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BACKGROUND 
Studies in animal models indicate that altered central hormone signalling is associated 
with delayed ageing and longevity [1]. For example in the roundworm, insulin is secreted 
from neurosecretory cells in response to food cues, and single mutations in the 
insulin/insulin-like growth factor 1 (IGF-1) signalling pathway can double lifespan [2]. Also 
in mammals, mutations in the evolutionarily conserved growth hormone (GH)/IGF-1 
pathway are associated with increased lifespan. Ames dwarf mice, which have a combined 
GH, prolactin, and thyroid-stimulating hormone (TSH) deficiency, live approximately 50% 
longer than wildtype controls [3]. Healthy ageing and longevity in humans are challenging 
to investigate, because of the relatively long lifespans and the difficulty to determine 
causality. Furthermore, proper controls are lacking in old age. Older persons are often 
compared to younger persons, but it is unclear whether differences thus identified are 
caused by differences between birth cohorts, selective survival or whether these reflect 
age-induced changes. To circumvent some of these methodological concerns the Leiden 
Longevity Study (LLS) was designed, in which 421 long-living families were included [4]. 
Along with nonagenarian siblings, their offspring, who have the propensity to reach old 
age in good health, together with their partners, as an environmental and age-matched 
control group, were included (see Figure 1 for the study design). Among the key findings 
from the LLS were the observations that the offspring had lower prevalence of myocardial 
infarctions, diabetes mellitus, hypertension, and metabolic syndrome compared to their 
partners [5, 6]. We also observed several differences in glucose and lipid metabolism as 
well as in endocrine features. Specifically, it was found that total secretion of TSH was 
higher in the offspring compared to their partners, but that there were no differences in 
the circulating thyroid hormone levels free triiodothyronine (fT3) and free thyroxine (fT4), 
nor in metabolic rate [7]. Familial longevity was found to be associated with a strong TSH-
fT3 relationship, but not with major differences in hypothalamic-pituitary-adrenal (HPA) 
axis activity [8, 9].   
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Figure 1. Study design of the Leiden Longevity Study.  
Long-lived families with at least two Caucasian siblings fulfilling the age criteria (men ≥ 89 years and 
women ≥ 91 years) were included in the LLS, together with their offspring and partners of the 
offspring. Adapted from PE Slagboom et al. Phil Trans R Soc Lond B Biol Sci. 2011 Jan 12;366(1561):35-
42. 
 
GENERAL HYPOTHESIS 
Maintenance and repair is of key importance for the proper functioning of cells, tissues, 
and integrated physiology. We hypothesize that the balance between investments in 
growth, development, and reproduction versus maintenance and repair is regulated by 
the brain. Specifically (the interplay of) hormones of the different hypothalamic-pituitary-
target gland axes seem to be key regulators in constantly adjusting this balance to its 
optimal state. The optimal balance between these processes will be different for the 
different phases of the life cycle. Due to the accumulation of damage over time, 
requirements for maintenance and repair are hypothesized to increase with age. 
Furthermore, we hypothesized that longevity is associated with a prolonged ability to 
preserve an optimal balance throughout the different phases of life. 
 
STUDY DESIGN 
This PhD project was embedded into two International Consortia, Switchbox and Thyrage, 
funded by the European Union [10, 11]. In Switchbox, various physiological data and 
biomaterials have been collected over 24 h in 20 offspring and 18 partners from the LLS. 
Because pituitary hormones are secreted in a pulsatile manner and some exhibit a 
circadian rhythm, these hormones were measured in blood that was withdrawn every 10 
min during 24 h to obtain reliable and informative data on pituitary hormone secretion. 
Concentrations of adrenocorticotropic hormone (ACTH) and cortisol from the HPA axis, 
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and of TSH had been measured before the start of this PhD project. Concentrations of 
luteinizing hormone (LH) and testosterone from the hypothalamic-pituitary-gonadal (HPG) 
axis, and of GH were measured during this PhD project. LH and testosterone 
concentrations were measured in blood withdrawn from 20 men only, of which 10 
offspring and 10 partners. In the H2020 project Thyrage, one of the aims is to associate 
biomarkers of tissue maintenance with parameters of the thyroid axis in offspring and 
partners from the LLS. For this, an overview of possible and reliable biomarkers of tissue 
maintenance was written during this PhD project. For some of these biomarkers of tissue 
maintenance, especially bone turnover markers, it is known that they fluctuate over time. 
Before it is possible to associate biomarkers of bone turnover with parameters of the 
thyroid axis (and other pituitary hormones), we first need to determine the 24-h profile of 
bone turnover markers. To this end, bone turnover markers were measured in blood 
sampled every 4 h over 24 h during this PhD project. 
 
OBJECTIVES 
In this PhD project, I aimed to answer the following research questions: 
1. Is familial longevity associated with altered endocrine features in the hypothalamic-

pituitary-somatotropic axis? 
2. Is familial longevity associated with altered endocrine features in the hypothalamic-

pituitary-gonadal axis?  
3. What are the interrelationships between hormones of the hypothalamic-pituitary-

target gland axes in healthy older subjects? 
4. What are the 24-h profiles of bone turnover markers in healthy older men and 

women? 
 
METHODOLOGY 
To examine these research questions, time series data on various hormone 
concentrations were collected. To analyse this type of data, specific methods for time 
series analysis are needed. Which method to use depends on the type of data and the 
research question. Below, the four time series analysis methods used in this PhD project 
are explained.  
 
