Universiteit

4 Leiden
The Netherlands

Illuminating N-acylethanolamine biosynthesis with new chemical tools
Mock, E.D.

Citation
Mock, E. D. (2019, November 6). Illuminating N-acylethanolamine biosynthesis with new
chemical tools. Retrieved from https://hdl.handle.net/1887/80154

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/80154

License:

Note: To cite this publication please use the final published version (if applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/80154

Chapter 1

Therapeutic opportunities of modulating the
endogenous N-acylethanolamine tone

Over the past decades, lipids have emerged as important signaling molecules in health
and disease. Lipid messengers come in a range of shapes and sizes and are classified in
seven different categories: fatty acyls, glycerolipids, glycerophospholipids, sphingolipids,
sterol lipids, prenol lipids, saccharolipids and polyketides.! Signaling lipids often exert their
bioactivities through activation of various proteins, including G protein-coupled receptors
(GPCRs), ion channels and nuclear receptors. Within the class of fatty acyl lipids, the
N-acylethanolamines (NAEs) have garnered attention as a family of bioactive fatty acid
amides with diverse roles in inflammation, neurotransmission, appetite, fertility, stress
and anxiety. The NAEs incorporate saturated, mono- or polyunsaturated fatty acyl groups
in their structures, which determines their signaling function. The most frequently
occurring NAEs are N-palmitoylethanolamine (PEA), N-stearoylethanolamine (SEA), N-
oleoylethanolamine (OEA), N-linoleoylethanolamine (LEA), N-arachidonoylethanolamine
(AEA) and N-docosahexaenoylethanolamine (DHEA) (Table 1). At present, many

outstanding questions exist with regard to the biological actions of NAEs. In this chapter,
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an overview is provided of NAE biosynthesis and degradation, current understanding of

their physiological functions and potential therapeutic applications of modulating the NAE

tone.

Table 1. N-acylethanolamine (NAE) family members and their reported biological activities.

Name Structure Receptor Bioactivity
Anti-inflammatory5
PEA o PPAR-0” Neuroprotective®
(16:0) “°\/\uJ\/\/>:/\:j GPR55® Anti-epileptic’
' GPR119" Analgesic®
Anorectic’
SEA HO i 4 Anti-inflammatory10
~
(18:0) ”J\//\:/\v::) OPRIL Anorectic™
o Anti-inflammatory™
OEA HO _~,, S PPAR-0.*2 Anorectic’
(18:1-®9) H GPR119* Analgesic™*
. 15
Neuroprotective
o
o
LEA "oy N PPAR-0*° Anorectic'®
(18:2-w6) GPR119" Neuroprotective19
Neurotransmission”
. . 24
Orexigenic
AEA CBl20 Analgesic25
(20:4-06) (ol: T Anxiolytic26
o TRPV1? Memory formation®’
.28
Neuroprotective
Fertility29
DHEA 30 Neurogenesis31
GPR110 .
(22:6-m3) Antl-lnflamma’cory32
Abbreviations: PEA =  N-palmitoylethanolamine;  SEA N-stearoylethanolamine;

N-oleoylethanolamine; LEA = N-linoleoylethanolamine; AEA

N-arachidonoylethanolamine; DHEA

N-docosahexaenoylethanolamine; PPAR-a = peroxisome proliferator-activated receptor a; GPR55, 110 or

119 = G-protein coupled receptor 55, 110 or 119; CB,;, = cannabinoid receptor 1 or 2; TRPV1 = transient

receptor potential vanilloid 1.
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1.1 NAE metabolism

In 1979, Schmid and co-workers reported the accumulation of NAEs in infarcted dog
heart.® Shortly hereafter, the same lab showed that N-acylphosphatidylethanolamines
(NAPEs), a previously unknown lipid class, were equally upregulated.34 Due to the

structural similarities of NAPEs and NAEs, a precursor-product relationship was

o
Rz)l\o o
R1\n/o\/K/o\ﬁ/o\/\NHz
(o} (o}
o
R4)l\0 - a

o]
o HO\IF',/O\/\ J\

O\r!,/o\/\N+ N
f PLA2G4E 8 H
OYO o pNAE
R, PLAAT1 5
PLC PTPN22
1-lysoPC or
DAG PO, SHIP1

e : ‘
o NAPE-PLD : H NAAA
R (o} 0. !_O. + HO, H
1\n/ \/K/ \ﬁ/ \/\”JLR3 f} : \/\N/”\R3: T} HOJLR3
o 0 : H : FA

PA H NAE

lysoNAPE GP-NAE

Figure 1. Biosynthetic pathways of N-acylethanolamines (NAEs). In total, four different enzymatic
routes have been reported that can produce NAEs.” In the canonical pathway,
N-acylphosphatidylethanolamine (NAPE) is formed from phosphatidylethanolamine (PE) and
phosphatidylcholine (PC) catalyzed by phospholipase A, group IV E (PLA2G4E). This is followed by
NAPE phospholipase D (NAPE-PLD)-mediated hydrolysis to NAE. Fatty acid amide hydrolase (FAAH)
catabolizes NAEs into fatty acids (FAs) and ethanolamine. Abbreviations: PLAAT1-5

phospholipase and acyltransferase 1-5; ABHD4 = q,B-hydrolase domain 4; GDE1, 4 or 7
glycerophosphodiesterase 1, 4 or 7; PLC = phospholipase C; PTPN22 = protein tyrosine
phosphatase non receptor type 22; SHIP1 = phosphatidylinositol 3,4,5-trisphosphate 5-
phosphatase 1; NAAA = N-acylethanolamine acid amidase; GP-NAE = glycerophospho-N-
acylethanolamine; 1-LPC = 1-lysophosphatidylcholine; LPA = lysophosphatidic acid; PA =
phosphatidic acid; DAG = diacylglycerol; G3P = glycerol-3-phosphate; pNAE = phospho-

N-acylethanolamine.
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proposed.® Ensuing studies revealed that NAPEs are produced by the transfer of the sn-1
acyl group of phosphatidylcholine (PC) to the amine of phosphatidylethanolamine (PE),
forming NAPE and 1-lysoPC (Figure 1).** Next, the phosphodiester bond of NAPE is
hydrolyzed to generate NAE and phosphatidic acid (PA). Finally, the NAE is degraded to
fatty acid (FA) and ethanolamine.

