe, defined by

ρc ≡
3H2

0

8πG
, (4.9)

where H0 is the present day Hubble parameter.
The NFW profile in its usual parametrisation has two free parameters for each

halo, halo mass Mh, and concentration c, and using these parameters is the conven-
tional way of modelling halo profiles. However, having two free parameters for each
halo is computationally very expensive. Instead, we would like to describe these
parameters through relations that depend on halo properties, and then fit to a few
free parameters in these global relations instead of hundreds or thousands of free,
halo-specific parameters.

To this end, we adopt the halo mass–concentration relation of Duffy et al. (2008),
which is also an adequate description of the measured halo mass–concentration re-
lation of central and satellite galaxies in the EAGLE simulation (Schaye et al. 2015;
Schaller et al. 2015)

c(Mh, z) = 10.14
[

Mh

(2 × 1012M�/h)

]−0.081

(1 + z)−1.01 . (4.10)

We also adopt the stellar mass-to-halo mass relation, as measured in the EAGLE sim-
ulation, using the functional form presented in Matthee et al. (2017),

log(M?/M�) = α − eγ (Mh/M�) β log(e) , (4.11)

where α = 11.50, β = −0.86, and γ = 10.58.
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After removing all halo-specific degrees of freedom, we introduce two new, global
degrees of freedom in order to avoid recalculating the shape of the profile in every
single model evaluation. They are introduced in the form of the factors f and g,
which scale the values of the scale radius rs and product δcrs relative to the values
r̃s(M?) and δ̃c(M?) r̃s(M?) expected from a lens with a stellar mass M? through the
two scaling relations for c and Mh:

rs = f r̃s(M?),
δcrs = g δ̃c(M?) r̃s(M?). (4.12)

Our two parameters thus correspond to a scaling of the amplitude and scale of the
NFW profile. This makes the interpretation of results straightforward and is the most
general parametrisation of the NFW profile. These parameters are expected to be of
order unity. While the scaling relations were measured on the EAGLE simulation,
which we use to validate the method, the slight differences on exact definitions of
quantities as measured on the simulations and what weak gravitational lensing in-
fers (and scatter around the mean of those distributions) might cause slight changes
in the value of the fiducial parameters. We do not expect to see any in the case of
simulated, toy model observations. These lens models can be generalised to account
for scatter (e.g. in the stellar mass-to-halo mass relation or in the concentration–mass
relation) by making it fully Bayesian, similar to the model presented in Sonnenfeld &
Leauthaud (2018).

The gravitational shear and convergence profiles are then calculated using the
equations presented by Wright & Brainerd (2000), from which the predicted elliptici-
ties for all the lenses are calculated according to the weak lensing relations presented
in Schneider (2003). We first calculate the reduced shear for our NFW profiles,

g(θ, zs) =
γ(θ, zs)

1 − κ(θ, zs)
, (4.13)

from which the ellipticities are calculated according to

ε =

g |g| ≤ 1
1/g∗ |g| > 1

, (4.14)

where we assume that the intrinsic ellipticities of the sources average to 0, due to
their random nature. In practice, we avoid the strong lensing regime by removing
these sources from our catalogue.
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4.4 PROOF OF CONCEPT

We created the mock catalogues in a semi-empirical manner. In order to test the
method on a realistic dataset, the mock catalogues were made to closely resemble the
Kilo Degree Survey (KiDS) properties (de Jong et al. 2015; Kuijken et al. 2015). We
randomly placed 30 700 sources at a redshift of 0.7 in a 1 deg2 field. This corresponds
to the size of one KiDS tile with the number of sources reflecting the observed number
density (Hildebrandt et al. 2017) at the median redshift for the whole survey.

We did not assign any intrinsic orientation or ellipticity to our sources; this uncer-
tainty can be accommodated for directly in our maximum likelihood fits by scaling
the covariance matrix (or in this case the variance used in the likelihood functions) so
that the intrinsic source ellipticity uncertainty is representative of the shape noise in
the KiDS survey, considering the overlap with the Galaxy and Mass Assembly survey
(GAMA; Liske et al. 2015).

The generated source field was then used to calculate the weak lensing effect of
the foreground lenses that we placed in the same field. We calculated the effect of
each lens according to the model presented in Sec. 5.4, using only one stellar mass for
all the lens galaxies placed in the mock catalogue. We decided to assign a stellar mass
of M? = 1012M� and f = g = 1. We positioned all the lenses at the same redshift of 0.2,
which is around the median redshift of the GAMA survey commonly used in KiDS
galaxy-galaxy lensing studies (Viola et al. 2015; Sifón et al. 2015; van Uitert et al. 2016;
Brouwer et al. 2016; Dvornik et al. 2018, amongst others). The contributions from
multiple lenses to the shear (and consequently ellipticity) of one source galaxy can be
summed together linearly, i.e.

γ(θ, zs)i =
∑

j

γ(θ, zs)i j , (4.15)

where the sum goes over the j lenses in the catalogue, with shear evaluated at each
source position i.1 This means that we actually allow for contributions of neighbour-
ing haloes, which will become evident later on in the paper. We also assume that each
lens galaxy is exactly at the centre of its dark matter halo, ignoring the possibility of
miscentring. When placing the lenses in our mock field, we draw their positions in
the same way as for the sources, but we do not allow for exact spatial overlap of any
lens. The number of lenses that we add to the KiDS-like field varies between 1 and
720 (the latter reflects the typical density of the GAMA galaxies) in order to study the
performance of the method as a function of galaxy number density so we can test the
effects of the neighbouring haloes.

When working with ground-based observations we would never have included
strongly lensed sources in the analysis as in the majority of cases these sources are
also blended with the lens galaxy (the typical Einstein radius for GAMA galaxies is
smaller than 5 arcsec); the simulated mock observations can have sources that are
strongly lensed because we distributed them randomly. To eliminate this problem,
all the sources with |g| > 0.3 were removed from the catalogue in order to limit our

1We first calculate the γ(θ, zs) and the κ(θ, zs), then use Equation 5.10 to calculate the reduced shear.
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Figure 4.1: Confidence areas of the scale parameter f and amplitude parameter g (left panel)
and the confidence areas of the halo mass Mh and halo concentration c jointly derived from the
constraints on the f and g parameters (right panel) for an analysis of the mock KiDS+GAMA
area. Orange contours show the maximum likelihood fit on the stacked tangential shear pro-
files, and the blue contours the maximum likelihood fit as it was performed on the ellipticities
of sources used directly, using all the galaxies in the mock field simultaneously. Shown are the
best-fitting values for each method (orange and blue crosses) and the fiducial lens model (red
circle). The contours correspond to the case with 50 lenses per deg2 in the simulated field.

analysis to the weak lensing regime. This threshold is quite low, but it makes sure we
always stay in the weak lensing regime that motivates the use of Equation 4.15.

Using these mock catalogues, we test our lens model and compare the results
obtained using the one-dimensional stacked tangential shear method against the two-
dimensional method that uses measured ellipticities directly. At the same time, this
allows us to study the two methods under known conditions and makes the results
easier to understand.

The main question we want to address here is how the effective lens galaxy
density influences the performance of the two-dimensional galaxy-galaxy lensing
method as the unique signatures caused by the spatial lens configuration on the shear
field result in information gain for the inference of halo masses and halo concentra-
tions.

The second question we want to address is the sensitivity of the two-dimensional
method to incompleteness in the lens sample. This bias can be induced by lenses
outside of the observed field (or masked from the data), and corrections to account for
this effect were already studied in the past (Hudson et al. 1998). We applied a typical
KiDS data mask to the generated mock catalogues and also studied the unmasked
mock catalogues, but purposefully ignored a number of lenses that are present in the
field.
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We first applied both methods to the same source sample in which we varied the
number of lenses from 1 to 720 deg−2. We assigned the uncertainty of the measured
shapes to σε = 0.3. For the one-dimensional method, each source’s uncertainty was
further weighted by

√
N, where N is the number of lenses that contribute to the to-

tal shear of that source, to account for proper covariance between the sources. This
is naturally captured by the two-dimensional galaxy-galaxy lensing method. Fur-
thermore, we limited ourselves to a subset of sources that we use in both methods.
The subset of sources is selected by the smallest and largest annuli (Rmax) in which
we calculate the tangentially averaged shear profiles of our galaxies. This allows us
to directly compare the methods, as for the case of one lens. Given that we use the
same source galaxies, the results from the two methods should be exactly the same.
At the same time, we also select the lens galaxies that are at least Rmax from the field
edge to minimise the effects of missing source galaxies beyond our simulated field.
We fit the data using Equations 5.3 and 5.5 for the tangential shears measured on
the data and the ellipticities as created in our mock catalogues, respectively. In the
fit we vary the parameters f and g, which scale the reference NFW profile for the
typical scale and amplitude. We sample the values of f and g on a Latin hypercube
grid (McKay et al. 1979) using 500 points. We compare the inferred best-fit values
and the 1σ and 2σ contours obtained from a χ2 surface, which is in turn computed
from the aforementioned grid using a interpolation on a finer linearly spaced grid.
Using this information we calculate a figure of merit (FoM) which is defined as an in-
verse of the 68% confidence level area and we study the ratio of the FoM between the
one-dimensional stacked tangential shear method and the two-dimensional method.

The results using 50 lenses per deg2 can be seen in Fig. 4.1, where we show the
fiducial value of the f and g parameters, the best-fit values, and the 1σ and 2σ un-
certainty contours on the derived best-fit values. Similarly, in Fig. 4.1, we show
the constraints on the halo mass Mh and halo concentration c, as derived from the
constraints on parameters f and g. The best-fit values with the individual 68% con-
fidence intervals are listed in Table 4.1, for the parameters f and g, and for the halo
mass Mh and halo concentration c. Both methods are capable of recovering the input
values. What is more, the contours for the two-dimensional method are noticeably
smaller. This can be seen more clearly in Fig. 4.2 where the orange line shows the
FoM as function of number of lens galaxies in our mock field. This figure shows that
information is gained as the contributions of neighbouring dark matter haloes leave
unique shear configuration signatures that can only be accounted for using a two-
dimensional galaxy-galaxy lensing method. At low lens densities we expect the two
methods to perform identically (with FoM ratio = 1) as the separation of the galaxies
is large enough for us to assume that the lenses are isolated, such that γt contains
all lensing information. The same effect (ratio of FoM = 1) should also be observed
if two lenses are exactly on the same line of sight. We note that we consider here a
noiseless mock dataset, with shape noise accounted through the covariance matrix,
and this means that the signal-to-noise ratio at low densities does not influence our
ability to constrain contribution of individual haloes, and consequently allows us to
obtain the ideal case of FoM = 1 for the case of one lens. The figure of merit stays
close to 1 as long as the separations are large enough for contributions of neighbour-
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Table 4.1: Best-fit values for the f and g parameters and for the halo mass Mh and halo concen-
tration c, together with their individual 68% confidence intervals for the model using 50 lenses
per deg2 in mock KiDS and GAMA like data.

f g Mh[1013M�] c

1D 1.0±0.14
0.19 0.98±0.22

0.11 2.13±0.37
0.43 6.76±2.26

1.28

2D 1.01±0.08
0.11 0.98±0.11

0.07 2.15±0.24
0.25 6.75±1.18

0.86

ing lenses to remain sufficiently low. With large lens galaxy number densities the
lenses start overlapping, we gain less information, and the figure of merit starts lev-
elling off. This is caused by the source number density that stays the same for any
number of lens galaxies we add to the field, which limits the available signal-to-noise
ratio of the measured source ellipticities.

We now focus on the second question in our investigation, whether there is any
bias introduced when not all lensing galaxies are accounted for. To this end, we use
the same KiDS-like mock field with 720 lens galaxies, but now we remove one lens in
each iteration, thus effectively accounting for the possible bias we might introduce in
real observations by not accounting for galaxies just outside of our observed field or
not accounting for lens galaxies that were masked out of the data. Figure 4.2 shows
the shift of the best-fit parameters away from the fiducial model as a function of the
field completeness, averaged over five different realisations of the lens distribution.
What is immediately clear is that the NFW fit to the one-dimensional tangential shear
profiles recovers the true input parameters (as it is essentially removing any config-
uration information from the sample by the tangential averaging), also for the cases
of low completeness. The two-dimensional method can only do this successfully at
high completeness values; any small deviation and unexpected features in the field
caused by the presence of lenses not accounted for drives the recovered values of the
input parameters away from the truth as the model tries to accommodate the missing
lenses.

We also study the effect of the masking introduced by a realistic KiDS survey
mask, shown in Fig. 4.3. We apply this mask to our mock catalogues and repeat the
fitting of our model to the lenses and sources that remain in the mock catalogues.
We again change the number of lenses in the field and the results of this exercise can
be seen in Fig. 4.2 (blue line). What can be observed is that the two-dimensional
method, even in the case of masking, is still more precise, and that the difference in
precision is a direct result of the amount of masked area. The accuracy of the method
due to masking behaves in a similar way to that shown in Fig. 4.2, but the observed
bias is smaller because a larger number of lenses remain in the field. A typical KiDS
survey mask reduces the number of lenses by about 20% (Kuijken et al. 2015; de Jong
et al. 2015; Hildebrandt et al. 2017), which can bias the fitted parameters up to 10%, as
shown in Fig. 4.2 (vertical grey line). This needs to be accounted for in an application
to real data.
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Figure 4.2: Left panel: Figure of merit as a function of lens number density in a simulated 1 deg2

field. The orange line shows the case where we consider all the galaxies in the field, and thus
gives us an estimate of improvement in precision when using a two-dimensional method. The
improvement levels off at a value of around 5, which indicates that in dense galaxy fields, the
loss of signal-to-noise ratio due to the limited number of sources cannot be overcome. The blue
line shows the case where we apply a typical KiDS survey mask to our mock catalogues. Right
panel: Relative shift of the halo mass Mh (top) and halo concentration c (bottom) derived from the
constraints on the f and g parameters from the fiducial model as a function of completeness.
Shown are the shift of the recovered parameters for the one-dimensional method (solid lines)
and the shift of the recovered parameters for the two-dimensional method (dashed lines). Also
shown is a typical completeness due to a mask in a KiDS like survey (vertical grey line).

Thus far we have ignored systematic biases in the galaxy shape measurements.
They can be split into a multiplicative bias, which leads to an overall scaling of
the signal, and an additive bias that manifests as a preferred orientation of galax-
ies. As the former simply scales the signal, the impact on the one-dimensional and
two-dimensional analyses is the same. The situation is different in the case of ad-
ditive bias: a constant signal will simply vanish when we consider the azimuthally
averaged tangential shear (in the limit of no edge effects). Even a spatially varying
additive bias is expected to vanish because it typically does not align with the line
connecting the lens and the source. In contrast, in the two-dimensional case we ex-
pect the χ2 to become poor as the systematic signal contributes to it. To examine
whether this has any impact on the recovered model parameters we mimic a sys-
tematic shape measurement error by adding a constant uniform shear to our mock
dataset and repeat our analysis. We find that the overall χ2 surface indeed becomes
offset by a constant (positive) value; however, we are nonetheless able to recover the
input parameters exactly as in our fiducial case.2

2This can be explicitly seen by writing out the χ2 with the added constant shear, χ2 ∝ (γt +c−m)2, where
c is the constant shear and m the model prediction. The cross terms in the expanded form average to 0 and
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Figure 4.3: Typical KiDS survey r-band mask
used to evaluate the effect of masking on the
inference of best-fit parameters, and the pos-
sible bias masking might introduce.

Figure 4.4: Segment of the shear map de-
rived from the EAGLE particle data. A num-
ber of notable features of weak lensing are
visible in this plot. The ellipticites are tan-
gentially aligned with the lenses and the
strength of gravitational lensing diminishes
with distance from the lens. The lens config-
uration creates a unique pattern that contains
information about mass distribution that is
otherwise lost when tangentially averaging
the observed shears.

4.5 EVALUATION OF THE TWO METHODS WITH THE EA-
GLE SIMULATION

Motivated by the success of the two-dimensional galaxy-galaxy lensing method from
the previous section, we now focus on more realistic tests using the EAGLE hydro-
dynamical simulation (Schaye et al. 2015; Crain et al. 2015; McAlpine et al. 2016)
as our input data. Studying a simulation gives us the ability to compare our two-
dimensional galaxy-galaxy lensing results against the truth, properties as measured
directly from particle properties in the simulation. We note that for the purpose of
this study we do not use a lightcone generated from the EAGLE simulation. Al-
though we include complexities of neighbouring galaxies, we do not capture pro-
jections along the line of sight or missing galaxies, for example. We use the AGN
simulation AGNdT9L0050N0752, which has 7523 dark matter particles and a box size
of 50 comoving Mpc (Schaye et al. 2015), and it is calibrated in such a way that it

we gain a constant term c2, which worsens the overall χ2, but does not inhibit the ability to minimise the
(γt − m)2 difference.
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reproduces global observables of our Universe. The EAGLE simulation was also
shown to correctly predict the galaxy-galaxy lensing signal when compared to the
KiDS+GAMA data (Velliscig et al. 2017), for both central and satellite galaxies. We
take the full particle information in a box with a comoving size of 50 Mpc which is
then binned to 8195 × 8195 × 8195 pixels. The box is then projected along the axes,
yielding three different mass maps of the EAGLE simulation. To calculate the shear
at each location, we first position the mass map at redshift of 0.2 (by scaling it comov-
ingly), calculate the density map using the mean density of the Universe, and use the
Kaiser & Squires (1993) prescription to calculate the shear, rolling the edges of the
map. Because we want the sources to be positioned at a redshift that resembles the
typical source redshift in the KiDS survey, we calculate the convergence map using
the critical surface mass density at redshift of 0.7. A small portion of an EAGLE shear
map is shown in Fig. 4.6. The whole EAGLE map corresponds to a 60 deg2 patch of
sky.

Further information about the properties of the lens galaxies are queried from the
public EAGLE database (McAlpine et al. 2016), such as the total halo mass, centre
of mass, centre of potential, stellar mass, stellar mass within certain aperture, group
memberships, and group properties. From the database we select galaxies with stel-
lar masses ranging from 109.6M� to 1011.2M�, which is a range that allows us to have
enough galaxies in finer stellar mass bins (which we will use for our fiducial stacked
tangential shear method) and ensures that the galaxies in EAGLE are well defined in
terms of simulation particle mass. From this selection of galaxies we take both the
centrals and satellite galaxies. Inclusion of satellite galaxies in the study is crucial for
the two-dimensional method, as otherwise the results can be substantially biased (up
to 10% for typical survey masks), as demonstrated in the previous section and in Fig.
4.2, and at the same time it allows their properties to be studied, as was previously
done using the one-dimensional method, by Sifón et al. (2015), amongst others. In to-
tal, after applying all the selection criteria, we are left with 859 galaxies (520 centrals
and 339 satellites).

We calculate the tangential shear signal for each galaxy in our sample using the
tangential εt component of the source’s ellipticity around the position of the lens.
The azimuthal average of the tangential ellipticity is then our unbiased estimate of
the tangential shear. For the two-dimensional method, we use the ε1 and ε2 values
directly. The tangential shear profiles and their averages for the 1010.8 to 1011.0M�
stellar mass bin can be seen in Fig. 4.6. The noisiness of the the individual profiles
can be directly attributed to the fact that we are azimuthally averaging the data on a
square grid.

The central and satellite galaxies in the EAGLE simulation follow a different
stellar-to-halo mass relation, and we also account for this in the model. For this we
use the same relation used in Sec. 5.4 and we fit it to the halo masses derived from
the NFW fits to the convergence field of individual galaxies, both centrals and satel-
lites (this is done in order to use the same definition of the halo mass for both galaxy
types). The two stellar-to-halo mass relations are shown in Fig. 4.5, and the param-
eters obtained are listed in Table 4.2. The different stellar-to-halo mass relations are
then accounted for in the modified lens model that differentiates between the central
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Figure 4.5: Stellar-to-halo mass relation for
the central galaxies in the EAGLE simulation
(orange) and for the satellites (blue). With
full orange and blue lines we show the me-
dian stellar-to-halo mass relation with the
corresponding scatter shown with the filled
areas of the same colours. The dashed or-
ange and blue lines are the models for the
stellar-to-halo mass relation as used in the
analysis.

