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3
Extending Logistic Regression Models

with Factorization Machines

In this section we address the following research question:

Research Question Can we improve on current audit selection models by incor-
porating categorical variables with many values (like ‘industry sector’) that are
valued by experts doing manual audit selection?

Interest in including categorical variables with many levels was raised by a practical
problem at the NTCA: a much used risk model did not contain these variables because
they were rejected in a feature selection step. Nevertheless, experienced auditors used
these variables successfully in the manual selection of audits. The idea originated that
complementary techniques must be used to exploit the information hidden in these
variables.

The research has value outside the realm of taxes as many data scientists en-
counter categorical features with many levels and are looking for the right way to
incorporate them in risk models or other applications, as is evident from the ques-
tions on the subject on www.stackoverflow.com.

We focus on logistic regression models, a technique frequently used for risk mod-
eling within tax administrations. Including categorical variables with many levels in
a logistic regression model easily leads to a sparse design matrix. This can result in a
big, ill-conditioned optimization problem causing overfitting, extreme coefficient val-
ues and long run times. Inspired by recent developments in matrix factorization, we
propose four new strategies to overcome this problem. Each strategy uses a Factoriz-
ation Machine that transforms the categorical variables with many levels into a few
numeric variables that are subsequently used in the logistic regression model. The
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application of Factorization Machines allows to include interactions between the cat-
egorical variables, often substantially increasing model accuracy. The four strategies
have been tested on a data set of the NTCA and three public data sets, demonstrating
superiority of the approach over other methods of handling categorical variables with
many levels. The chapter is based on the following article:

• M. Pijnenburg and W. Kowalczyk. Extending logistic regression models with fac-
torization machines. In International Symposium on Methodologies for Intelligent
Systems, pages 323–332. Springer, 2017
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3.1 Introduction

Logistic regression is a well-known classification algorithm that is frequently used
by businesses and governments to model risks. However, logistic regression will run
into problems when one tries to include categorical variables with many levels. The
standard approach will transform each level of each categorical variable into a binary
(‘dummy’) variable (see, e.g., [42]), resulting in a large, sparse design matrix. The
sparsity usually leads to an ill-conditioned optimization problem, resulting in over-
fitting, extremely large values of model coefficients and long run times or even lack
of convergence. The size and sparsity of the design matrix will increase even more if
interactions are included between categorical variables with many levels or interac-
tions between these categorical variables and some numeric variables. Finally, a large
design matrix leads to a model with many coefficients, making it difficult to interpret.

Existing approaches for incorporating multi-level categorical variables into logistic
regression reduce the problem of sparsity at the price of losing some information from
data and consequently leading to models of inferior quality, see section 3.2.1 for an
overview. This became clear to the authors when working on a risk model for selecting
risky VAT tax returns for the Netherlands Tax and Customs Administration (NTCA),
see also Section 2.5. Although the risk model performed pretty well, one experienced
auditor was able to outperform the model by manually extracting information from
categorical variables with many levels such as industry sector code and zip code.
This information was clearly not picked up by the model, where standard approaches
had been followed to include these categorical variables. The real-life example of the
NTCA will be referred to in this chapter several times.

Logistic regression is traditionally used at the NTCA since it is a standard tool in
the industry and the role of various features can be easily interpreted. Moreover, it
performs well and its output can be interpreted as probabilities. This latter fact is
important since it allows a decoupling of two key components of a tax return risk
model: the probability of an erroneous tax return and the size of the financial loss
connected to the error in the tax return, see [11].

In this chapter we propose four strategies for including categorical variables with
many levels into a logistic regression model, by making use of Factorization Machines,
[97]. Factorization Machines transform the categorical variables into vectors of nu-
merical ones, taking interactions of the categorical variables into account. Factoriza-
tion Machines can be viewed as an extension of matrix factorization methods, [58],
that in turn have been developed in the context of recommendation systems, stimu-
lated by the Netflix Challenge.

The chapter is organized as follows. Section 3.2 reviews the related literature.
Section 3.3 introduces the four strategies of combining Factorization Machines and
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Logistic Regression. Section 3.4 describes the experiments on four data sets. Section
3.5 contains conclusions and a discussion of the results.

3.2 Related Research

3.2.1 Existing Methods for Many Levels

A number of approaches have been suggested to deal with categorical variables with
many levels. Many approaches focus on grouping levels of categorical variables into
a smaller number of levels. This grouping can be done in a supervised manner (i.e.
involving the target) or in an unsupervised way.