1.1.1 NAPE biosynthesis
The canonical acyl transfer reaction that produces NAPEs, is carried out by a
Ca**-dependent N-acyltransferase (Ca-NAT). High Ca-NAT enzymatic activities were found

in heart, brain and testis tissues.>>3%>°

Remaining elusive for more than two decades, the
serine hydrolase phospholipase A2 group IV E (PLA2G4E) was recently identified as a
NAPE-generating Ca-NAT in cells, matching the reported expression and activity profile.40
Also plasmalogen-type PEs, which incorporates a vinyl ether at the sn-1 position, were
found to be suitable substrates for PLA2GA4E, thereby producing plasmalogen-NAPEs
(pNAPEs).41 pNAPEs are considered to be an important source of NAEs in the brain. In
mouse brain, the total pNAPE amount was 4-fold higher than the NAPE content.*? In
contrast, NAPEs were almost exclusively observed in the mucosal layer of rat jejunum,
while in the serosal layer both NAPE and pNAPE species were abundant.® Interestingly, in
rat brain lysate, Ca-NAT activity preferably generated N-arachidonoyl-containing (p)NAPEs
with polyunsaturated acyl groups at the sn-2 position.** This may indicate that the

Ca2+—dependent generation of AEA favors polyunsaturated (p)NAPEs as precursors.44

A second family of NATs was discovered that can produce NAPEs in a Ca**-independent

manner, termed phospholipase and acyl transferase (PLAAT) 1-5.4720

These enzymes
belong to the cysteine hydrolases and show expression in the central nervous system
(CNS) as well in peripheral tissues. In particular, PLAAT2 showed high N-acyltransferase
activity, comparable to PLA2GA4E.*"*° Also PLAAT2 accepted both PE and plasmalogen-
type PE as substrates.** Expression of PLAAT2 was found to be high in the liver, kidney,

. . . 47,51
small intestine, colon, testis and trachea.*’”

This suggests that PLAAT2 may be involved in
NAE biosynthesis in the gut. Notably, PLAAT2 expression was absent in rodents.”” So far,
no genetic or pharmacological tools have been described for the PLAAT family members.
To what extend the Ca’"-independent pathway contributes to NAPE and pNAPE

biosynthesis in vivo, is therefore still unclear.’’

1.1.2 NAE biosynthesis

In 2004, the enzyme that produces NAEs in a single step from NAPEs or pNAPEs was
identified as N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) (Figure 1).°% A
crystal structure revealed that NAPE-PLD forms a membrane-bound homodimer with two

Zn*"-ions in its active site.>®> NAPE-PLD is classified as a metallo-B-lactamase and is distinct

10
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from the PLD family.52 Brain, kidney and testis tissues were found to abundantly express
NAPE-PLD.> Interestingly, NAPE-PLD did not display any substrate preference in vitro.>*
Furthermore, PE increased the NAPE-PLD enzymatic activity, suggesting that the enzyme
is constutively active.”® In vitro, NAPE-PLD activity was found to be elevated by specific
bile acids, as well as polyamines such as spermine and spermidine.>**®>” Multiple NAPE-
PLD knockout (KO) studies described a significant reduction of saturated and unsaturated

42,58,59

NAEs in the brains of mice. In accordance, NAPE and pNAPE precursors were greatly

d.*>*® However, levels of @-6 and ®-3 polyunsaturated NAEs — AEA and DHEA,

enhance
respectively — were not decreased in all KO strains.®® It was therefore proposed that
genetic deletion of NAPE-PLD stimulated compensatory mechanisms which counteract the
reduction of AEA and DHEA content.”® In peripheral organs such as heart, kidney, liver and
jejunum, NAPE-PLD KO mice did not present decreased NAE levels, although NAPE
concentrations were highly elevated, except for jejunum.?® At present, the study of
NAPE-PLD is hampered by a lack of in vivo active inhibitors which are needed to elucidate

its role in NAE biosynthesis.

Three additional pathways have been discovered that can also produce NAEs
(Figure 1). Firstly, two phospholipases were reported that can hydrolyze the fatty acyl
esters of NAPEs. Three isoforms of secretory phospholipase A2 (sPLA,-IB, IIA and V) were
described to exclusively cleave the NAPE sn-2 ester to form lysoNAPE and a fatty acid.®*
The serine hydrolase a,3-hydrolase domain 4 (ABHD4) performed the same reaction, but
did not show any specificity towards the sn-1 or sn-2 ester.®® In addition, ABHD4 could
hydrolyze the fatty acyl ester of lysoNAPE, generating glycerophospho-NAE (GP-NAE). This
lipid species is converted by glycerophosphodiesterase 1 and 4 (GDE1/4) to afford NAE

6354 A second pathway involves cleavage of the lysoNAPE

and glycerol-3-phosphate (G3P).
phosphodiester by GDE4 or GDE7 in a lysoPLD-type reaction, producing NAE and
lysophosphatidic acid (LPA).5*®°

testis, but not in heart.®” ABHD4 KO mice displayed decreased levels of GP-NAE and

Expression of ABHD4 was found to be high in brain and

lyso-(p)NAPE in the brain, however NAE content, including AEA, was not reduced.®® The
activity of GDE1 was stimulated by Mg2+—ions and high protein expression levels were
found in brain, testis, liver and kidney tissues.®® Genetic deletion of GDE1 in mice also did
not afford a significant decrease of brain NAE levels, therefore the physiological
importance of this pathway for the formation of brain NAEs is still under debate.®’ The
recently reported GDE4 and GDE7 enzymes, as well as the sPLA,s have yet to be further
characterized in KO models to establish their role in NAE biosynthesis in vivo.*’ It is
interesting to note that the second product of the lysoPLD pathway is LPA, a bona fide

signaling lipid in the CNS involved in cell proliferation and synaptic transmission.®®

