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1. Breast cancer 

Worldwide, breast cancer is the most frequently diagnosed cancer and the leading cause 

of cancer mortality among women. In 2018, about 2.1 million people were diagnosed, 

accounting for almost 1 in 4 cancer cases in females, and over half a million people died 

from this disease 1. Early transcriptomic profiling studies have categorized breast cancer 

into at least four clinically relevant intrinsic subtypes: luminal-A, luminal-B, HER2-enriched 

and basal-like 2. Breast cancer can also be classified into three major receptor subtypes, 

based on the presence of molecular markers estrogen (ER), progesterone (PR) receptors 

and human epidermal growth factor 2 (HER2), i.e. HR+/HER2- (70% of patients), HER2+ 

(15%-20%) and triple-negative (15%) 3. While overlapping among the classifications, these 

subtypes have been characterized for distinct prevalence, prognoses and therapeutic 

strategies (Figure 1). HR+ tumors are more prevalent in older women, whereas triple-

negative tumors are more likely to occur in women who are younger, African-American or 

Hispanic 4. The prognoses of triple-negative tumors are worse than that of HR+ or HER2+, 

with approximately 1 year and 5 years median overall survival, respectively 5-7. 

 

Figure 1. Breast cancer subtypes and prognosis. According to the status of ER, PR, HER2, breast cancer is 

classified as luminal A, luminal B, HER2 positive, and triple negative, where triple negative tumors can be further 

differentiated into at least basal, claudin-low, MBC (metaplastic breast cancer). The morphological features of 

the subtypes in tumors and cell lines accord well, with luminal tumors having better prognosis and luminal cell 

lines less aggressive than that in triple negative tumors and cell lines. (Adapted from Dai et al, 2017) 

2. Triple-negative breast cancer 

2.1 Molecular stratification 

Triple-negative breast cancer (TNBC) represents about 15% of all breast cancers, but 

proves to be a highly malignant subtype, with earlier age of onset, high risk of metastasis 

and unfavorable clinical prognosis. Given the nature of heterogeneity, a collection of 

studies has profiled the distinct genetic landscape and therapeutic response of TNBC. By 
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analyzing transcriptomic profiles of 587 TNBC cases, Lehmann et al demonstrated that 

TNBC consists of seven subtypes (TNBCtype) and displays a heterogeneous biology with 

differential response to various therapies 8. By the measurement of in total 2188 genes 

and consensus clustering, they recognized seven molecular subtypes, namely basal-like 1 

(BL1), basal-like 2 (BL2), mesenchymal (M), mesenchymal stem-like (MSL), 

immunomodulatory (IM), luminal androgen receptor (LAR) and unstable (UNS). Each 

subtype represents a unique genetic background and driver signaling pathways. For 

example, BL1 subtype depicts increased cell cycle and DNA damage response gene 

signature, while BL2 involves high growth factor signaling. M illustrates gene enrichment 

in cell motility, growth and differentiation, which is partially resembled by MSL, but with 

low expression of proliferative genes. IM is associated with immune cell processes, 

whereas LAR characterized for elevated androgen signaling. To address the molecular 

heterogeneity of TNBC and the associated therapeutic responses, Chapter 4 exploited a 

broad kinase inhibitor library screen across ~20 TNBC cell lines representative for the six 

main TNBC subtypes. Our research demonstrated a poor correlation of TNBC molecular 

subtypes with their proliferative responses to various kinase inhibitors. Of relevance, a 

retrospective study found the TNBCtype to be an independent predictor of pathological 

complete response (pCR) for patients receiving standard chemotherapy regimens 9. 

Research by Ring et al revealed a small gene set algorithm (101 genes) showing the ability 

to recapitulate TNBCtype and predict therapeutic response, which might be more 

manageable in the clinic by focusing on the most relevant molecular alterations in the 

diverse TNBC categories 10. Yet, limited by their small size of cohorts, these studies 

pinpoint the clinical precautions for the potential use of molecularly TNBC subtyping. 

Lehmann and colleagues recently refined their sub-classification into four (TNBCtype-4) 

tumor-specific subtypes (BL1, BL2, M and LAR), having recognized the influence of 

infiltrating lymphocytes and tumor-associated stromal cells on IM and MSL subtypes 11. 

Other attempts to stratify TNBC using mRNA and DNA profiling include the four subtypes 

by Burstein et al: basal-like immune suppressed (BLIS), basal-like immune activated (BLIA), 

mesenchymal (MES) and LAR 12. The diversity in TNBC classifications and their notable 

intersection not only confirm the great heterogeneity in this disease, but also accentuate a 

requirement for more comprehensive and optimized designation of TNBC molecular 

subtypes to eventually translate in the clinical settings. 

2.2 Chemotherapy 

Notwithstanding the extensive efforts in discerning the molecular landscape and 

complexity of tumor biology, no targeted therapies have been approved for TNBC. To date, 

cytotoxic chemotherapy remains the standard of care in the management of TNBC. 

Commonly used chemotherapeutic agents include alkylating agents, anti-tubulins, 
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anthracyclines, platinums and antimetabolites. Typical adjuvant and neoadjuvant therapy 

consists of an anthracycline (Adriamycin) plus an alkylating agent (Cyclophosphamide). 

Patients with TNBC have higher neoadjuvant response rate than those with other breast 

cancer subtypes 13, 14. The phenomenon of high likelihood of pCR but with worse prognosis 

is referred to as triple-negative paradox 15, which might be attributed to its highly 

proliferating property and high risk of recurrence.  

Despite progress in optimizing systemic therapy, very few patients with 

metastatic breast cancer (including TNBC) have benefited from the treatment 16. Efforts in 

exploring combination chemotherapy have been attempted to improve the clinical 

outcomes. Although heightening response rates in comparison with single agents, 

combination therapies have to be compromised with increased adverse effects and no 

significant survival benefits 17. With the exception of poly ADP-ribose polymerase (PARP) 

inhibitors for the treatment of germline BRCA-mutated (gBRCA) HER2- disease 18, there 

are currently no targeted options beyond chemotherapy in the TNBC settings.  

Considering that optimal systemic chemotherapy has yet to be established, and 

that molecular research has been assisting in the discovery of driver mutations in TNBCs, 

novel alternate therapeutic strategies are underway and more targeted treatments could 

become accessible. 

2.3 Targeted therapy 

Triple-negative tumors are likely to relapse after chemotherapy despite initial response. 

Patients with TNBC who do not respond to neoadjuvant and adjuvant regimens, in a large 

proportion, represent intrinsic or acquired drug resistance. Large-scale genomic profiling 

of TNBC tumors has identified major mutations such as TP53 loss (84%), c-MYC 

amplification (40%), PTEN loss (35%) and PIK3CA mutation (7%) 19, 20. Yet, these frequent 

mutations have not been druggable, pressing a necessity for exploring actionable targeted 

therapeutic options.  

2.3.1 Poly ADP-ribose polymerase 

PARP is a constitutively expressed nuclear enzyme essential for DNA repair in response to 

DNA single-strand and double-strand breaks, therefore facilitating genomic stability and 

cell survival. PARP deactivation leads to DNA double-strand breaks during replication. 