Figure 4.6: Stacked tangential shear profiles
for the lenses selected from the EAGLE sim-
ulation (shown with blue lines) in the 1010.8

to 1011.0 M� stellar mass bin. The dashed or-
ange, red and black lines we show the signals
as predicted by our fiducial lens model us-
ing f = 1 and g = 1. The total best-fitting
model is shown with the solid orange line
and the best-fitting model for centrals and
satellites in full black and red lines, respec-
tively. The corresponding halo masses and
concentrations of input models and the best
fit results are listed in Table 4.3.

and satellite galaxies for the one-dimensional method and for the two-dimensional
method. From the same fit we note that the concentrations of the haloes are generally
lower than the prediction from Duffy et al. (2008). While they still follow the same
trend, the normalisation of the relation is lower for both centrals and satellites, with a
normalisation of 0.6 for centrals and 0.25 for satellites, with the lower values arising
because we include all the haloes, not only the relaxed ones. This is consistent with
what was found by Viola et al. (2015).

We fit the two lens models3 to the mean tangential shear profiles per bin and to
the full ellipticity data using Equations 5.3 and 5.5. To account for the uncertainty in
our ellipticity measurements we again assign the standard deviation of 0.3, scaled
to the typical number density of GAMA and KiDS set-up due to the size of the
pixel in our mass maps. This results in an uncertainty of σε = 0.015. The gain in

3One for centrals and one for satellites, for a combined set of four parameters; each model has a set of
( f , g) parameters.
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Table 4.2: Parameters of the stellar-to-halo mass relation used in the analysis of the EAGLE
simulation, used together with the functional form presented in Equation 5.9, and the normal-
isations of the concentration–mass relation.

α β γ c/c Duffy

Centrals 11.81 -0.68 8.69 0.6
Satellites 11.72 -0.79 9.44 0.25

Table 4.3: Central values of the input and best-fit halo masses and concentrations for the 1010.8

to 1011.0 M� stellar mass bin. The input values are a median of the halo masses and concen-
trations of haloes in that bin measured from the convergence fit to the EAGLE data and the
output values are the predictions from the best-fit one-dimensional model, which can be seen
in Fig. 4.6.

Input Mh Best-fit Mh Input c Best-fit c

Centrals 7.17 6.62 5.62 6.08
Satellites 1.33 1.30 2.72 2.96

precision is 3.9, which is the ratio of the area of the 68% confidence level contours
( FoM2D/FoM1D = 3.9 ). We show the separate credibility contours for the halo mass
and concentration in Fig. 4.7 for the one-dimensional and two-dimensional meth-
ods, separated into contributions from central and satellite galaxies; both values are
scaled with the input stellar-to-halo mass relation and the concentration–mass rela-
tion, which then show the relative change of the halo masses and concentration from
fiducial values obtained from the simulation.

At first sight it might seem that the results are somewhat biased with regard to
the actual measured scaling relation of the EAGLE galaxies, but we do observe an
almost equal effect on the f and g parameters for the two methods. This is not neces-
sarily due to a bias in the analysis. After all, the intrinsic scatter in the concentration–
mass relation and in the stellar mass-to-halo mass relation are not accounted for in
the model and are the most likely cause of small shifts in the methods presented.
Both methods also give robust estimates for the properties of central and satellite
galaxies and given the results, the two-dimensional method is much more precise
in constraining the two fitted parameters than the one-dimensional method. Given
the large uncertainty on the recovered parameters of the one-dimensional method for
satellite galaxies, the one-dimensional method is unable to robustly capture the con-
tribution from satellites in the KiDS+GAMA data, as was also demonstrated by Sifón
et al. (2015). Given the results of this exercise, we expect to capture the contribution
from satellites when we apply the two-dimensional method to the data.
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Figure 4.7: Left panel: Confidence areas of the halo mass Mh and concentration c of central galax-
ies for the analysis of the EAGLE simulation using the one-dimensional method and the two-
dimensional method, scaled with the input stellar-to-halo mass relation and the concentration–
mass relation. Right panel: Confidence areas of the halo mass Mh and concentration c of
satellite galaxies for the analysis of the EAGLE simulation using the one-dimensional method
and the two-dimensional method, scaled with the input stellar-to-halo mass relation and the
concentration–mass relation. The contours show the results of the maximum likelihood fit on
the central galaxies (red and purple) and satellite galaxies (orange and green). Crosses (in cor-
responding colours) show the best-fitting values for each method and galaxy sample, and the
red circles show the fiducial models. The contours are calculated from the contours obtained
as a fit of the f and g parameters.

4.6 DISCUSSION AND CONCLUSIONS

We have investigated the precision and bias of one and two-dimensional galaxy-
galaxy lensing analyses of weak lensing data, using tangential averaged shear pro-
files and ellipticities, respectively, keeping in mind current and upcoming state-of-
the-art large weak lensing galaxy surveys. The main difference between the two
methods lies in the fact that the two-dimensional approach uses all the available in-
formation in an observed field. While the one-dimensional method uses only the
ellipticities of source galaxies to infer the stacked tangential shear signal, the two-
dimensional method uses actual relative positions of all the lens galaxies in a field and
the ellipticities of all the sources in the field. Because the two-dimensional galaxy-
galaxy lensing accounts for spatial configuration of the lens galaxies, the unique sig-
natures in the shear field caused by overlapping regions of influence contain more
information about the halo properties of the lenses we want to study and result in a
significant improvement over the traditional one-dimensional stacking methods.
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We tested the method on mock observations generated in a semi-empirical way
where we assumed a model with the gravitational lenses represented by the NFW
profiles with properties determined from observable quantities such as stellar mass,
taking into account a typical configuration and properties of KiDS and GAMA sur-
veys. We find that the two-dimensional method gives better constraints on those
same parameters: the FoM is more than three times larger compared to the results
from stacked tangential shear profiles. This suggests that there can be an equal
amount of information hidden in the exact configuration of the lenses and their over-
laps, which is lost when a one-dimensional method is used. The precision gain also
depends on the lens density. In denser fields of gravitational lenses, the gain in pre-
cision from using the two-dimensional method is larger, as the signal becomes more
heavily influenced by neighbouring gravitational lenses. We also studied the case
where we removed a significant fraction of galaxies present in a mock field from
our analysis, and while the two-dimensional method still gives us better constraints
on the NFW parameters, the accuracy of these parameters starts to suffer because
the modelling of the lenses does not account for the contributions of shears that are
caused by the galaxies we left out of our analysis. While this indeed produces a no-
ticeable bias, and thus needs to be corrected to properly recover the true values of
the parameters we study, the case where such a large fraction of galaxies would be
missed is rather severe. This effect of correlated structure—undetected galaxies that
are clustered with the observed galaxies and the matter distribution on group scale—
is in reality negligibly small (as discussed in detail already by Hudson et al. 1998).

We assumed a model where lenses are represented by the NFW profiles, up to con-
stant pre-factors for the lensing signal amplitude and scale. We used the same lens
model as well for the study on the EAGLE simulation (Schaye et al. 2015; McAlpine
et al. 2016). As we used the concentration–mass relation that closely describes the
one measured in the EAGLE simulation and a stellar-to-halo mass relation of the EA-
GLE central and satellite galaxies in our lens model, we expected both methods to
recover the input parameters values. We find that the two methods are able to al-
most perfectly recover these values, and the small differences can be attributed to the
non-ideal modelling of the galaxies in the EAGLE simulation. The two-dimensional
method does indeed perform better.

Given that the two-dimensional galaxy-galaxy lensing method requires knowl-
edge of group (and/or cluster) membership, preferentially inferred from spectro-
scopic data, we identify two cases where using the two-dimensional method could
be preferred over the one-dimensional method. The most obvious one is studying
the group properties as a function of halo mass, where using the two-dimensional
method can give better constraints on scaling relations of group halo mass with lu-
minosity of central galaxies, their stellar mass, size, X-ray gas emission, and the con-
centration of such haloes. As we have precise membership information of galaxies
in clusters and because of the increased number density of these galaxies, the second
case is to study the sub-halo mass function of galaxy clusters to a high precision. The
two-dimensional galaxy-galaxy lensing, together with the group or cluster member-
ship information that is available by using highly complete spectroscopic surveys is
an obvious choice for galaxy-galaxy studies on dense galaxy fields in general.
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5
KiDS+GAMA: Inferring satellite halo
masses using two-dimensional shear

maps

W
E use data from the Kilo-Degree Survey (KiDS) and the Galaxy And Mass As-
sembly (GAMA) surveys to simultaneously constrain the stellar-to-halo mass
relations of both central and satellite galaxies of spectroscopically confirmed

galaxies in galaxy groups using weak lensing. For the analysis we use the traditional
one-dimensional method in the form of the stacked tangential shear measurements
to determine the halo and subhalo masses of our galaxies and to constrain the stellar-
to-halo mass relation, as well as a two-dimensional fit to the full shear field that uses
all the available information about lens galaxies and exact source galaxies positions
and ellipticities. We find that the two-dimensional method performs better than the
one-dimensional method statistically by a factor of ~2. Both methods lead to similar
parameters of the stellar-to-halo mass relation, which are consistent with previous re-
sults found in the literature, showing that the satellite galaxies have generally lower
halo masses than the central galaxies, given the same stellar mass.

A. Dvornik, K. Kuijken, H. Hoekstra, with KiDS and GAMA collaborations
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5.1 INTRODUCTION

According to the hierarchical galaxy formation model, galaxy groups and clusters
form by accretion of isolated galaxies and groups. Such an assembly process will
tidally strip mass from the infalling satellite galaxies/haloes. Because the dark matter
is dissipationless it will be more easily stripped from the subhalo than the baryons,
which will dissipate some of their energy and sink to the centre of their potential
well before forming stars (White & Rees 1978). This model thus predicts that the
satellite galaxies will be preferentially stripped of their dark matter and the effect can
be observed as higher stellar mass to halo mass ratios of satellite galaxies compared
to their central counterparts of similar stellar mass.

While the stellar-to-halo mass relation of central galaxies has been successfully
measured by many studies (for instance by Hoekstra et al. 2005; Mandelbaum et al.
2006; More et al. 2011; van Uitert et al. 2011; Leauthaud et al. 2012), this is not the case
for satellite galaxies whose stellar-to-halo mass relation remains essentially uncon-
strained (Sifón et al. 2018). Recently, several weak gravitational lensing studies using
galaxy groups and clusters have been undertaken (such as the ones by Limousin et al.
2007; Li et al. 2014b, 2016; Sifón et al. 2015, 2018), all finding that the satellite galaxies
are heavily truncated with the respect to the central and field galaxies. All the previ-
ous simulation studies (Bower et al. 2006) show that the stellar-to-halo mass relation
of satellite galaxies is significantly different from the stellar-to-halo mass relation of
central galaxies.

In order to measure the stellar-to-halo mass ratio of satellite galaxies, one needs to
estimate the total mass of satellite galaxies. Weak gravitational lensing, through the
lensing of background sources by a sample of galaxies – commonly called galaxy-
galaxy lensing, directly measures the total mass of lensing galaxies, without assum-
ing their dynamical state (Bartelmann & Schneider 2001; Courteau et al. 2014), and it
is currently the only method available to measure the total mass of samples of galax-
ies directly. Measuring the lensing signal around satellite galaxies, however, can be
particularly challenging for several reasons: a small contribution to the lensing sig-
nal by the host galaxy group, source blending at small separations and sensitivity to
field galaxy contamination (Sifón et al. 2018). As pointed out by Sifón et al. (2015),
the latter point is quite important as the field galaxies will not be stripped and the
contamination complicates the interpretation of the lensing signal.

To overcome the aforementioned challenges in measuring the satellite galax-
ies’ lensing signal in this study we use the two-dimensional galaxy-galaxy lensing
method, first proposed by Schneider & Rix (1997), to analyse galaxy-galaxy lens-
ing data. The two-dimensional galaxy-galaxy lensing method tries to fit a two-
dimensional shear field directly to the galaxy ellipticity measurements, and it was
shown to perform significantly better for dense lens populations, compared to the
traditional one-dimensional method in the form of the stacked tangential shear esti-
mates or excess surface density (ESD) profiles (Chapter 4).

This method went out of fashion due to the unavailability of galaxy grouping in-
formation that would accurately classify galaxies as centrals and satellites (Hoekstra
2014), the same information needed to robustly study the stellar mass to halo mass
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relation of satellite galaxies (Sifón et al. 2015). Treating the galaxies as centrals and
satellites in a statistical way when considering the stacked signal could be naturally
accounted for with the halo model (Seljak 2000; Peacock & Smith 2000; Cooray &
Sheth 2002), thus overcoming the observational shortcomings. In recent years the
galaxy grouping information has become available thanks to the power of wide-field
photometric surveys (for instance KiDS; Kuijken et al. 2015; de Jong et al. 2015) com-
plemented with spectroscopic group information (from spectroscopic surveys like
Galaxy And Mass Assembly (hereafter GAMA) survey; Driver et al. 2011; Robotham
et al. 2011) that allow one to treat the central and satellite galaxies deterministically.
One important advantage of the two-dimensional method lies in the fact that it ex-
ploits all the information of the actual image configuration (the model predicts the
shear for each individual background galaxy image) using the galaxies’ exact posi-
tions, ellipticities, magnitudes, luminosities, stellar masses, group membership, in-
formation, etc., rather than using only the ensemble properties of statistically equiv-
alent samples (Schneider & Rix 1997). Moreover, the clustering of the lenses is nat-
urally taken into account, although it is more difficult to account for the expected
diversity in density profiles (Hoekstra 2014).

In this paper we present a two-dimensional galaxy-galaxy lensing measurement
of the stellar-to-halo mass relation for central and satellite galaxies, by combining
a sample of spectrocopically confirmed galaxy groups from the Galaxy And Mass
Assembly survey (Driver et al. 2011) and background galaxies from the Kilo-Degree
Survey (Chapter 6). We use these measurements to constrain the stellar-to-halo mass
relation using both one-dimensional stacked tangential shear profiles and the two-
dimensional galaxy-galaxy lensing method.

The outline of this paper is as follows. In Sec. 5.2 we present the lens and source
sample used in this analysis. In Sec. 5.3 we present the two-dimensional galaxy-
galaxy lensing formalism and in Sec. 5.4 we present the specific lens model used in
the paper. We present the results in Sec. 5.5 and conclude with Sec. 5.6. Throughout
the paper we use the following cosmological parameters entering in the calculation of
the distances and other relevant properties (Planck Collaboration et al. 2013): Ωm =

0.307, ΩΛ = 0.693, σ8 = 0.8288, ns = 0.9611, Ωb = 0.04825 and h = 0.6777. The
halo masses are defined as M = 4πr3

∆
∆ ρm/3 enclosed by the radius r∆ within which

the mean density of the halo is ∆ times the mean density of the Universe ρm, with
∆ = 200. All the measurements presented in the paper are in comoving units.

5.2 DATA AND SAMPLE SELECTION

The foreground galaxies used in this lensing analysis are taken from the GAMA sur-
vey (Driver et al. 2011), a spectroscopic survey carried out on the Anglo-Australian
Telescope with the AAOmega spectrograph. Specifically, we use the information
of GAMA galaxies from three equatorial regions, G9, G12 and G15 from GAMA II
(Liske et al. 2015). We do not use the G02 and G23 regions, because the first one
does not overlap with KiDS and the second one uses a different target selection com-
pared to the one used in the equatorial regions. These equatorial regions encom-
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pass ~ 180 deg2, contain 180 960 galaxies (with nQ ≥ 3, where the nQ is a measure
of redshift quality) and are highly complete down to a Petrosian r-band magnitude
r = 19.8. For this thesis Chapter we only use galaxies in the G9 field (a full KiDS and
GAMA overlap study will be performed later on) and we use only the galaxies that
reside in groups identified by Robotham et al. (2011). Inclusion of only the group
galaxies might potentially bias our results, but we defer this analysis to the upcom-
ing and complete study on the full GAMA area. The GAMA galaxy group catalogue
was constructed using a 3-dimensional Friends-of-Friends (FoF) algorithm, linking
galaxies in projected and line-of-sight separation. We use version 10 of the group cat-
alogue (G3Cv10), which contains 26 194 (7481 in G9) groups with at least 2 members.
Following (Viola et al. 2015), we restrict ourselves to galaxy groups with at least 5
members as low multiplicity groups are contaminated with interlopers (Robotham
et al. 2011) and consider all the galaxies within those groups whose stellar mass is be-
tween 108M� and 1012M�. Stellar masses are taken from version 20 of the LAMBDAR
stellar mass catalogue, described in Wright et al. (2017). The final selection of galaxies
can be seen in Fig. 5.1 and Fig. 5.2, and all the relevant properties we need in our
analysis are presented in Table 5.1. The stellar mass binning is used only for the one-
dimensional galaxy-galaxy lensing case in order to obtain stacks of tangential shear
signal. In the two-dimensional case, we directly use the relevant galaxy quantities in
the model.

We use imaging data from the 60 deg2 of KiDS (Chapter 6) that overlaps with
the G9 patch of the GAMA survey (Driver et al. 2011) to obtain shape measurements
of background galaxies. KiDS is a four-band imaging survey conducted with the
OmegaCAM CCD mosaic camera mounted at the Cassegrain focus of the VLT Sur-
vey Telescope (VST); the camera and telescope combination provide us with a fairly
uniform point spread function across the field-of-view.

We use shape measurements based on the r-band images, which have an aver-
age seeing of 0.66 arcsec. The image reduction, photometric redshift calibration and
shape measurement analysis is described in detail in Hildebrandt et al. (2018) and
in Chapter 6. We measure galaxy shapes using lensfit (Miller et al. 2013), which has
been calibrated using image simulations described in Kannawadi et al. (2019). This
provides galaxy ellipticities (ε1, ε2) with respect to an equatorial coordinate system.

5.3 2D GALAXY-GALAXY LENSING FORMALISM

In this study of satellite galaxy-galaxy lensing we use the two-dimensional galaxy-
galaxy lensing formalism as discussed in Chapter 4, following the model therein and
adapting it to work with KiDS+GAMA data, taking into account the survey specific
requirements. Generally, for both the one-dimensional and two-dimensional cases,
the likelihood of a model with a set of parameters θ given data d can be parametrised
in the following form:

L(θ |d) =
1√

(2π)n |C|
exp

[
−

1
2

(m(θ) − d)T C−1 (m(θ) − d)
]
, (5.1)
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Table 5.1: Overview of the number of galaxies/lenses, median stellar masses of galaxies and
median redshifts in each selected bin used for our one-dimensional stacked tangential shear
analysis. Stellar masses are given in units of

[
log(M?/[M�])

]
.

Bin Range Ntot Ncen Nsat M?,med zmed

1 (8.0,10.0] 1004 3 1001 9.66 0.095
2 (10.0,10.2] 491 5 486 10.11 0.167
3 (10.2,10.4] 740 10 730 10.32 0.192
4 (10.4,10.6] 1034 29 1005 10.51 0.202
5 (10.6,10.8] 1295 53 1242 10.71 0.247
6 (10.8,11.0] 1298 108 1190 10.90 0.272
7 (11.0,11.2] 1016 235 781 11.09 0.282
8 (11.2,11.4] 513 229 284 11.28 0.282
9 (11.4,11.6] 239 171 68 11.47 0.294
10 (11.6,11.8] 40 36 4 11.66 0.314
11 (11.8,12.0] 5 3 2 11.88 0.271

where m(θ) is the value of d predicted by the model with parameters θ. We assume
the measured data points d = [di, . . . , dn] are drawn from a normal distribution with a
mean equal to the true values of the data. The likelihood function accounts for corre-
lated data points through the covariance matrix C. The covariance matrix C consists
of two parts, the first one arising from shape noise and the second part from the
presence of cosmic structure between the observer and the source (Hoekstra 2003):

C = Cshape + CLSS . (5.2)

In the case when one wants to fit one-dimensional tangential shear profiles, stacked
over a sample of lenses, the likelihood function can be written as:

L(Mh,M?, c | γobs
t ) (5.3)

=
∏

i

1

σgt,i
√

2π
exp

−1
2

gt,i(Mh,R, z) − gobs
t,i

σgt,i

2 ,
where we have used mi = gt,i(Mh,R, z) as the model prediction given halo mass Mh,
radial bin R and redshift of the lens z, and the di = gobs

t,i as the tangentially averaged
shear of a sample of lenses measured from observations. Here we have also used the
uncertainty of our measurement, given by the σgt,i calculated from the intrinsic shape
noise of sources in each radial bin. Moreover we assume that the variance σ2 is the
diagonal of the full covariance matrix:

σ =
√
|C| , (5.4)

i.e., we only account for the error due to the shape noise. Similarly, the likelihood
function can be defined for the case when one would like to fit the two-dimensional
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Figure 5.1: Stellar mass versus redshift of
galaxies in rich groups in the G9 region of the
GAMA survey that overlap with KiDS. The
full sample is shown with hexagonal density
plot and the dashed lines show the cuts for
the stellar mass bins used in our analysis.

