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6
Extending an Anomaly Detection
Benchmark with Auto-encoders,

Isolation Forests, and RBMs

In tax administrations and other organizations that apply data science techniques, a
frequently heard question is What algorithm should I use? In this chapter we make a
contribution to answering this question by addressing a class of techniques, unsuper-
vised anomaly detection algorithms, that are frequently used in tax administrations.
The exact research question is:

Research Question Unsupervised anomaly detection algorithms play an import-
ant role in (tax) fraud detection. What algorithms can be expected to work well
under what conditions?

In this chapter, the recently published benchmark of Goldstein and Uchida [43] for
unsupervised anomaly detection is extended with three anomaly detection techniques:
Sparse Auto-Encoders, Isolation Forests, and Restricted Boltzmann Machines. The
underlying mechanisms of these algorithms differ substantially from the more tra-
ditional anomaly detection algorithms, currently present in the benchmark. Results
show that in three of the ten data sets, the new algorithms surpass the present col-
lection of 19 algorithms. Moreover, a relation is noted between the nature of the
outliers in a data set and the performance of specific (clusters of) anomaly detection
algorithms. The chapter is based on the following article:

• M. Pijnenburg and W. Kowalczyk. Extending an anomaly detection benchmark
with auto-encoders, isolation forests, and rbms. In International Conference on
Information and Software Technologies. Springer, 2019. Best Paper Award
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6.1 Introduction

The expanding number of anomaly detection algorithms creates the need to com-
pare algorithms objectively. Goldstein and Uchida [43] made a start by providing a
benchmark for unsupervised anomaly detection, consisting of 10 data sets and 19
algorithms. In this chapter, we extend the number of algorithms by adding three an-
omaly detection algorithms: Sparse Auto-encoders, Isolation Forests, and Restricted
Boltzmann Machines (RBMs).

The three algorithms are interesting since they have a different underlying mech-
anism compared to the current algorithms in the benchmark: two of the new al-
gorithms, Sparse Auto-encoders and RBMs, originate from the popular field of (deep)
neural networks. Within this field, they are among the simplest and best-known al-
gorithms for detecting anomalies [60]. The third algorithm is based on random trees.
The underlying mechanisms differ substantially from the more traditional algorithms
in the benchmark that are mostly distance-based, like the k-Nearest Neighbors al-
gorithm and the Local Outlier Factor. Moreover, when auto-encoders and RBMs are
applied to anomaly detection, it is usually on image data [103], [102] or sequen-
tial data [73], [114]. Hence it is of interest to see their performance on the (small)
classical tabular data used in the benchmark [43].

The chapter is organized as follows. In Section 6.2, the three anomaly detection
algorithms are described. Then, in Section 6.3, the actual experiments performed are
described as well as the data sets of the benchmark. In Section 6.4 we present the
results of the experiments and compare these with results mentioned in [43]. The
chapter ends with Conclusions and Discussion in Section 6.5. The code used in the
experiments is published at [86].

6.2 Theoretical Background

6.2.1 Sparse Auto-encoder

Standard auto-encoders are neural networks with architecture as depicted in Figure
6.1. Sometimes it is required that W1 = W t

2 , for regularization purposes. We will not
impose this restriction in this chapter. In its most basic form, as shown in the figure,
the network consists of one input layer, a hidden layer, and an output layer with
the same number of nodes as the input layer. The network is trained by providing the
same observation v as input and output, and requiring to minimize the reconstruction
error ‖auto(v)− v‖2. Essentially, the network must learn the identity function (‘auto’
means ‘self’ in Greek).

The number of nodes in the hidden layer is intentionally limited, such that the en-
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Figure 6.1: Architecture of the simplest form of a standard auto-encoder with one hid-
den layer. In general, the encoder and the decoder part may consist of more complex
neural networks.

coder has to extract the essential information from the input features in order for the
decoder to reconstruct the original input as closely as possible. The encoder part of an
auto-encoder can thus be seen as a dimensionality-reducing algorithm, reducing the
original dimensionality of the input space to the dimensionality of the space formed
by the hidden nodes.

Training an auto-encoder is usually done by gradient descent, in particular stochastic
gradient descent. The latter algorithm speeds up convergence in comparison with
standard gradient descent and also introduces some noise that helps to avoid local
minima. Backpropagation is generally used to compute the gradient by going back-
ward from the output layer to the input layer.