Tumor cells with wild-type BRCA1/2 rely much on homologous recombination for DNA 

repair. In BRCA1/2-deficient cells, double-strand breaks are repaired via PARP-mediated 

DNA metabolic processes, independently of homologous recombination. Thus, genetically 

or pharmacologically targeting PARP causes severe cell death in tumors representing 

BRCA1/2 deficiency, a classical example of synthetic lethality 21.  
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Critical findings in both preclinical and clinical studies have led to the approval of 

PARP inhibitor talazoparib by Food and Drug Administration (FDA) of the United States, for 

the treatment of germline BRCA-mutated HER2- breast cancer 18, 22. In addition, alternate 

mechanisms underlying BRCA1/2 dysfunction have been recognized in different cancer 

types, including somatic mutations and epigenetic alterations, so-called “BRCAness” 23. As 

such, PARP inhibition has gained much attention as a promising synthetic lethality 

therapeutic strategy for treating cancer with BRCA deficiency. Importantly, the anti-tumor 

activity of PARP inhibitors in combination with chemotherapy or targeted therapy has also 

been investigated in several clinical trials 20. Nevertheless, it has to be noted that both 

gBRCA and “BRCAness” occurs merely in sporadic breast cancers. 

2.3.2 Epidermal growth factor receptor and angiogenesis 

Epidermal growth factor receptor (EGFR) is a transmembrane protein that, upon ligand 

binding, transduces extracellular signals (e.g. EGF, transforming growth factor-alpha, 

betacellulin) to intracellular signaling molecules, thereby triggering multiple signaling 

cascades regulating cell growth, migration, proliferation and apoptosis 24-26. 

Overexpression of EGFR is commonly observed in several human cancers. EGFR is 

amplified in 2% of breast tumors, but is more frequently overexpressed in basal-like 

subtype than non-basal-like ones 19, 27. Several agents targeting EGFR have been approved 

for clinical use, including small-molecule kinase inhibitors (KIs) and monoclonal antibodies 

(mAbs). However, no statistically significant prognostic improvements have been achieved 

in patients with TNBC in comparison to platinum-based therapy 28, 29. Two independent 

studies reported that compensatory feedback loop via AKT and HER3 conferred acquired 

resistance against EGFR-directed treatments 26, 30. In line with these findings, kinome-wide 

siRNA and lapatinib combination screen in Chapter 3 has demonstrated that, a Src family 

member FYN, conferred TNBC resistance against EGFR kinase-targeted inhibition via 

negatively regulating EGFR/PI3K/AKT signaling. A multi-centric neoadjuvant Phase II study 

of cetuximab plus docetaxel demonstrated modest activity in operable TNBC, despite 

acceptable toxicity 31. In another Phase II trial, there was no increased efficacy with the 

combination of panitumumab over that expected from chemotherapy alone in metastatic 

TNBC (mTNBC) 32. 

Angiogenesis plays a central role in breast cancer metastasis and survival. 

Vascular endothelial growth factor (VEGF) is the most important angiogenic factor with 

proven significance in metastatic breast cancer. Given the high metastatic potential of 

TNBC, the development of VEGFR inhibitors is of great interest in combating this incurable 

disease. Bevacizumab is a mAb targeting angiogenesis by slowing the growth of new blood 

vessels, and approved for the treatment of a series of diseases, including colon cancer, 

lung cancer and glioblastoma. Several clinical studies have documented that treatment 
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with Bevacizumab improved pCR rates of patients with TNBC 33-35. However, the survival 

benefits of Bevacizumab were marginal in most neoadjuvant trials. 

2.3.3 PI3K/AKT/mTOR pathway 

Activation of PI3K/AKT/mTOR pathway is repeatedly observed in TNBC, which could be 

attributed to loss of negative regulators such as PTEN (35%) and INPP4B (30%), as well as 

activating mutation of PIK3CA (7%) 19. Provided the essential role in modulating tumor cell 

metabolism and proliferation, targeting this signaling axis represents a promising 

therapeutic avenue.  

The anti-tumor activity of PARP inhibitors is limited to a small portion of TNBCs 

with gBRCA. A preclinical study showed that, in BCRA-proficient TNBC, PI3K blockade 

resulted in homologous recombination impairment and sensitization to PARP inhibition, 

and effectively suppressed tumor growth in patient-derived xenografts (PDXs) 36. In BELLE-

4 Phase II/III study, the addition of a pan-PI3K inhibitor buparlisib failed to show 

improvement in progression-free survival (PFS) in the full and PI3K pathway-activated 

populations with HER2- breast cancer 37.  

Ipatasertib is an oral and highly selective AKT inhibitor and has been evaluated in 

several clinical trials. Results from a randomized Phase II study, LOTUS, demonstrated 

improved PFS of patients with advanced TNBC for ipatasertib plus paclitaxel group 

compared to chemotherapy alone (6.2 versus 4.9 months, respectively) 38. Notably, the 

median PFS was 9.0 months with ipatasertib versus 4.9 months with placebo in the 

predefined cohorts with PIK3CA/AKT1/PTEN alteration. This has provided a rationale for 

the ongoing randomized phase III IPATunity130 trial testing the combination in patients 

with activated PI3K signaling (NCT03337724).  

Phosphorylated mTOR, the active form, is present in the majority of TNBC 

populations 39. Chapter 4 also showed that rapalog-resistant TNBC cells presented a high 

phosphorylation level of mTOR in response to mTOR inhibition. A Phase II trial showed 36% 

clinical benefit rate from combination of everolimus and carboplatin in patients with 

mTNBC 40. Another Phase I study on 52 females with mTNBC indicated that treatment with 

liposomal doxorubicin, bevacizumab, and temsirolimus or everolimus achieved improved 

responses, but the benefits were restricted to patients with aberrations in PIK3CA, AKT or 

PTEN 41. In neoadjuvant setting, the addition of everolimus increased adverse events 

without additional benefits in patients with stage II/III TNBC 42. 

Given the high prevalence of activation in TNBC, effectively targeting PI3K 

pathway warrants the development of more specific inhibitors and a better pathway 

aberration-based preselection of patients, as well as more clinical investigation. 
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2.3.4 Androgen receptor 

The LAR subtype of TNBC is characteristic of AR signaling and demonstrates sensitivity to 

anti-androgen agents both in vitro and in vivo 43. In a Phase II trial of 424 patients with HR- 

metastatic breast cancer, 12% of the cohort were tested to be AR+ 44. Treatment with AR 

antagonist bicalutamide exerted 19% clinical benefit rate (defined as complete response, 

partial response, or stable disease) for more than 6 months in AR+ patients, with a median 

PFS of 12 weeks. Another clinical trial reported that AR-driven gene signature was 

associated with overall survival treated with enzalutamide, a highly potent anti-AR agent 
45. 

2.3.5 Cyclin-dependent kinases (CDKs) 

Various cyclin-CDK complexes are responsible for the regulation of cell cycle progression 

both in normal and malignant cells. CDKs are naturally inhibited by CDK inhibitors. Loss-of-

function mutations of these inhibitors or overexpressed cyclins lead to uncontrolled 

proliferation during tumorigenesis. mTOR inhibition could elevate cyclin D1 expression 

level in TNBC cells, therefore allowing for continuous proliferation of the rapalog-

refractory cells, as shown in Chapter 4. Several cyclins are amplified in TNBCs 19. Three 

CDK4/6 inhibitors, palbociclib, ribociclib and abemaciclib, have been approved by FDA for 

the treatment of HR+/HER2- breast cancer. Targeting CDK4 by palbociclib efficiently 

eliminated chemo-refractory cells and breast cancer stem cells in TNBC 46. Amplification of 

MYC is frequently observed in TNBC (40%) 19. Selective inhibition of CDK1 and CDK2 

resulted in TNBC tumor regression in mouse xenografts harboring MYC amplification, 

highlighting the potential of targeting CDK1 and CDK2 in MYC-driven TNBC 47.  