Figure 5.2: Stellar mass distributions in our
11 bins used for one-dimensional stacked
tangential shear measurements. The exact
bin values are presented in Table 5.1.

shear field:

L(Mh,M?, c | εobs) (5.5)

=
∏

i

1

σε,i
√

2π
exp

−1
2

gi(Mh, xi, z) − εobs
i

σε,i

2 ,
where gi(Mh, xi, z) are the reduced shears evaluated at each source position xi, εobs

i the
observed elipticities of real galaxies and σε,i is the intrinsic shape noise of our galaxy
sample per component, calculated from the lensfit weights following the description
by (Heymans et al. 2012) and it is the same as the σgt,i. The same lensfit weights are
used to weight the εobs

i as well. In practice, the two-dimensional fit to the ellipticities
is carried out for each cartesian component of ellipticity ε1 and ε2 with respect to the
equatorial coordinate system.

5.4 LENS MODEL

The most widely assumed density profile for dark matter haloes is the Navarro–
Frenk–White (NFW) profile (Navarro et al. 1996). Using simple scaling relations this
profile can be matched to simulated dark matter haloes over a wide range of masses
and was found to be consistent with observations (Navarro et al. 1996). It is defined
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as:

ρNFW(r) =
δc ρm

(r/rs) (1 + r/rs)2 , (5.6)

where the free parameters δc and rs are called the overdensity and the scale radius,
respectively, and ρm is the mean density of the universe, where ρm = Ωmρc and ρc is
the critical density of the universe, defined by

ρc ≡
3H2

0

8πG
, (5.7)

where H0 is the present day Hubble parameter.
The NFW profile in its usual parametrisation has two free parameters for each

halo, halo mass Mh and concentration c, and using those is the conventional way
of modelling halo profiles. However, having two free parameters for each halo is
computationally very expensive and not supported by the data. Rather we would
like to describe these parameters through relations that depend on halo properties,
and then fit to a few free parameters in these global relations instead of hundreds
or thousands of free, halo-specific parameters. To do so, we adopt the halo mass –
concentration relation of Duffy et al. (2008), with a free concentration normalisation
fc:

c(Mh, z) = fc 10.14
[

Mh

(2 × 1012M�/h)

]−0.081

(1 + z)−1.01 , (5.8)

We also adopt the stellar mass to halo mass relation in a shape of a single power law:

Mh = M0

(
M?

1011M�

)α
, (5.9)

where α and M0 are the free parameters we will be fitting. We use separate relations
for the central and satellite galaxies, as we want to constrain the stellar-to-halo mass
relation for those populations separately.

The gravitational shear and convergence profiles are then calculated using the
equations presented by Wright & Brainerd (2000), from which the predicted elliptici-
ties for all the lenses are calculated according to the weak lensing relations presented
in Schneider (2003). We first calculate the reduced shear for our NFW profiles:

g(xi, zs) =
γ(xi, zs)

1 − κ(xi, zs)
, (5.10)

from which the ellipticities are calculated according to the following equation:

ε =

g |g| ≤ 1
1/g∗ |g| > 1

, (5.11)

where we have assumed that the intrinsic ellipticities of the sources average to 0, due
to their random nature.
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We compute the effective critical surface mass density that we need in our lens
model for each lens using the spectroscopic redshift of the lens zl and the full nor-
malised redshift probability density of the sources, n(zs), calculated using the direct
calibration method presented in Hildebrandt et al. (2017, 2018).

The effective inverse critical surface density can be written as:

Σ−1
cr,ls =

4πG
c2 (1 + zl)2D(zl)

∫ ∞

zl

D(zl, zs)
D(zs)

n(zs) dzs , (5.12)

where D(zl) is the angular diameter distance to the lens, D(zl, zs) is the angular di-
ameter distance between the lens and the source and D(zs) is the angular diameter
distance to the source.

The galaxy source sample is specific to each lens redshift with a minimum photo-
metric redshift zs = zl + δz, with δz = 0.2, where δz is an offset to mitigate the effects of
contamination from the group galaxies (for details see also the methods section and
Appendix of Chapter 2). We determine the source redshift distribution n(zs) for each
sample, by applying the sample photometric redshift selection to a spectroscopic cat-
alogue that has been weighted to reproduce the correct galaxy colour-distributions
in KiDS (for details see Hildebrandt et al. 2018). We correct the measured elliptici-
ties for the multiplicative shear bias per source galaxy per redshift bin as defined in
Hildebrandt et al. (2018) with correction values estimated from the image simulations
(Kannawadi et al. 2019).

5.5 RESULTS

The free parameters for our model are listed in Table 5.2, together with their prior
ranges. We use a Bayesian inference method in order to obtain full posterior proba-
bilities using a Monte Carlo Markov Chain (MCMC) technique; more specifically we
use the emcee Python package (Foreman-Mackey et al. 2013). The likelihoods we use
are the same as given by Equations 5.3 and 5.5. We use wide flat priors for all the
parameters (given in Table 5.2), which are the same for both our methods as well.

We run the sampler using 32 walkers, each with 50 000 steps (for a combined
number of 1 600 000 samples), out of which we discard the first 5000 burn-in steps,
160 000 samples). The resulting MCMC chains are well converged according to the
integrated autocorrelation time test.

We fit the lens model as described in Sect 5.4 to the measured stacked tangential
shear measurements in our 11 stellar mass bins. A single stacked tangential shear
profile for the GAMA lenses (blue points) in the 1011.2 to 1011.4M� stellar mass bin is
shown in Fig. 5.3, with the measurements and their respective 1σ errors (orange lines
and bands). The measured lens model best-fit parameters, together with their 68%
credibility intervals are presented in Table 5.2. Their full posterior distributions are
shown in Fig. 5.6. The resulting fit has a reduced χ2

red(≡ χ2/d.o.f.) equal to 0.94, which
is an appropriate fit, given the 93 degrees of freedom (d.o.f.).

The main results of this work are the stellar-to-halo mass relations for centrals
and satellites, which for the one-dimensional study, we show in Fig. 5.4. The stellar-
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Table 5.2: Priors and marginalised posterior estimates of the free parameters used in our lens
model, for both the one-dimensional method and the two-dimensional method. All priors are
uniform in linear space in the quoted range. The central values are calculated as median of the
MCMC samples and the uncertainties are the 68% credibility interval.

log(M0,cen/M�) αcen fc,cen log(M0,sat/M�) αsat fc,sat

Priors [5, 15] [0, 5] [0, 5] [5, 15] [0, 5] [0, 5]

1D 13.37+0.19
−0.25 0.61+0.48

−0.40 0.43+0.15
−0.12 12.89+0.11

−0.13 0.35+0.15
−0.15 0.03+0.02

−0.01

2D 13.44+0.11
−0.22 0.85+0.09

−0.25 0.49+0.17
−0.20 12.91+0.05

−0.08 0.47+0.14
−0.05 0.09+0.03

−0.06

to-halo mass relations are completely described with two parameters each (two for
centrals and two for satellites) – the normalisation M0 and slope α, for which the ob-
tained values for centrals and satellite are log(M0,cen/M�) = 13.37+0.19

−0.25, αcen = 0.61+0.48
−0.40

and log(M0,sat/M�) = 12.89+0.11
−0.13, αsat = 0.35+0.15

−0.15 respectively. As expected, the stellar-
to-halo mass relations are significantly different for the central and satellite galaxies,
showing that the stripping of the dark matter does indeed take place (the stellar-to-
halo mass relation of satellite galaxies is lower than the one of the centrals). What is
more, the width of the obtained stellar-to-halo mass relation is similar to the one that
can be seen in simulations, for instance by the EAGLE hydrodynamical simulation
(Schaye et al. 2015; Matthee et al. 2017).

The normalisations of the concentration-halo mass relation fc are fc,cen = 0.43+0.15
−0.12

and fc,sat = 0.03+0.02
−0.01 for centrals and satellites, respectively, comparable to the values

that are found in hydrodynamical simulations (Chapter 4). The concentration-halo
mass normalisation is not significantly correlated with any of the other parameters of
the stellar-to-halo mass relation, thus not significantly influencing our results. Those
values are also consistent with the observational findings that prefer lower normali-
sations than expected in simulations, such as in the studies of Viola et al. (2015); Sifón
et al. (2015); Dvornik et al. (2017).

For the two-dimensional results we can only present the obtained posterior distri-
butions of our free parameters, as there is no direct representation of the results as in
the case of one-dimensional galaxy-galaxy lensing. The measured lens model best-fit
parameters, together with their 68% credibility intervals are presented in Table 5.2.
Their full posterior distributions are shown in Fig 5.6. The resulting fit has a reduced
χ2

red(≡ χ2/d.o.f.) equal to 0.92, with 2 235 297 degrees of freedom (d.o.f.), which means
that the model is slightly over-fitting the data and a reduced set of parameters might
be needed.

For the two-dimensional study we present the obtained stellar-to-halo mass re-
lations in Fig. 5.5. The obtained values for centrals and satellite in the case when
using the two-dimensional galaxy-galaxy lensing are log(M0,cen/M�) = 13.44+0.11

−0.22,
αcen = 0.85+0.09

−0.25 and log(M0,sat/M�) = 12.91+0.05
−0.08, αsat = 0.47+0.14

−0.05 respectively, reported as
well in Table 5.2. These results are comparable to the ones from the one-dimensional
method and show that the two-dimensional method performs better statistically. Fur-
thermore, we have not used all the galaxies in the G9 GAMA patch, leaving out the
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Figure 5.3: Stacked tangential shear profile for the GAMA lenses (blue points) in the 1011.2 to
1011.4 M� stellar mass bin. The full orange line together with the orange band shows the best
fitting lensing model for the 1D method, consisting of contribution from centrals and satellites
and the 68% credibility interval, respectively.

groups with small member populations and all the isolated galaxies, thus possibly
biasing our two-dimensional inference. Any galaxies left out of the analysis will bias
the results up to 20% estimated for the KiDS and GAMA study (Chapter 4), mostly
affecting the normalisation of the stellar-to-halo mass relation. To properly account
for this, we need to repeat the analysis using all the available lens galaxies as well as
test for the robustness of the central and satellite galaxy classification in the GAMA
catalogue. The group catalogue is known to be contaminated by the misidentification
of the central galaxy in a group, such that the true central galaxy would be included in
the satellite sample, which can introduce roughly a 15% bias on the inferred masses
(Sifón et al. 2015). What is more, the satellite stellar-to-halo mass relation at high
stellar mass is possibly driven by the misidentification of satellite galaxies, which
should actually be classified as centrals, given the high halo masses measured. This
is a likely consequence of the observed problem with the Friends-of-Friend (FoF) al-
gorithm used to identify galaxy groups in the GAMA survey, but it does not seem
to largely affect the obtained results. The FoF algorithm will separate groups into
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Figure 5.4: Stellar-to-halo mass relation for
the central galaxies (orange) and satellite
galaxies (blue) for the one-dimensional tan-
gential shear analysis of GAMA groups. The
solid lines show the median relation ob-
tained from our MCMC fit and the orange
and blue band show the 68% credibility in-
terval for the inferred relation.

Figure 5.5: Stellar-to-halo mass relation for
the central galaxies (orange) and satellite
galaxies (blue) for the two-dimensional tan-
gential shear analysis of GAMA groups. The
solid lines show the median relation ob-
tained from our MCMC fit and the orange
and blue band show the 68% credibility in-
terval for the inferred relation.

a number of smaller groups or aggregate smaller, unrelated groups into one large
group, which would then host more than one central galaxy with them being classi-
fied as a satellite (Jakobs et al. 2018).

The normalisations of the concentration-halo mass relation fc,cen and fc,sat for
centrals and satellites respectively, are also comparable to the ones for the one-
dimensional method. They are less consistent with previous lensing measurements
of GAMA galaxies (Viola et al. 2015; Sifón et al. 2015), especially for satellite galax-
ies, a fact that needs to be addressed in the future. The likely inconsistency might
arise from the fact that Sifón et al. (2015) fixed the normalisation of the concentration-
halo mass relation of satellite galaxies to 1. This might as well explain our over-fitting
problem. The results show our ability to use the two-dimensional galaxy-galaxy lens-
ing to constrain the stellar-to-halo mass relation of both central and satellite galax-
ies. The statistical performance of the two-dimensional method is better, as expected,
but it is clearly noticeable that it might be significantly biased compared to the one-
dimensional method.



112 Chapter 5. Inferring satellite halo masses using 2D shear maps

0.
4

0.
8

1.
2

1.
6

2.
0

α
ce

n

0.
2

0.
4

0.
6

0.
8

1.
0

f c
,c

en

12
.6

12
.9

13
.2

13
.5

13
.8

M
0,

sa
t

0.
2

0.
4

0.
6

0.
8

1.
0

α
sa

t

12
.6

12
.9

13
.2

13
.5

13
.8

M0,cen

0.
1

0.
2

0.
3

0.
4

0.
5

f c
,s

at

0.
4

0.
8

1.
2

1.
6

2.
0

αcen

0.
2

0.
4

0.
6

0.
8

1.
0

fc,cen

12
.6

12
.9

13
.2

13
.5

13
.8

M0,sat

0.
2

0.
4

0.
6

0.
8

1.
0

αsat

0.
1

0.
2

0.
3

0.
4

0.
5

fc,sat

Figure 5.6: Full posterior distributions of the model parameters M0,cen, αcen, fc,cen, M0,sat, αsat and
fc,sat, for both the one-dimensional stacked tangential shear measurements (in orange) as well
as the two-dimensional galaxy-galaxy lensing method (in blue). The contours indicate the 1σ
and 2σ credibility regions. Priors used in the MCMC fit can be seen in Table 5.2.
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5.6 DISCUSSION AND CONCLUSIONS

We have made a preliminary measurement of the stellar-to-halo mass relation of cen-
tral and satellite galaxies located in the GAMA groups. In this analysis we use the
two-dimensional galaxy-galaxy lensing method to better constrain the stellar-to-halo
mass relation, given the observed advantage of it over traditionally used stacked tan-
gential shear method (also referred here as the one-dimensional galaxy-galaxy lens-
ing, Chapter 4).

We use one of the equatorial GAMA patches (G9) that overlaps with the KiDS
data in order to calculate both the tangential shear signal around the galaxies in rich
groups with more than 5 members, and the two-dimensional galaxy-galaxy lensing
constraints on the same lenses and sources. The tangential shear signal is then used
to constrain the stellar-to-halo mass relation of central and satellite galaxies.

We model the lensing signal using an NFW profile together with the concentration-
mass relation by Duffy et al. (2008), scaled by a normalisation factor that we fit for. We
assume a functional form for the stellar-to-halo mass relation in the form of a single
power-law and fold it through our model, thus directly fitting for the normalisation
and slope of the stellar-to-halo mass relation. The lens model is used to calculate
the tangential shear profile that is then fitted to the measured tangential shear pro-
file from the GAMA and KiDS data as well as to directly predict the two cartesian
components of the galaxies’ ellipticities used in our two-dimensional method.

We find that the the stellar-to-halo mass relation can be successfully measured
using the two-dimensional method, with a better statistical power than the tradi-
tional one-dimensional method using the stacked tangential shear measurements.
Both methods give us similar results for the stellar-to-halo mass relations, showing
that the two-dimensional method is indeed a robust way to measure properties of the
galaxy–halo connection, without using statistically equivalent samples as in the case
of the one-dimensional method, nor using more complicated halo models or relying
on support from other probes. The obtained stellar-to-halo mass relations are broadly
in agreement with the literature, although further study of remaining biases in our
analysis is needed and the measurements will be improved shortly.

Following this pilot analysis we will refine the analysis by the inclusion of all the
available overlapping KiDS and GAMA data, together with the inclusion of the re-
maining ungrouped galaxies will make the two-dimensional method more accurate,
less biased and statistically more powerful than the one-dimensional one.
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The fourth data release of the

Kilo-Degree Survey: ugri imaging and
nine-band optical-IR photometry over

1000 square degrees

T
HE Kilo-Degree Survey (KiDS) is an ongoing optical wide-field imaging sur-
vey with the OmegaCAM camera at the VLT Survey Telescope, specifically
designed for measuring weak gravitational lensing by galaxies and large-scale

structure. When completed it will consist of 1350 square degrees imaged in four fil-
ters (ugri). Here we present the fourth public data release which more than doubles
the area of sky covered by data release 3. We also include aperture-matched ZYJHKs
photometry from our partner VIKING survey on the VISTA telescope in the photom-
etry catalogue. We illustrate the data quality and describe the catalogue content. Two
dedicated pipelines are used for the production of the optical data. The ASTRO-WISE
information system is used for the production of co-added images in the four survey
bands, while a separate reduction of the r-band images using the THELI pipeline is
used to provide a source catalogue suitable for the core weak lensing science case.
All data have been re-reduced for this data release using the latest versions of the
pipelines. The VIKING photometry is obtained as forced photometry on the THELI
sources, using a re-reduction of the VIKING data that starts from the VISTA paw-
prints. Modifications to the pipelines with respect to earlier releases are described in
detail. The photometry is calibrated to the Gaia DR2 G band using stellar locus regres-
sion. In this data release a total of 1006 square-degree survey tiles with stacked ugri
images are made available, accompanied by weight maps, masks, and single-band
source lists. We also provide a multi-band catalogue based on r-band detections, in-
cluding homogenized photometry and photometric redshifts, for the whole dataset.
Mean limiting magnitudes (5σ in a 2′′ aperture) and the tile-to-tile rms scatter are
24.23 ± 0.12, 25.12 ± 0.14, 25.02 ± 0.13, 23.68 ± 0.27 in ugri, respectively, and the mean
r-band seeing is 0.′′70.

K. Kuijken, C. Heymans, A. Dvornik, H. Hildebrandt,
J.T.A. de Jong, A.H. Wright, et al.

A&A, Volume 625, Issue 1, p. A2 (2019)
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6.1 INTRODUCTION: THE KILO-DEGREE AND VIKING
SURVEYS

High-fidelity images of the sky are one of the most fundamental kinds of data for
astronomy research. While for many decades photographic plates dominated optical
sky surveys, the advent of large-format CCD detectors for astronomy opened up the
era of digital, high resolution, high sensitivity, linear-response images.

The ESO VLT Survey Telescope (VST; Capaccioli & Schipani 2011) at ESO’s Paranal
observatory was specifically designed for wide-field, optical imaging. Its focal plane
contains the square 268-million pixel CCD mosaic camera OmegaCAM (Kuijken
2011) that covers a 1◦.013 × 1◦.020 area at 0.′′213 pitch, and the site and telescope op-
tics (with actively controlled primary and secondary mirrors) ensure an image quality
that is sub-arcsecond most of the time, and that does not degrade towards the corners
of the field. Since starting operations in October 2011, more than half of the available
time on the telescope has been used for a set of three wide-area ‘Public Imaging Sur-
veys’ for the ESO community. The Kilo-Degree Survey (KiDS; de Jong et al. 2013)1 is
the deepest of these, and the one that exploits the best observing conditions.

KiDS was designed as a cosmology survey, to study the galaxy population out
to redshift ∼1 and in particular to measure the effect on galaxy shapes due to weak
gravitational lensing by structure along the line of sight. By combining galaxy shapes
with photometric redshift estimates it is possible to locate the redshift at which the
gravitational lensing signal originates, and hence to map out the growth of large-
scale structure, an important aspect of the evolution of the Universe and a key cos-
mology probe. Together with KiDS, two other major surveys are engaged in such
measurements: the Dark Energy Survey (DES; The Dark Energy Survey Collabora-
tion 2005)2 and the HyperSuprimeCam survey (HSC; Aihara et al. 2018)3, and all
three have reported intermediate cosmology results (Hildebrandt et al. 2017, hence-
forth [KiDS450]; Troxel et al. 2018; Hikage et al. 2019). Their precision is already such
that the measurements can constrain some parameters in the cosmological model to a
level that is comparable to what is achieved from the cosmic microwave background
anisotropies (Planck Collaboration et al. 2018). Since ground-based surveys are lim-
ited fundamentally by the atmospheric disturbance on galaxy shapes and photome-
try, space missions Euclid (Laureijs et al. 2011) and later WFIRST (Spergel et al. 2015)
are planned to increase the fidelity of such studies further.