11
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A third NAE biosynthetic pathway was described to be important in macrophages,
where lipopolysaccharide (LPS) induced elevation of AEA in a NAPE-PLD-independent
manner.®’° 1t was proposed that a yet unknown PLC-type enzyme hydrolyzes the
phosphodiester of NAPE to produce phosphoNAE and diacylglycerol (DAG). Two
phosphatases were identified, protein tyrosine phosphatase non-receptor type 22
(PTPN22) and phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 (SHIP1), that can
catalyze the dephosphorylation of phosphoNAE to NAE and phosphate.®®’! Both PTPN22
and SHIP1 were induced in macrophages upon LPS stimulation. Incubation of phosphoNAE
with brain tissue from PTPN22 KO mice demonstrated reduced conversion to AEA

compared to wild-type (WT), that could indicate a possible role in vivo.®

1.1.3 NAE degradation

The hydrolysis of NAE to fatty acid and ethanolamine can be performed by several
enzymes (Figure 2).”% Fatty acid amide hydrolase (FAAH) displays specificity towards AEA
over saturated and mono-unsaturated NAEs and has high expression in human brain, but
is absent in heart tissue.”> Genetic or pharmacological blockade of FAAH resulted in a
large increase of brain AEA levels in mice, as well as smaller but significant increases of
PEA and OEA.”*”® FAAH is therefore regarded as the primary AEA metabolizing enzyme in
the brain. Surprisingly, in the liver, FAAH was found to catalyze the reverse reaction
during liver regeneration which could be attributed to highly increased arachidonic acid
levels, but not ethanolamine.”” A second fatty acid amidase (FAAH-2) was identified that
shares 20% sequence identity with FAAH.”® FAAH-2 is specific for higher mammals
including primates and marsupials and does not occur in rats or mice. It is expressed in
peripheral organs such as heart and ovary. Whereas FAAH localizes to the endoplasmic
reticulum in cells, FAAH-2 was reported to be enriched in lipid droplets.79 Contrary to
FAAH, FAAH-2 preferred primary fatty acid amides (e.g. oleamide) over NAEs as
substrates.”® A third NAE-hydrolyzing enzyme was described to be active in cells of the
immune system.80 N-acylethanolamine acid amidase (NAAA) is lysosomally located and
preferentially hydrolyzes saturated NAE species.81 NAAA is an N-terminal cysteine
hydrolase and shares no homology with FAAH (a serine hydrolase). Pharmacological
inhibition of NAAA in mice induced significant elevations of brain PEA and OEA, but not

AEA levels.®* The development of NAAA KO mice is necessary to confirm these findings.

Besides hydrolysis of the amide bond, polyunsaturated NAEs such as AEA and DHEA
can undergo oxygenation of the double bonds which produces eicosanoid-type lipids

(Figure 2). Each of these oxygenated products have reported lipid signaling functions of

83,84

their own. Cyclooxygenase (COX)-2 was described to convert AEA to various

85,86

prostaglandin-ethanolamides (PG-EA), a lipid class designated as prostamides. For

12
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example, AEA cyclooxygenation by COX-2 followed by consecutive action of a PGF

synthase produces PGF,,-EA. Both these enzymes occur in the CNS and it is suggested that

PGF,,-EA is involved in inflammatory pain in vivo 2" #8

Also lipoxygenases (LOX) are able to
use AEA as a substrate, generating for example 12-hydroxyeicosatetraenoic acid-
ethanolamide (12-HETE-EA).%*° These oxygenated AEA derivatives inhibit FAAH and could

therefore prolong NAE signaling.”

Lastly, epoxidation of AEA by cytochrome P450
enzymes can produce different epoxides such as 5,6-epoxyeicosatrienoic acid-
ethanolamide (5,6-EET-EA).?>*® Since AEA is primarily hydrolyzed by FAAH and generally
has low endogenous concentrations in most tissues, the biological importance of many of

these oxygenated products is still unknown.®*

PGF,,-EA 12-HETE-EA ©OH 5,6-EET-EA

Figure 2. Oxidative degradation pathways of anandamide showing representative products.
Cyclooxygenase 2 (COX-2) and prostaglandin synthases (e.g. PGF synthase) can convert AEA into
prostamide-type lipids such as prostaglandin-F,,-ethanolamide (PGF,,-EA). Lipoxygenases (LOX)
enzymes can hydroxylate AEA to form for example 12-hydroxyeicosatetraenoic acid-ethanolamide
(12-HETE-EA). Cytochrome P450-type enzymes can produce various epoxygenated AEA derivatives
such as 5,6-epoxyeicosatrienoic acid-ethanolamide (5,6-EET-EA).

1.2 Physiological functions of NAEs and (p)NAPEs

1.2.1 NAPE and pNAPE
NAPEs and pNAPEs are primarily considered to be precursors of NAEs. However, recent
overviews have highlighted that (p)NAPEs may have biological functions of their own.’***

These include putative roles in neuroprotection, anti-inflammation and satiety. During

13
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cellular injury, NAPEs accumulate in damaged tissue, presumably due to an influx of

96,97

calcium ions. This phenomenon has been observed in ischemia of the brain, heart and

testis in various mammals such as mice, rats, dogs and humans.3*%103

94,104,105

Also in plants

NAPEs increase under cellular stress. Importantly, NAPE levels are higher than

their corresponding NAE congeners in brain ischemia, which may suggest a

neuroprotective function.'® Conversion of PE to NAPE has a proposed membrane

stabilizing role, possibly due to hydrogen bonding of the newly formed amide.''%

NAPE-enriched liposomes were found to be less prone to dye leakage.'®

110,111

Furthermore,
NAPEs induced membrane fusion in the presence of Ca**-ions. This effect was found
to be NAPE-specific as other anionic phospholipids such as phosphatidylserine (PS) and
phosphatidylglycerol (PG) did not stimulate membrane fusion.™'° The fusogenic properties
of NAPE-liposomes have been exploited for drug delivery: liposomes incorporating the
neuroprotective ganglioside GM1 were enriched in the brains of treated rats.*? N-
palmitoyl-PE-enriched liposomes decreased phagocytosis in mouse macrophages, thereby
contributing to the termination of inflammation.’” In the rat jejunum, NAPE levels,
specifically N-oleoyl-PE, were increased after feeding.‘B’114 NAPE has been described as a
lipid hormone that can decrease food intake, while exogenous NAPE was able to induce
weight loss in mice.'”> However, following reports have contested this claim and point

towards NAE metabolites as the cause of the observed anorectic effect.!**’

Collectively,
these studies provide evidence for a putative biological role of NAPEs in
neurodegeneration and inflammation. The molecular mechanisms through which NAPEs
exert its bioactivities should therefore be addressed. Genetic or pharmacological tools

that enable modulation of NAPE metabolic enzymes may help to answer these questions.