2.4 Emerging novel therapy 

2.4.1 Immune checkpoint inhibitors 

Among all breast cancer subtypes, TNBC has the highest mutational frequency, with an 

increased likelihood of generating neoantigens by immunogenic mutations 48, 49. Gene 

expression profiling analysis has identified the IM subtype of TNBC, characteristic of 

elevated expression of genes modulating antigen production and T cell function 8, 

providing a strong rationale for testing immunotherapy. High PD-L1 expression was 

reported in 20% of patients with TNBC, associated with enriched tumor-infiltrating 

lymphocytes (TILs) 50. Consistently, results from other studies indicated that elevated PD-

L1 level strongly correlated with high TIL number and improved prognosis in neoadjuvant 

settings 51, 52. Recently, while the manuscript being written, atezolizumab, a mAb against 

PD-L1, has received the approval for individuals with mTNBC based on the Phase III trial 

IMpassion130 53. Compared to nab-paclitaxel treated group, combination with 



 

9 
 

1 

atezolizumab prolonged PFS from 5.5 to 7.2 months in the intention-to-treat population, 

and from 5.0 to 7.5 months in the PD-L1-positive subgroup, respectively. No new adverse 

effects were identified with the combination. Several other clinical trials evaluating the 

efficacy of immunotherapy in TNBC are still ongoing. 

2.4.2 Antibody-drug conjugate (ADC) 

Differential glycoprotein expression between malignant and normal cells has sparked the 

design and development of ADCs. Trop-2 is a commonly expressed glycoprotein in TNBC, 

making it an attractive therapeutic target 54. Sacituzumab govitecan (IMMU-132), an ADC 

targeting Trop-2 for selective delivery of SN-38, has demonstrated 30% overall response 

rate with mild toxicity in heavily pretreated patients with mTNBC 54. These findings have 

led to the breakthrough therapy designation by FDA and a confirmatory Phase III study is 

currently recruiting. 

 

3. Drug resistance 

Tumor heterogeneity is dominantly responsible for both intrinsic and acquired resistance 

and represents a major hurdle for established therapy. For the intrinsic resistance, 

sensitive tumor cells are eliminated, subsequently resulting in an accumulated population 

of residual tumor cells which are genetically and histologically distinct from the sensitive 

ones. Contrarily, acquired resistance occurs when initially susceptible tumor cells obtain 

the ability to resist the activity of the therapy despite continued drug administration.  

3.1 Resistance to chemotherapy 

TNBC is a highly heterogeneous disease with an unfavorable prognosis. Paradoxically, the 

initial higher pCR rate to chemotherapy fails to correlate with better overall survival. TNBC 

is much aggressive with high frequency of developing resistance to chemotherapy. Tumor 

recurrence and resistance can be due in part to intratumoral heterogeneity of TNBC, 

which allows selective enrichment for cancer stem cell-like subpopulation. Single-cell 

sequencing of TNBC patients has also demonstrated that resistance occurred through 

adaptive selection of pre-existing genotypes by neoadjuvant chemotherapy, with 

associated transcriptional reprogramming of the resistant signatures 55. Some 

chemotherapeutic agents, such as doxorubicin and paclitaxel, are substrates of ATP-

binding cassette (ABC) transporters. The efflux of drug by these transporters results in 

decreased drug concentration in tumor cells, hence weakening the efficacy 56, 57. 

3.2 Resistance to targeted therapy 
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Advancements in high-throughput next-generation sequencing technologies and massive 

parallel sequencing studies, as well as integrated bioinformatics-based tumor biology 

investigation have expanded our knowledge on the genomic complexity and intratumoral 

heterogeneity of breast cancer. Consequently, several targetable vulnerabilities have been 

identified in predefined patient subgroups to tailor treatment for improved therapeutic 

benefits. However, the activity of targeted therapy in the management of TNBC remains 

modest, due in a large part to drug resistance. Resistance involves reactivation of signaling 

pathways targeted by the drug and activation of compensatory signaling pathways, which 

can be resulted from dysregulated feedback loops and pathway crosstalk 58-60. Evidences 

have shown that, in response to PI3K/mTOR inhibition, activated β-catenin served as an 

alternate survival pathway conferring glioblastoma and colorectal cancer resistance both 

in vitro and in vivo 61, 62. Concordantly, a study employing colorectal cancer patient-

derived sphere cultures and mouse tumor xenografts showed that blocking Wnt/β-catenin 

pathway by tankyrase inhibition reverted resistance to PI3K and AKT Inhibitors 63. In TNBC, 

MEK-targeted inhibition triggered dynamic reprogramming of the kinome, thereby limiting 

its anti-cancer effects 58. Chapter 2 elucidated that drug resistant TNBC cells remained 

active ERK activity when treated with EGFR inhibitors. Proteolytic shedding and 

inactivated negative regulators of receptor tyrosine kinases (RTKs) have been shown to 

elevate surface RTK levels and enhance mitogenic signaling, resulting in kinase inhibitor 

resistance 64-66. Contrarily, targeting FYN, a negative regulator of EGFR signaling identified 

in Chapter 3, released the activity of downstream PI3K and AKT signaling, rationalizing the 

co-targeting strategy to subvert resistance against inhibitors targeting EGFR/PI3K/AKT 

signaling axis. Recently, results from kinome dynamics mapping have concluded that 

maintenance of AURKA after drug treatment conferred therapy failure in breast cancer 

treated with inhibitors targeting PI3K/AKT/mTOR pathway 67. Our research in Chapter 4 

found that elevated cyclin D1 expression contributed in part to mTORi resistance. It has 

also been reported that FAK/IGF1R dependent PI3K pathway activation drives tumor 

resistance against mTOR inhibitors in various cancer cell lines and mouse models, 

including TNBC 68.  

Altogether, drug resistance remains one of the major determinants limiting drug 

efficacy in TNBC therapy. With the various resistance mechanisms being well studied, the 

discovery of new therapeutic strategies and novel attainable targets are still of high 

demand. 

 

4. Novel therapeutic strategies and target identification approaches 

4.1 Role of gene expression profiling in patient stratification 
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TNBC is a highly aggressive disease of a great histological and biological heterogeneity, 

which has a notorious impact on the primary end points in clinical trials. Gene expression 

profiling plays a central role in dissecting this complexity and generating clinical benefits. A 

comparative study on TNBC clinical outcomes has noted that genomic signatures strongly 

correlate with response and survival after polychemotherapy typically in the basal-like 

subgroup of triple-negative tumors 69. These high-risk basal-like tumors with high 

proliferation scores are very sensitive to chemotherapy, whilst the lower-proliferating 

ones are less responsive with a worse prognosis. Thus, in the latter scenario, novel 

therapies are warranted. These findings highlight the importance of using gene expression 

data in patient stratification to predefine homogenous tumor groups and provide clinically 

relevant information. Supportively, encouraging results presented at ASCO 2018 showed 

that the biomarker selected group (i.e. with alterations in PIK3CA, AKT or PTEN genes) 

greatly contributed to the prolonged PFS by AKT-targeted therapy (AZD5363) plus first-line 

paclitaxel in the metastatic setting of TNBCs 69. 