In the experiments, see Algorithm 1, we used the BFGS (Broyden Fletcher Gold-
farb Shanno) algorithm, a quasi-Newton optimization algorithm for minimizing the
target function. The BFGS algorithm works well for data sets with a small number of
features as are most data sets in the benchmark. The target function in the experi-
ments consists of the reconstruction error – equation (1) in Algorithm 1 –, a standard
L2 regularization term (2) that is added more routinely in training neural networks
nowadays, and a sparsity constraint term (3) that is typical for sparse auto-encoders.

Sparse auto-encoders are a variant on classical auto-encoders where the ‘bottle-
neck’ is not created by limiting the number of hidden nodes, but by requiring that only
a limited number of hidden nodes have a high activation value for each observation.

When applying auto-encoders to anomaly detection, at least two approaches may
be taken. The first approach uses the dimensionality-reduction characteristic of the
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Algorithm 1: Training and Scoring of an auto-encoder with one hidden layer.
Input : A data set V with p (numeric) features and n observations. We assume

each column to be scaled into the range [0,1] using min-max scaling.
h = {5, 10, bp/2c, p} the number of hidden nodes,
λ = 0.001 the learning rate,
ρ = 0.1 sparsity hyper-parameter,
β = 0.05 factor influencing the relative importance of the sparsity term

in the cost function,
Output: Reconstruction error of all observations v ∈ V.

1 Initialize weight matrix W with random number from a N (0, 0.01) distribution
2 Call a standard BFGS optimizer for minimizing the target function that consists

of the reconstruction error, a regularization term and the sparsity constraint:
3

J(W1,W2,a,b) =
1

n

n∑
i=1

1

2
‖auto(vi)− vi‖2 (6.1)

+
λ

2
(‖W1‖2 + ‖W2‖2) (6.2)

+β

n∑
i=1

[ρ log
ρ

ρ̂(vi)
+ (1− ρ) log

1− ρ
1− ρ̂(vi)

], (6.3)

where auto(v) is the output of the feedforward pass through the network:

auto(v) = 1/(1 + exp(−W2A(v)− b)), (6.4)

A(v) = 1/(1 + exp(−W1v − a)), (6.5)

and ρ̂(v)) is the average activation of the nodes in the hidden layer:

ρ̂(v)) =
1

h

h∑
i=1

Ai(v). (6.6)

4 After convergence, pass all observations v ∈ V through the trained
auto-encoder and compute the reconstruction error e(v) = ‖auto(vi)− vi‖2.

5 return the vector of reconstruction errors: e(v1), . . . , e(vn).
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auto-encoder part. Once trained, the auto-encoder will transform the original fea-
tures into a new low-dimensional feature space (i.e., the hidden layer). In the new
feature space, traditional distance-based anomaly detection techniques may be ap-
plied that would not work properly in the original, high-dimensional space due to
the ‘curse of dimensionality’. This first approach works in particular well for standard
auto-encoders. The second approach will work for standard auto-encoders as well
as sparse auto-encoders. The idea underlying this approach is that the network will
only achieve a low reconstruction error if it focuses on frequently occurring patterns.
As a result, observations belonging to infrequent patterns will receive a high recon-
struction error. Hence the reconstruction error can serve as an anomaly score. This
approach is adopted in this chapter.

6.2.2 Isolation Forest

Isolation forest [71], see Algorithm 5, is an algorithm specifically developed to find
anomalies. It resembles the random forest algorithm. As such it is a collection of many
trees. However these trees are no decision trees, but ‘random trees’. A ‘random tree’ is
a tree where each split involves a randomly selected feature, which is split based on a
random value. The underlying assumption of an isolation forest is that anomalies are
few and have different values from most observations. As a result, anomalies will of-
ten be isolated from the other observations in very few splits. Therefore, by observing
the leaf of an observation in many trees, and computing the average distance of these
leaves to the root of the trees, anomalies will have a small distance, while normal
observations will have a large distance. Hence, the average distance to the root can
be used as an anomaly score.