To meet its primary science goal KiDS observes the sky in four bands: u, g, r and
i. The r band is used in dark time during the best seeing conditions (FWHM < 0.′′8),
to make deep images for the measurement of galaxy shapes. In order to provide
colours for photometric redshift estimates of the same sources, the r-band data are
supplemented with g- and u-band data taken in dark time of progressively worse
seeing conditions (< 0.′′9 and < 1.′′1, respectively), and with i-band data taken in grey
or bright moon time with a mild seeing constraint (< 1.′′1). All observations consist of

1http://kids.strw.leidenuniv.nl
2http://darkenergysurvey.org
3http://hsc.mtk.nao.ac.jp/ssp/

http://kids.strw.leidenuniv.nl
http://darkenergysurvey.org
http://hsc.mtk.nao.ac.jp/ssp/
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Table 6.1: KiDS observing strategy: observing condition constraints and exposure times.

Filter Max. lunar Min. moon Max. seeing Max. airmass Sky transp. Dithers Total Exp.
illumination distance [deg] [arcsec] time [s]

u 0.4 90 1.1 1.2 CLEAR 4 1000
g 0.4 80 0.9 1.6 CLEAR 5 900
r 0.4 60 0.8 1.3 CLEAR 5 1800
i 1.0 60 1.1 2.0 CLEAR 5 1200

Table 6.2: Appriximate boundaries of the KiDS fields (see also Fig. 6.1).

Field RA range Dec range

KiDS-S [330◦0, 52◦5] [−35◦6,−26◦6]

KiDS-N [155◦5, 225◦5] [−4◦0,+4◦0]
[225◦5, 238◦5] [−2◦0,+3◦0]

KiDS-N-W2 [128◦5, 141◦5] [−2◦0,+3◦0]

KiDS-N-D2 [149◦5, 150◦5] [+1◦7,+2◦7]

multiple dithered exposures to minimize the effect of gaps between the CCD’s in the
mosaic. Observing constraints and exposure times are summarized in Table 6.1.

KiDS is targeting around 1350 square degrees of extragalactic sky, in two patches
to ensure year-round observability. The Northern patch, KiDS-N, contains two addi-
tional smaller areas: KiDS-N-W2, which coincides with the G9 patch of the GAMA
survey (Driver et al. 2011), and KiDS-N-D2, a single pointing on the COSMOS field.
In a coordinated effort over the same part of the sky, the VISTA Kilo-degree INfrared
Galaxy survey (VIKING; Edge et al. 2013) on the nearby VISTA telescope added the
five bands Z, Y, J, H and Ks. VIKING observations are complete4 and available in the
ESO archive5. Table 6.2 and Fig. 6.1 show the full KiDS footprint on the sky, as well
as the part that is covered by the data contained in this data release (KiDS-ESO-DR4,
or DR4 for short). The fields that were previously released under DR1+2+3 are also
indicated: this is the area that was used for the [KiDS450] cosmic shear analysis, with
the corresponding shape/photometric redshift catalogue released as DR3.1.

In order to improve the fidelity of the photometric redshift-based tomography,
and to enable inclusion of high-value sources in the redshift range 0.9–1.2, Hilde-
brandt et al. (2018) added VIKING photometry to the KiDS-450 data set, as described
in Wright et al. (2018). The resulting cosmological parameter constraints of this new
analysis, dubbed ‘KV450’, are fully consistent with [KiDS450]. DR4 incorporates the
methodology developed for KV450 and includes VIKING photometry for all sources.
Of all wide-area surveys, this makes it the one with by far the deepest near-IR data.

4The originally planned KiDS area was 1500 square degrees, but this was reduced to match the footprint
of the VIKING area.

5http://archive.eso.org

http://archive.eso.org
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Figure 6.1: Sky distribution of survey tiles released in KiDS-ESO-DR4. Tiles shown in green are
released for the first time; those in blue were included in the earlier data releases (DR1+2+3)
but have been reprocessed for DR4. The full KiDS+VIKING area (∼ 1350 deg2) is shown in
grey. Top: KiDS-North. Bottom: KiDS-South. The single pointing at RA=150 deg is centred on
the COSMOS/CFHTLS D2 field.

Though designed for the primary cosmology science case ([KiDS450]; Joudaki
et al. 2017; van Uitert et al. 2018b; Köhlinger et al. 2017; Harnois-Déraps et al. 2017;
Amon et al. 2018b; Shan et al. 2018; Martinet et al. 2018; Giblin et al. 2018; Asgari
et al. 2019), KiDS data are also being used for a variety of other studies, includ-
ing the galaxy-halo connection (van Uitert et al. 2016, 2018a), searches for strongly
lensed galaxies (Petrillo et al. 2018) and quasars (Spiniello et al. 2018; Sergeyev et al.
2018), solar system objects (Mahlke et al. 2018), photometric redshift machine learn-
ing method development (Amaro et al. 2019; Bilicki et al. 2018), studies of galaxy evo-
lution (Tortora et al. 2018a,b; Roy et al. 2018), bias (Chapter 3), environment (Brouwer
et al. 2016, 2018; Costa-Duarte et al. 2018) and morphology (Kelvin et al. 2018), galaxy
group properties (Viola et al. 2015; Jakobs et al. 2018), galaxy cluster searches (Maturi
et al. 2019; Bellagamba et al. 2019), intrinsic alignment of galaxies (Georgiou et al.
2019,?), satellite halo masses (Sifón et al. 2015), and searches for luminous red galax-
ies (Vakili et al. 2019) and quasars (Nakoneczny et al. 2019).

The outline of this paper is as follows. Sect. 6.2 is a discussion of the contents of
KiDS-ESO-DR4. Sect. 6.3 summarises the differences in terms of processing and data
products with respect to earlier releases. Sects. 6.4 and 6.5 describe the single-band
data products and the KiDS+VIKING nine-band catalogue, respectively. Sect. 6.6
illustrates the data quality. Data access routes are summarised in Sect. 6.7 and a sum-
mary and outlook towards future data releases is provided in Sect. 6.8. The Appendix
gives a full listing of the information included in the images and catalogues, and of
the data structure.
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Figure 6.2: Progress of the KiDS observations at the VST, in the four survey bands. Each Ob-
serving Block (OB) produces a square-degree co-added image. The i-band data, for which data
taking was significantly faster because of less competition for bright time on the telescope,
had covered the originally planned 1500 square degree footprint by the time it was decided to
limit the survey to the 1350 square degree area that comprise the completed VIKING area. The
dashed lines indicate the cutoff dates for KiDS-ESO data releases 1 to 4.
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Figure 6.3: Distributions of tile-by-tile data quality parameters for the KiDS DR4 data, grouped
by filter, from top to bottom u, g, r and i. The light-coloured histograms represent the subset
of the data that was previously released in DR1+2+3. Left: seeing. The differences between
the bands reflect the observing strategy of reserving the best-seeing dark time for r-band ob-
servations. Middle column: Average PSF ellipticity 〈|epsf |〉, where e is defined as 1 − b/a for
major/minor axis lengths a and b. Right: Limiting AB magnitude (5-σ in a 2′′ aperture). The
wider distribution of the i-band observations is a caused by variations in the moon illumina-
tion, since the i-band data were mostly taken in bright time.
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6.2 THE FOURTH KIDS DATA RELEASE

Unlike the previous incremental KiDS data releases, KiDS-ESO-DR4 represents a
complete re-reduction of all the data using improved pipeline recipes and proce-
dures. The differences will be described below. In terms of content of the data re-
lease, the main changes with respect to the earlier releases (de Jong et al. 2015, 2017)
are the more than doubling of the area, and the inclusion of photometry from the
near-IR VIKING images into the multi-band catalogue. Whereas the sky coverage of
the earlier data releases was still quite fragmented, DR4’s greater homogeneity will
for the first time enable wide-area studies over the full length of the survey patches.

KiDS observations consist of individual square-degree tiles. Each tile is covered
by a set of five (four in u) dithered exposures with OmegaCAM/VST, consisting of 32
individual CCD images each. The dither step sizes are matched to the gaps between
CCD’s (25′′ in RA, 85′′ in declination), to ensure that each part of the tile is covered by
at least three (two in u) sub-exposures. Overlaps between adjacent tiles are small, of
order 5%. All observations in a single band are taken in immediate succession (KiDS
is not designed for variability measurements), but there is no constraint on the time
between observations of any given tile in the different filters. Typically the shutter
is closed for 35-60 seconds between the sub-exposures to allow for CCD readout,
telescope repointing and active optics adjustments.

With little exception, the DR4 data comprise all KiDS tiles for which the 4-band
observations had been taken by January 24th, 2018. Over half of the data is from after
mid-2015, which is when the VST saw several improvements that affect the quality
of the data (and improved operational efficiency as well, see Fig. 6.2). The two main
improvements were (i) the baffling of the telescope was improved to the point that
stray light from sources outside the field of view of the camera was drastically re-
duced; and (ii) the on-line image analysis system (based on simultaneous pre- and
post-focus star images at the edge of the field of view) was modified to control also
the tilt of the secondary mirror, improving pointing and especially off-axis image
quality.

Figure 6.3 shows the distributions of key data quality parameters of the observa-
tions: point spread function (PSF) full width at half maximum (FWHM), average PSF
ellipticity and limiting magnitude. It illustrates that the global quality of the DR4
data is very similar to the earlier KiDS data releases. Limiting AB magnitudes (5-σ in
2′′aperture) are 24.23± 0.12, 25.12± 0.14, 25.02± 0.13, 23.68± 0.27 in ugri, respectively,
with the error bars representing the RMS scatter from tile to tile. The mean seeing in
r band is 0.′′70.
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Figure 6.4: Schematic representation of the DR4 processing steps and content. Yellow boxes
show the input data from VST and VISTA, green indicates image products, and source lists are
shown in pink. The lensfit-based lensing measurements – initially not released in DR4 – are
shown as dotted lines.

KiDS is targeting around 1350 square degrees of extragalactic sky, in two patches
to ensure year-round observability. The Northern patch, KiDS-N, contains two addi-
tional smaller areas: KiDS-N-W2, which coincides with the G9 patch of the GAMA
survey (Driver et al. 2011), and KiDS-N-D2, a single pointing on the COSMOS field.
In a coordinated effort over the same part of the sky, the VISTA Kilo-degree INfrared
Galaxy survey (VIKING; Edge et al. 2013) on the nearby VISTA telescope added the
five bands Z, Y, J, H and Ks. VIKING observations are complete6 and available in the
ESO archive7. Table 6.2 and Fig. 6.1 show the full KiDS footprint on the sky, as well
as the part that is covered by the data contained in this data release (KiDS-ESO-DR4,
or DR4 for short). The fields that were previously released under DR1+2+3 are also
indicated: this is the area that was used for the [KiDS450] cosmic shear analysis, with
the corresponding shape/photometric redshift catalogue released as DR3.1.

In order to improve the fidelity of the photometric redshift-based tomography,
and to enable inclusion of high-value sources in the redshift range 0.9–1.2, Hilde-
brandt et al. (2018) added VIKING photometry to the KiDS-450 data set, as described
in Wright et al. (2018). The resulting cosmological parameter constraints of this new
analysis, dubbed ‘KV450’, are fully consistent with [KiDS450]. DR4 incorporates the
methodology developed for KV450 and includes VIKING photometry for all sources.
Of all wide-area surveys, this makes it the one with by far the deepest near-IR data.

6The originally planned KiDS area was 1500 square degrees, but this was reduced to match the footprint
of the VIKING area.

7http://archive.eso.org

http://archive.eso.org
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The KiDS images were processed with two independent pipelines, as was the
case for the KiDS-450 weak lensing analysis that was based on KiDS-ESO-DR3. The
ASTRO-WISE pipeline and data reduction environment (McFarland et al. 2013)8 was
used to produce stacked images in the four bands, from which the photometry in the
catalogues is obtained. The THELI pipeline (Erben et al. 2005)9, which is optimised
for weak lensing measurements, was used for a separate reduction of the r-band data
only. In order to have consistent source lists, the detection and astrometry of the r-
band sources is performed on these THELI images (which are also the ones which are
used for the weak lensing measurements). This detection catalogue is then used as
the basis of list-driven ‘forced’ photometry on the u, g, r and i ASTRO-WISE stacked
images and the VIKING Z, Y, J, H and Ks images. 10 The data flow is summarized in
Fig. 6.4.

The set of KiDS-ESO-DR4 data products includes 5030 separate co-added images
(1006 square-degree tiles in the ugri filters, plus the separate r-band co-adds from
THELI), with corresponding weight and mask flag images. The images are photo-
metrically and astrometrically calibrated using a combination of nightly photometric
calibration information, the Gaia DR2 photometry (Brown et al. 2018) with stellar lo-
cus regression, and the SDSS and 2MASS astrometry (Alam et al. 2015; Skrutskie et al.
2006). Each image has a corresponding source catalogue as well. In addition, cata-
logues of nine-band ugriZYJHKs photometry are provided containing list-driven (i.e.,
forced), PSF- and aperture-matched photometry using the GAAP technique (Kuijken
et al. 2015), applied to the KiDS tiles and the overlapping VIKING data.

6.3 DATA PROCESSING

For details of the image processing pipelines we refer to the description in the DR1/2
and DR3 release papers (de Jong et al. 2015, henceforth [DR1/2]) and (de Jong et al.
2017, henceforth [DR3]), noting the changes described in Sects. 6.3.1 and 6.3.2 below.

The DR4 catalogues are of two types: single-band catalogues for the four KiDS
bands, and a combined nine-band catalogue that includes KiDS and VIKING pho-
tometry for the r-band detected sources.

6.3.1 CHANGES TO THE ASTRO-WISE IMAGE PROCESSING PIPELINE

Co-added image creation

The production of KiDS-ESO-DR4 includes 4×1006 OmegaCAM tiles, which required
some 611,000 individual CCD exposures, as well as associated calibration observa-
tions, to be processed. The automatic processing steps followed closely those de-
scribed in [DR3]. Individual CCD exposures are corrected for electronic crosstalk,

8http://www.astro-wise.org
9https://www.astro.uni-bonn.de/theli/

10Note that for DR4 there is no separate multi-band catalogue based on r-band detections in the ASTRO-
WISE data, as there was for [DR3].

http://www.astro-wise.org
https://www.astro.uni-bonn.de/theli/
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bias corrected, flat-fielded, illumination corrected and (for i band only) fringe sub-
tracted. New coefficients were determined for the electronic crosstalk correction be-
tween CCD’s ESO_CCD_#95 and ESO_CCD_#96 (see [DR1/2]) with validity periods de-
termined by maintenance or changes to the instrument; these are listed in Table 6.3.
An automatic mask is also generated for each CCD, which marks the location of sat-
urated, hot, and cold pixels, as well as satellite tracks identified through a Hough
transform analysis.

These ‘reduced science frames’ are then astrometrically calibrated and regridded
using the SCAMP and SWARP software (Bertin et al. 2002; Bertin 2006, 2010a,b), in two
steps: first a ‘local’ step establishes a per-detector solution using the 2MASS stars
in the frame11, and then these solutions are refined using SCAMP into a tile-wide
‘global solution’ for the full co-added stacked image that uses the information from
fainter overlapping objects. For DR4 the astrometric solution was made more robust
by starting from a model of the focal plane that accounts for detector array lay-out
and instrument optics distortion, and using this as input to SCAMP. Using SWARP,
the global astrometric solution is then used to resample each CCD exposure into a
‘regridded science frame’, with a uniform 0.′′20 pixel grid with tangent projection
centred on the nominal tile centre. During this step the background, determined by
interpolating a 3 × 3 median-filtered map of background estimates in 128 × 128 pixel
blocks, is subtracted. Finally these regridded images are co-added, taking account of
the weight maps generated by SWARP, and the masks. Each co-added image is about
18, 500 × 19, 500 pixels in size, and takes up about 1.5 Gbyte of storage. For every
co-added image a mask that flags reflection haloes of bright stars in the field is also
produced, using the PULECENELLA code developed for [DR1/2] (see Sect. 6.4).

12 × 12 binned versions of the co-added images (at two contrast settings) and of
the weight image are then visually inspected, together with a set of diagnostic plots
that show the PSF ellipticity and size as function of position on the field, astrometry
solution residuals, and the PSF size before and after co-addition. The main issues
that get flagged at this stage are (i) residual satellite tracks (ii) background features
associated with stray light casting shadows of the baffles mounted above the CCD
bond wires (iii) unstable CCDs (gain jumps) (iv) residual fringing in the background
of the i-band images or (v) large-scale reflections. In DR3 any issues found at this
stage were addressed by masking the co-added image, even though in many cases
the problem only affected one sub-exposure. In DR4 issues (i)–(iii) were solved with
new procedures, as described below. The other cases are still in the data: the residual
fringes are not corrected for but will be fixed with re-observations of the full survey
footprint in the i band, and large-scale reflections need to be masked manually or
otherwise identified in the catalogues as groups of sources with unusual colours.

The new procedures for removing residual satellite tracks, bond wire baffle fea-
tures, and unstable CCDs, involve a minimum of manual intervention. The satellite
tracks are marked by clicking on their ends on a display of the inspection JPG images,
after which an automatic procedure converts the pixel positions to sky coordinates,
checks which of the sub-exposures that contribute to the co-added image contains

11We have found the 2MASS catalogue to be sufficient as astrometric reference, but intend to move to
Gaia in the future.
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Table 6.3: Applied cross-talk coefficients.

Period CCD #95 to CCD #96a CCD #96 to CCD #95a

a b (×10−3) a b (×10−3)

2011-08-01 - 2011-09-17 −210.1 −2.504 59.44 0.274
2011-09-17 - 2011-12-23 −413.1 −6.879 234.8 2.728
2011-12-23 - 2012-01-05 −268.0 −5.153 154.3 1.225
2012-01-05 - 2012-07-14 −499.9 −7.836 248.9 3.110
2012-07-14 - 2012-11-24 −450.9 −6.932 220.7 2.534
2012-11-24 - 2013-01-09 −493.1 −7.231 230.3 2.722
2013-01-09 - 2013-01-31 −554.2 −7.520 211.9 2.609
2013-01-31 - 2013-05-10 −483.7 −7.074 224.7 2.628
2013-05-10 - 2013-06-24 −479.1 −6.979 221.1 2.638
2013-06-24 - 2013-07-14 −570.0 −7.711 228.9 2.839
2013-07-14 - 2014-01-01 −535.6 −7.498 218.9 2.701
2014-01-01 - 2014-03-08 −502.2 −7.119 211.6 2.429
2014-03-08 - 2014-04-12 −565.8 −7.518 215.1 2.578
2014-04-12 - 2014-08-12 −485.1 −6.887 201.6 2.237
2014-08-12 - 2014-01-09 −557.9 −7.508 204.2 2.304
2014-01-09 - 2015-05-01 −542.5 −7.581 219.9 2.535
2015-05-01 - 2015-07-25 −439.3 −6.954 221.5 2.395
2015-07-25 - 2015-08-25 −505.6 −7.535 229.7 2.605
2015-08-25 - 2015-11-10 −475.2 −7.399 218.0 2.445
2015-11-10 - 2016-06-17 −457.8 −6.831 201.6 2.212
2016-06-17 - 2016-06-25 −351.8 −4.973 165.3 1.168
2016-06-25 - 2016-09-08 −476.3 −6.920 200.4 2.202
2016-09-08 - 2017-08-01 −465.3 −6.594 184.7 1.980
2017-08-01 - 2018-02-15 −492.3 −6.480 169.9 1.802
a Correction factors a and b are applied to each pixel in the target CCD

based on the pixel values in the source CCD:

I′i =

Ii + a, if I j = Isat.;
Ii + bI j, if I j < Isat.,

(6.1)

where Ii and I j are the pixel values in CCDs i and j, I′i is the corrected
pixel value in CCD i due to cross-talk from CCD j, and Isat. is the satu-
ration pixel value.
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the track, measures the track’s width, and updates the corresponding CCDs’ masks
before stacking anew. Similarly, the bond wire baffle features have a typical width
and all the inspector needs to do is to indicate whether the shadow is visible on the
upper, lower or both sides of the baffles, so that the corresponding lines in the CCD
images can be masked. Unstable CCDs are simply removed from the list of exposures
to be co-added.