1.2.2 PEA

In the 1950s, PEA was the first member of the NAE family to be identified in egg yolk,

118,119

soybean lecithin and later in mammalian tissues. It was immediately noted that PEA

possessed anti-allergic and anti-inflammatory properties in a guinea pig model of
anaphylactic arthritis. ' Following reports revealed that PEA also produces anti-epileptic,

. . . 7,9,120-12
neuroprotective, analgesic and anorectic effects.”**2123

During acute brain ischemia in
rats, PEA levels increased 30-fold specifically in damaged brain areas.'** Exogenous
administration of PEA showed to be neuroprotective in various disease models such as
traumatic brain injury, Parkinson’s and Alzheimer’s disease.'?? Multiple biological targets
have been identified for PEA that can explain its pharmacological effects.!*'?> The
nuclear receptor peroxisome proliferator-activated receptor (PPAR)-a was found to

6,126

mediate the anti-inflammatory and analgesic effects of PEA. Furthermore, PEA

displayed affinity for GPR119, a fat sensor in the gut, although OEA is regarded as a more

4,127

potent agonist in vivo. Another receptor through which PEA can exert its bioactive

14
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effects is GPR55, however these findings have been questioned in later studies.>*®

Today,
PEA is marketed as a dietary supplement as well as a skin cream in many countries.
Numerous clinical trials have been conducted with PEA for the treatment of pain,
demonstrating that, overall, PEA produces few unwanted side effects and shows promise

as an analgesic.®

1.2.3 SEA

Although SEA and PEA differ just two carbons in chain length, SEA has been studied far
less extensively. This may be due to the fact that unlike PEA, SEA did not present affinity
for PPAR-a.”> Nevertheless, SEA showed affinity for GPR119 and shares several
bioactivities with PEA.* SEA produced anti-inflammatory effects in a mouse cutaneous
anaphylaxis model.’® In rat brain, SEA levels were similar to PEA and showed a

124 Furthermore, oral administration of

comparable 30-fold increase upon brain ischemia.
SEA in mice produced an anorectic effect, presumably through increase of liver stearoyl-
CoA desaturase-1 (SCD-1) mRNA expression.’* These findings indicate that SEA may have
therapeutic properties and the exclusion of this lipid species from NAE studies is
unjustified. It is therefore recommended to include SEA in the standard NAE lipid panel to

elucidate its biological role.

1.2.4 OEA
OEA is a well-studied member of the NAE family, especially in the gastrointestinal system.
Upon oral administration in mice, OEA demonstrated anorectic effects that are mediated

by peripheral PPAR-0..*%*?*'3 Of the NAE members, OEA showed the highest potency for

PPAR-0..'® Endogenous OEA levels in the small intestine were markedly reduced in starved

mice and significantly increased after refeeding compared to free-feeding mice.”***** As

114,132

such, OEA is regarded as a satiety factor that is released upon food intake. However,

both short-term and chronic high fat diets were found to decrease levels of OEA in rat

16,133

jejunum, but not in other tissues such as brain and liver. It was proposed that

reduction in OEA levels may cause the reduced satiety and hyperphagia as seen in
obesity.lzs’132

feeding behavior.* Nevertheless, OEA produced anorectic effects in both GPR119 WT and

OEA also showed in vitro affinity for GPR119, a receptor that modulates

KO mice, indicating that in vivo, this activity is not required for satiety.”** Similar to PEA,

administration of OEA in rodents was reported to generate anti-inflammatory,

13-15

neuroprotective and analgesic effects. These are likely mediated by activation of

PPAR-q, although also PPAR-o-independent mechanisms have been described.?%*3>!% |n

rat brain, OEA concentrations were found to be roughly one-third of PEA and SEA levels

124

and showed a comparable 30-fold increase upon cerebral ischemia. A putative

15
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neuroprotective role for the NAE family was therefore hypothesized, acting via multiple

molecular mechanisms. >’

1.2.5 LEA

LEA has received less attention compared to the other NAE family members, even though
it possesses similar bioactivities as OEA and PEA. Importantly, endogenous levels of LEA in
rat jejunum were found to be 4 to 6-fold higher than OEA, PEA and SEA upon fasting and
refeeding.’® Intraperitoneal (i.p.) administration of LEA in rats elicited a reduction of food
intake, which was dependent on PPAR-a activation and was comparable to OEA and
PEA.>'® Because of the high intestinal levels of LEA, it was proposed that the anorectic
effect could also in part be mediated through GPR119, for which LEA shows equal activity
as OEA.Y This has yet to be confirmed in genetically deleted GPR119 rodents. In a rat
stroke model, treatment with exogenous LEA demonstrated a neuroprotective effect.”
Although endogenous LEA levels in rat brain accumulated 30-fold upon brain ischemia
similar to PEA and SEA, the absolute concentrations were just 1% to 5% of saturated

NAEs, suggesting only a minor role in the brain in vivo.'*

1.2.6 AEA

AEA or anandamide has been studied most extensively of all the NAE family members. In
most tissues, AEA levels are 10 to 100 times lower than PEA, SEA and OEA.*®%° However,
unlike other NAEs, AEA can activate the cannabinoid (CBl)—receptor.20 The CB; receptor is
one of the most abundant GPCRs in the mammalian brain and is activated by
(-)-A’-tetrahydrocannabinol (THC), the psychoactive component of cannabis. As a result,
anandamide and 2-arachidonoylglycerol (2-AG), a second endogenous CB; receptor
agonist, are termed endogenous cannabinoids or endocannabinoids. AEA is regarded as a
tonic neuromodulator — i.e., it continuously signals in the basal state — which is released
by neurons upon Ca**-stimulation and is quickly degraded by FAAH.?>**%%2 Although AEA
was initially described as a retrograde neurotransmitter, NAPE-PLD is localized
presynaptically and FAAH postsynaptically, suggesting that AEA may function as an
anterograde signaling Iipid.143 AEA can also act as an intracellular messenger, formed

upon an influx of Ca**-ions via activation of the Gq-pathway.144

The word ‘ananda’ — meaning bliss in Sanskrit — was aptly chosen, as increased AEA

signaling produces analgesic, anxiolytic and anti-depressant effects through CB; receptor

signaling in the brain.2614%146

Conversely, acute and repeated stress exposure in rats
afforded a decrease in AEA content in the amygdala, mediated by enhanced FAAH
activity.**’ Stressed rats showed an inverse correlation between amygdalar AEA and
plasma stress hormone levels (corticosterone).'*® Diminished brain AEA signaling upon

149

repeated stress increased secretion of corticosterone.”™ In contrast, repeated stress

16
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elevated amygdalar 2-AG levels, which attenuated hypothalamic-pituitary-adrenal (HPA)
axis activation. AEA and 2-AG are therefore hypothesized to be the effectors of HPA-axis