6.2.3 Restricted Boltzmann Machine

A Restricted Boltzmann Machine (RBM) is a stochastic neural network with two lay-
ers: a visible layer, and a hidden layer, see Figure 6.2. The network has no output
layer like auto-encoders, and signals in the network travel back and forth between
the two layers, starting at the visible layer. Both layers are fully connected, i.e., each
input node is connected to each hidden node, and vice versa. Moreover the weights
of the connections are symmetric Wij = Wji. No connections between nodes of the
same layer are allowed. All nodes in a classical RBM are binary, i.e. can take two val-
ues: 0 and 1. This in contrast to auto-encoders. Consequently, numerical inputs have
to be discretized and transformed to binary dummy variables. In our experiments,
the ‘thermometer encoding’ is used for the latter, as it preserves the ordering present
in numerical features. The difference between thermometer encoding and standard
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Algorithm 2: Training and Scoring of Isolation Forest
Input : A data set V with p (numeric) features. We assume each column to be

scaled into the range [0,1] using min-max scaling.
n tree = 100 the number of trees,
hlim = 8 the maximum depth of a single tree,
n samp = 256 number of observations used in the training sample,
min leaf = 1 minimum number of observations in a leaf.

Output: Scaled Version of the average path length of each observation v ∈ V.
1 Create n tree random trees:
2 for i in 1 . . .n tree do
3 Take a random sample X ⊂ V of size n samp
4 Initialize first node of tree
5 while there is a node N with depth < hlim and # observations > min leaf

do
6 randomly select an attribute q
7 randomly select a split point s ∈ [0, 1]

8 Split node N in 2: q <= p, q > p

9 end
10 end
11 Compute (scaled version of) Average Path Length, APL(v), for all observations

v ∈ V

12 return the vector of average path lengths: (APL(v1), . . . , APL(vn).

dummy encode can best be illustrated by the example of representing the value 0.45
of continuous feature with a range [0, 1] that is discretized in ten equal width bins
[0, 0.1), [0.1, 0.2), . . .. With standard encoding 0.45 falls in the bin [0.4, 0.5)] and will
be representated by the vector (0, 0, 0, 0, 1, 0, 0, 0, 0, 0). With thermometer encoding
0.45 would be represented by the vector (1, 1, 1, 1, 1, 0, 0, 0, 0, 0).

An RBM can be interpreted as a graphical model, or a ‘Markov Random Field’, see
[39]. Consequently, there is a model for the probability distribution over the feature
space:

p(v) =
1

Z

∑
all feasible h

e−E(v,h), (6.7)

where Z is a normalization constant (also known as the partition function) ensuring
that

∑
p(v) = 1,

Z =
∑

all feasible
v,h

e−E(v,h), (6.8)
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Figure 6.2: Architecture of a Restricted Boltzmann Machine.

and E is the so-called energy function,

E(v,h) = −
∑

i∈visible

aivi −
∑

j∈hidden

bjhj −
∑
i,j

wijvihj . (6.9)

This family of probability distributions is known as ‘Boltzmann distributions’ and has
been subject of study in statistical physics.

Training an RBM amounts to adjusting the parameters of the energy function (6.9)
such that the distribution fits the observations of the training data set, see Algorithm
6. Fitting the distribution to observations is done by maximizing the likelihood over
the the training set V ,

arg max
ai,bi,wij

∏
v∈V

p(v). (6.10)

The maximization is usually done by with the help of Contrastive Divergence, see
[39], a ‘stochastic gradient descent’-like algorithm, showing fast convergence at the
cost of approximating the gradient.

After training, the probability of each observation p(v) may be computed by equa-
tion (6.7). In practice, however, applying equation (6.7) requires computing the par-
tition function (6.8), which is computationally intractable. Instead, one may notice
that p(v) is proportional to,

p(v) ∝ e−F (v) =
∑
h

e−E(v,h). (6.11)

Here F (v) is the free energy of an observation v: the energy that a single configuration
would need to have in order to have the same probability as all of the configurations
that contain v [51].

The free energy of an observation can be calculated in linear time, due to the
special architecture of a Restricted Boltzmann Machine, which does not allow links
between hidden nodes, leading to an energy function (6.9) that involves no cross
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Algorithm 3: Training and Scoring of an RBM using CD-1
Input : A data set V with p numeric features, scaled into the range [0,1]

h = {5, 10, bp/2c, p} the number of hidden nodes,
b = {3, 5, 7, 10} the number of bins for each feature,
k = 10 batch size,
λ = 0.01 initial learning rate,
m = 0.95 momentum term (only used for bias vectors)