PSF Gaussianization and GAAP photometry

The Gaussian Aperture and PSF (GAAP) photometry method (Kuijken et al. 2015)
developed for KiDS multi-band photometry was improved further. GAAP entails (i)
convolving each image with a spatially variable kernel designed to render the PSF
homogeneous and Gaussian, (ii) defining a pre-seeing Gaussian elliptical aperture
function for every source, and (iii) for every band deconvolving this aperture by the
corresponding Gaussianized PSF and performing aperture photometry. The method
is superior to traditional techniques such as dual-image mode SEXTRACTOR mea-
surements as it explicitly allows for PSF differences between exposures in multiple
bands, and it reduces noise by measuring colours from the highest SNR part of the
sources. A demonstration of the improvement provided by GAAP photometry is
given in Hildebrandt et al. (2012). GAAP photometry gives colours that are corrected
for PSF differences, but when the source is more extended than the aperture function
the fluxes are underestimates of the total flux. For stars and other unresolved sources
GAAP fluxes are total fluxes.

For DR4 we have modified the procedure for step (i). We still use the several
thousand stars in each image as samples of the PSF, but rather than first modelling
the PSF P as a spatially varying, truncated shapelet expansion, from which the convo-
lution kernel is then constructed in shapelet coefficient space, we now directly solve
for the kernel shapelet coefficients that give a Gaussian PSF in pixel space. Thus we
obtain the kernel coefficients kabc of the shapelet components S βc

ab as the least-squares
solution of ∑

abc

kabc

[
S βc

ab ⊗ P
]

(x, y) =
exp

[
−

(
x2 + y2

)
/2β2

g

]
2πβ2

g
. (6.2)

As in [DR3], the size βg of the target Gaussian is set to 1.3 times the median dispersion
of Gaussian fits to the stars in the image. The fit of Eq. (6.2) is performed over all
pixels out to 15βg from the centre of each star. In our implementation we use terms
with β1 = βg, a + b ≤ 8 plus a set of wider shapelets with β2 = 2.5βg, 3 ≤ a + b ≤ 6
specifically designed to model the wings of the kernel better. The large-β shapelets
with a + b < 3 are not included in the series as they are not sufficiently orthogonal to
the small-β terms.
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Figure 6.5: Residual u-band magnitude variation when Eq. (6.3) is used without a dependence
on Galactic latitude b (i.e., f (b) = 0). Each point shows the average offset uKiDS − uSDSS for the
calibration stars in a separate KiDS-N tile. The line represents the Galactic latitude correction
of Eq. (6.4).

Photometric calibration using Gaia and stellar locus regression

All KiDS ‘reduced science frame’ images are initially put on a photometric scale by
using nightly zeropoints derived from standard star observations taken in the middle
of the night. For DR4, these zeropoints are refined with a combination of Stellar Locus
Regression (SLR) and calibration to Gaia photometry. We use GAAP photometry
for the stars: this is appropriate since for unresolved sources the GAAP magnitudes
correspond to the total flux of the source.

With the advent of Gaia Data Release 2 (Brown et al. 2018) a deep, homogeneously
calibrated, optical all-sky catalogue is now available. Each KiDS tile contains several
thousand Gaia stars, with broad-band photometry measurements that are individu-
ally accurate to better than 0.01 magnitudes12. KiDS DR4 photometry is calibrated
to the Gaia DR2 catalogue in two steps. First, we calibrate the colours u − g, g − r
and r− i by comparing the stellar colour-colour diagrams to fiducial sequences, using
the ‘stellar locus regression’ described in [DR3]. Based on the work of Ivezić et al.
(2004), four principal colours P2s, P2w, P2x and P2k were initially used to derive
colour offsets (see appendix B of [KiDS450]). After this procedure, while validating
the results by comparing the magnitudes of stars in KiDS-N and SDSS, we found that
the P2k principal colour, which is the most sensitive to the u band, gave unreliable re-

12Note that the Gaia DR2 g-band calibration differs from what was used in Gaia DR1, through a new
determination of the filter bandpass.
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Figure 6.6: Colour-colour relation used to calibrate the KiDS r-band measurements to the Gaia
G-band catalogue, for an example tile. The blue points and the box indicate the dereddened
(g − i) colour range for the stars used, and the ±0.05 magnitude iterative clipping width about
the fiducial sequence. The shape of the sequence is determined from the overlap area between
KiDS-N and SDSS.

Figure 6.7: Distribution of the u, g, r and i zeropoint corrections using the stellar locus regres-
sion plus Gaia calibration.
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sults. The u-band zeropoints were therefore determined using a modified procedure,
which was found to be more robust, as follows. For stars in Gaia with dereddened
KiDS GAAP colour (g − r)0 between 0.15 and 0.8 and u < 21, the quantity

U = g0 + 2(g − r)0 + 0.346 + max
{
0, 2

[
0.33 − (g − r)0

]}
− f (b) (6.3)

is a good predictor of the SDSS u magnitude. The Galactic latitude dependence f (b),
shown in Fig. 6.5, can be fitted as

f (b) = 0.25 | sin b | − 0.11. (6.4)

Stars closer to the Galactic plane are fainter in u than the mean (u − g, g − r) colour-
colour relation predicts, as is expected if the high-latitude sample is dominated by
halo stars of lower metallicity than the disk stars found at low b. Since KiDS-N spans
latitudes from 22◦ to 66◦, the correction is significant. KiDS-S covers latitudes from
the South Galactic Pole to −53◦, and though we cannot test the latitude dependence
for this part of the survey because of a lack of a suitable calibration data set, we have
applied the same correction. We therefore adjust the KiDS u-band zeropoints in each
tile until the average U − u = 0, with an iterative clipping of outliers more than 0.1
mag from the mean relation. For applications where u-band photometry is critical,
we caution that because of the uncertain functional form of the latitude dependence,
currently the calibration of this band is subject to a residual uncertainty of up to 0.05
magnitudes.

The zeropoint of the r-band magnitude is then tied to Gaia by matching the dered-
dened (r −G, g− i) relation to the one followed by the stars in the SDSS-KiDS overlap
region (Fig. 6.6). As reported in [DR3], there is a slight colour term between the SDSS
and KiDS r filters: we have arbitrarily forced the KiDS and SDSS r-band zeropoints
to agree for stars of (g − i)0 = 0.8, adopting

rKiDS − rSDSS = −0.02[(g − i)0 − 0.8]. (6.5)

For DR4, extinction corrections were derived using the Schlegel et al. (1998)
E(B − V) map in combination with the RV = 3.1 extinction coefficients from Schlafly
& Finkbeiner (2011)13. For the ugri filters we adopt the corresponding SDSS filter val-
ues. Since the VISTA bands were not included in the Schlafly & Finkbeiner (2011)
tables, as an approximation we have taken the values for SDSS z, LSST y, and UKIRT
JHK filters. From a regression of rSDSS−G vs. E(B−V) we derive the G-band extinction
coefficient as AG/Ar = 0.96. Given that E(B − V) values in the KiDS tiles are typically
below 0.05 magnitudes, residual uncertainties in these coefficients are of little conse-
quence. The adopted extinction coefficients are summarised in Table 6.4.

13The earlier data releases used the Schlegel et al. (1998) coefficients.
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Table 6.4: Extinction coefficients R f = A f /E(B−V) used in this work, from Schlafly & Finkbeiner
(2011) (SF11). These coefficients are used to scale the E(B−V) values in the Schlegel et al. (1998)
map.

Filter f R f Source

u 4.239 SF11 (SDSS)
g 3.303 SF11 (SDSS)
r 2.285 SF11 (SDSS)
i 1.698 SF11 (SDSS)
G 2.194 This work
Z 1.263 SF11 (SDSS z)
Y 1.088 SF11 (LSST y)
J 0.709 SF11 (UKIRT)
H 0.449 SF11 (UKIRT)
Ks 0.302 SF11 (UKIRT)

This direct, tile-by-tile calibration of the KiDS photometry to Gaia obviates the
need for the overlap photometry that was used in [DR3]. Effectively, we are tying
KiDS to the Gaia DR2 G-band photometry, and anchoring it to the SDSS calibration.
Specifically, calibrating each KiDS tile to Gaia DR2 involves the following steps:

1. Select Gaia stars in the tile area with 16.5 < G < 20, and with unflagged photo-
metric measurements.

2. Keep those stars with SLR-calibrated, dereddened (g − i)0 colours in the range
[0.4, 1.8] .

3. Predict dereddened (r−G)0 values from these (g−i)0 colours using the following
relation, obtained by fitting the difference between the predicted rKiDS (from
Eq. 6.5) and the measured G in the KiDS-SDSS overlap region:

(rKiDS −G)0 = −0.0618 − 0.0724y + 0.0516y2 + 0.0665y3 (6.6)

where y = (g − i)0 − 0.8 (see Fig. 6.6).

4. Determine the median offset between this fiducial r−G and the measured value,
using iterative clipping.

5. Apply this median offset to the ugri magnitudes for all sources in the tile.

Figure 6.7 shows the distribution of tile-by-tile zeropoint corrections that have been
applied to the magnitudes in the catalogues. Typical values are of the order of 0.05–
0.1 magnitudes, and about twice that in the u band.

Note that the SLR procedure aligns the dereddened stellar loci of all the tiles,
assuming that all the dust is in the foreground and not mixed in with the stars (which
is a reasonable assumption given the high Galactic latitude and bright-end limit of the
calibration stars).



130 Chapter 6. The fourth data release of the Kilo-Degree Survey

Figure 6.8: Photometric illumination correction of the weak-lensing THELI data: Flat-fielded
OmegaCAM data show systematic zeropoint variations over the field-of-view if the complete
mosaic is calibrated with a single photometric zeropoint (left panels). The residuals can well be
fitted and corrected with a two-dimensional, second-order polynomial over the field-of-view
(right panels)

In DR4 all GAAP photometry is performed twice, with minimum aperture set-
tings MIN_APER=0.′′7 and 1.′′0 (see Sect. 6.5 below). The photometric zeropoint de-
terminations are also performed with both settings, and the one based on the largest
number of stars with valid measurements is recorded in the header of the images
and single-band source catalogues with the DMAG keyword. CALMINAP gives the
value of MIN_APER that was used for the calibration, and CALSTARS is the number
of Gaia stars with valid measurements.

6.3.2 CHANGES TO THE THELI PIPELINE

In [KiDS450], the THELI pipeline was used to process the r-band images for the weak
lensing analysis, which resulted in two different r-band source catalogues with multi-
band photometry (DR3 and the ‘lensing catalogue’ DR3.1). For DR4 we unify the
analysis, using the r-band sources detected on the THELI co-added images as the basis
of the multi-band photometry as well as the forthcoming lensing analyses.
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Figure 6.9: Check of the illumination corrections, through direct comparison of star magni-
tudes with Gaia. Each panel shows the median difference between a KiDS-DR4 r-magnitude
and Gaia-DR2 G-band magnitudes, as a function of (X,Y) position in the focal plane. Stars in
the range 18 < r < 19 with 0.7 < (g − i)0 < 1.5 are used, on the flat part of the relation shown
in Fig. 6.6. The top row shows the results for the tiles in KiDS-N, the bottom row for those in
KiDS-S. THELI MAG_AUTO is shown on the left, MAG_GAAP_r on the right.

Compared to [DR3], the main change for DR4 is the inclusion of the photometric
illumination correction. This additional processing step is included in the photo-
metric calibration procedure described in sect. 3.1 (item 4) of [DR3]. After obtain-
ing a photometric zeropoint, extinction coefficient and colour term of OmegaCAM
data overlapping with SDSS, we measure the residual systematic differences between
OmegaCAM and SDSS-magnitudes over the OmegaCAM field-of-view. These differ-
ences are fitted and corrected with a second-order, two-dimensional polynomial over
the OmegaCAM field-of-view – see also Fig. 6.8. The correction, which like the other
calibration images is determined separately for each two-week ‘observing run’ that
is processed by THELI, is directly applied to the single-frame pixel-data. Figure 6.9
compares stellar Gaia G magnitudes and the r-band magnitudes from the THELI and
ASTRO-WISE reductions, as a function of position on the focal plane. The small resid-
uals on the order of 0.02 mag are caused by different ways of treating the region of
the images that are affected by scattered light shadows from the bond wire baffles
above the CCD mosaic (see [DR3] for more details).

Another, more minor, change to the THELI workflow is the streamlining of the
procedure for masking residual satellite trails on the single exposures. Whereas pre-
viously this was done per CCD, the new procedure allows the inspector to mask the
track on the entire mosaic in one step.
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6.4 SINGLE-BAND u, g, r AND i CATALOGUES, IMAGES

AND MASKS

For every co-added image from the ASTRO-WISE pipeline a single-band catalogue
was produced using SEXTRACTOR (Bertin & Arnouts 1996), using the same settings
as in [DR3]14. These catalogues are calibrated photometrically using the nightly ze-
ropoints. To convert the fluxes in these catalogues into SLR+Gaia calibrated magni-
tudes, the zeropoint given in the DMAG keyword should be used. This value should
be added to any magnitude found in the catalogue, and any flux in the catalogue can
be turned into a magnitude via

m = DMAG − 2.5 log10 FLUX. (6.7)

The SEXTRACTOR Kron-like MAG_AUTO and isophotal magnitude MAG_ISO are
provided, as well as a range of circular-aperture fluxes, star-galaxy classification and
shape parameters. App. 6.8 gives a full list of the parameters included in the cata-
logues. Note that the single-band catalogues are derived independently from each
co-added KiDS observation, without cross-calibration or source matching across fil-
ter bands. In particular, the sources in the r-band catalogues are extracted from the
ASTRO-WISE co-added images, and differ from those in the nine-band catalogue pre-
sented below, which are extracted from the THELI r-band images. Also, sources in the
overlap region between adjacent tiles will appear in multiple single-band catalogues,
with independent measurements for position, flux, etc. The single-band u, g, r and
i catalogues contain an average of 22k, 79k, 125k, and 65k sources, respectively, per
KiDS tile.

DR4 includes the co-added images with corresponding weight maps and masks,
as well as the single-band catalogues described above with SEXTRACTOR output. The
PULECENELLA masks identifying stellar reflection haloes are generated in the same
way as for [DR3], and are described there.

Though it is possible to generate spectral energy distributions by matching the
sources in the ugri catalogues for any given tile, it should be remembered that the
PSF differs across the bands, and from tile to tile. A better way of obtaining reliable
colours is to use the matched-seeing, matched-aperture catalogues described in the
next section.

6.5 THE JOINT KIDS-VIKING NINE-BAND CATALOGUE

Besides more than doubling the area of sky covered with respect to DR3, the ma-
jor new feature of KiDS-ESO-DR4 is the inclusion of near-infrared fluxes, from the
VIKING survey (Edge et al. 2013). This survey was conceived together with KiDS,
as a means to improve knowledge of the spectral energy distributions (SEDs) of the

14Note that the SEXTRACTOR settings are optimised for small sources; measurements for large objects
such as extended galaxies should be used with care because of possible shredding or oversubtraction of
the background (e.g., Kelvin et al. 2018).
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sources, and in particular to enhance the quality of the photometric redshift esti-
mates. Because VISTA entered operations before the VST, VIKING was completed
first: full coverage of the 1350 deg2 area was reached in August of 2016, while repeat
observations of low-quality data were completed in February of 201815. DR4 includes
photometry for all sources detected on the r-band co-added images as processed with
the THELI pipeline: r-band Kron-like MAG_AUTO, isophotal MAG_ISO magnitudes
and a range of circular-aperture fluxes, as well as nine-band optical/near-infrared
GAAP fluxes for SED estimation. Note that only r-band total magnitudes are sup-
plied.

Full details of the near-IR photometry are presented in Wright et al. (2018). Briefly
summarized, the measurements start from the ‘pawprint’ images processed by the
Cambridge Astronomical Survey Unit (CASU), which combine each set of jittered
observations (offsets of a few arcseconds) into an astrometrically and photometrically
calibrated set of sixteen detector-sized images. Each VIKING tile consists of six such
pawprints, with observations offset by nearly a full detector width in right ascension,
and half that in declination. Because the large gaps between the detectors can result
in significant PSF quality jumps after co-addition, the VIKING photometry for KiDS-
ESO-DR4 is performed by running the PSF Gaussianization and GAAP separately on
each pawprint detector. The final flux in each VISTA band is the optimally weighted
average of the individual flux measurements, using the individual flux errors that are
derived by propagating the pixel errors (including covariance) through the GAAP
procedure as descibed in appendix A of Kuijken et al. (2015). Due to the VIKING
observing strategy sources typically appear on two VIKING pawprints (four in case
of J-band), but a few percent of the sources appear six times (twelve in J) or more. The
number of exposures that contribute to each source’s VIKING fluxes is given in the
catalogue. Note that the optical photometry is performed on the co-added images,
which are much less sensitive to PSF changes between sub-exposures because of the
very high pixel coverage fraction of the focal plane of the optical camera (which has
minimal gaps between the three-edge buttable CCDs in the instrument).

Because of their respective cameras’ different footprints on the sky, KiDS and
VIKING tile the sky differently. Data quality variations (depth, seeing, background...)
follow a square-degree pattern for the KiDS data, and a 1.5 × 1 degree pattern for
VIKING; moreover within VIKING tiles the variations can be more complex because
of the larger gaps between VIRCAM detectors.

The essence of the GAAP photometry (Kuijken et al. 2015) contained in the
DR4 nine-band catalogue is to provide accurately aperture-matched fluxes across all
wavebands, properly corrected for PSF differences. The aperture major and minor
axis lengths, Agaper and Bgaper, are set from the SEXTRACTOR size and shape pa-
rameters measured on the detection image, via

Xgaper =
(
X_WORLD2 + MIN_APER2

)1/2
for X = A, B (6.8)

(see Fig. 6.10) with the position angle equal to the position angle THETA_WORLD

15The VIKING repeat observations taken by September 26, 2016 are incorporated into the DR4 cata-
logues presented here.
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Figure 6.10: Relation between the SEXTRACTOR major and minor axis measurements (A and
B) and the adopted GAAP apertures, for the two minimum aperture (MIN_APER) values that
have been used.

from the detection image.16 As it was in [DR3], the MIN_APER parameter is set to 0.′′7
for all sources, and in addition Agaper and Bgaper are maximized at 2′′. Imposing a
maximum aperture size helps to ensure that the GAAP colours are not contaminated
by neighbouring sources, but we do not attempt here to deblend overlapping sources.
We note that an explicit flagging of sources affected by neighbours is done by the
SEXTRACTOR source detection step, and is also an important part of the forthcoming
lensfit shape measurements. For further discussion of the choice of GAAP aperture
size, see Kuijken et al. (2015), appendix A2.

In rare cases, no GAAP flux can be measured with this setup, because GAAP pho-
tometry can only be determined when the specified aperture size is larger than the
Gaussianized PSF. To provide colours for these sources, DR4 includes a second run
with larger apertures, obtained by setting MIN_APER=1.′′0. The results from both
GAAP runs are present in the catalogues, with keywords whose names contain _0p7
and _1p0 respectively. In general the 1p0 fluxes will have a larger error than those
from the standard 0p7 setup, since the larger aperture includes more background
noise. However, when the Gaussianized PSF size is close to that of the GAAP aper-
ture, the error increases17; in such cases it may happen that the larger MIN_APER=1.′′0
leads to a smaller flux error (and when the PSF is too broad the flux error is formally
infinite). In the DR4 catalogue a source-by-source decision is made which optimal

16The convention in the GAAP code is that the position angle is measured from East to North, so the
catalogue contains the angle PA_GAAP= 180−THETA_WORLD.