149,150

signaling in the brain, while having functionally distinct roles. In addition to its roles

in modulating fear and stress behavior, AEA was reported to promote neuroprotection,
memory formation and food intake via brain CB; receptor activation.?”?1>H12
Pharmacological studies in mice showed that exogenous AEA produces cannabimimetic
responses, which are rapid in onset, but shorter and less potent than THC, presumably

153

due to its fast metabolism.™" Correspondingly, FAAH KO mice were supersensitive to AEA

treatment.” Exogenous AEA administration in rats generated a central CB;-receptor-

dependent orexigenic (appetite-stimulating) effect similar to THC.%*
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Figure 3. AEA is involved in cannabinoid receptor 1 and 2 (CB; and CB,) signaling in both central

and peripheral organs, of which several are depicted.”*

Anandamide has also been linked to CB; receptor signaling in the periphery, for
instance in adipocytes, the female reproductive system and skin tissue where it is involved
in energy expenditure, implantation and epidermal differentiation, respectively (Figure
3).15%1%5 |nterestingly, peripheral CB; receptor activation is implicated in food intake as

well, and intestinal AEA levels were found to be highly increased in starved mice.”® Also

17
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the analgesic effects of AEA were observed in the periphery, as peripheral blockade of
17 Notably, the

antinociceptive effect of AEA increased synergistically when combined with PEA in a

FAAH produced antinociception via a CB; receptor-dependent mechanism.

mouse model of peripheral pain.?

AEA has additionally been described as a partial agonist for the CB, receptor, which is

primarily expressed in the immune system and is involved in the inflammatory

response.21'158'160 Typically, AEA levels are 10- to 1000-fold lower compared to 2-AG in

138

most tissues.” 2-AG has therefore been suggested to be the true endogenous CB,

161
d.

receptor ligan Nevertheless, AEA was reported to modulate inflammation via

activation of the CB, receptor by reducing pro-inflammatory cytokines in cells.”>***

Besides the cannabinoid receptors, AEA also activates the transient receptor potential
vanilloid 1 (TRPV1) ion channel.?? AEA has therefore been termed an endovanilloid.*®****
TRPV1, also known as the capsaicin receptor, is an important player in pain perception
and is localized at peripheral sensory neurons.'® Evidence is accumulating that TRPV1 is
expressed in the CNS as well.****7 The activation of TPRV1 by AEA causes an cellular
influx of Ca**-ions and has been linked to locomotor depression, hyperalgesia under

inflammatory conditions, vasodilation and hypothermia.'***®

1.2.7 DHEA

Over the past ten years, DHEA has come into view as a member of the NAE family with
unique properties in neuronal signaling.31 As such, the name synaptamide was coined for
its ability to induce neurogenesis.'®® Recently, DHEA was found to have nanomolar affinity
for GPR110, an adhesion-type GPCR highly expressed in the hippocampus.?’0 DHEA
generated neurite outgrowth and synapse formation in neurons derived from WT mice,
but not from GPR110 KO littermates. GPR110 KO mice showed reduced spatial memory
and object recognition, but have yet to be profiled completely. DHEA has also been

32,169

reported to have anti-inflammatory properties. In LPS-treated microglia and

macrophage cells, DHEA reduced pro-inflammatory cytokines or eicosanoids,

32139 15 addition, LPS-induced neuroinflammation in mice was significantly

respectively.
decreased after i.p. administration of DHEA. Brain DHEA levels are generally 2- to 10-fold
higher than AEA, while the opposite is true for plasma.58'59'138’170 Furthermore, brain DHEA
concentrations are linked directly with brain content of docosahexaenoic acid (DHA, 22:6),

d.'*'3 DHA is preferably acquired from the diet, but can

an -3 polyunsaturated fatty aci
also be synthesized from the essential fatty acid o-linolenic acid (18:3-©3).}* The
biosynthesis of DHEA is considered to follow the same route as other NAEs via formation
of NAPE and hydrolysis by NAPE-PLD, which was confirmed in two NAPE-PLD KO mouse

strains.*”*° A third NAPE-PLD KO mouse strain did not show a reduction of brain DHEA and
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displayed elevated levels of brain DHEA upon administration of a fish oil diet rich in
DHA.*®'”> This suggests that alternative pathways are also involved in DHEA production in

the brain.

Few studies have looked at the physiological role of DHEA in the periphery. It has been
reported that under normal conditions, peripheral tissue levels of DHEA often exceed
AEA, for example in the heart, kidney, jejunum and skin.®®'’®* GPR110 was found to be
expressed in various peripheral organs including kidney, prostate and lung, which points

to a possible role of DHEA signaling in these tissues.'”’

1.3 Pharmacological modulation of NAE metabolism

As outlined in the prior section, NAEs possess desirable bioactivities that may be used for
therapeutic intervention. Moreover, in certain pathological conditions NAE levels are
disrupted, for example in cancer, obesity and neurodegenerative diseases and have been

linked to disease progression and severity."®*%°

Modulating the NAE tone could therefore
be a viable treatment strategy for these pathologies. However, due to the
polypharmacology of NAEs acting on multiple receptors that can have opposing

d."®'In

outcomes, it is not always clear whether NAE levels should be enhanced or reduce
the following section, a brief overview will be provided of the therapeutic potential of

blockade of NAE degradation as well as its biosynthesis.

1.3.1 Inhibition of NAE degradation
After the discovery of the NAE-hydrolyzing enzyme FAAH in 1995, it became apparent that
increasing NAE levels by genetic or pharmacological disruption of FAAH had profound

effects on ECS signaling.182

To date, multiple research groups and pharmaceutical
companies have developed in vivo active and brain penetrant FAAH inhibitors (Figure
4A).183 Upon administration in rats or mice, the irreversible FAAH inhibitors URB597, PF-
3845 and PF-04457845 increased AEA levels with 3- to 7-fold in brain and plasma, while
PEA and OEA were also enhanced with 8- to 20-fold in the same tissues.”®”>'** Limited
data is available of other NAE levels after FAAH inhibition, although one study reported
that PF-3845 could similarly elevate SEA, LEA and DHEA levels with 5- to 20-fold in the
brain, but in plasma only LEA and DHEA were increased.*® Pre-clinical research in rodents
revealed that inhibition of FAAH may be exploited for treatment of inflammatory or
neuropathic pain, acting via central or peripheral CB; and CB, receptor

75,157,186,187

activation. Furthermore, pharmacological FAAH disruption has shown promise

145

for treating anxietyze, depression™, post-traumatic stress disorder'®®, Parkinson’s