Output: for each v ∈ V: exp(−F (v)). This expression is proportional to p(v).
1 Discretize columns of V into b bins each, using equal width binning followed by

thermometer encoding. Denote the new data set with p · b binary columns V′.
2 Initialize values of matrix W and vectors a and b with small uniform random

numbers
3 while convergence = FALSE do
4 randomize order of rows and put rows in batches of size k
5 for each batch V0 do
6 sample binary values H0 based on values V0:

H0 = random{0,1}(1/(1 + exp(−WV t
0 − b)))

7 compute new values V1 based on H0: V1 = 1/(1 + exp(−(H0W )t − a))

8 Compute probabilities of hidden nodes H1 based on V1 (without
sampling): H1 = 1/(1 + exp(−WV t

1 − b))

9 Adjust weights:
10 W = W + λ · (Ht

0V0 −Ht
1V1)/k

11 da = da−1 ·m+ λ· column means (V0 − V1)

12 a = a + da

13 db = db−1 ·m+ λ· column means (H0 −H1)

14 b = b + db

15 end
16 compute the total free energy F (V′) =

∑
v∈V′ F (v), see equation (6.12)

17 Check on convergence:
18 if |(F (V′)− Fprevious(V

′))/Fprevious(V
′)| < 0.001 then

19 convergence = TRUE
20 end
21 Check on adjustment of λ:
22 if (F (V′)− Fprevious(V

′))/Fprevious(V
′) > 0.01 then

23 λ = 0.1 · λ
24 end
25 end
26 return for each v ∈ V′: exp(−F (v)), see equation (6.12).
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Figure 6.3: ‘Univariate’ outlier (left, U-index = 0.74) and ‘multivariate’ outlier (right,
U-index = 0.43).

terms like hjhk. Hence the sum over all possible values of h in equation (6.11), comes
down to summing over each element of h separately, essentially reducing the time to
compute the free energy of an observation from exponential to linear. The free energy
of an observation can be expressed most conveniently as,

F (v) = −
∑

i∈visible

viai −
∑

j∈hidden

log(1 + exj ), (6.12)

where xj = bj +
∑

i viwij is the input for the hidden node j, see equation (22) of [39]
for a derivation.

Applying the procedure above, we obtain for each observation the expression
exp(−F (v)), which is proportional to p(v). Now one may proceed along two lines:
(1) if interest lies only in obtaining the k most anomalous cases in a data set, one may
order the observations according to F (v) and report the k observations with largest
free energy. (2) otherwise, one may obtain a set of outliers by computing the me-
dian m and interquartile range IQR of exp(−F (v)) for all v ∈ V and set a threshold
θ = m− c · IQR below which observations are considered outliers.

6.2.4 Type of outliers

A distinction between type of outliers, that will prove fruitful in explaining differences
among algorithms in Section 6.4, is that some outliers are multivariate in nature while
others are univariate, compare Figure 6.3. In the left subplot a univariate outlier is
shown. This outlier can be detected by only looking at one feature (x), while the
multivariate outlier of the right subplot requires knowledge about both features.

In practice we do not know a priori the nature of the outliers, as we do not know
what observations are outliers. However, in a benchmark situation, we know what
observations are outliers. The outliers are indicated by a binary feature y taking the
value 1 for an outlier and 0 otherwise. In a benchmark situation we can thus quantify
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the univariate nature of the outliers by defining a new concept, called the Univariate-
index, or U-index, as

U-index = max
i∈{1...p}

(|corr(xi, y)|), (6.13)

where corr is the correlation function, p is the number of features of the data set
(without the outlier label y). In words, equation (6.13) says to take the maximum of
the absolute value of the correlation coefficient of any feature with the binary label
indicating the outliers. The index is added to Table 6.1 and will prove useful in Section
6.4.

6.3 Experimental Setup

6.3.1 General

To test the effectiveness of the algorithms mentioned in the previous section, the
algorithms are applied to the benchmark data sets of Goldstein and Uchida [43].
The complete code of the experiments can be at [86]. In the experiments we used
implementations of the algorithms as can be found in the R-packages: ‘autoencoder’
(version 1.0) [34], ‘IsolationForest’ (version 0.0-26) [70], and ‘deepnet’ (version 0.2)
[100]. The latter package is used for the RBM and is adjusted slightly in order to
implement a dynamic stopping criterion and the automatic adjustment of the learning
rate, see Section 6.3.2.