17because the aperture that is used for the photometry is the GAAP aperture deconvolved by the PSF
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Figure 6.11: Joint and marginal histograms of the r-band MAG_AUTO magnitude and the Z_B
photometric redshift estimate for the sources in the nine-band catalogue.
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Figure 6.12: r-band PSF properties across KiDS-ESO-DR4. From top to bottom: FWHM, el-
lipticity modulus, and ellipticity components 1 and 2 (elongation along the pixel x axis and
diagonal, respectively).
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MIN_APER choice to use as input for the photometric redshifts, as follows:

1. For all bands x, calculate the flux error ratios

Rx = FLUXERR_GAAP_1p0_x/FLUXERR_GAAP_0p7_x (6.9)

2. If
max

x
(Rx) ×min

x
(Rx) < 1 (6.10)

then use the 1p0 fluxes for this source, else adopt 0p7.

This choice ensures that the smaller 0p7 aperture is used, unless there is a band for
which the larger aperture gives a smaller flux error, for the reasons indicated above:
in that case, the 1p0 fluxes are used if the fractional reduction in the error in that band
is greater than the fractional penalty suffered by the other bands.18

The larger MIN_APER is preferred in some four percent of the cases. These opti-
mal GAAP fluxes are reported in the catalogue with the FLUX_GAAP_x keywords.
The flux and magnitude zeropoints in the catalogue are as follows.

• All GAAP fluxes are reported in the units of the image pixel ADU values. For
the KiDS images these correspond approximately to a photometric AB magni-
tude zeropoint of 0; for the VISTA data this zeropoint is 30.

• The GAAP magnitudes MAG_GAAP_0p7_x and MAG_GAAP_1p0_x for the
KiDS ugri bands are calculated from the corresponding fluxes using the zero-
point DMAG_x or DMAG_x_1 (see Sect. 6.3.1) and recorded in the catalogue
header.

• The GAAP magnitudes for the VIKING ZYJHKs bands are calculated with the
zeropoint 30.

• The optimal GAAP fluxes FLUX_GAAP_x are equal to one of the 0p7 or 1p0
sets, as described above.

• The optimal GAAP magnitudes MAG_GAAP_x are calculated as above, but in
addition are also corrected for Galactic extinction by subtracting the EXTINC-
TION_x value (obtained using the data in Table 6.4).

• The colours COLOUR_GAAP_x_y in the catalogue are obtained as differences
between these extinction-corrected MAG_GAAP_x magnitudes, and are there-
fore corrected for Galactic reddening.

The nine-band catalogue also contains those KiDS sources that fall outside the
VIKING footprint, as can be seen on the maps of limiting magnitude in Sect. 6.6.5
below. Note in particular that the COSMOS field near (RA,DEC)=(150◦0, 2◦5) (KiDS-
N-D2 in Table 6.2) is not part of the VIKING survey, though other – in some cases
much deeper – VISTA data do exist for this field. These near-infrared data do not
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Figure 6.13: The KiDS r-band seeing FWHM distribution (red) compared to those used for
shape measurements in the other major ongoing weak lensing surveys: HSC i band (cyan) and
DES r+i+z (blue).

form part of KiDS-DR4, but they are incorporated in the calibration of the photomet-
ric redshifts for the KV450 analysis in Hildebrandt et al. (2018).

Fig. 6.11 illustrates the r-band depth and photometric redshift distribution of the
sources in the nine-band catalogue. For a list of all columns, see App. 6.8. The cata-
logue contains just over 100 million objects.

6.6 DATA QUALITY

6.6.1 IMAGE QUALITY

For weak lensing, the most critical science case for KiDS, image quality is a crucial
property of the data. KiDS scheduling is designed to take advantage of the periods of
excellent seeing on Paranal, by prioritising the r-band exposures at those times. The
resulting seeing distribution of the four KiDS bands was shown in Fig. 6.3.

In Fig. 6.12 we present maps of the KiDS-ESO-DR4 r-band PSF size and ellipticity,
obtained by running the lensfit PSF modelling code used for the KiDS-450 analysis
[KiDS450] on the THELI images. The top row of the Figure shows the PSF FWHM.
Individual KiDS tiles are clearly visible. The second row shows the PSF ellipticity,
and the bottom two rows the ‘1’ and ‘2’ ellipticity components. The results of the

18This formulation also handles the convention that an unmeasured GAAP flux returns an error of −1,
provided the rare cases that a 1p0 flux cannot be measured but a 0p7 flux can, are caught.
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Figure 6.14: Median THELI astrometry residuals per KiDS tile in the nine-band catalogues, as
measured from unsaturated Gaia stars, in arcseconds. Left/right plots show KiDS-N/S, and
the top and bottom rows show the median offsets per tile in RA and DEC. The colours indicate
the declination of the tiles, in degrees.

VST improvements that were implemented in 2015 are reflected in the DR4 data: PSF
variations are significantly reduced in the newly added data compared to the data
from DR1+2+3 (see the blue areas in Fig. 6.1).

In Fig. 6.13 we compare the seeing distribution of the KiDS-DR4 r-band data with
those of the images used for the lensing measurements in the other major ongoing
surveys: the DES-Year 1 riz data (Zuntz et al. 2018), which has a similar depth to
KiDS, and the HSC DR1 i-band lensing catalogue (Mandelbaum et al. 2018). The su-
perior seeing of KiDS compared to DES explains why both surveys are providing
cosmic shear constraints of comparable power, despite the larger DES area. The im-
pact that can be expected from the complete HSC survey is also evident, even more
so considering that it is significantly deeper than KiDS and DES.

6.6.2 ASTROMETRY

The astrometry in the THELI-processed r-band detection images and catalogues is
tied to SDSS in the North, and to 2MASS in the South. The ASTRO-WISE images and
single-band catalogues are all tied to 2MASS, as is VIKING. Slight differences exist
between these two reference catalogues.
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Figure 6.15: As Fig. 6.14, but for the ASTRO-WISE single-band r catalogues.

We compare the THELI and ASTRO-WISE astrometry to the Gaia DR2 data in
Figs. 6.14 and 6.15. Systematic residuals between either catalogue and Gaia are at the
level of 200 mas; between the THELI and ASTRO-WISE reductions the differences are
at most 50 mas. These latter differences are sufficiently small that they will not affect
the GAAP photometry (where the apertures are defined on the THELI images, but the
fluxes measured at the corresponding positions in the ASTRO-WISE images).

6.6.3 PHOTOMETRY

We assess the accuracy of the KiDS photometric calibration by comparing with over-
lapping, shallower surveys. For galaxies, comparing the KiDS photometry with cata-
logues from other surveys is complex, since for extended sources the GAAP fluxes do
not measure total fluxes (see Sect. 6.3.1). If desired, the r-band circular aperture fluxes
in the catalogue can be used to generate a curve-of growth, and total magnitudes can
then be estimated from the GAAP colours. (Alternatively, the r-band MAG_AUTO
can be combined with the GAAP colours to generate estimated Kron-like magnitudes
in the other bands. Such procedures assume that there are no colour gradients in the
galaxy, an assumption that could be tested by comparing the 0p7 and 1p0 GAAP
fluxes.)
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Figure 6.16: Comparison between the SDSS DR9 model magnitudes and KiDS-ESO-DR4
GAAP photometry. The comparisons are shown for u, g, r, and i bands, for an example tile
(KIDS_188.0_−0.5).

Figure 6.17: Photometric comparison between KiDS and SDSS photometry of stars in the KiDS-
N area. The colourscale indicates the mean magnitude offset mKiDS − mSDSS of high-signal stars
u < 20, g < 22, r < 22, i < 20 in every tile. The size of the symbol increases with the FWHM
of the PSF. The one outlier in the u-band photometry, tile KIDS_229.0_-2.5_u, is one of the
highest-extinction fields in the survey and contains few u-band stars.
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For stars and other unresolved objects, the situation is different, since their
GAAP fluxes are total fluxes: the GAAP flux with Gaussian aperture function W =

exp[− 1
2 (x2/A2 +y2/B2)] (in coordinates centered on the source and rotated to align with

the aperture major and minor axes) is the integral (on the pre-seeing sky)∫
dx dy I(x, y) W(x, y) (6.11)

which evaluates to the flux F of the source when the intensity I(x, y) is F times a delta
function.

Such a comparison is shown in Fig. 6.16, for an example tile in KiDS-N where
SDSS and KiDS overlap. As expected, the stars form tight sequences close to the line
of zero magnitude difference, demonstrating that the KiDS and SDSS zero points are
consistent for this tile, while the KiDS GAAP magnitudes of galaxies trail towards
fainter magnitudes than the corresponding SDSS magnitude. A similar comparison
for the near-IR data is presented in Wright et al. (2018). Tile-by-tile consistency in the
four bands, for the KiDS-SDSS overlap, is shown in Fig. 6.17. The larger scatter in
the u band, already discussed in Sect. 6.3.1, is evident, particularly in the fields with
higher extinction at the extremes of the RA range. In these tiles there are fewer stars
with reliable u band photometry; in addition, because of their lower Galactic latitude
the foreground extinction screen approximation is less well justified.

Figure 6.18 illustrates an internal consistency check of the GAAP magnitudes,
that can also serve as a new star-galaxy classifier. The top panel shows the difference
between the ‘0p7’ and ‘1p0’ r-band GAAP magnitudes in an example tile. This com-
parison clearly reveals two populations which are well-separated at the bright end,
down to magnitude 22.5. A conservative cut, shown in gold, identifies unresolved
objects, for which the GAAP magnitude is independent of aperture size. (Most of the
remaining objects are resolved, with higher fluxes for the larger aperture.) The bot-
tom panel shows the location in the g − r, r − i colour-colour diagram of the two pop-
ulations, confirming that the unresolved objects have mostly stellar colours, whereas
the others show the colour distribution expected of a population of galaxies at a wide
range of redshifts.
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Figure 6.18: Top: star-galaxy separation using the 0p7 and 1p0 GAAP magnitudes. The objects
shown in gold form a sequence along which both apertures yield consistent fluxes, indicating
that they are unresolved. The bottom plot shows the g − r, r − i colour-colour diagram for the
same sources, confirming that these sources are stars.
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6.6.4 PHOTOMETRIC REDSHIFTS

The nine-band catalogue contains photometric redshift estimates, obtained with the
BPZ code (Benitez 2000). It gives the most probable redshift values, as well as the ‘1σ’
32nd and 68th percentiles of the posterior probability distributions, and the best-fit
SED type. The BPZ version and settings are given in Table 6.5.

Table 6.5: Settings for the BPZ photometric redshift calculations

Parameter Value

BPZ version 1.99.3
ZMAX 7.0
INTERP 10
ODDS 0.68
MIN_RMS 0.067
PHOTO_ERRORS yes

Since [DR3] we have implemented several changes to our photo-z setup. We up-
dated the prior redshift probability used in BPZ to the one given in Raichoor et al.
(2014). This prior reduced uncertainties and catastrophic failures for faint galaxies
at higher redshifts, but appears to generate a redshift bias for bright, low-redshift
galaxies. We therefore caution users of the catalogue to calibrate the BPZ redshifts
appropriately before using them. At bright magnitudes, where complete training
data are available, it is advantageous to use an empirical photo-z technique like the
one presented for the [DR3] data set in Bilicki et al. (2018); specific selection and cal-
ibration of luminous red galaxies (LRG, Vakili et al. 2019) is also effective. Bright
and LRG samples based on DR4 and taking advantage of its unique, deep, nine-band
coverage are in preparation.

Another change is related to the photo-z errors and the ODDS quality indicator. In
previous releases we reported 95% confidence intervals for the Bayesian redshift es-
timate. With DR4 we switch to 68% confidence intervals as mentioned above, which
requires some changes to the settings and also changes the values of the ODDS pa-
rameter. The changes in prior and BPZ settings, together with the fact that we are
using full nine-band photometry in a KiDS data release for the first time mean that
previous photo-z results based on optical-only photometry (e.g., Kuijken et al. 2015)
are no longer advocated.

Further discussion of the nine-band KiDS+VIKING photometric redshifts, as well
as a comparison to the [KiDS450] photo-z, is provided in Wright et al. (2018) where a
similar setup19 was used. There the BPZ photo-z are tested against several deep spec-
troscopic surveys. At full depth (r ≤ 24.5) the photo-z show a scatter (normalised-
median-absolute-deviation) of σm = 0.072 of the quantity ∆z/(1 + z) = (zB − zspec)/(1 +

zspec) and a fraction ζ0.15 = 17.7% of outliers with |∆z/(1 + z)| ≥ 0.15. The magnitude
19 The main difference of the DR4 setup is the implementation of two different minimum aperture sizes

as discussed in Sect. 6.5. As this change only impacts data with seeing that greatly varies between bands
in Wright et al. (2018), it does not affect the photo-z statistics presented here.
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Figure 6.19: r-Magnitude dependence of KiDS DR4 photo-z statistics based on the findings
of Wright et al. (2018) for the deep spec-z fields (blue lines) and a direct comparison of DR4
photo-z and SDSS/2dFLenS spec-z (red lines). The top panel shows the normalised-median-
absolute-deviation of the quantity ∆z/(1 + z), the middle panel shows the mean µ∆z of that
quantity, and the lower panel shows the rate ζ0.15 of outliers with |∆z/(1 + z)| ≥ 0.15. (Note that
this definition of ζ0.15 exaggerates the outlier fraction when σm approaches 0.1.) The scatter
between neighbouring points gives an indication of the error bars on these quantities.
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Figure 6.20: Various percentiles of the 1-σ GAAP limiting magnitudes for the nine wavelength
bands. The width of the distributions is driven by differences in seeing, air mass and sky
brightness across the KiDS and VIKING surveys.

dependence of these quantities is shown in Fig. 6.19. The effect of the different selec-
tion criteria in the spectroscopic catalogues is evident (e.g., the bump in the redshift
bias µ∆z near r = 18, which marks the transition from the BOSS LOWZ to CMASS
samples), illustrating that calibrating the photometric redshift error distribution re-
quires care (see Bilicki et al. 2018 and the extensive discussion of direct calibration
techniques in [KiDS450] for further details). Note also that the photo-z setup was
optimised for the fainter, r > 20 galaxies that are of interest for the KiDS cosmology
analysis, and not for the brighter galaxies.

6.6.5 PHOTOMETRIC DEPTH AND HOMOGENEITY

Figure 6.20 shows the distribution of the different bands’ 1-σ limiting magnitudes
in the catalogue. Note the narrow range of the limiting magnitudes in the u, g, and
particularly the r band, a consequence of the KiDS observing strategy of choosing
which dark-time band to observe in according to the seeing conditions. Maps of the
median limiting magnitude in 0◦1 × 0◦1 cells are presented in Fig. 6.21 (KiDS ugri)
and 6.22 (VIKING ZYJHKs).
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Figure 6.21: Maps of the median limiting GAAP magnitude, corresponding to the 1-σ flux
error, in 0◦1 × 0◦1 cells, for the four KiDS filter bands. The colour scale in every map spans
±0.75 magnitude about the median. Note the significantly greater inhomogeneity of the i-band
data: this is expected to improve in the final data release after a second pass is completed.
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Figure 6.22: Maps of the r-band selected sources’ median limiting GAAP magnitude, corre-
sponding to the 1-σ flux error, in 0◦1×0◦1 cells, for the five VIKING bands. Note the rectangular
1◦5 × 1◦0 patterns, due to the footprint of the VIRCAM instrument.
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6.7 DATA ACCESS

There are several ways through which KiDS-ESO-DR4 data products can be accessed.
An overview is presented in this section and up-to-date information is also available
at the KiDS DR4 website.

The data products that constitute the DR4 release (stacked ugri images and their
associated weight maps, flag maps, and single-band source lists for 1006 survey tiles,
the r-band detection images and their weight maps, as well as the multi-band cat-
alog combining KiDS and VIKING photometry together with flag maps combining
mask information from all filters), are released via the ESO Science Archive, and also
accessible via ASTRO-WISE and the KiDS website.

6.7.1 ESO SCIENCE ARCHIVE

All main release data products are disseminated through the ESO Science Archive Fa-
cility20, which provides several interfaces and query forms. All image stacks, weight
maps, flag maps and single-band source lists are provided on a per tile basis via the
‘Phase 3 main query form’. This interface supports queries on several parameters,
including position, object name, filter, observation date, etc. and allows download of
the tile-based data files. Also the multi-band catalog, which is stored in per-tile data
files, is available in this manner. A more advanced method to query the multi-band
catalog is provided by the ‘Catalogue Facility query interface’, which enables users
to perform queries on any of the catalog columns, for example facilitating selections
based on area, magnitude, photo-z or shape information. Finally, data can be queried
directly from a new graphical sky projection interface known as the ‘Science Portal’.
Query results can subsequently be exported to various (single-file) formats.

6.7.2 ASTRO-WISE ARCHIVE

Most of the data products can also be retrieved from the ASTRO-WISE system (Bege-
man et al. 2012). This data processing and management system is used for the pro-
duction of these data products and retains the full data lineage. For scientists in-
terested in access to various quality controls, further analysis tools, or reprocessing
of data this access route may be convenient. The DBviewer web service21 allows
querying for data products and supports file downloads, viewing of inspection plots,
and data lineage browsing. Links with DBviewer queries to complete sets of data
products are compiled on the KiDS DR4 website. Several data products that are not
in the ESO archive may be retrieved through this route: most importantly, the PSF-
Gaussianized images and the individual CCD sub-exposures after various stages of
processing in the ASTRO-WISE pipeline are available here.

20http://archive.eso.org/cms.html
21http://dbview.astro-wise.org

http://archive.eso.org/cms.html
http://dbview.astro-wise.org
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6.7.3 KIDS DR4 WEBSITE

Apart from offering an up-to-date overview of all data access routes, the KiDS DR4
website22 also provides alternative ways for data retrieval and quality control.

The synoptic table presents for each observation (tile/filter) a combination of in-
spection plots relating to the image and source extraction quality, as well as links for
direct downloads of the various data FITS files. Furthermore, direct batch downloads
of all DR4 FITS files are supported by supplying WGET scripts.

6.8 SUMMARY AND OUTLOOK

With the KiDS-ESO-DR4 data release, data for over 1000 square degrees, more than
two thirds of the target KiDS footprint, is now publicly available. Co-added images
with associated weights and masks, as well as single-band source catalogues, may
now be accessed through the ESO archive or the KiDS project website.

Moreover, through a combined analysis of these KiDS images with data from the
VIKING survey, a nine-band matched-aperture u–Ks catalogue containing some 100
million galaxies has been created, with limiting 5-σ AB magnitudes ranging from
ca. 25 in g and r bands to 23 in J and 22 in Ks (Fig. 6.20). This data set is by far
the largest-area optical+near-IR data set to this depth. The galaxies in this catalogue
have been detected using a reduction of the data that has been optimised for weak
gravitational lensing measurements, to enable the primary science goal of KiDS. The
GAAP photometry in the nine-band catalogue uses the positions and sizes of these
galaxies to define the apertures. Analysis of the gravitational lensing information in
the data set is in progress, and shear estimates for these sources will be released in
due course. Photometric redshift estimates based on the nine-band photometry are
already included in the DR4 catalogue (but see Sect. 6.6.4 for a discussion of redshift
biases for bright sources).

Multiple other applications of this unique optical+near-infrared catalogue are fore-
seen. For example, stellar mass estimates for galaxies will benefit greatly from the
inclusion of the near-IR fluxes (Wright et al. 2018), red-sequence cluster searches can
be pushed to greater redshift, and star-galaxy separation and galaxy SED typing can
be made more accurate as well (e.g., Daddi et al. 2004; Tortora et al. 2018b).

The data processing for DR4 largely followed the procedures established for the
previous data release as described in [DR3], with a few improvements:

1. this is the first KiDS data release for which the photometry has been tied to the
Gaia database;

2. satellite tracks and other artefacts are now masked at the sub-exposure level,
increasing the usable area of the co-added images;

3. the PSF Gaussianization procedure now operates in pixel space, solving directly
for a double-shapelet convolution kernel that renders the PSF Gaussian;

22http://kids.strw.leidenuniv.nl/DR4

http://kids.strw.leidenuniv.nl/DR4
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4. extinction corrections have been updated to the Schlafly & Finkbeiner (2011)
extinction coefficients;

5. GAAP photometry is run twice, with the second run using larger apertures to
be able to include occasional poor-seeing KiDS or VIKING data in the photom-
etry catalogue;

6. the THELI processing of the images on which the sources for the nine-band cat-
alogue are detected now includes an illumination correction;

7. the inclusion of the VIKING data involved a re-reduction of the VIKING paw-
print level data (see Wright et al. 2018), and is the first time the PSF Gaussian-
ization and GAAP photometry have been performed at sub-exposure level and
combined.