4.2 Exploiting combinatorial strategies to subvert resistance 

Therapeutic inactivation of an essential protein, in some cases the protein complex, 

produces selective pressure, allowing tumor cells to evolve mechanisms of resistance. 

Provided the molecular complexity and interplay between signaling pathways within 

tumor cells, single agents are insufficient to block driving survival pathways to tackle TNBC, 

rationalizing multi-targeted remedy to neutralize intrinsic and/or acquired resistance. 

Multi-targeted therapy can be achieved by either combination of highly selective drugs or 

multiple-targeting single agents based on polypharmacology.  

Inhibitors targeting different protein kinases have been tested in combinations, 

as well as with other therapy modalities. Activation of PI3K/AKT/mTOR pathway is 

common in TNBC. A randomized Phase II study has assessed the combination efficacy of 

AKT inhibitor AZD5363 with paclitaxel as first-line treatment for mTNBC 70. The patients 

with alterations in PI3K pathway demonstrated remarkably improved median PFS of 9.3 

months in the combination group, whereas the median PFS was 3.7 months for the 

paclitaxel alone group. Co-inhibition of MEK and BRAF has been attempted to target 

separate components in the same pathway to restrain downstream signaling reactivation. 

Indeed, a Phase III trial reported that the combination reduced the risk of disease 

progression compared to BRAF-targeted monotherapy 71. In Chapter 2, FRET imaging-

based high throughput kinase activity screen for ERK and AKT revealed that sustained ERK 

activity conferred EGFRi-targeted inhibition resistance in TNBC cells, presenting an 

excellent possibility to simultaneously target EGFR and downstream MEK/ERK signaling. 

Another approach for combination therapy is to targeting compensatory pathways in 

parallel. MEK inhibition was shown to reactivate ERK via upregulating multiple RTKs. The 
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combination with multi-RTK targeted inhibitor sorafenib could sensitize TNBC cells to MEK 

inhibition and greatly suppressed tumor regression 58. PI3K pathway is known to be 

activated by MEK inhibition, thus combining MEK-targeting drugs with inhibitors against 

PI3K/AKT/mTOR has been applicable. Significant tumor shrinkage by MEK inhibition was 

found in TNBC mouse model when combined with PI3K inhibitor 72, 73, as well as for the 

combination with AKT inhibitor in TNBC patients with both MEK and PI3K pathway 

activation 74. Co-targeting of MEK and mTOR or upstream EGFR/VEGFR has also been 

tested in clinical trials (NCT02583542, NCT01586624 and NCT00600496). In our study, 

Chapter 3 has identified FYN as a negative regulator of EGFR signaling, and proposed co-

targeting FYN to reverse drug resistance in cancer cells with elevated EGFR expression, 

including TNBC. Recently, the emerging combinations of targeted therapy for the 

treatment of TNBC have been summarized in a review 75. Alternatively, polypharmacology 

with multi-target KIs might be exploited to circumvent drug resistance. Targeting multiple 

signaling elements by single agents could resist pathway reactivation and reprogramming, 

thus ultimately delay the onset of resistance. An important example is the utilization of 

ponatinib, a dual PDGFRA/FGFR1 inhibitor, which overcomes PDGFRA inhibitor resistance 

by disrupting the driver signaling event (PDGFRA) and the adaptive FGFR1 pathway 76. By 

utilizing an integrated systematic screening and cheminformatics approach, Chapter 4 

revealed the synergistic effects of multi-kinase targeted inhibitor AEE788 on rapalogs 

treatment in TNBCs and its underlying polypharmacology. 

 The discovery of immune checkpoints and recent clinical success of their 

blockade have led to a surge in cancer immunotherapy. It has been reported that 

lymphocytic infiltration correlates improved response to chemotherapy and clinical 

outcomes in TNBC, pressing the potential of combining immune checkpoint inhibition and 

chemotherapy for the treatment of this disease 50-52, 77. Recently, results from Phase II 

TONIC trial have been presented at ASCO 2018, indicating that an upregulation of pro-

immunogenic signatures and an increase in T-cells and T-cell clonality were observed after 

cisplatin or doxorubicin treatment, in which their combination with nivolumab (an anti-

PD-1 mAb) enhanced the overall response rate in mTNBC 70. And these higher-responsive 

cohorts will be expanded in the next phase of the trial owing to the encouraging results. 

More recently, FDA has approved the combination of PD-L1 inhibitor atezolizumab with 

nab-paclitaxel for PD-L1-positive, advanced TNBC 53. Other clinical trials testing the 

efficacy of immunotherapy in combination with neoadjuvant or adjuvant chemotherapy in 

early-stage TNBC are currently on going (NCT03036488, NCT02954874, NCT03197935, 

NCT03281954 and NCT02926196) 78. In addition to combination with chemotherapy, 

immune checkpoint inhibitors are also under clinical investigation along with molecularly 

targeted agents. The KEYNOTE-162 trial testing the combination of niraparib and 

pembrolizumab in mTNBC reported remarkably higher objective responses (67%) in 
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patients with gBRCA 78. It was reported that Abemaciclib monotherapy increased T cell 

inflammatory signature in murine cancer model, whereas combination with anti-PD-L1 

drugs resulted in complete tumor regression 79. 

Dosing regimens of combined drugs may also have impact on therapeutic 

potency. For example, studies using TNBC xenografts argued that sequential 

administration of combined drugs effectively prevented oncogenic pathway rewiring and 

elevated apoptotic response, as illustrated by the sensitized response to doxorubicin by 

the pretreatment of EGFR-targeted inhibitor erlotinib 80. In another preclinical study 

involving distinct sequential regimens of CDK inhibitor flavopiridol and topoisomerase 

inhibitor irinotecan, researchers found that the combination effectively induced apoptosis 

(43%) of colon cancer cells when administrated in a specific order (irinotecan followed by 

flavopiridol), whereas both the reverse order (15%) and simultaneous therapy (30%) were 

less effective 81.  

4.3 Identification of novel therapeutic targets 

High-throughput genetic perturbation drug screens have led to the discovery of gene 

essentialities, synthetic lethality interactions and drugs with the potential to improve the 

treatment of cancer, including TNBC 82-84. For example, a genome-wide siRNA screen has 

identified proteasome addiction in basal-like TNBC cells 83. Pharmacologically targeting 

proteasome inhibited TNBC tumor growth in mice. Another siRNA-based screen across 

117 cell lines spanning 10 cancer types revealed cancer driver gene dependencies and 

enabled the prediction of cancer cell drug responsiveness 84. Provided the off-target 

limitation of RNA interference (RNAi), a genome-scale shRNA screen was performed 

across 501 cancer cell lines, accompanied by DEMETER computational algorithm to 

remove false positives 85. Novel kinase dependencies in TNBC have been discovered 

through a FRET biosensor-based kinase inhibitor screen in Chapter 2 with a possibility to 

prioritize therapeutic targets. Comprehensive drug combination screens also reported 

pivotal findings, resulting in 44 effective combinations evaluated in mouse models 86. 