A well-known supervised way of grouping levels comes from the decision tree
algorithm CART [21]. Here, levels are ordered by the percentage of cases in the target
class. Subsequently, all levels with the percentage above a certain threshold value are
grouped into one new level, and the remaining levels into another one. Breiman et al.
[21] proved that this approach will find the optimal partitioning of a train set under
the conditions that the target is binary, the new categorical variable has two levels,
and a convex criterion (like Gini) is used to measure the quality of the partition.
Several extensions of this approach have been developed, e.g. [24, 26], but they
either lack the guarantee of finding the optimal partitioning, or have a substantially
higher order of complexity.

Other, frequently employed, supervised ways of grouping levels include search
methods, like forward or stepwise search [16]. Typically one starts with each level
forming a group of its own. Then groups are merged one at a time based on various
criteria, leading to fewer groups. This approach is used, for instance, in the CHAID
algorithm [57].

A simple, but often effective, unsupervised way of grouping levels has been pro-
posed by Hosmer and Lemeshow [53]. They suggest to group levels that occur infre-
quently. This approach gave the best results on our data sets from all supervised and
unsupervised groupings tried. Another frequently used unsupervised approach is to
let experts group the levels.

Other methods than grouping levels have been put forward. For example, in a data
pre-processing step the categorical variable with many levels can be transformed into
a numeric variable with help of an Empirical Bayes criterion, [77]. Another approach,
see [10], is to find additional numeric predictors. For instance, if the categorical vari-
able is “city”, the number of inhabitants of the city could be added to the data set as
a predictor.

Although all these approaches for dealing with categorical variables with many
levels have their merits, none of them was able to improve the current risk model at
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the NTCA. So other approaches need to be considered.

3.2.2 Factorization Machines

Factorization Machines are introduced in a seminal paper of Rendle [97]. This class of
models is often employed for recommendation systems, where categorical variables
with many levels occur frequently. The model equation of a Factorization Machine is
given by:

ŷ = w0 +

s∑
j=1

wjxj +

s∑
j=1

s∑
k=j+1

〈vj ,vk〉xjxk (3.1)

where ŷ is the predicted value for an observation with variables x1, . . . , xs. The w’s
are numeric coefficients to be fitted and the v’s are vectors to be fitted (one for each
variable). All vectors v have the same (usually small) length r, which is an input para-
meter. These vectors can be interpreted as low dimensional numeric representations
of levels.

The interesting part of equation (3.1) are the interaction terms. Instead of assign-
ing a new coefficient wjk to each interaction term, a Factorization Machine models
the interaction coefficients as an inner product between the vectors vj and vk. The in-
troduction of such a vector for each variable reduces the number of interactions from
O(s2) toO(rs), so from quadratic to linear in the number of variables s. Typically, vari-
ables xj in a Factorization Machine are binary variables resulting from transforming a
categorical variable with many levels in dummy variables. In this case the number of
coefficients is thus not quadratic in the number of levels, but linear. Note that when s
is small (e.g., s ≤ 2r + 1) there is no reduction in the number of coefficients.

The loss function that is used to find the optimal values of parameters in (3.1)
usually involves a regularization term which controls the L2 norm of model paramet-
ers. To find an optimum of the loss function several techniques can be used, among
them Markov Chain Monte Carlo, Alternating Least Squares and Stochastic Gradient
Descent [98].

3.3 Combining Logistic Regression with Factorization
Machines

In this section we propose four new strategies for extending Logistic Regression with
Factorization Machines. The key idea of these new approaches is the usage of Fac-
torization Machines for squeezing relevant information from many-level categorical
variables and their interactions into numeric variables and incorporating these latter
in a logistic regression model. In this way, potential problems with large and sparse
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design matrix are handled by Factorization Machines, while Logistic Regression takes
care of combining “non-sparse” variables in a standard way.

Notation. We model a binary target y with help of p numeric variables x1, . . . , xp,
and q categorical variables d1, . . . , dq with l1, . . . , lq levels.

We will compare the performance of our four strategies with two benchmarks: (1)
a logistic regression model without categorical variables, and (2) a logistic regression
model where infrequent levels have been grouped as suggested by [53], see section
3.2.1. We start by introducing these latter methods in more detail.

3.3.1 Plain Logistic Regression (PLM)

The PLM model consists of a standard logistic regression model of the numeric vari-
ables x1, . . . , xp. The model equation is:

ŷ =
1

1 + e−z
, where z = α0 + α1x1 + . . .+ αpxp. (3.2)

The coefficients αi are estimated by finding the unique maximum of the log-
likelihood function over the train set.