The set of hyper-parameters that are tested for each algorithm will be explained
in Section 6.3.2. For each set of hyper-parameters we will run ten experiments, each
time with a different random seed. This will reduce the noise introduced by the ran-
dom component that is present in all three algorithms. Reported results are averages
over all runs. For instance, for an RBM we will test 16 different hyper-parameter set-
tings (4 different number of hidden nodes times 4 different settings for the number of
bins). A reported auc in Table 6.2 and Table 6.3 is thus an average over 4 ·4 ·10 = 160

experiments.
Results are measured using the ‘area under the curve’ statistic, in line with the

approach of Goldstein and Uchida [43].

6.3.2 Setting hyper-parameters

6.3.2.1 Sparse auto-encoder

In the experiments the most basic architecture of a sparse auto-encoder is tested,
i.e., with one hidden layer. Since this simple architecture already achieved good res-
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ults, see Section 6.4, we have not experimented with more complex variants of auto-
encoders.

The main architectural hyper-parameter is the number of hidden nodes h. We
choose h ∈ {5, 10, p/2, p}, where p is the number of features in the data set, excluding
the label indicating the outliers. If p/2 is not an integer, we rounded downwards.
An exception is made for the ‘speech’ data set that contains 400 features, requiring
an exceptional long run time. For ‘speech’ we take h ∈ {5, 10, 25, 50}. The numbers
5 and 10 hidden nodes have been chosen since some initial experiments indicated
that a reasonably low reconstruction error could be obtained with these numbers.
The numbers p/2 and p are added to ensure that data sets with more features (more
possible patterns) have a network with larger expressive power.

The learning rate λ is set to a value of 0.001 for all data sets, since this value
ensured a smooth decreasing target function for all data sets. The sparsity parameter
ρ is fixed to 0.1 as recommended by Ng in his lecture notes on auto-encoders [80].

6.3.2.2 Isolation forest

The isolation forest algorithm is robust concerning the values of its hyper-parameters.
For all hyper-parameters we choose the values as recommended by Liu et al. [71].

6.3.2.3 Restricted Boltzmann Machine

The number of hidden nodes for the RBM is set equal to the values chosen for the
sparse auto-encoder, i.e. h ∈ {5, 10, bp/2c, p} and h ∈ {5, 10, 25, 50} for the ‘speech’
data set.

A classical RBM needs binary input. For this reason we pre-processed the data
for RBM’s by discretizing each feature into b bins, using equal width binning. Sub-
sequently, a dummy variable is constructed for each bin, using thermometer encoding
as mentioned in Section 6.2.3. In the experiments we set b ∈ {3, 5, 7, 10}.

The learning rate λ and the stopping criterion of the RBM is set dynamically.
Initially λ = 0.01, subsequently λ is decreased by a factor 10 as soon as free energy of
all observations between two epochs rises with more than 1 per cent. The algorithm
is stopped as soon as the free energy of the data set changes less than 1 promille. The
free energy serves as a proxy for the (log-) likelihood (6.10). The log-likelihood can
be separated in two terms like,

log
∏
v∈V

p(v) = − logZ(W,a,b)−
∑
v∈V

F (v). (6.14)

The last term is the free energy of the data set.
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6.3.3 Data Sets

Table 6.1 provides a summary of the data sets of the benchmark of Goldstein and
Uchida. [43]. All features in the data sets are numeric. Most data sets are originally
posted for classification tasks. To make the data sets suitable for anomaly detection,
typically observations from one specific class are labeled anomalies, while all other
observations are considered normal cases.

As a data pre-processing step, a min-max scaling is applied to all features x of all
data sets, resulting in a range of [0, 1] for each feature,

xsc =
x− xmin

xmax − xmin
. (6.15)

Below we will give a short description of each data set.

data set name number number outliers percentage U-index
of rows of columns outliers

1 breast cancer 367 30 10 2.72 0.570
2 pen global 809 16 90 11.1 0.600
3 letter 1.600 32 100 6.25 0.193
4 speech 3.686 400 61 1.65 0.079
5 satellite 5.100 36 75 1.49 0.308
6 pen local 6.724 16 10 0.15 0.047
7 annthyroid 6.916 21 250 3.61 0.419
8 shuttle 46.464 9 878 1.89 0.675
9 aloi 50.000 27 1.508 3.02 0.029

10 kdd 1999 620.098 29 1.052 0.17 0.678

Table 6.1: Summary of the data sets used to compare the various anomaly detection
algorithms. See equation (6.13) for the definition of the U-index.