These evaluations have led to the clinical testing of two promising combinations 

bortezomib + clofarabine and paclitaxel + nilotinib in Phase I trials (NCT02211755 and 

NCT02379416, respectively). 

 Gene expression-based approaches have been employed to identify therapeutic 

targets in TNBC. The integration of genomic and proteomic platform on breast cancer cell 

lines and tumors revealed five potential candidate genes specifically enriched in TNBC, 

including STAT5A, POSTN, MYLK, HLA-A and EPHA2 87. Recently, an integrative analysis of 

mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation 

profiles has identified co-occurring actionable alterations, suggesting opportunities for 
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combination therapies 88. Additionally, computational algorithm-based aggregation in 

recurrently altered genomic regions has also assisted in the identification of novel cancer 

drivers/therapeutic targets 89-91. Chapter 5 has exploited the robust ADMIRE algorithm to 

prioritize 148 candidate genes driving TNBC cell growth and proliferation. siRNA-based 

functional screen further validated, besides known EGFR and MYC oncogenes, novel driver 

genes including ASAP1 which showed high amplification frequency and gene expression in 

TNBC cohorts, and associated with poor prognosis in patients. A pooled shRNA breast 

cancer cell line screen, integrated with siMEM algorithm and omics data, has identified 

BRD4 as a potential target in luminal breast cancer. In addition to known drivers, this 

approach also found two potential new amplified drivers ZNF652 and YEATS4, depletion of 

which significantly inhibited cell proliferation in breast cancer cell lines with corresponding 

amplification 91. Another integrative study assessing frequent copy number alterations 

(CNAs) in TNBCs identified and functionally validated 13 TNBC addiction genes. The role of 

one potential drug target KIFC1 was mechanistically studied and, accordingly, a selection 

biomarker was developed to identify patients with tumor exhibiting centrosome 

amplification 89.  

 

5. Recent advances and new opportunities 

5.1 Tackling cancer heterogeneity 

Cancer cell lines (CCLs) represent easy-to-manipulate systems for high-throughput drug 

and genetic screens. Equipped with automated liquid handling techniques, large-scale 

high-throughput screens are now much attainable and less time-consuming. However, 

faithfully recapitulating cancer heterogeneity requires large panels of available CCLs. With 

the goal of capturing this diversity, two large projects have been initiated, namely the 

Cancer Cell Line Factory and the Human Cancer Model Initiative. The former one aims to 

create over 10,000 CCLs for research use 92, while the latter one aims to generate about 

1000 new in vitro cancer models 93. Recently, organoids have emerged as novel in vitro 3D 

cancer models with the capability of self-organizing and phenocopying essential facets of 

organs where they derive 93. Multiple living organoid biobanks have been established for a 

collection of cancer types, including breast cancer. Mouse models are highly important in 

vivo systems in preclinical cancer research, ranging from cell line-derived xenografts (CDXs) 

to PDXs, to genetically engineered mouse models (GEMMs), and to the recently revisited 

syngeneic mouse models owing to the breakthrough of immunotherapy.  

5.2 Improved gene manipulation 
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RNA interference (RNAi) allows broad gene inactivation and functional analysis of 

suppressed genes, which can be achieved transiently by siRNA, or stably by shRNA. 

Multiple RNAi libraries have been established targeting almost the entire genome or 

subsets, such as the druggable genome, the adhesome or the kinome. RNAi-based screens 

have been used to identify addiction genes and drug response-modulating genes. 

However, this approach is limited by its off-target effects and incomplete gene 

inactivation. CRISPR/Cas9 is a rapidly developing gene-editing tool with high efficiency and 

specificity. It has been substantially used in cancer research for generation of cancer 

models, synergistic gene study and target identification and validation 94, 95. In a 

comparative study of genome-wide CRISPR/Cas9 dropout screen and shRNA screen, 

researchers found that CRISPR/Cas9 screen was more capable of detecting cancer 

essential genes than shRNA screen 96. Though, false-positive hits were discovered in highly 

amplified regions owing to the induction of DNA damage response. It was reported that 

sgRNA-associated target mismatches caused cell lethality, necessitating the design of 

more specific sgRNAs. Notably, for both RNAi screen and CRISPR/Cas9 screen, improved 

algorithms have been developed to examine on- and off- target effects, holding the 

promise to remove false-positives 85, 94. In context of CRISPR/Cas9 screens, modified 

sgRNA design algorithms have also been developed to improve screen sensitivity 97. 

5.3 Advanced high-throughput screening 

Nowadays, high-throughput screens have been advanced by exploitation of lentiviral 

barcoding and mixing genetically labeled cell lines. The novel platform PRISM enables 

simultaneous detection of a drug’s activity on a mixture of CCLs in a single well, resulting 

in much higher throughput 98. In addition, advanced high-throughput imaging allows for 

tempo-spatial detection of key cancer events in living cells and more complex intravital 

mouse model with improved fidelity and statistical robustness. Image-based screening 

approaches can provide high-throughput phenotypic readouts for cancer drug discovery, 

such as cell morphology, migration, programmed cell death and cell cycle progression 99. 

Our approach described in Chapter 2, by leveraging FRET biosensor-based reporter cell 

systems, has also advanced the live cell high content imaging-based quantification of 

kinase activity profiles in TNBC cells. Multi-dimensional image analyses of kinase activity 

dynamics in high temporal resolution revealed differential kinase dependencies in various 

drug-resistant TNBC cells, as well as possible off-target effect of clinical kinase drugs. 

5.4 Genomic sequencing and bioinformatics 

Massive next-generation DNA/RNA sequencing studies represent an increasing reservoir 

of genetic aberration and gene expression information. Coupled with bioinformatics-

based pathway analysis approaches, these databases allows for the exploration of 
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signaling pathway activation and active signaling components. TempO-Seq-based targeted 

whole genome RNA sequencing analysis performed in Chapter 5 concluded that, the novel 

TNBC driver gene ASAP1 regulates various cytokine and apoptosis signaling components 

that are significantly associated with TNBC prognosis, supporting the potentiality of ASAP1 

as a therapeutic target for the dismal disease. In addition, chemoinformatics helps to 

better understand the drug-target interactions. Chemoinformatics-guided target 

prediction and validation in Chapter 4 has pronounced the polypharmacology mechanisms 

underlying the synergy of multi-kinase targeted inhibition on mTORi treatment in TNBC. 

An integrated application of these continuously advancing approaches/platforms will 

eventually lead to potential novel cancer therapy. 

 

6. Aim and scope of this thesis 

TNBC represents a highly aggressive disease, and incurable. Cytotoxic chemotherapy is the 

only option for systemic treatment. Prospective precision medicine in TNBC requires the 

development of new targeted therapeutic options. The main objectives of the studies 

described in this thesis are to i) understand the molecular basis of TNBC drug 

response/resistance to small-molecule KIs, ii) systematically identify vulnerabilities of 

refractory TNBC cells, and iii) eventually identify novel therapeutic targets and potential 

combination therapies. Chapter 2 explored highly dynamic ERK and AKT kinase activity in 

TNBC cells in response to a well-established KI library. The integrated high-throughput 

FRET imaging and phenotypic readouts approach has revealed differential kinase 

dependencies for TNBC cell proliferation. The research also identified TNBC drug 

resistance against EGFR- and AKT/mTOR-targeted inhibitors, separately. These resistant 

cell lines were further used for synthetic lethality screens in Chapter 3 and Chapter 4. 