3.3.2 Logistic Regression with Grouping (LRG)

This model groups infrequent levels of the categorical variables with many levels
d1, . . . , dq into a default level for each dj . The actual threshold for calling a level
‘infrequent’ depends on the size of the data set and can be found in Table 3.1. The
grouping of infrequent levels leads to a new set of categorical variables d̃1, . . . , d̃q with
less levels. Next, a standard approach is followed to replace categorical variables by
dummy variables, i.e. each d̃j is transformed into lj−1 binary variables. Subsequently,
PLM is applied on these binary variables and the numeric predictors.

In mathematical terms, the LRG model is given by:

ŷ =
1

1 + e−z
, where z = α0 + α1x1 + . . . αpxp+

α11b11 + . . .+ α1l1−1b1l1−1 + . . .+ αqlq−1bqlq−1, (3.3)

where b’s are binary variables. Note that in order to limit notation, we denote the
coefficients of the logistic regression in all model equations ((3.2), (3.3), (3.4), (3.5),
(3.6), and (3.7)) with α0, α1, . . ., despite the fact that the values of these coefficients
differ.
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3.3.3 LRFM1

The model LRFM1 (Logistic Regression with Factorization Machines 1) is the first
model showing our new approach. The categorical variables with many levels d1, . . . , dq
are first put into a Factorization Machine f0 whose coefficients are estimated from a
train set with the target variable y. The output of f0 — denoted by g0 — is then added
to the model equation of the logistic regression. Therefore,

g0 = f0(d1, . . . , dq) and

ŷ = 1
1+e−z , where z = α0 + α1x1 + . . . αpxp + αg0g0. (3.4)

3.3.4 LRFM2

Although LRFM1 is able to model interactions between categorical variables with
many levels, it does not model interactions between the variables d1, . . . , dq and one
or more numeric variables xj . For this reason we allow the model equation (3.4) to
be extended with additional variables g1, . . . gt, where t ≤ p. Each gj is a prediction
from a Factorization Machine fj that takes as input the categorical variables d1, . . . , dq
and a variable x̄j . The variable x̄j is a discretized version of xj , obtained by an equal
frequency binning with 5 bins.

The coefficients of the Factorization Machine fj are learned from a train set that
contains the target y. Only variables gj that significantly improve the results on the
train set (compared to the model with only g0, significance level α = 0.05) will enter
the model equation. Therefore, the model equation for LRFM2 is:

gj = fj(x̄j , d1, . . . , dq) and ŷ =
1

1 + e−z
, where

z = α0 + α1x1 + . . . αpxp + αg0g0 + αg1g1 + . . .+ αgtgt. (3.5)

3.3.5 LRFM3

Instead of learning the coefficients of a Factorization Machine f on a train set with
known binary target y, we can do an intermediate step. We first fit a logistic regression
model with the numeric variables x1, . . . , xp on the train set (so without d1, . . . , dq),
and then compute the deviance residuals ri (see [53]):

ri = ±

√
2

[
yi log

yi
ŷi

+ (1− yi) log
1− yi
1− ŷi

]
,

where ŷi denotes the predicted probability that yi = 1 and the sign is + iff yi = 1.
The residual vector r can then be used to train the coefficients of the Factorization
Machine instead of the original target y. This will give a Factorization Machine f̃ .



42 3.4. Experiments

Note that the Factorization Machine is now performing a regression task, instead of
classification. LRFM3 is described by the equations:

h0 = f̃(d1, . . . , dq) and

ŷ = 1
1+e−z , where z = α0 + α1x1 + . . . αpxp + αh0

h0. (3.6)

3.3.6 LRFM4

Similarly as LRFM1 was extended to LRFM2, we can extend LRFM3 to LRFM4. More
specifically, we form additional variables hj by including a discretized numeric vari-
able x̄j in the Factorization Machine that is trained on residuals. Only variables hj
that significantly (α = 0.05) improve the result on the train set will enter the model
equation. This provides our last strategy:

hj = f̃(x̄j , d1, . . . , dq) and ŷ = 1
1+e−z , where

z = α0 + α1x1 + . . . αpxp + αh0
h0 + αh1

h1 + . . .+ αhr
hr. (3.7)

3.4 Experiments

Interest in including categorical variables with many levels was raised by a practical
problem at the NTCA. Most research has been focused on this data set. However, in
order for the research to be reproducible, we also applied our approach to three public
data sets in the UCI Repository [65] that contain categorical variables with many
values. See Table 3.1 for some key characteristics of the four data sets. We considered
a variable to have ‘many levels’ if the number of levels exceeded 30. This number
corresponds roughly with the situation where the design matrix becomes sparse in
our four data sets. Below we will describe the data sets, the exact parameters of the
experiments, and the results.