The data are publicly available via the ESO archive, the ASTRO-WISE system,
and the KiDS project website. A description of the data format may be found in the
Appendix.

KiDS observations continue, and are expected to wind down by the middle of
2019, at which point some 1350 square degrees will have been mapped in 9 photo-
metric bands by the combined KiDS+VIKING project.

A repeat pass of the whole survey area in the i-band is also close to completion.
These data will enable variability studies on timescales of several years, as well as
improving the overall quality of the i-band data, which has the greatest variation in
observing conditions and cosmetic quality. In addition, a number of fields with deep
spectroscopic redshifts are also being targeted with the VST and VISTA to provide
KiDS+VIKING-like photometry for large samples of faint galaxies that can be used
as redshift calibrators.

The next full data release, DR5, is expected to be the final one, containing data
from the full KiDS/VIKING footprint shown in Fig. 6.1. Intermediate ‘value-added’
public releases based on DR4, including one with weak lensing shape measurements,
will be made together with the corresponding scientific analyses.
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Samenvatting

7.1 DE CONNECTIE TUSSEN STERRENSTELSELS EN DON-
KERE MATERIE

I
N dit proefschrift richt het onderzoek zich op de eigenschappen van donkere
materie en donkeremateriehalo’s en hoe ze verbonden zijn met de sterrenstel-
sels die we in het heelal kunnen waarnemen. Vanwege de nog steeds onbe-

kende aard van donkere materie bestuderen we haar doorgaans door middel van de
eigenschappen van haar verdeling en haar eigenschappen op de schaal van sterren-
stelsels en groter. De connectie tussen sterrenstelsels en donkere materie is belangrijk
vanwege drie hoofdredenen, en haar begrijpen helpt bij het beantwoorden van de
grootste vragen in de astrofysica en kosmologie van vandaag. De eerste vraag behelst
het begrijpen van de fysica van sterrenstelselvorming. Ten tweede, de gevolgtrekking
van kosmologische parameters – als we de kosmologische parameters robuust willen
meten, moeten we het samenspel van de sterrenstelsels en de donkere materie be-
grijpen, en ten derde, de gevolgtrekking van de evolutie van de materieverdeling en
de eigenschappen van donkere materie (Wechsler & Tinker 2018).

In het standaard, door koude donkere materie en kosmologische constante gedo-
mineerde (ΛKDM) kosmologische raamwerk wordt structuurvorming in het heelal
voornamelijk gedreven door de dynamica van koude donkere materie. De gravitati-
onele ineenstorting van donkeremateriefluctuaties en hun volgende virialisatie leidt
tot de vorming van donkeremateriehalo’s uit de hoogste dichtheidspieken in het aan-
vankelijke Gaussische willekeurige dichtheidsveld. Het is breed aangenomen dat elk
sterrenstelsel zich bevindt in een moederhalo van donkere materie. De sterrenstelsels
die zich op de bodem van de potentiaalput van de donkeremateriehalo bevinden,
worden aangeduid als centrale sterrenstelsels en sterrenstelsels die zich in een baan
om het centrale sterrenstelsel bevinden, worden aangeduid als satellietsterrenstel-
sels. De precieze manier waarop sterrenstelsels de donkeremateriehalo’s bevolken
is nog steeds een onderwerp waar actief onderzoek naar gedaan wordt, waaraan dit
proefschrift enkele inzichten bijdraagt. In het algemeen wordt de connectie tussen de
populatie van sterrenstelsels en de populatie van donkeremateriehalo’s statistisch ge-
modelleerd met een uitgebreid Press-Schechterformalisme (Press & Schechter 1974).
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Dit formalisme postuleert dat zware sterrenstelsels zich in de hoogste dichtheids-
pieken van de onderliggende donkerematerieverdeling vormen en dat de connectie
gerelateerd kan worden aan een grootheid genaamd sterrenstelselvertekening. Hoe-
wel dit formalisme het juiste aantal halo’s als functie van massa voorspelt en ook het
clusteren van sterrenstelsels dat we waarnemen tot grote nauwkeurigheid voorspelt,
heeft het enkele tekortkomingen. Explicieter kan de sterrenstelselvertekening zelf
niet-triviaal afhangen van massa en schaal en is het algemeen geaccepteerd dat ze niet
lineair of deterministisch is. Bovendien zal de assemblagegeschiedenis van donkere-
materiehalo’s kenmerken achterlaten in de waargenomen verdelingen die niet langer
overeen zullen stemmen met de theoretische voorspellingen. De assemblagegeschie-
denis en mechanismen van satellietmassastripping en samensmelting laten ons ook
achter met verschillende eigenschappen van de donkerematerieconnectie voor cen-
trale en satellietsterrenstelsels. Vanwege al dit bestaat een grote verscheidenheid aan
verschillende modellen, alle bouwende op de statistische postulaten van het Press-
Schechterformalisme.

Een populaire en succesvolle manier om de connectie tussen sterrenstelsels en
donkere materie te beschrijven is met de halobezettingsverdelingen (HBV), welke de
kansverdelingen voor het aantal sterrenstelsels met een bepaalde eigenschap (licht-
kracht of stellaire massa) in een halo specificeren, gegeven als een functie van halo-
massa. De halobezettingsverdelingen worden apart gekwantificeerd voor de centrale
sterrenstelsels en de satelietsterrenstelsels, vanwege hun fundamentele observatio-
nele verschillen. Onder deze aannames is de standaard HBV aldus volledig gekarak-
teriseerd door haar gemiddelde bezettingsgraad van sterrenstelsels die zich in een
halo van massa M bevinden. In principe kan de HBV een functie van eigenschap-
pen anders dan halomassa zijn, wat ons kan helpen het verband te leggen tussen de
sterrenstelsels en de assemblagegeschiedenis van donkeremateriehalo’s (Wechsler &
Tinker 2018).

De HBV-modellen kunnen verder uitgebreid worden om beter te lijken op ster-
renstelselwaarnemingen en -populaties. De voorwaardelijke lichtkracht- (VLF) en
voorwaardelijke stellairemassafuncties (VSMF) beschrijven de volledige verdeling
van stellaire massa’s en lichtkrachten van sterrenstelsels als functie van de halomassa.
Ze zijn daarnaast doorgaans gescheiden in bijdragen van centrale sterrenstelsels en
satellietsterrenstelsels en kunnen direct gemeten worden van een monster van ster-
renstelselgroepen en -clusters (van den Bosch et al. 2013; Cacciato et al. 2013).

Zowel de VLF als de HBV-modellen specificeren het aantal sterrenstelsels per
halo en de modelvoorspellingen kunnen op twee manieren gemaakt worden. Het
meest voor de hand liggend is het bevolken van de donkeremateriehalo’s uit een
meerlichamensimulatie gebruikmakend van een Monte Carloaanpak, gevolgd door
het meten van de eigenschappen van sterrenstelsels uit de samengestelde catalogus.
Als alternatief kunnen zowel VLF als HBV gecombineerd worden met een analytisch
halomodel om de observabelen op een semi-analytische manier te voorspellen (Sel-
jak 2000; Cooray & Sheth 2002). De halomodelaanpak neemt aan dat alle materie
in het heelal zich bevindt in halo’s die als gravitationeel gebonden objecten kunnen
worden beschouwd die ontkoppeld zijn van de uitdijing van het heelal en sferisch
ineengestort zijn, met een massa M besloten in een straal waar de gemiddelde dicht-
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heid 200 keer groter is dan de gemiddelde dichtheid van het heelal. De abundantie
van donkeremateriehalo’s kan dan gekarakteriseerd worden door de halomassafunc-
tie, welke het aantal halo’s gegeven een massa M oplevert. Als we de resultaten
nemen van de meerlichamensimulaties waaruit gevonden werd dat het dichtheids-
profiel een universele massafunctie volgt (Navarro et al. 1997) en deze combineren
met de halomassafunctie en het aanvankelijke materievermogensspectrum alsook de
HBV/VLF-modellen, zijn we in staat om een veelvoud aan observabelen te voorspel-
len, waardoor we dan de connectie tussen sterrenstelsels en donkere materie in meer
detail kunnen bestuderen.

Onder de aanname dat de sterrenstelsel- en donkerematerie-eigenschappen nauw
verbonden zijn, is de meest begrenzende observationele meting voor ieder model de
abundantie van sterrenstelsels. Het model van de connectie tussen sterrenstelsels en
donkere materie, gegeven het kosmologisch model, zou in staat moeten zijn om de
abundantie van sterrenstelsels te voorspellen als functie van hun stellaire massa of
lichtkracht. Hoewel deze observationele eigenschap de meest begrenzende is, neemt
ze niet alle eigenschappen van de connectie tussen sterrenstelsels en donkere materie
in ogenschouw en kan tot een verkeerde interpretatie leiden. Om dit te overkomen
kan men ook andere meetmethoden gebruiken (samen met de sterrenstelselabun-
dantie) om een beter perspectief te krijgen van de connectie tussen sterrenstelsels
en donkere materie. De volgende meting die men kan gebruiken is de tweepunts-
clustering van sterrenstelsels. Omdat de abundantie van donkeremateriehalo’s sterk
verbonden is aan hun clusteringseigenschappen, zal de relatie van stellaire tot halo-
massa ook de clusteringseigenschappen voorspellen van de sterrenstelsels die zich in
die halo’s bevinden. De tweepuntsclustering van sterrenstelsels samen met de ster-
renstelselabundantie zal aldus ieder model dat men wil gebruiken om de connectie
tussen de donkere materie en sterrenstelsels te beschrijven, en aldus om over de aard
van donkere materie te leren, volledig karakteriseren.

Met het halomodel kan men ook voorspellingen verwerven voor de kruiscorre-
latie tussen sterrenstelsels en donkere materie (de tweepuntsclustering van sterren-
stelsels beschrijft de correlatie tussen de sterrenstelsels). Het halomodel voorspelt
de correlatiefunctie ξgm van sterrenstelsels en massa, gerelateerd aan het overschot
van oppervlaktemassadichtheid ∆Σ, welke tot eerste orde de geprojecteerde profie-
len van donkeremateriehalo’s meet, die op hun beurt direct gemeten kunnen wor-
den gebruikmakend van de lenswerking tussen sterrenstelsels. Lenswerking tussen
sterrenstelsels is de meting van het zwaartekrachtlenseffect rond individuele sterren-
stelsels en haar sterkte is rechtevenredig met de massa van de donkeremateriehalo’s
rond die sterrenstelsels. Het signaal van de lenswerking tussen sterrenstelsels is in de
meeste gevallen vrij ingewikkeld om te interpreteren omdat centrale en satellietster-
renstelsels zich in volledig verschillende halo’s bevinden, aldus is een volledig model
van de connectie tussen sterrenstelsels en donkere materie nodig. Desalniettemin le-
veren de metingen van lenswerking tussen sterrenstelsels een complementaire blik
op de metingen van abundanties en tweepuntsclustering van sterrenstelsels. Het be-
langrijkste is dat ze direct massaschattingen van de donkeremateriehalo’s leveren en
dat ze ook gebruikt worden om de overgebleven degeneraties in het model, namelijk
de sterrenstelselvertekening, te verbreken.



156 Chapter 7. Samenvatting

7.2 ZWAARTEKRACHTLENSWERKING

Einsteins honderd jaar oude algemene relativiteitstheorie (Einstein 1916) beschrijft
zwaartekracht als een kromming van ruimtetijd rond een zwaar object. Terwijl licht
een recht pad aflegt door vlakke ruimtetijd, zal het pad van een lichtstraal verande-
ren wanneer ze door een gekromde ruimtetijd beweegt. Dit betekent dat het licht dat
uit de verre uithoeken van het heelal komt beïnvloed kan zijn door de verdeling van
massa op zijn weg. De relativistische beschrijving kan vereenvoudigd worden om tot
een theorie te komen die volledig ontwikkeld kan worden in het Newtoniaanse raam-
werk. Omdat dit effect analoog is aan optische lenswerking, staat dit effect bekend
als zwaartekrachtlenswerking.

De zwaartekrachtlenswerking kan gebruikt worden om de materieverdeling van
zware objecten in het heelal te onderzoeken. Het waargenomen effect van zwaarte-
krachtlenswerking op een beeld van een achtergrondsterrenstelsel is een vergroting
en een getijde-achtige uitrekking van de oorspronkelijke vorm. De getijde-achtige
uitrekking van de beelden is rechtevenredig met de hoeveelheid massa die zich tus-
sen zo’n sterrenstelsel en ons als waarnemers bevindt en ze kan gebruikt worden om
de massa’s van donkeremateriehalo’s te meten gebruikmakend van de lenswerking
tussen sterrenstelsels (bijv. Leauthaud et al. 2011; van Uitert et al. 2011; Velander et al.
2014; Cacciato et al. 2014; Viola et al. 2015). Zwaartekrachtlenswerking kan ook ge-
bruikt worden om de aard van het heelal te bestuderen met de lenswerking door
de grootschalige structuur zelf, genaamd de kosmische afschuiving (Bartelmann &
Schneider 2001; Hildebrandt et al. 2017).

7.3 DIT PROEFSCHRIFT

In dit proefschrift verkennen we verschillende aspecten van de connectie tussen ster-
renstelsels en donkere materie die gemeten kunnen worden met zwaartekrachtlens-
werking, specifieker, gebruikmakend van lenswerking tussen sterrenstelsels als onze
primaire meetmethode. We gebruiken het halomodel samen met de halobezettings-
verdelingen om de connectie tussen sterrenstelsels en halo’s statistisch te beschrijven
en om de assemblagevertekening in rijke sterrenstelselgroepen te begrenzen. Het-
zelfde theoretische raamwerk is ook gebruikt om de aard van sterrenstelselverteke-
ning te begrenzen. Daarnaast herevalueren we de prestaties van de tweedimensio-
nale aanpak van lenswerking tussen sterrenstelsels en bestuderen we de systemati-
sche fouten die zouden kunnen optreden in deze andere bestudering. Ten slotte ge-
bruiken we de tweedimensionale methode om de relatie van stellaire tot halomassa
van satellieten te meten.

In Hoofdstuk 2 onderzoeken we mogelijke kenmerken van haloassemblageverte-
kening voor spectroscopisch geselecteerde sterrenstelselgroepen uit de Galaxy And
Mass Assembly-opmeting (GAMA-opmeting) gebruikmakend van metingen van de
zwakke zwaartrekrachtlenswerking uit ruimtelijk overlappende regionen van de die-
pere en hogere beeldkwaliteit hebbende fotometrische Kilo-Degree Survey (KiDS).
We gebruiken GAMA-groepen met een schijnbare rijkheid groter dan 4 om monsters
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te identificeren met vergelijkbare gemiddelde moederhalomassa’s maar met een an-
dere radiële verdeling van satellietsterrenstelsels, wat instaat voor de formatietijd van
de halo’s. We meten het zwakkelenswerkingssignaal voor groepen met een steilere
en een vlakkere satellietverdeling dan gemiddeld en vinden geen teken van haloas-
semblagevertekening, met de vertekeningsverhouding van 0.85+0.37

−0.25, wat consistent
is met de ΛKDM-voorspelling. Onze sterrenstelselgroepen hebben typische massa’s
van 1013M�/h, wat op een natuurlijke manier eerdere studies van haloassemblagever-
tekening op schalen van sterrenstelselclusters complementeert.

In Hoofdstuk 3 meten we de geprojecteerde sterrenstelselclustering en de signa-
len van lenswerking tussen sterrenstelsels gebruikmakend van de GAMA-opmeting
en KiDS-opmeting om sterrenstelselvertekening te bestuderen. We gebruiken het
concept van niet-lineaire en stochastische sterrenstelselvertekening in het raamwerk
van halobezettingsstatistieken om de parameters van de halobezettingsstatistieken
te begrenzen en om de oorsprong van sterrenstelselvertekening te onthullen. De
vertekeningsfunctie Γgm(rp) wordt geëvalueerd gebruikmakend van het analytische
halomodel waaruit gevolgtrekkingen gemaakt kunnen worden over de schaalafhan-
kelijkheid van Γgm(rp) en de oorsprong van de niet-lineariteit en stochasticiteit in ha-
lobezettingsmodellen. Onze waarnemingen onthullen de fysieke reden voor de niet-
lineariteit en stochasticiteit, verder verkend gebruikmakend van hydrodynamische
simulaties, waar de stochasticiteit voornamelijk voortkomt uit het niet-Poissoniaanse
gedrag van satellietsterrenstelsels in de donkeremateriehalo’s en hun ruimtelijke ver-
deling, welke niet volgt uit de ruimtelijke verdeling van donkere materie in de halo.
De waargenomen niet-lineariteit is voornamelijk te wijten aan de aanwezigheid van
de centrale sterrenstelsels, zoals opgemerkt was uit eerder theoretisch werk aan het-
zelfde onderwerp. We zien ook dat over het geheel genomen zwaardere sterrenstel-
sels een sterkere schaalafhankelijkheid tonen, en tot op grotere stralen. Onze resulta-
ten laten zien dat een schat aan informatie over sterrenstelselvertekening verborgen
is halobezettingsmodellen. Deze modellen zouden daarom gebruikt moeten worden
om de invloed van sterrenstelselvertekening te bepalen in kosmologische studies.

In Hoofdstuk 4 bekijken we opnieuw de prestaties en systematische fouten van
de tweedimensionale aanpak van lenswerking tussen sterrenstelsels. Deze methode
buit de informatie over de daadwerkelijke posities en afplattingen van bronsterren-
stelsels uit, in plaats van alleen gebruik te maken van de algemene eigenschappen
van statistisch equivalente monsters. We vergelijken de prestaties van deze methode
met het traditioneel gebruikte eendimensionale tangentiële afschuivingssignaal op
een set van gemodelleerde data die lijkt op de huidige top van zwakkelenswerking-
opmetingen. We vinden dat onder geïdealiseerde omstandigheden, de betrouwbaar-
heidsregio’s van simultane begrenzingen voor de amplitude- en schaalparameters
van het NFW-model in de tweedimensionale analyse meer dan 3 keer nauwer kun-
nen zijn dan de eendimensionale resultaten. Bovendien is deze verbetering afhan-
kelijk van de lensaantaldichtheid en is ze groter voor hogere dichtheden. We ver-
gelijken de methoden met de resultaten van de hydrodynamische EAGLE-simulatie
ten behoeve van het testen voor mogelijke systematische fouten die zouden kunnen
optreden vanwege missende lenssterrenstelsels, en vinden dat de methode in staat
is om onvertekende schattingen van halomassa’s te geven wanneer ze wordt ver-
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geleken met de echte eigenschappen van de EAGLE-sterrenstelsels. Vanwege haar
voordelen in gebieden met een hoge sterrenstelseldichtheid, is de methode bijzon-
der geschikt voor het bestuderen van de eigenschappen van satellietsterrenstelsels in
clusters van sterrenstelsels.

In Hoofdstuk 5 gebruiken we data van de opmetingen Kilo-Degree Survey (KiDS)
en Galaxy And Mass Assembly (GAMA) om tegelijkertijd de relaties van stellaire
tot halomassa van zowel centrale als satellietsterrenstelsels te begrenzen, voor spec-
troscopisch bevestigde sterrenstelsels in sterrenstelselgroepen, gebruikmakend van
zwakke lenswerking. Voor de analyse gebruiken we de traditionele eendimensionale
methode in de vorm van de gestapelde tangetiële afschuivingsmetingen om de halo-
en subhalomassa’s van onze sterrenstelsels te bepalen en om de relatie van stellaire
tot halomassa te begrenzen, en daarnaast een tweedimensionale fit aan het volledige
afschuivingsveld die alle beschikbare informatie over lenssterrenstelsels en precieze
bronsterrenstelselposities en -afplattingen gebruikt. We vinden dat de tweedimen-
sionale methode statistisch beter presteert dan de eendimensionale methode. Beide
methoden leiden tot vergelijkbare parameters van de relatie van stellaire tot halo-
massa, welke consistent zijn met eerdere resultaten die in de literatuur gevonden
zijn, wat laat zien dat de satellietsterrenstelsels in het algemeen lagere halomassa’s
hebben dan de centrale sterrenstelsels, gegeven dezelfde stellaire massa.