EGFR inhibitors (EGFRi) have long been explored as targeted therapy for TNBC, but rarely 

beneficial in the clinic. In Chapter 3, a kinome-wide siRNA screen was performed in EGFRi-

resistant TNBC cells in combination with lapatinib treatment. The combination screen 

aimed to identify key modulators of kinase signal transduction, conferring TNBC resistance 

against EGFR-targeted inhibition. Overactivation of PI3K/AKT/mTOR pathway is common 

in TNBC. Targeting mTOR, the convergent signaling element of multiple pathways, is of 

particular interest. A KI library screen was conducted in the absence or presence of 

rapamycin, as shown in Chapter 4. This study aimed to explore effective combined drug 

treatment to overcome TNBC resistance to mTOR inhibitors (mTORi). The research 

suggested using polypharmacology to circumvent mTORi resistance by combining multi-

targeted kinase inhibition. The targets of the identified KI were predicted by 

cheminformatics-based survey and functionally validated by siRNA-mediated gene 

suppression. Over 80% of cases diagnosed with TNBC represent TP53 mutation, resulting 



 

17 
 

1 

in high likelihood of gene instability. Thus, discovery of recurrent CNAs in the focal regions 

of TNBC genome provides an excellent possibility to identify therapeutic targets. Using a 

robust computational algorithm, Chapter 5 identified not only known oncogenes but also 

novel putative cancer drivers. Following functional validation via gene inactivation, whole-

genome RNA sequencing and pathway analysis were carried out to investigate the 

functionalities of the most clinically relevant drivers. Last of all, Chapter 6 summarizes and 

discusses the findings of the work. Challenges and future perspectives are also provided. 
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Abstract 

Enhanced expression and activity of protein kinases are critical in tumor cell proliferation 

and cancer progression. These various cancer-related kinases form intricate 

interdependent signaling networks. Evaluation of the effect of various kinase inhibitors on 

these networks is critical to understand kinase inhibitor efficacy in cancer therapy. The 

dynamic activation of some kinases can be monitored by fluorescence resonance energy 

transfer (FRET) biosensors with high temporal resolution. Here, we established a FRET 

biosensor-based high throughput imaging approach to determine ERK and AKT activity in 

two triple-negative breast cancer (TNBC) cell lines HCC1806 and Hs578T. FRET 

functionality was systematically evaluated using EGF stimulation and different MEK and 

AKT inhibitors, respectively. Next, we assessed the effect of a kinase inhibitor library 

containing >350 different kinase inhibitors (KIs) on ERK and AKT kinase activity using a 

FRET high-throughput screening setting. Suppression of FRET-ERK activity was generally 

positively correlated with the proliferation phenotype against inhibitors targeting MAPK 

signaling in both cell lines containing FRET-ERK reporter. AKT inhibitor (AKTi) resistant 

HCC1806 showed decreased proliferation associated with downregulated dynamics of 

FRET-ERK when treated with KIs targeting protein receptor tyrosine kinase (RTK). Yet, MEK 

inhibitor (MEKi) resistant Hs578T showed positively correlated FRET-AKT and proliferative 

responses against different PI3K and AKT inhibitors. Altogether, our data demonstrate the 

feasibility to integrate high throughput imaging-based screening of intracellular kinase 

activity using FRET-based biosensors in assessing kinase specificity and possible signaling 

crosstalk in direct relation to therapeutic outcome.  

 

Keywords 

FRET; Kinase activity dynamics; TNBC; Drug resistance; Kinase dependencies  
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1. Introduction 

Protein kinases constitute the complexity in signaling networks that orchestrate 

extracellular and intracellular signals to control cell growth, proliferation and survival 100-

103. Deregulation of kinase signaling cascades underlies the cause of cancer. Triple-

negative breast cancer (TNBC) is an aggressive subtype of breast cancer with unfavorable 

prognosis 104, 105. Advanced large-scale gene expression profiling has revealed several 

frequently altered signaling pathways in TNBC, including high expression of genes in 

epithelial-mesenchymal transition and growth factor pathways, enriched immune cell 

processes and androgen signaling, and increased cell cycle and DNA damage responses 8, 19, 

106. Particularly, overexpression of receptor tyrosine kinases (RTKs) and frequently 

elevated activation of MAPK/ERK and PI3K/AKT pathways, the two canonical pathways 

converging RTK signaling, have been observed in a set of TNBCs 107, 108. Therefore, kinase 

targeted therapies with diverse RTK inhibitors, MEK inhibitors (MEKi) and AKT inhibitors 

(AKTi) to block upregulated RTK, MAPK/ERK and PI3K/AKT signaling in TNBC have been 

explored under clinical investigation 109-111. However, TNBC patients do not respond 

equally well to kinase targeted therapies, often encountering the problem of inhibitor 

resistance, due to upregulated adaptive signaling pathways or drug induced kinome 

reprogramming 58, 112-115. Hence, dissection of kinase dependency is essential for 

discovering effective kinase targeted therapeutics for the dismal TNBC. 

Fluorescence resonance energy transfer (FRET) imaging has been explored in 

innovating the discovery of effective therapeutics for cancer therapy 99, 116-118. In particular, 

genetically encoded FRET biosensors that stably express two fluorescent proteins, mostly 

CFP and YFP (cyan and yellow fluorescent proteins), enable quantitative measurement of 

kinase dynamic activity and real-time monitoring of inhibitor-target potency in living cells 
119. FRET biosensors are developed based on phosphorylated peptide substrate of a kinase 

for its kinase activity 120 or based on conformational changes of the kinase itself for its 

activation 121. Substrate-based FRET biosensors have been extensively applied to evaluate 

the activities of kinase targets in response to kinase inhibitors. For example, a stably 

expressed FRET biosensor for epidermal growth factor receptor (EGFR) signaling in HeLa 

cells was reported to predict the efficiency of inhibitors targeting Ras-ERK and PI3K-S6K 

pathways 117. A designed FRET kinase translocation reporter was described to dynamically 

measure multiple JNK, p38 and ERK activities in live single cells under inhibitor treatment 
122. A panel of optimized FRET biosensors have been established to monitor the kinase 

activities of PKA, ERK, JNK, EGFR/Abl, Rac1, RSK, S6K, AKT and PKC in response to EGF 

stimulation and kinase inhibitors 123, 124. Therefore, utilization of substrate-based FRET 

biosensor imaging may allow dissecting the complexity of kinase networks in drug-

resistant TNBC cells and predicting effective kinase inhibitors for treating the refractory 

TNBC. 
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We have previously profiled the proliferative responses of 19 TNBC cell lines to 

378 kinase inhibitors (Selleckchem®). Consistent to the clinical results, our results also 

demonstrated the differential response phenotype of TNBC cells to MEK and AKT targeted 

inhibitors, and defined the groups of MEKi-resistant and AKTi-resistant TNBC cell lines (van 

der Noord et al, submitted). In this study, we described a FRET-ERK and FRET-AKT 

biosensor based high-throughput imaging approach to quantitatively monitor ERK and AKT 

dynamic activity in MEKi-resistant and AKTi-resistant TNBC cells in response to the 378 

kinase inhibitors. We derived a mathematical model that associates MEK and AKT kinase 

activity with anti-proliferation effects, by which we revealed unique kinase dependencies 

on RTK/MAPK and PI3K/AKT pathways that are distinctly targetable in the resistant TNBC 

cells. 