3.4.1 Data Sets

3.4.1.1 Tax Administration

This data set consists of approximately 80,000 audited VAT tax returns. A small part
of these tax returns (17.5%) were found to contain one or more erroneous statements
when audited. The data set has 33 numeric variables that are the result of a stepwise
feature selection process that started with over 500 variables.
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Data Set
tax kdd98 retail census

# observations 86,235 95,412 532,621 199,523
# numeric vars 33 18 3 23
% target = 1 17.5% 5.0% 29.1% 6.2%
% target = 0 82.5% 95.0% 70.9% 93.8%
threshold infreq.
level (LRG meth.) 100 100 1000 100
cat. features zipcode DMA (207) InvoiceNo ind. code (52)
(# levels) (1,027) RFA 11 (101) (25,900) occ. code (47)

industry RFA 14 (95) Description prev. state (51)
sector RFA 23 (87) (4148) hh. stat (38)

(3,747) OSOURCE (869) CustomerID cntr fthr (43)
ZIP (19,938) (4,373) cntr mthr (43)

Cntr (38) cntr birth (43)

Table 3.1: Summary of data sets used in the logistic regression / Factorization Ma-
chine experiments

3.4.1.2 KDD 98 cup

This data set comes with a binary target and a numeric target. We only use the former
as we focus on classification. Additionally, we only used the ‘learning’ data set and not
the ‘validation’ data set. The original data set contains 480 variables. We selected 22
variables to get a data set similar to the tax data. The variable selection has been
done by keeping the variables reported in [44] (page 147, Table 6) and adding the
two variables with many levels: OSOURCE and ZIP. Missing values have been replaced
by 0, except for WEALTH where the median has been inserted.

3.4.1.3 Online Retail

The following data processing steps have been performed: (1) canceled transactions
have been removed, (2) InvoiceDate has been split in a date part and a time part, (3)
StockCode has been removed since its values can be mapped almost one-to-one to
the values of Description. The data set does not contain a target. We created a binary
target by defining the target to be 1 if the variable Quantity is larger or equal to 10,
and 0 otherwise. After this, Quantity has been removed from the data set.
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3.4.1.4 Census

The following data processing steps have been taken: (1) Weight has been discarded
as is advised in the data description, (2) variables that are aggregates of other vari-
ables have been removed. For instance, Major Industry Code aggregates the levels of
Industry Code. For this reason the variables: Major Industry Code, Major Occupation
Code, Previous Region, Household Summary, Migration Code Reg, Migration Sunbelt,
and Live1year House have been removed. Similarly, (3) Veteran Questionnaire is re-
moved since most relevant information is in Veteran Benefits. Finally, (4) Migration
Code MSA has been removed since it is highly collinear with Previous State.

3.4.2 Model Quality Measures

Various performance measures can be used to assess the results of a classification
algorithm (e.g. accuracy, precision, area under the curve, recall). At the NTCA audit
capacity is limited and rather fixed. For this reason, one is more interested in using
the available capacity to the best (so avoiding false positives), than trying to find
all taxpayers that make an error (avoiding false negatives). Precision (i.e. the true
positives divided by the sum of true positives and false positives) is therefore a natural
measure, and more useful than accuracy (the sum of true positives and true negatives
divided by all cases). We applied precision at a ‘10% cut-off level’, measured on a
test set (i.e., we select the 10% highest scoring observations of a test set and then
compute the precision), in similar fashion as is done at the NTCA.

For reference, we have also provided the frequently used Area Under the Curve
(AUC) characteristic. For confidentiality reasons the precision and AUC could not be
reported for the tax data set (although tested in practise). Instead we have provided
the increase in precision, measured using the Plain Logistic Regression as a baseline.
For instance, if the precision of Plain Logistic Regression is 60%, and the precision
with the new technique is 66%, then the increase in precision is 100% · (66− 60)/60 =

10%.
In our experiments we used 5-fold cross validation to get reliable estimates of all

quality measures listed above.