19



Chapter 1

disease'®, nausea'®, skin inflammation®, pruritus’®, inflammatory bowel disease®,
glaucoma193, hypertension194, traumatic brain injurylgs, HIV-associated neurocognitive

197 several FAAH inhibitors have
198,199

disorders'®® and multiple sclerosis-associated spasticity

been tested in Phase | and Il clinical trials with mixed success. The selective inhibitor

PF-04457845 was found to be well tolerated in healthy volunteers, completely blocked
plasma FAAH activity and increased plasma AEA (10-fold), LEA (9-fold), OEA (6-fold) and

PEA (3.5-fold) concentrations.”® However, in a subsequent Phase Il clinical trial for

201

osteoarthritic pain of the knee, PF-04457845 did not produce analgesia.”~ Recently,

PF-04457845 was reported to be efficacious for the treatment of cannabis withdrawal

symptoms in a Phase Il clinical study.zo2
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Figure 4. Structures of selected in vivo active inhibitors of A) fatty acid amide hydrolase (FAAH) or
B) N-acylethanolamine acid amidase (NAAA).

In 2016, the covalent FAAH inhibitor BIA 10-2474 (Figure 4A) was tested in healthy
volunteers in a Phase | clinical study, which led to the tragic death of one individual and

23 1t was later revealed that

mild-to-severe neurological symptoms in four others.
BIA 10-2474 displayed off-target activities against multiple serine hydrolases in the CNS,

whereas PF-04457845 was highly selective for FAAH and did not present adverse effects in
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204 Accordingly, the observed neurotoxic side effects of BIA 10-

199

multiple clinical studies.
2474 are presumed not to be caused by inhibition of FAAH.

Due to the limited success of FAAH inhibitors in the clinic, in recent years, inhibitors of
the other NAE-hydrolyzing enzyme NAAA have come to the foreground.205 Several in vivo
active NAAA inhibitors have been reported, showing encouraging results for the
treatment of inflammatory and neuropathic pain, allergic dermatitis and multiple
sclerosis 5>200208
mechanism.*?%2%"2% First generation irreversible NAAA inhibitors ARN276 and F215

(Figure 4B) were able to increase PEA and OEA concentrations 2- to 4-fold in lungs of mice
208,210

Considerable evidence point towards a PPAR-a-mediated

after an inflammatory stimulus, but not in naive mice. It is possible that these
compounds elicit an inflammation-specific effect, although their low plasma stability and
fast clearance could also explain the observed results.'®® Importantly, the increase of OEA
illustrates the difference between in vivo and in vitro NAAA activity, since in the latter
case NAAA showed high preference towards hydrolysis of PEA.3' A second generation
reversible NAAA inhibitor (1, Figure 4B) presented improved drug-like properties and was
able to elevate brain PEA and OEA levels (2-fold) of healthy mice, but not AEA.®* It is
anticipated that the newly reported crystal structure of NAAA will aide future inhibitor
design.211 In addition, the therapeutic exploitation of NAAA blockade will require KO mice

to confirm the effects observed with pharmacological inhibitors.

1.3.2 Inhibition of NAE biosynthesis

Blocking NAE biosynthesis by pharmacological agents is an underdeveloped strategy in
endocannabinoid research and so far no selective and in vivo active inhibitors have been
described.?*? Nevertheless, there is substantial evidence that reducing the NAE tone could

be beneficial in pathological conditions such as obesity, metabolic syndrome, cancer and

181

liver cirrhosis.”~ The potential net effect of inhibiting NAE production would be indirect

antagonism of the respective NAE receptors. Because the cannabinoid receptors, PPAR-q,

TRPV1, GPR55, GPR110 and GPR119 have additional endogenous agonists besides the

199

NAEs, this will likely lead to only partial receptor deactivation. Here, different

conditions are outlined where decreasing NAE levels could be of therapeutic value.

Obesity and metabolic syndrome

The endocannabinoid system is a key player in energy balance and food intake, both in

213

the CNS and the periphery.”” The centrally active CB; receptor antagonist rimonabant

(Acomplia®, Figure 5) was clinically approved for treatment of obesity and metabolic

syndrome, as it induced significant weight-loss, decreased food intake and improved

214218 ynfortunately, patients treated with rimonabant suffered from

217,218

insulin resistance.

depression-like side effects leading to its withdrawal from the market. Peripherally
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restricted CB; receptor antagonists have shown comparable pre-clinical efficacy and are
currently being pursued as potential anti-obesity drugs without psychiatric side

effects.?192%°

Alternatively, inhibiting NAE biosynthesis could be a possible therapeutic
strategy. It has become increasingly clear from human studies and animal models that
endocannabinoid and NAE signaling is disrupted during diet-induced obesity and
metabolic disease.’® Mice receiving a high fat diet for 18 weeks showed sustained
elevation of plasma NAE levels including AEA, as well as increased expression of the NAE

biosynthetic enzyme NAPE-PLD in brown adipose tissue.?*!

In adipocytes, CB; receptor
activation is associated with energy storage by increasing fatty acid uptake and
lipogenesis and decreasing mitochondrial biogenesis, resulting in attenuated browning of

213,222

white adipose tissue. In the liver, mice fed a high fat diet for 3 weeks developed

223 This was

steatosis and showed greatly increased hepatic AEA levels, but not 2-AG.
credited to reduced FAAH activity, although NAPE-PLD activity was not determined. In the
small intestine of rodents administered a high fat diet for 1 week, normal OEA
mobilization after feeding was disrupted, possibly explaining the diminished satiety and

hyperphagia observed in diet-induced obesity.'®**>!%3

Sham feeding of a lipid-based meal
to rats for 5 days resulted in an increase of jejunal AEA and 2-AG levels, which was
dependent on signaling of the vagus nerve.??* Enhanced NAPE-PLD and reduced FAAH
activities in the jejunum were reported, yet interestingly, OEA levels were not affected.
Peripheral CB; receptor blockade (URB447, Figure 5) attenuated fat sham feeding, which
supports the hypothesis that endocannabinoids are released upon high fat food
consumption and drive a positive feedback loop via CB; receptor signaling.”** In pancreatic
islets, AEA content and NAPE-PLD gene expression was enhanced in fatty diabetic versus

22
lean rats.*®

It was shown that AEA induced apoptosis of insulin producing beta cells via
peripheral CB; receptor activation, thereby enabling the progression of type Il diabetes.