 

2. Materials and methods 

2.1. Reagents and antibodies 

A library of 378-kinase inhibitors (the L1200 library), rapamycin, BEZ235, AZD5363, 

erlotinib, gefitinib, selumetinib, GSK1059615, GSK690693 and TAK733 inhibitors were 

purchased from Selleckchem (Huissen, the Netherlands). The phospho(Ser473)-AKT (9271), 

phospho(Thr202/Tyr204)-p44/42 MAPK (ERK1/2, 9101), GFP (D5.1, 2956), AKT (9272) and 

p44/42 MAPK (ERK1/2, 4695) antibodies were from Cell Signaling (Bioké, Leiden, the 

Netherlands). The antibody against tubulin (T-9026), blasticidin S (15205) and human 

epidermal growth factor (EGF, E9644) were from Sigma Aldrich (Zwijndrecht, the 

Netherlands).  

 

2.2. Cell culture 

Human TNBC cell line HCC1806 and Hs578T were provided by Erasmus Medical Center 

(Rotterdam, the Netherlands). Cells were cultured in RPMI-1640 medium supplemented 

with 10% fetal bovine serum, 25 U/mL penicillin and 25 µg/mL streptomycin in a 

humidified incubator at 37°C with 5% CO2. 

 

2.3. Establishment of stable FRET reporter cell line 

Constructs of FRET biosensors for ERK (named pPBbsr-EKAREV-nls) and AKT (named 

pPBbsr-Eevee-iAKT-nes) have been described previously 123, 124 and kindly provided by Prof. 

Dr. Michiyuki Matsuda (Laboratory of Bioimaging and Cell Signaling, Kyoto University, 

Japan). Stable cell lines expressing ERK-FRET and AKT-FRET biosensors using a transposon 

system were established, as described previously 118. pCMV-mPBase (mammalian codon-

optimized PBase) encoding a piggyBac transposase was a gift from Allan Bradley 

(Welcome Trust Sanger Institute, Cambridge, UK). HCC1806 and Hs578T cells were 

transfected with pCMV-mPBase and either pPBbsr-EKAREV-nls or pPBbsr-Eevee-iAKT-nes, 

and selected with blasticidin S at a dose of 2 μg/ml for 10 days to generate cells expressing 
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EKAREV-nls or Eevee-iAKT. Plasmids were transfected using lipofectamine™ 3000 

transfection reagent (Thermo Fisher Scientific, Waltham, USA) according to the 

manufacturer’s instructions. Selected cells were suspended and further FACS 

(fluorescence activated cell sorting)-sorted at the Leiden University Medical Center flow 

cytometry core facility (Leiden, the Netherlands).  

 

2.4. Cell proliferation assay 

A sulforhodamine B (SRB) colorimetric assay was used to measure total amount of 

proteins indicative of cell proliferation, as previously described 125. 

 

2.5. siRNA transfection 

To silence target genes, 50 nM siGENOME Human SMARTpool siRNA mix (GE Dharmacon, 

Lafayette, CO, USA) was transfected into cells by transfection reagent INTERFERin 

(Polyplus-Transfection SA, Illkirch-Graffenstaden, France) according to the manufacturer’s 

instructions. The medium was refreshed 24 h post-transfection and transfected cells were 

used in experiments 48 h post-transfection. 

 

2.6. Western Blotting 

Cells were seeded in 6-well plates at the appropriate density. For stimulation/starvation 

assays, medium was refreshed with serum-free medium (SFM) the following day and cells 

were starved overnight. Thereafter, cells were stimulated with 50 ng/ml EGF (Sigma; 

E9644) for 5 min in SFM. Cells were lysed with RIPA buffer containing 1% 

protease/phosphatase inhibitor cocktail (Sigma-Aldrich, P8340). Proteins were resolved by 

SDS-PAGE and transferred to polyvinylidine difluoride membranes. Membranes were 

blocked in 5% BSA in Tris-buffered saline with 0.05% Tween-20 (TBS-T), followed by 

overnight incubation with primary antibodies, washing, and 1 h incubation with HRP-

conjugated secondary antibodies. Chemiluminescence was generated in the presence of 

HRP substrate and detected with an Amersham Imager 600 (GE Healthcare Life Sciences, 

Eindhoven, the Netherlands). Protein bands were quantified using ImageJ (NIH, US). 

 

2.7. Time-Lapse imaging 

Cells were imaged using a Nikon Eclipse Ti confocal microscope (Nikon, Amsterdam, The 

Netherlands) equipped with a PlanApoVC 20x/0.75 objective lens, a cooled CCD camera, a 

CoolLED pE-100 excitation light source, an automated stage and perfect focus system, and 

an incubation chamber. The dichroic mirrors and filters used for time-lapse imaging were 

as follows: a T640LPXR dichroic mirror, and emission filters FF01-482/35 and FF01-525/50 

for CFP and FRET, respectively. All images were acquired using NIS software (Nikon). 408 

nm LED lamp was used as light source, with 1.4% of lamp power. Acquisition times were 2 

s for donor channel and 2 s for FRET at binning 2 × 2. Cells were plated in 96-well, 
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collagen-coated, glass-bottom plate (Greiner, Kremsmünster, Austria). After attachment, 

cells were imaged in phenol red-free RPMI-1640 medium at 37°C. For EGF exposure study, 

cells were starved at least 12 h and treated with stimulus, followed by the addition of 

inhibitors if necessary. 3-5 frames were taken prior to any compound addition to obtain 

basal CFP and FRET intensity level. 

 

2.8. FRET ratio image analysis 

Image analysis was implemented using a combination of ilastik (v1.1.9) and CellProfiler 

(v2.1.1). Acquired images were split into the original channels. Segmentation was 

performed based on FRET images using ilastik. Mono-channel images were masked with 

segmentations using CellProfiler. The FRET and CFP intensities were quantified per pixel 

and the FRET was divided by the CFP channel. FRET/CFP ratio images were created to 

represent the FRET efficiency. In the intensity-modulated display mode, eight colors from 

red to blue are used to represent the FRET/CFP ratio. The FRET/CFP value prior to 

compounds exposure was averaged and used as the reference. The ratio of raw FRET/CFP 

value versus the reference value was defined as the normalized FRET/CFP value. FRET 

dynamics curve for each treatment was modeled using R (v3.2.2) and RStudio (v0.99.887) 

with an in-house developed “celloscillate” pipeline (Wink et al, manuscript in preparation). 

Extremes representing maximum FRET effect were extracted from fitted curves and 

defined as MaxMagnitudeFRET. 

 

2.9. Statistical analysis 

Pearson correlation analysis were performed using GraphPad Prism 7 with 95% confidence 

band. Significance was set at r > 0.5. All experiments were performed in at least three 

independent biological replicates. Data were expressed as mean ± SEM. The hierarchical 

clustering in heatmap was performed using CRAN pheatmap package in RStudio 

(v0.99.887). 