6.3.3.1 Breast Cancer

This data set is derived from the Wisconsin Breast Cancer data set that contains med-
ical data of 569 patients. The data consists of features derived from digitized images
of breast mass, obtained via a Fine Needle Aspirate. In the original data set there
are 357 patients with benign breast cancer and 212 patients with malignant breast
cancer. In the data set prepared for anomaly detection, all benign patients are kept,
while the first 10 patients with malignant breast cancer are labeled as anomalies.
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6.3.3.2 Pen Global

The observations in this data set are feature vectors derived from images of the di-
git ‘8’, handwritten several times by 44 different writers. The feature vectors have a
length of 16 and contain eight (x, y) pairs. These pairs are positions that are recorded
after fixed intervals when the digit is written. The anomalies are 10 observations from
the digits ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘9’ each, leading to 90 anomalies.

6.3.3.3 Letter

This data set consists of features extracted from 3 letters from the English alphabet.
The outliers consist of the same features but extracted from the other letters of the
alphabet. To make the anomaly detection task more challenging, the contributors
added randomly some features to each observation, coming from all letters of the
English alphabet.

6.3.3.4 Speech

This data set comes from the domain of speech recognition. Each observation is a
so-called ‘i-vector representation’ of a speech segment. The normal cases come from
persons with an American accent, while outliers consist of persons with other accents.

6.3.3.5 Satellite

This data set consists of features extracted from satellite images. These images are
used to determine the soil type. In this data set the soil types: ‘red soil’, ‘gray soil’,
‘damp gray soil’ and ‘very damp gray soil’ are normal instances. Anomalies were
sampled from the classes: ‘cotton crop’ and ‘soil with vegetation stubble’.

6.3.3.6 Pen Local

This data set has the same underlying data set as ’Pen Global’. However, instead of
focusing on the digit ‘8’, all digits are kept with the exception of the digit ‘4’. From the
latter digit only the first ten observations are included and these form the anomalies.

6.3.3.7 Annthyroid

This data set is derived from the annthyriod data set, also known as the Thyroid dis-
ease data set, and comes from the medical domain. It contains features from patients;
normal cases represent healthy patients, the outliers are sampled from the patients
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that suffer from hypothyroid cancer. The first fifteen features are binary features, the
next six features are continuous.

6.3.3.8 Shuttle

This data set is used in the Statlog project and contains features that are connected
to the normal and abnormal functioning of radiators in a NASA space shuttle. The
original data set is designed for supervised anomaly detection. The version used in
this chapter is adjusted by Goldstein and Uchida [43] mainly by reducing the number
of outliers.

6.3.3.9 ALOI

The aloi data set originates from a data set provided by the Amsterdam Library of
Object Images (ALOI). This library contains images of objects. This particular data
set contains a feature vector of length 27 for each image, derived by apply a HSB
color histogram. Such a histogram gives the distribution of colors in an image. Each
object is photographed many times under different angles and lighting conditions.
The 1.508 observations labeled as anomalies correspond to a few objects selected as
anomalies.

6.3.3.10 KDD Challenge 1999

This data set comes from a challenge presented at the Knowledge Discovery and Data
Mining conference of 1999. The data set contains artificially created observations
that represent HTTP traffic in a computer network. The data set is enriched with
observations representing observations typically seen in attacks. The current data set
has undergone some data preparations to make it more suitable for testing various
anomaly detection algorithms, see [43] for details.

6.4 Results

Table 6.2 summarizes the findings of the experiments. The isolation forest algorithm
realizes the highest area under the curve on the ‘shuttle’ data. The RBM reaches first
place for ‘breast cancer’ and ‘kdd 1999’, although the first position is shared with
HBOS (Histogram-Based Outlier Score) for the latter data set. The auc-values for all
algorithms in the benchmark can be found in Table 6.3.