3.4.3 Settings Factorization Machines

In our experiments Factorization Machines were constructed with libFM software [98]
with the following settings: number of iterations: 25, lengths of the parameter vec-
tors v: 16 (see equation (3.1)), and the optimization technique is set to ‘MCMC’. The
standard deviation of the normal distribution that is used for initializing the para-
meter vectors v in MCMC is set to 0.1. When building the Factorization Machines in
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Precision (%) Precision AUC
(% increase w.r.t. PLR)

kdd98 retail cens. tax kdd98 retail cens. kdd98 retail cens.

PLR 6.05 69.3 42.7 0.0% 0.0% 0.0% 0.0% .5348 .7845 .9358
LRG 7.88 80.7 44.7 2.7% 30.3% 16.4% 4.6% .5748 .8442 .9439
LRFM1 7.92 99.6 44.5 3.9% 31.0% 43.7% 4.2% .5775 .9634 .9426
LRFM2 7.92 99.8 44.5 5.1% 31.0% 44.1% 4.2% .5775 .9689 .9426
LRFM3 6.93 99.5 44.3 6.1% 14.6% 43.6% 3.7% .5502 .9710 .9410
LRFM4 6.79 99.5 44.3 9.6% 12.3% 43.6% 3.7% .5553 .9713 .9410

Table 3.2: Performance (measured in precision, increase of precision with relation
to Plain Logistic Regression, and Area Under Curve) for each strategy on all data
sets using five-fold cross-validation. Absolute values for the tax data set have been
deliberately omitted for confidentiality reasons.

approaches LRFM1 and LRFM2 we set the ‘task’ to ‘classification’, and in the remain-
ing two cases to ‘regression’.

3.4.4 Results

The results of applying two benchmark methods Plain Logistic Regression (PLR) and
Logistic Regression with Grouping (LRG), as well as our four strategies are summar-
ized in Table 3.2. The columns precision and AUC are not filled for the tax administra-
tion data set, because of confidentiality reasons.

3.5 Conclusion and Discussion

Looking at Table 3.2, some conclusions can be drawn. First, our proposed strategies
give better results than plain logistic regression for all data sets. Second, when com-
paring with LRG (the strategy that gave the best results from the methods of section
3.2.1), we see a subtler picture. Our methods outperform LRG clearly on the tax data
and the retail data. For the tax data we see that taking interactions of the categor-
ical variables with numeric variables into account, while training on residuals (i.e.
LRFM4), can substantially improve the result. When looking at the data set kdd98,
the approaches that train directly on the target y (LRFM1 and LRFM2) are able to give
slightly better results compared to LRG. However, LRG gives a slightly better result
for the census data set. The latter might be caused by the relatively small number of
levels of the categorical variables (maximum 52). Finally, our four strategies LRFM1,
LRFM2, LRFM3, LRFM4 lead to different results on different data sets, without one
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strategy being the best for all data sets. The only exception is that in some cases the
result of LRFM2 equals LRFM1 or the result of LRFM4 equals LRFM3. This is the case
when no interaction term exceeded the significance level for entering the modeling
equation. Therefore, we suggest to explore all four strategies in a practical problem
setting.

The results of this chapter show that Factorization Machines can be successfully
combined with Logistic Regression to overcome problems with categorical variables
with many levels. This will lead to better performing (risk) models. We think that
our methods can be adjusted without much effort to allow inclusion of categorical
variables with many levels in other classification algorithms that suffer from a sparse,
ill-conditioned model matrix, like other Generalized Linear Models or Support Vector
Machines. Also a generalization to a multinomial logistic regression is straightfor-
ward. Note that some well-known classification algorithms have problems with cat-
egorical variables with many levels. For example, the standard implementation in R
of RandomForest [64] accepts only categorical variables with at most 53 levels.

Further research can address the issue of explainability of a Factorization Machine.
Although our strategies lead to relatively simple logistic regression models, the intro-
duction of the Factorization Machines worsens the explainability for that part of the
model. We think that this problem can be solved by applying various dimensionality
reduction and visualization techniques to the matrix V that consists of vectors v that
represent levels of categorical variables, [107]. One could experiment as well with
using an L1 norm as a regularization term in the Factorization Machine.

Finally, we mention that some categorical variables with many values, like zip
codes, may have a relation with ethnicity. For example people with the same ethnic
background might be clustered in certain zip codes. Since the NTCA wants to avoid
ethnic profiling, it wants to investigate this issue prior to including zip codes in a risk
model.