Accordingly, chronic treatment with the peripherally restricted CB; receptor antagonist

rimonabant URB447 JD5037
(SR141716)

Figure 5. Structures of selected central (rimonabant) or peripherally restricted (URB447, JD5037)

CB, receptor antagonists.
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JD5037 (Figure 5) reversed islet elevation of AEA levels and NAPE-PLD expression and
restored blood glucose levels to normal in overweight diabetic rats, although they

remained insulin resistant.??®

In humans, an analogous relationship between NAEs and obesity has been described.
In a small human study (24 subjects), circulating AEA levels, but not 2-AG, peaked before a
meal and significantly decreased postprandially in lean, but not in obese individuals.?*® A
larger human study (328 subjects) revealed that obesity is associated with an increased
AEA tone in plasma, as well as altered circulatory PEA/AEA and OEA/AEA ratios, indicative

227 |n the same cohort, plasma 2-AG levels

228

of enhanced appetite and diminished satiety.

In another large human trial
229

were not found to be upregulated in obese individuals.
(997 subjects), circulating AEA concentrations were also associated with BMI.
Furthermore, AEA correlated with non-alcoholic steatohepatitis (NASH) disease severity

229 These combined clinical and pre-clinical

and was therefore proposed as a biomarker.
data suggest that lowering plasma AEA concentrations may offer a therapeutic
opportunity for treatment of obesity, metabolic syndrome, type Il diabetes and liver
steatosis. At the same time, it is not yet known which organs contribute to circulatory

NAEs, which needs to be addressed.?*°

Several studies have looked at the role of NAPE-PLD in energy metabolism. In a large

human cohort, a common NAPE-PLD haplotype was described to be protective against

21 Mice with a genetic deletion of NAPE-PLD presented a reduced food

175

severe obesity.
intake and overall leaner phenotype than their WT littermates.””> Of note, these effects
were not observed in a different NAPE-PLD KO strain.?*> On the other hand, FAAH ablation
in mice increased energy storage, body weight and adipose tissue and promoted the
appetite-stimulating effect of AEA, rather than the OEA-induced satiety.?** These studies
suggest that inhibition of NAPE-PLD may constitute as a potential treatment for metabolic
syndrome. However, mice with a specific deletion of NAPE-PLD in adipose tissue had a
predisposition for obesity while receiving a normal diet.”** When administered a high fat
diet for 8 weeks, adipocyte NAPE-PLD KO mice showed increased body weight gain
compared to WT. Notably, in both diets levels of the anorectic OEA, PEA and SEA were
decreased in NAPE-PLD KO adipose tissue, but not of orexigenic AEA. A similar NAE profile
was observed in WT mice receiving a high fat versus a control diet.?** Conditional KO of
intestinal NAPE-PLD in mice induced hyperphagia upon initial high fat diet administration

235 When receiving a

and exacerbated fat mass accumulation compared to WT mice.
normal diet, intestinal NAPE-PLD KO mice displayed reduced intestinal levels of AEA, OEA,
PEA and SEA. In contrast, after 16 weeks of high fat diet, jejunal NAE concentrations in WT

and intestinal NAPE-PLD KO mice did not significantly differ.?*® Collectively, these data
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indicate that NAPE-PLD functioning in the gut and adipose tissue is altered during obese
conditions. It remains to be determined what the effect of global or peripheral
pharmacological NAPE-PLD blockade will be on energy balance and food intake in

metabolic syndrome and obesity.

Cancer

Multiple studies have reported disrupted NAE levels in cancer and associations between
NAE receptors and tumor proliferation. Hepatic CB; receptor and NAPE-PLD expression as
well as AEA concentrations were found to be elevated in hepatocellular carcinoma (HCC)
both in humans and mice.”*® Treatment with the peripherally restricted CB; receptor
antagonist JD5037 or CB; receptor KO mice demonstrated suppressed tumor growth.
These findings were underscored in a second study, showing that AEA acts as a tumor
promotor in HCC via the CB; receptor.”*’ Accordingly, FAAH KO mice displayed a worsened
tumor progression. In addition, human hepatic tumor tissue exhibited reduced FAAH
expression.237 In chronic lymphocytic leukemia (CLL) patients, plasma levels of OEA were
upregulated and correlated with the number of circulating tumor cells.”*® After treatment
with the chemotherapy drug lenalidomide, patients in clinical remission presented
significantly reduced plasma OEA. Patient derived CLL cells expressed NAPE-PLD and a role
for overproduction of OEA by these cells was proposed.238 Importantly, PPAR-a
expression was found to be elevated in CLL patients and associated with an advanced

239

disease stage.”” Furthermore, a PPAR-o antagonist was able to reduce tumor burden in a

mouse model of CLL.>*

Taken together, these studies suggest that targeting NAE
biosynthetic enzymes, in particular NAPE-PLD, could have beneficial therapeutic effects in

leukemia or hepatic cancer.

Chronic liver disease
Besides hepatic cancer and steatosis, also cirrhosis has been implicated in aberrant NAE

241-243

signaling. Liver cirrhosis is most often caused by alcohol abuse, hepatitis or steatosis

and has a high mortality rate. In monocytes derived from humans and rats with cirrhotic

liver, AEA levels were found to be elevated.”***%

Similar findings were observed in
another study, reporting increased circulatory AEA, OEA and PEA levels in cirrhotic
patients, which correlated with advanced disease stage.246 Hypertension of the portal vein
is a major complication of advanced cirrhosis as a result of intrahepatic vascular resistance
due to excessive scarring (fibrosis) and vasodilation in mesenteric arteries.?** AEA induced
vasodilation in mesenteric vessels from cirrhotic rats, whereas control samples were less
sensitive to AEA.2Y
blocked this effect.

decreased mesenteric blood flow and portal hypertension.*> CB; receptor expression is

Antagonists for the CB; receptor (rimonabant) or TRPV1 (capsazepine)

247 Accordingly, administration of rimonabant in cirrhotic rats
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low in healthy human liver, but it was upregulated in fibrotic and cirrhotic samples.248

Genetic deletion or pharmacological blockade of CB; receptors (rimonabant) reduced

248 This was extended to

hepatic fibrogenesis in three different fibrotic rat models.
advanced cirrhotic rats, where treatment with rimonabant for two weeks reversed

fibrosis.>*

The relevant biosynthetic pathway of circulatory AEA in cirrhosis is still unknown. It is
well established that cirrhotic patients have elevated plasma levels of endotoxins and

250-252

increased hepatic macrophages. LPS was reported to induce AEA production in

mouse macrophages, which was dependent on the PLC/phosphatase biosynthetic

%971 |n addition, pro-inflammatory stimuli such as LPS were found to

pathway.
downregulate NAPE-PLD expression in mouse macrophages, thereby reducing anti-
inflammatory PEA concentrations.” To summarize, the described studies point towards
pathological signaling of AEA in hepatic fibrosis and cirrhosis and suggest that blocking CB,
receptor activation or AEA biosynthesis, possibly via the PLC/phosphatase pathway, could

be of potential therapeutic benefit.