Figure 6.4 displays the overall performance of the algorithms on all data sets. The
k-NN and kth-NN algorithms perform the best in general. Only on the ‘annthyroid’
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data set auto- isolation RBM mean best best alg.
encoder forest bench- bench- bench-

mark mark mark
1 breast 0.9091 0.9810 0.9858 0.9067 0.9827 HBOS

cancer ± 0.0040 ± 0.0014 ±0.00005 ± 0.0016
2 pen 0.9420 0.9304 0.8282 0.7836 0.9872 k-NN

global ± 0.0008 ±0.0016 ±0.0014 ± 0.0055
3 letter 0.7667 0.6337 0.5794 0.7850 0.9068 LoOP

± 0.0042 ±0.0052 ±0.0026 ± 0.0078
4 speech 0.4716 0.4699 0.4715 0.4936 0.5347 LoOP

± 0.0002 ±0.0052 ± 0.0002 ± 0.0343
5 satellite 0.9057 0.9479 0.9060 0.8734 0.9701 k-NN

± 0.0017 ±0.0018 ±0.0018 ± 0.0007
6 pen 0.8346 0.7828 0.8220 0.9129 0.9816 LOF

local ± 0.0039 ±0.0064 ±0.0036 ± 0.0024
7 ann- 0.5657 0.6456 0.5089 0.6312 0.9150 HBOS

thyroid ± 0.0010 ±0.0058 ±0.0026 ± 0.0123
8 shuttle 0.9881 0.9973 0.9832 0.7684 0.9925 rPCA

± 0.0000 ±0.0002 ± 0.0004 ± 0.0039
9 aloi 0.5415 0.5408 0.5311 0.6229 0.7899 LoOP

± 0.0004 ±0.0003 ±0.0006 ± 0.0093
10 kdd 1999 0.9718 0.9656 0.9990 0.7926 0.9990 HBOS

± 0.0001 ±0.0017 ±0.00004 ± 0.0007

Table 6.2: Mean Area Under the Curve (AUC) and standard deviation when applying
the anomaly detection algorithms with various settings on the benchmark data sets.

data, these algorithms perform below average. The main characteristic of the ‘an-
nthyroid’ data are its binary features. These binary features have almost no relation
with the outlierness of an observation, but do have a large influence on the distance-
based k-NN and kth-NN algorithms. Hence we may say that for distance based meth-
ods, scaling is important and may give problems when combining binary (or categor-
ical) features with continuous ones.

The Cluster-Based Local Outlier Factor (CBLOF) is clearly the worst algorithm, al-
though variants of this algorithm (uCBLOF and LDCOF) clearly improve performance
considerably. The uCBLOF algorithm even reaches the third place in the ranking of
algorithms in Figure 6.4. However it performs always worse than the simpler k-NN
and kth-NN algorithms, except for data sets with a large U-index (shuttle, kdd 1999).
Here the underlying clustering approach may have its advantages.

The Histogram-Based Outlier Score (HBOS) algorithm and the Local Outlier Prob-
ability (LoOP) algorithm deserve attention as well, since they are the top performers
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Figure 6.4: Average Area Under the Curve of all algorithms of the benchmark and
the three newly added algorithms. The average is taken over all data sets in the
benchmark.

for 6 of the 10 data sets among the original 19 algorithms of the benchmark. The
simple HBOS algorithm is clearly strong on data sets with a large U-index (an indic-
ation for univariate outliers) like breast cancer, shuttle and kdd 1999, while weak
on data sets with a small U-index (aloi, letter). It performs also well on annthyroid,
where it does not get distracted by the binary features that have almost no correl-
ation with the outliers. In contrast to HBOS, the LoOP algorithm performs well for
data sets with a small U-index (letter, pen local, speech, aloi), but badly on data sets
with a large U-index (shuttle, kdd 1999).

If we now turn our attention to the newly added algorithms, then we see that all
three algorithms are good in finding outliers in data sets with a large U-index (shuttle,
kdd 1999, breast cancer, pen global and satellite), often surpassing the currently best
algorithm. However the new algorithms perform badly on data sets with a small U-
index (letter, speech, aloi). The isolation forest algorithm can best handle the binary
features that are present in annthyroid. Because of this property and the fact that
isolation forest has the shortest run times and requires almost no tuning of hyper-
parameters, this algorithm could be labeled as the preferred choice between the three
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new algorithms.
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Figure 6.5: Value of the Area Under the Curve for the auto-encoder on the ‘Satellite’
data.