Cosinor analysis 
To determine whether endocrine parameters display a sinusoidal circadian rhythm, 
cosinor analyses were performed. Cosinor analysis is a model-dependent method which 
fits a cosinor model to the raw data (see Figure 2 for an example). First, the rhythm 
detection test, also called the zero-amplitude test, was performed to test the overall 
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significance of the cosinor model. One of the circadian parameters calculated by the 
cosinor analysis is the midline estimating statistic of rhythm (MESOR), which is a circadian 
rhythm-adjusted mean based on the parameters of a cosine function fitted to the raw 
data. In addition, the amplitude is provided, which is the difference between the 
maximum and MESOR of the fitted curve. The acrophase represents the phase of the 
maximal value assumed by the curve [12]. 
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Figure 2. TSH concentration profile over 24 h of one participant with cosinor analysis.  
The fit of the cosinor model is significant, indicating that this TSH concentration profile exhibits a 
circadian rhythm. The MESOR is indicated by the horizontal line, the amplitude by the solid arrow, 
and the acrophase by the dotted arrow.  
 
Deconvolution analysis 
By deconvolution analysis [13], a 24-h hormone concentration profile is decomposed into 
underlying secretory bursts, basal secretion, elimination of previously secreted hormone 
and random experimental variability using the Matlab software program. The algorithm 
first detrends the data and normalizes concentrations to numbers within the interval 0 to 
1. Thereafter, successive potential pulse-time sets, each containing one fewer burst, were 
created by a smoothing process. Finally, a maximum-likelihood expectation deconvolution 
method estimated all secretion and elimination rates simultaneously for each candidate 
pulse-time set. Outcome parameters of main interest are basal (non-pulsatile) secretion, 
pulsatile secretion, the sum of basal and pulsatile secretion (total secretion), number of 
pulses per 24 h (secretory-burst frequency), interpulse regularity (Weibull gamma), mean 
pulse mass, and (fast and) slow half-life. Figure 3 presents an example of a GH 
concentration profile with indicated deconvolution parameters.  
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Figure 3. GH concentration profile over 24 h of one participant with deconvolution analysis 
parameters.  
Pulses are indicated by the arrows, basal secretion by the dotted line and pulsatile secretion by the 
vertical line.  
 
(Cross) Approximate Entropy 
Approximate entropy (ApEn) is a measure for the strength of feedforward and feedback 
control signals in a hormone system. It is a scale- and model-independent statistic that 
quantifies the regularity of consecutive time-series data using the Matlab software 
program [14]. ApEn has high sensitivity and specificity (both > 90%) for analysis of 
hormone concentration measurements over 24 h. Low ApEn values imply that the 
sequence of time-series data is regular and that it contains many repetitive patterns, such 
as a sinus wave. High ApEn values indicate greater irregularity and randomness. Figure 4 
presents the GH concentration profiles of two participants, one with a low ApEn value and 
one with a high ApEn. In neuro-endocrine time-series of a length of 50-300 data points,  
m (window length) = 1 is preferred, and for lengths N ≥ 60, r (criterion of similarity) should 
be set to the predetermined value of 20% of the standard deviation (SD) of the individual 
subject time series [15]. Subsequently, the Jack-knifed ApEn (JkApEn) was calculated, 
which is a rigorous and objective cross-validation test that gives less bias in smaller 
samples than regular ApEn and it is more applicable for hormone data [16].  
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Figure 4. GH concentration profiles over 24 h of a participant (top) with a low ApEn, 
indicating a regular pattern, and a participant (bottom) with a high ApEn, indicating 
greater irregularity. 
 
Bivariate cross approximate entropy (Cross-ApEn) quantifies joint pattern synchrony 
between two simultaneously measured time series, with lower cross-ApEn values 
signifying greater synchrony [17, 18]. Synchrony refers to pattern similarity, so to what 
extent sub patterns of window length m in time series A appear in time series B with a 
criterion of similarity r. Changes in the cross-ApEn reflect feedback and/or feedforward 
alterations within an interlinked axis [18].  
 
Cross-correlation 
Cross-correlation assesses the relative strength between two simultaneously measured 
hormonal time series for all possible time shifts by calculating linear Pearson’s correlation 
coefficients [19, 20]. Hormone concentrations in time series A are compared pairwise with 
those of series B measured simultaneously (zero lag) or measured earlier or later (with a 
time lag). The unit of one lag time is the interval between two sampling points, so a lag 
time of 1 means that there is a delay of 10 min between two time series. Figure 5 
presents a visual explanation of the cross-correlation procedure.  
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Figure 5. Explanation of cross-correlation.  
The cross-correlation at lag time 0 is obtained when concentrations of hormone 1 are correlated with 
those of hormone 2 measured simultaneously in the same participant. The cross-correlations at lag 
time 1 and 2 are obtained when concentrations of hormone 1 are correlated with those of hormone 
2 measured with a time lag of 10 and 20 min, respectively. 
 
OUTLINE OF THIS THESIS 
In Chapter 2, the question is addressed whether circulating IGF‐1 axis parameters 
associate with old age survival and functional status in nonagenarians from the LLS. In 
Chapter 3, we use GH concentrations measured every 10 min over 24 h to derive and 
compare GH secretion parameters between offspring of long-lived families and their 
partners. In Chapter 4, we investigate the association between HPG axis parameters and 
familial longevity. In Chapter 5, we use 24-h time series data of pituitary hormones to 
investigate how changes in the different hormonal axes are correlated with each other 
over time. In Chapter 6, we determine the circadian rhythm of bone turnover markers in 
healthy older subjects.   
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