Reducing NAE levels in the brain?
In neurodegenerative diseases, for example multiple sclerosis and Parkinson’s disease,

AEA levels were found to be elevated in human cerebrospinal fluid. 232>

It is proposed
that the AEA increase does not induce disease progression, but rather provides
neuroprotection via CB; or CB, receptor activation as a result of the neuroinflammatory

179255 sybstantial evidence has been collected for the

component of these diseases.
beneficial effects of CB; and CB, receptor signaling in CNS injury, however, several studies
also point to a positive effect of CB; receptor inhibition.”>> For example, CB; receptor
blockade with rimonabant was neuroprotective in various rodent models of brain injury
and enhanced AEA levels were harmful.***%%%7 OEA and PEA, which are more abundant
in the brain, have neuroprotective or anti-inflammatory effects acting in part via PPAR-

6,126
.

In a mouse model of cerebral ischemia, activation of brain PPAR-a by OEA reduced
infarct volume.?® Currently, different strategies are being investigated that activate the
cannabinoid and PPAR receptors by enhancing the NAE tone (e.g. FAAH inhibition) or by
using CB1/CB, agonists as therapeutic treatment for neurological conditions.*® Recently, a
frameshift variant of NAPE-PLD in several dog breeds was reported to be a risk factor for
leukoencephalomyelopathy, a myelination disorder.”®® The impact of this NAPE-PLD

variant on the enzymatic activity or brain NAE concentrations, has yet to be determined.

NAE signaling in the brain is involved in numerous physiological processes, such as
memory formation, stress and anxiety.150 At present, the potential benefits of reducing

NAE levels in the CNS are unclear.’®® The depressive side effects associated with brain CB;
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receptor antagonism, suggest that depletion of tonic AEA signaling could have a similar
negative outcome. Recently, two reports looked at selective overexpression of the AEA
degrading enzyme FAAH in specific brain regions using a viral vector. In the hippocampus,
this afforded an elevation of anxiety-like behavior and a deficit in object recognition
memory and in extinction of aversive memory.”*! Interestingly, reduced NAE levels were
observed for AEA and PEA, but not OEA. In contrast, FAAH overexpression in the amygdala
produced an anxiolytic effect and decreased conditioned fear responses.?® These studies
indicate that depleting the brain NAE tone can have brain region-specific outcomes. The
neurophysiological behavior of mice with a genetic deletion in one of the NAE-producing
enzymes such as NAPE-PLD, ABHD4 and GDE1 have not yet been profiled, since brain AEA
concentrations were not unambiguously reduced.?” This highlights the need for centrally
active NAE biosynthesis inhibitors, to expose the primary pathway of NAE and AEA

generation, and to establish the effect of decreased NAE signaling.

1.4 Aim and outline of this thesis:

Selective and in vivo active pharmacological tools that modulate NAE biosynthetic
enzymes are necessary to elucidate the importance of these pathways. Furthermore,
reducing the NAE tone may hold promise for the treatment of several pathological
conditions. So far, no inhibitors have been described that can decrease NAE levels in cells
or live animals. The aim of this thesis work is the discovery and application of new

chemical tools for two NAE-generating enzymes: NAPE-PLD and PLAAT2.

To obtain new molecules that can inhibit NAPE-PLD, in Chapter 2, a fluorescence-based
activity assay for NAPE-PLD was optimized to enable high-throughput screening for hit
identification. A library of ~350,000 compounds was screened. After multiple deselection
rounds, five hit compounds were obtained with (sub)micromolar potency and reasonable
physicochemical properties. Resynthesis and testing of the most promising hit — a
pyrimidine-4-carboxamide — confirmed its activity for NAPE-PLD and provided a suitable

starting point for the development of in vivo active NAPE-PLD inhibitors.

In Chapter 3, a library of pyrimidine-4-carboxamides was generated to increase the
potency of the HTS-hit compound for NAPE-PLD and to improve its physicochemical
properties. By modifying different substituents one at a time, a structure-activity
relationship map was created. This afforded the optimized NAPE-PLD inhibitor LEI-401

with nanomolar potency and favorable physicochemical features.
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In drug discovery and development, establishing target engagement of a drug
candidate and its intended protein target is an essential step for success in pre-clinical and
clinical research. To assess whether LEI-401 can bind to NAPE-PLD in live cells, in Chapter
4, a photoaffinity labeling approach was investigated. First, photoaffinity probes were
synthesized that allowed visualization of NAPE-PLD using gel-based fluorescent labeling or
chemical proteomics. Finally, cellular target engagement of LEI-401 with NAPE-PLD was

confirmed by performing competition experiments in the photoaffinity assay.

In Chapter 5, the NAPE-PLD inhibitor LEI-401 was profiled in cellular and in vivo models
to characterize its effect on NAE biosynthesis. In neuronal cells, LEI-401 produced a
marked reduction of multiple NAEs, including AEA, among a broad lipid panel. This effect
was dependent on NAPE-PLD protein expression. Intraperitoneal administration in mice
showed that LEI-401 exhibited a good pharmacokinetic profile and passed the blood-brain
barrier. A significant time- and dose-dependent decrease of AEA was observed in the
brain, but not of other NAEs. Behavioral profiling in mice indicated that LEI-401 produced
hypomotility, antinociception and hypothermia. Also in a mouse model of inflammatory
pain LEI-401 elicited an analgesic effect. In short, LEI-401 was identified as an in vivo
active NAPE-PLD inhibitor, capable of decreasing brain AEA levels.

PLAAT2 is a Ca2+—independent N-acyltransferase that was reported to produce high
levels of NAEs in cells. In Chapter 6, a-ketoamide inhibitors were identified as PLAAT2
inhibitors through library screening with an activity-based probe. A structure-activity
relationship analysis was performed, which yielded LEI-301 as a nanomolar potent PLAAT2
inhibitor. LEI-301 was able to significantly reduce NAE levels including AEA after PLAAT2

overexpression in cells.

Chapter 7 summarizes the work described in this thesis and provides new avenues for

future research.
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