Ten slotte presenteren we in Hoofdstuk 6 de vierde publieke data-uitgifte van de
Kilo Degree Survey welke het oppervlak van de hemel beslagen door data-uitgifte
3, de data die we hoofdzakelijk gebruikten als onze bron van metingen van zwaar-
tekrachtlenswerking in de bovenstaande hoofdstukken, meer dan verdubbelt. Mijn
bijdrage aan het artikel waarop dit Hoofdstuk is gebaseerd bestond uit het leiden van
de ASTRO-WISE fotometrische datareductie, welke gebruikt werd om gestapelde af-
beeldingen van 1006 richtingen in de vier banden te produceren, waaruit de fotome-
trie in de catalogi verkregen is. De precieze bijdrage is beschreven in Hoofdstuk 6,
specifieker in Paragraaf 6.3.1.



8
Povzetek

8.1 POVEZAVA MED GALAKSIJAMI IN TEMNO SNOVJO

G
LAVNA tema te disertacije je osredotočena na lastnosti in haloje temne snovi in
na njihovo povezavo z galaksijami, ki jih lahko opazujemo v vesolju. Zaradi
še vedno neznane narave temne snovi se le ta ponavadi preučuje z uporabo

njene porazdelitve in lastnosti na galaktičnih in večjih razdaljah. Povezava med gala-
ksijami in temno snovjo je pomembna iz treh glavnih razlogov, njeno razumevanje pa
pomaga pri odgovoru na največja vprašanja v astrofiziki in kozmologiji danes. Prvo
vprašanje vključuje razumevanje fizike tvorbe galaksij. Drugič, pomaga pri merje-
nju kozmoloških parametrov – če hočemo natančno izmeriti kozmološke parametre,
moramo razumeti kako se galaksije povežejo s temno snovjo, in tretjič, pomaga pri
poznavaju razvoja porazdelitve snovi in lastnosti temne snovi (Wechsler & Tinker
2018).

V standardnem kozmološkem modelu, v katerem prevladuje hladna temna snov
in kozmološka konstanta (tako imenovani ΛCDM model), formiranje struktur v ve-
solju vodi predvsem dinamika hladne temne snovi. Gravitacijski kolaps fluktuacij
gostote temne snovi in njihova kasnejša virializacija privedeta do tvorbe halojev te-
mne snovi iz najbolj gostih mest v začetnem naključnem Gaussovem polju. Splošno
je sprejeto, da vsaka galaksija prebiva v matičnem haloju iz temne snovi. Galaksije,
ki se nahajajo na dnu gravitacijskega potenciala haloja temne snovi, so označene kot
osrednje galaksije in galaksije, ki krožijo okoli osrednje galaksije, se imenujejo sate-
litske galaksije. Natančen način, kako galaksije poseljujejo haloje temne snovi, je še
vedno tema aktivnih raziskav, h katerim ta disertacija prispeva nekaj spoznanj. Na
splošno se povezava med populacijo galaksij in populacijo halojev temne snovi sta-
tistično modelira s Press-Schechterjevim formalizmom (Press & Schechter 1974). Ta
formalizem postulira, da se masivne galaksije tvorijo na najbolj gostih delih osnovne
porazdelitve temne snovi in da je povezavo med galaksijam in temno snovjo mogoče
povezati s količino, imenovano galaktični bias. Medtem ko ta formalizem napove
pravilno število halojev kot funkcijo njihove mase in tudi dobro napove kopičenje ga-
laksi, ima nekaj pomanjkljivosti. Bolj natančno, galaktični bias ima lahko ne-trivialno
odvisnost od mase in razdalje. Splošno je sprejeto, da ta povezava ni linearna ali
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deterministična. Poleg tega, zgodovina sestavljanja halojev temne snovi pušča od-
tise v opazovanih porazdelitvah galakisj, ki se nato ne ujemajo več s teoretičnimi
napovedmi. Zgodovina sestavljanja, mehanizmi odstranjevanja mase in združeva-
nja satelitskih galaksij nam prav tako puščajo različne odtise v povezavi temne snovi
med osrednjimi in satelitskimi galaksijami. Zaradi teh dejstev obstaja veliko različnih
modelov, ki temeljijo na statističnih postulatih Press-Schechterjevega formalizma in
omogočajo da se povezava med temno snovjo in galaksijami modelira bolj natančno.

Priljubljen in uspešen način opisovanja povezave med galaksijami in temno snovjo
je skozi porazdelitve zasedenosti halojev (halo occupation distribution – HOD), ki
opisujejo verjetnostno porazdelitev števila galaksij z določeno lastnostjo (izsev ali vi-
dna masa) v haloju, kot funkcijo mase haloja. Porazdelitve zasedenosti halojev se
zaradi temeljnih razlik v lastnostih osrednjih in satelitskih galaksij posebej izrazijo
za osrednje galaksije in satelitske galaksije. V skladu s temi predpostavkami je stan-
dardni HOD v celoti opisan s povprečnim številom galaksij, ki prebivajo v haloju z
maso M. Načeloma je HOD lahko odvisen tudi od drugih lastnosti in ne samo mase
haloja, kar nam lahko pomaga povezati galaksije z zgodovino sestavljanja halojev
temne snovi (Wechsler & Tinker 2018).

HOD modele je mogoče še bolj posplošiti na tak način da lahko bolje opišejo opa-
zovane populacije galaksij. Pogojna izsevna funkcija (conditional luminosity func-
tion – CLF) in pogojna funkcija vidne mase (conditional stellar mass function – CSMF)
popolnoma opišeta porazdelitev vidne mase galaksij ali njihovega izseva kot funkcijo
mase haloja. Običajno tudi ti dve funkciji razdelimo na dva dela: prispevek osrednjih
galaksij in prispevek satelitskih galaksij. Te funkcije je mogoče neposredno določiti
na vzorcu skupin in jat galaksij (van den Bosch et al. 2013; Cacciato et al. 2013).

Oba načina modeliranja povezave med galaksijami in temno snovjo, CLF in HOD,
specificirata število galaksij na halo, napovedi iz modela pa lahko uporabimo na dva
načina. Najbolj preprosto je, da s pomočjo računalniške simulacije N-teles ustva-
rimo haloje temne snovi in jih z metodo Monte Carlo naselimo z galaksijami, izbira
galaksij pa sledi našemu izbranemu modelu. Nato izmerimo lastnosti galaksij iz se-
stavljenega kataloga in jih primerjamo z opazovanji. Drugi način uporabe vklučuje
združevanje CLF in HOD z analitičnim halo modelom s katerim lahko napovemo
opazljive količine na analitičen način (Seljak 2000; Cooray & Sheth 2002). Pristop s
halo modelom predpostavlja, da je vsa materija v Vesolju v halojih, ki jih je mogoče
obravnavati kot gravitacijsko vezane objekte, ki so se odklopili od širitve Vesolja in
se sferično sesedli pod lastnim gravitacijskim privlakom in imajo maso M, ki je vse-
bovana v sferi katere povprečna gostota je 200-krat večja od povprečne gostote ve-
solja. Število halojev temne snovi lahko nato opišemo z masno funkcijo, kar nam da
število halojev z maso M. Če uporabimo rezultate simulacij N-teles, kjer je bilo ugo-
tovljeno, da profil gostote halojev sledi univerzalni funkciji (Navarro et al. 1997) in
ta profil združimo z masno funkcijo, začetnim spektrom moči snovi, in s HOD/CLF
modelom, lahko napovemo množico opazljivk, s pomočjo katerih lahko podrobneje
preučimo povezavo med galaksijami in temno snovjo.

Pod predpostavko, da so lastnosti galaksij in halojev temne snovi tesno povezane,
je za vse modele najbolj omejujoča opazovalna meritev številčnost galaksij. Vsak mo-
del povezave med galaksijami in temno snovjo, v danem kozmološkem okvirju, bi
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moral biti sposoben predvideti število galaksij kot funkcijo njihove vidne mase ali
izseva. Čeprav je ta lastnost najbolj omejujoča, ne upošteva vseh lastnosti povezave
med galaksijami in temno snovjo in lahko vodi do napačnih razlag. Da premagali
to pomanjlkljivost, lahko uporabimo tudi druge opazljivke (skupaj z številom gala-
ksij), da dobimo boljši pogled na relacijo med temno snovjo in galaksijami. Naslednja
meritev, ki jo lahko uporabimo, je dvotočkovna avtokorelacijska funkcija kopičenja
galaksij. Ker je število halojev temne snovi močno povezano z njihovim kopičenjem,
bo razmerje med vidno in temno snovjo opisalo tudi lastnosti kopičenja galaksij, ki
prebivajo v teh halojih. Dvotočkovna avtokorelacijska funkcija, skupaj s številom ga-
laksij, bo tako v celoti karakterizirala kateri koli model, ki ga želimo uporabiti za opis
povezave med temno snovjo in galaksijami ter tako posredno spoznati naravo temne
snovi.

S halo modelom je mogoče pridobiti tudi napovedi za dvotočkovno križnokorela-
cijsko funkcijo med galaksijami in temno snovjo (dvotočkovna avtokorelacijska funk-
cija opisuje korelacijo med galaksijami). Halo model nam da dvotočkovno križnoko-
relacijsko funkcijo med galaksijami in maso ξgm, ki je povezana s presežno površin-
sko gostoto ∆Σ, ki v prvem približku opisuje projeciran radialni profil halojev temne
snovi, ki ga je mogoče neposredno izmeriti z šibkim gravitacijskim lečenjem med
posameznimi galaksijami (lečenje galaksija-galaksija). Lečenje galaksija-galaksija je
meritev učinka gravitacijskega lečenja okoli posameznih galaksij, njegova moč pa je
neposredno sorazmerna z maso halojev temne snovi okoli teh galaksij. Signal leče-
nja galaksija-galaksija je v večini primerov precej zapleteno opisati, saj osrednje in
satelitske galaksije prebivajo v popolnoma različnih halojih, zato je potreben celo-
ten model povezave med galaksijami in temno snovjo. Kljub temu meritve lečenja
galaksija-galaksija dopolnjujejo pogled na meritve števila in dvotočkovne avtokore-
lacijske funkcije. Najpomembneje je, da lečenje galaksija-galaksija neposredno meri
maso temne snovi in se tako tudi uporablja tudi za razvozlavanje preostalih degene-
riranosti v modelu, in sicer galaktičnega biasa.

8.2 GRAVITACIJSKO LEČENJE

Einsteinova sto let stara teorija splošne relativnosti (Einstein 1916) opisuje gravita-
cijo kot ukrivljenost prostora in časa okoli masivnih objektov. Ko svetloba potuje po
ravni poti skozi raven prostor-čas, se bo vsakič, ko gre skozi ukrivljen prostor-čas,
spremenila njena pot. To pomeni, da na svetlobo, ki potuje iz oddaljenih delov Ve-
solja, vpliva porazdelitev mase na njeni poti. Relativistični opis gravitacije na pot
svotelobe je mogoče poenostaviti tako, da tvori teorijo, ki jo je mogoče popolnoma
razviti v newtonskem okviru. Ker je učinek analogen optičnemu lečenju, je ta učinek
znan kot gravitacijsko lečenje.

Gravitacijsko lečenje lahko uporabimo za ugotavljanje porazdelitve snovi v ma-
sivnih objektih v vesolju. Gravitacijsko lečenje nam bo sliko oddaljene galaksije po-
večalo in raztegnilo v smeri plimske sile. Plimsko raztezanje slik je neposredno so-
razmerno s količino mase, ki je prisotna med takšno galaksijo in nami kot opazovalci,
in jo lahko uporabimo za merjenje mase halojev temne snovi z lečenjem galaksija-
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galaksija (npr. Leauthaud et al. 2011; van Uitert et al. 2011; Velander et al. 2014; Cac-
ciato et al. 2014; Viola et al. 2015). Gravitacijsko lečenje lahko uporabimo tudi za pre-
učevanje lastnosti Vesolja z lečenjem same strukture Vesolja, imenovano kozmično
striženje (Bartelmann & Schneider 2001; Hildebrandt et al. 2017).

8.3 TA DISERTACIJA

V tej disertaciji smo raziskali različne vidike povezave galaksijami in temno snovjo, ki
jih je mogoče meriti z gravitacijskim lečenjem, natančneje z uporabo lečenja galaksija-
galaksija kot naše primarne metode. Za to smo uporabili halo model skupaj s poraz-
delitvami zasedenosti halojev za statistični opis povezave med galaksijami in haloji
in tako izmerili “assembly bias” v skupinah galaksij. Isti teoretični model smo upo-
rabilit tudi za meritve lastnosti galaktičnega biasa. Poleg tega smo ponovno ocenili
zmožnosti dvodimenzionalnega pristopa k lečenju galaksija-galaksija ter hkrati pre-
učili napake, ki bi se lahko pojavile pri tej metodi. Na koncu smo uporabili dvodi-
menzionalno metodo za meritev razmerja vidne mase in temne snovi v satelitskih
galaksijah.

V 2. poglavju smo raziskovali možne odtise zgodovine sestavljanja halojev za
za spektroskopsko izbrane skupine galaksij iz pregleda neba Galaxy and Mass As-
sembly (GAMA) z uporabo šibkega gravitacijskega lečenja iz prekrivajočih se obmo-
čij globljega visokokakovostnega fotometričnega pregleda neba Kilo-Degree Survey
(KiDS). Uporabili smo skupine galaksij iz GAMA pregleda neba s številom galaksij v
skupini večjim od 4 iz katerih smo dobili vzorce skupin galaksij s primerljivimi pov-
prečnimi masami halojev, vendar z drugačno porazdelitvijo satelitskih galaksij okoli
osrednjih galaksij. Porazdelitev satelitskih galaksij je povezana s časom nastanka
primarnih halojev. Izmerili smo signal gravitacijskega lečenja za skupine, ki imajo
porazdelitev satelitskih galaksij bolj ali manj oddaljene od povprečja vseh skupin v
vzorcu in ne najdemo nobenih znakov “assembly bias”-a. Razmerje biasa je 0, 85+0,37

−0,25,
kar je skladno z napovedjo ΛCDM modela. Naše skupine galaksij imajo značilne
mase 1013M�/h, kar dopolnjuje prejšnje raziskave zgodovine sestavljanja halojev na
jatah galaksij.

V 3. poglavju smo izmerili projecirano dvotočkovno avtokorelacijsko funkcijo
galaksij in lečenje galaksija-galaksija s pomočjo GAMA in KiDS pregledov neba. Me-
ritve smo nato uporabili za proučevanje lastnosti galaktičnega biasa. Koncept neline-
arnega in stohastičnega galaktičnega biasa smo uporabili v HOD statističnem modelu
s katerim lahko izmerimo proste parametre v HOD modelu in tako tudi razkrijemo
naravo galaktičnega biasa. Funkcijo, s katero lahko opišemo galaktični bias Γgm(rp),
smo ocenili s pomočjo analitičnega halo modela, s pomočjo katerega lahko ugoto-
vimo kako se funkcija Γgm(rp) obnaša na različnih razdaljah in kje je izvir nelinear-
nosti in stohastičnosti v modelih HOD. Naša opazovanja so razkrila fizični razlog za
nelinearnost in stohastičnost, ki smo ga nadalje podkrepili z analizo hidrodinamičnih
računalniških simulacij. Glavni razlog za stohastičnost modelov HOD večinoma iz-
vira iz ne-Poisonovega obnašanja satelitskih galaksij v halojih temne snovi in njihove
prostorske razporeditve, ki ne sledi prostorskemi porazdelitvi temne snovi v haloju.
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Opažena nelinearnost je večinoma posledica prisotnosti osrednjih galaksij, kar je v
skladu s predhodnimi teoretičnimi raziskavami. Prav tako smo opazili, da bolj ma-
sivne galaksije močneje variirajo na različnih razdaljah. Naši rezultati kažejo, da se v
HOD modelih skriva veliko informacij o galaktičnem biasu in je zato te modele pri-
poročljivo uporabiti za določitev vpliva galaktičnega biasa v kozmoloških študijah.

V 4. poglavju smo ponovno preučili zmožnosti in napake dvodimenzionalne me-
tode lečenja galaksija-galaksija. Ta metoda izkorišča vse informacije o lečenih gala-
ksijah, kot so njihovi natančni položaji in eliptičnosti. Tako ne uporablja samo la-
stnosti vzorca statistično enakovrednih galaksij, kot je to običajno pri enodimenzio-
nalnem lečenju. Učinkovitost te metode smo primerjali s tradicionalno uporabljenim
enodimenzionalnim tangencialnim strižnim signalom na naboru umetno generiranih
podatkov, ki so generirani tako, da upoštevajo vse lastnosti trenutno najsodobnejših
pregledov neba, ki se uporabljajo za raziskave gravitacijskega lečenja. Ugotovili smo,
da so v idealiziranih okoliščinah območja zaupanja meritev parametrov modela NFW
v dvodimenzionalni analizi več kot 3-krat strožja od enodimenzionalnih rezultatov.
Poleg tega je to izboljšanje odvisno od gostote števila leč in je večje pri večjih gosto-
tah. Metodo smo primerjali tudi s pomočjo meritev na hidrodinamični računalniški
simulaciji EAGLE, da bi preverili morebitne napake, ki bi se lahko pojavile zaradi
manjkajočih galaksij, in ugotovili, da je metoda sposobna vrniti nepristranske ocene
mas halojev. Zaradi svoje prednosti na območjih z visoko številčno gostoto galaksij je
metoda še posebej primerna za preučevanje lastnosti satelitskih galaksij v jatah.

V 5. poglavju smo uporabili podatke iz KiDS in GAMA pregledov neba, s po-
močjo katerih smo sočasno izmerili razmerje med vidno maso osrednjih in satelitskih
galaksij in maso njenih halojev. Razmerje smo izmerili za galaksije ki so spektro-
skopsko potrjene v skupinah galaksij v pregledu neba GAMA. Uporabili smo tako
tradicionalno enodimenzionalno metodo v obliki tangencialnih strižnih meritev za
določitev mase halojev naših galaksij ter za meritev razmerja med vidno maso in
maso temne snovi, kot tudi dvodimenzionalno metodo. Za dvodimenzionalno me-
todo uporabimo celotno gravitacijsko strižno polje, ki uporabi vse razpoložljive in-
formacije o lečah in natančnih položajih oddaljenih galaksij in njih eliptičnosti. Ugo-
tovili smo, da je dvodimenzionalna metoda statistično boljša kot enodimenzionalna
metoda. Obe metodi vodita do podobnih parametrov izmerjenih razmerij, ki so skla-
dni s prejšnjimi rezultati v literaturi. Rezultati kažejo, da imajo satelitske galaksije na
splošno nižje mase halojev kot osrednje galaksije glede na isto vidno maso.

Na koncu, v poglavju 6 predstavljamo četrto javno objavo podatkov pregleda
neba KiDS, ki več kot podvoji območje opazovanega dela neba, ki je bilo zajeto v prej-
šnji javni objavi podatkov, ki smo jih uporabili za glavni vir meritev šibkega gravita-
cijskega lečenja v zgornjih poglavjih. Moj prispevek k objavljenu članku, na katerem
temelji to poglavje, je vseboval vodenje obdelave fotometričnih podatkov s pomočjo
sistema ASTRO-WISE, ki je bil uporabljen za izdelavo mozaika iz 1006 posameznih
fotografij v štirih vidnih pasovih, iz katerih je pridobljena fotometrija v objavljenih
katalogih. Natančen prispevek je opisan v poglavju 6, natančneje v razdelku 6.3.1.
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in Blaž, Filip in Filip, Mitja, Marko in Tjaša, za vse pogovore, piva, filme, namizne
igre, piknike, sladice, kosila, večerje in druženja. Brez vas itak ne morem! Hvala pa
seveda tudi bratu in sestri, Gregorju in Danaji! Hvala za ves smeh in obiske!

Na koncu pa bi se rad zahvalil staršem, Igorju in Evi. Brez vaju nič od zgo-
raj napisanega ne bi bilo mogoče. Hvala za vajino brezpogojno ljubezen in potr-
pežljivost. Tole je za vaju.

No kids were harmed during the writing of this thesis.
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