The time complexity for training one epoch and scoring the data is linear in the
number of observations n, the number of features p and the number of hidden nodes
h (O(nph)) for standard sparse auto-encoders and RBMs. The time to train and score
an isolation forest is linear in the number of observations and independent of the
number of features (O(n)). In practice, the run time of the algorithms is to a large
extent dependent on the number of epochs needed before reaching convergence dur-
ing training. With respect to this, isolation forest is the fastest algorithm. From the
remaining two, RBMs reached convergence sooner than auto-encoders in our exper-
iments. However this may be caused to a large extent by the use of the BGFS al-
gorithm to optimize the target function for auto-encoders instead of the generally
faster stochastic gradient descent method.

After running the experiments for auto-encoders, we have plotted the number of
hidden nodes against the auc in order to get more insight in the number of hidden
nodes needed in the context of anomaly detection. One of these plots is displayed
in Figure 6.5. Observations with index 1 to 10 in this plot are coming from auto-
encoders with 5 hidden nodes, index 11 to 20 with 10 hidden nodes, index 21 to 30
with 18 hidden nodes, and finally, index 31 to 40 with 36 hidden nodes. All other
hyper-parameters are fixed (except for the random seed that changes for each run). It
is clear from the graph that auto-encoders with a small number of hidden nodes are
better able to find the outliers (larger auc value). Also for the plots of the other data
sets, it is clear that for most data sets 5 or 10 hidden nodes are sufficient.
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6.5 Conclusions and Discussion

Table 6.3 shows the performance of all algorithms on the benchmark of Goldstein
and Uchide [43], including the three newly added algorithms. A main observation is
that the three algorithms are able to meet or beat the current best algorithm in the
benchmark several times: isolation forest is superior on the ‘shuttle’ data set, while
the RBM outperforms all current algorithms on ‘breast cancer’ and matches the best
performance on the ‘kdd 1999’ data set, see Table 6.2.

Isolation Forest seems to be the preferred choice of the three algorithms that
are newly added to the benchmark; the area under the curve on the benchmark is
rather similar to the other two algorithms, but it has shorter run times and its hyper-
parameters are easy to set. Moreover it handles the binary features in the ‘annthyroid’
data set well.

Another observation is that there are (at least) two types of data sets with outliers:
in the first type of data sets there is at least one feature that has a correlation with
the label indicating an outlier. Anomaly detection algorithms that perform well on
these data sets are: HBOS, rPCA, oc-SVM, η-oc-SVM, auto-encoder, isolation forest,
RBM, and uCBLOF. We see that all three new algorithms fall in this category. The
second type of data sets lack such a univariate feature. On these data sets LOF-like
(Local Outlier Factor) algorithms perform well: LOF, LOF-UB, COF, INFLO, and LoOP.
The U-index, as introduced by equation (6.13), helps to classify the data sets in the
benchmark in these two groups, see Table 6.1.

Further, it is noteworthy that simplicity seems to go hand in hand with power at
several places. This is evident in Figure 6.4, where it becomes clear that the simple
algorithms of k-NN and kth-NN perform the best when considering the average per-
formance on all data sets. Also, Table 6.2 shows that the relatively simple HBOS
algorithm belongs to the top performers for data sets with a large U-index. Finally, we
note that simplicity in the number of nodes (i.e. a small number) for auto-encoders
and RBMs does not decrease performance, see for instance Figure 6.5.

When reflecting on the results, then some reservations are in order. First, the
benchmark contains a limited number of data sets (ten), and a disproportional large
number of these data sets are features extracted from images (‘breast cancer’, ‘pen
global’, ‘pen local’, ‘letter’, ‘satellite’, ‘aloi’). Moreover all data sets are tabular data and
contain no categorical features. Second, in this chapter only the most common imple-
mentations of the three newly added algorithms are tested. Each algorithm knows
extensions that are worth further investigation in the future: the isolation forest al-
gorithm has recently been extended by allowing splits in the feature space that are
not parallel to coordinate axes, see the paper of Hariri et al. [48]. Auto-encoders can
be extended by allowing more hidden layers, while also interesting variants exist that
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are mainly developed for large data sets (variational auto-encoders, GAN-networks
[103]). RBMs can be stacked, leading to deep belief networks. Also a combination
of auto-encoders and RBMs exists, see the paper of Hinton and Salakhutdinov [52].
Here RBMs initialize the weights in deep auto-encoders, making it feasible to train
these networks with gradient descent.

For further research we also want to mention the ‘speech’ data set. None of the
current algorithms performs well on this data set due to the combination of many
features (400) and a low U-index.