 

3. Results 

3.1. Establishment of stably expressed FRET-ERK and FRET-AKT biosensor in TNBC cells 

resistant to MEK or AKT inhibition 

To monitor ERK and AKT dynamic activity in control of TNBC cell proliferation, we firstly 

ectopically expressed YPet/ECFP pair and substrate-based FRET-ERK biosensor (EKAREV) 

and FRET-AKT biosensor (Eevee-iAkt) 123, 124 into an AKTi-resistant TNBC cell line (HCC1806) 

and a MEKi-resistant TNBC cell line (Hs578T), respectively. Two stable FRET-ERK biosensor 

lines (HCC1806/ERK, Hs578/ERK) and two FRET-AKT biosensor lines (HCC1806/AKT, 

Hs578T/AKT) were established, overall achieving > 85% of fluorescent positive cell 

population (Fig. 1A) and high levels of FRET pair expression (GFP bands) (Fig. 1B, left 

panel). Ectopic expression of FRET-ERK and FRET-AKT biosensors did not affect the 
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endogenous ERK and AKT levels, compared to parental cells (Fig. 1B). Moreover, the 

fluorescent protein was homogeneously expressed in the established FRET biosensors 

cells, as observed via GFP channel of fluorescent microscopy (Fig. 1C). In response to 

proliferative inhibition by MEKi selumetinib and AKTi AZD5363, HCC1806 FRET biosensor 

cells remained MEKi-sensitive and AKTi-resistant, while Hs578T FRET biosensor cells were 

AKTi-sensitive and MEKi-resistant, phenocopying the drug responses of parental cells (Fig. 

1D).  

 
Fig. 1. Establishment of FRET reporter TNBC cell lines. (A) Percentage of FRET biosensor positive cells sorted by 

FACS. TNBC cells were transfected with DNA plasmids encoding FRET-ERK and -AKT biosensors and selected with 

blasticidin (20 µg/ml) for one week, followed by trypsinization and suspension prior to FACS. (B) Biosensor 

expression in FRET reporter cells. Antibody against GFP was used to detect fluorescence of expressed biosensors. 

Quantification of ERK, AKT and total fluorescent protein level in parental and FRET reporter TNBC cell lines. The 

expression level was normalized to Tubulin and further compared to that in Hs578T/AKT cells. (C) Fluorescence 

imaging of FRET reporter cells. Cells were imaged in GFP channel using ZOE™ fluorescent cell imager. Scale bar = 

100 µm. (D) Effects of selumetinib and AZD5363 on cell proliferation of parental and FRET biosensors cell lines. 

Both parental and FRET-ERK (AKT) reporter HCC1806 and Hs578T cells were treated with selumetinib and 

AZD5363 in concentration range for 4 days, followed by SRB proliferation assay.  

 

3.2. FRET-ERK and FRET-AKT activity in the biosensor TNBC cells are responsive to EGF 

stimulation and MEK or AKT inhibition 

Since ERK and AKT are essential effectors of EGF-triggered signaling cascades, we next 

evaluated FRET-ERK and FRET-AKT activity dynamics in the presence of EGF at 10, 25, 50 

and 100 ng/ml concentrations, respectively. The ratio of fluorescence intensity of the YFP 

(acceptor) channel (FRET) versus fluorescence intensity of CFP (donor) channel (CFP), 
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FRET/CFP, was used to represent the level of FRET-ERK and FRET-AKT kinase activities [15]. 

 
Fig. 2. Effects of MEK and AKT inhibitors on FRET-ERK and FRET-AKT activity. (A-B) Dynamics of FRET-ERK (A) 

and FRET-AKT (B) activity upon concentration range of EGF exposure. FRET reporter cells were serum-starved 

overnight and exposed to EGF in at different concentration. Five basal images were taken before EGF (ng/ml) was 

added. (C-D) Effects of EGF exposure on ERK (C) and AKT (D) phosphorylation. FRET reporter cells were serum-

starved overnight and exposed to EGF in time course (left panel, 50 ng/ml) and concentration range (right panel, 

5 min). (E-F) Quantification of phosphorylated ERK (E) and AKT (F) level, derived from (C-D). The expression level 

was normalized to total ERK or AKT and further compared to that in the sample exposed to EGF (50 ng/ml) for 5 

min, the second bar. (G-J) Effects of selumetinib (Sel) and AZD5363 (AZD) on FRET-ERK (G-H) and FRET-AKT (I-J) 

activity dynamics in the presence of EGF. FRET reporter cells were serum-starved overnight and exposed to EGF 

at 50 ng/ml. Five basal images were taken before EGF was added. Arrow indicates when EGF, Sel or AZD was 

added; values represent µM. Raw FRET/CFP ratio was color-coded in rainbow scale. Scale bar = 100 µm. 
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In Hs578T/ERK reporter cells, FRET-ERK activity was effectively induced by EGF even at low 

concentration of 10 ng/ml, peaking at 10 min post-exposure and declining gradually till 90 

min (Fig. 2A; Supplementary videos 1-2). The rapid induction of FRET-ERK activity by EGF 

was also captured in HCC1806/ERK cells (Fig. 3; Supplementary videos 3-4), but 

attenuated swiftly, compared to Hs578T/ERK cells. FRET-AKT activity in Hs578T/AKT 

 
Fig. 3. EGF stimulates FRET-ERK in HCC1806/ERK cells. (A) Dynamics of FRET-ERK activity upon EGF exposure in 

dose range. FRET reporter cells were serum-starved overnight. Five basal images were taken before EGF was 

added. (B) Effects of EGF exposure on ERK phosphorylation. FRET reporter cells were serum-starved overnight 

and exposed to EGF in time course (left panel, 50 ng/ml) and dose range (right panel, 5 min). (C) Quantification of 

phosphorylated ERK level, derived from (B). The expression level was normalized to total ERK and further 

compared to that in the sample exposed to EGF (50 ng/ml) for 5 min, the second bar. 

 

reporter cells was immediately triggered upon EGF stimulation, being enhanced during the 

90-min imaging period (Fig. 2B). The FRET-ERK and FRET-AKT activities did not show 

significant EGF dose dependency. The FRET/CFP detection window in our established 

FRET-ERK and FRET-AKT biosensor TNBC cells were consistent with that shown in the 

original publications 123, 124. It has been reported that FRET-ERK and AKT signal positively 

correlates with ERK and AKT phosphorylation 124, 126-128. Consistently, our western blot 

results confirmed the activation of p-ERK in Hs578T/ERK and p-AKT in Hs578T/AKT 

biosensor cells, when stimulated with EGF in time course (5, 10, 30, 60 and 120 min, at 50 

ng/ml) and in concentration range (10, 25, 50 and 100 ng/ml, for 5 min) (Fig. 2C-F). Next, 

we demonstrated that the EGF-stimulated FRET-ERK activity in Hs578T/ERK cells was 

dropped down upon 20 min exposure to MEKi selumetinib in dose dependent manner (Fig. 

2G), and the ratiometric FRET intensity was declined post 20 min of selumetinib exposure, 

as captured by time lapse imaging (Fig. 2H; Supplementary video 5). Similarly, the EGF-

stimulated FRET-AKT activity in Hs578T/AKT cells was subject to the inhibitory effect of 

AKTi AZD5363 (Fig. 2I-J; Supplementary videos 6-8). To clarify if the EGF-induced FRET 

kinase activity is attributed to EGFR signaling transduction upon EGF stimulation, we 

silenced EGFR and ERK2 in Hs578T/ERK cells by siRNA transfection, with AKT1 silencing as 

negative control. Knockdown of EGFR or ERK2, not AKT1, markedly blocked EGF-induced 

FRET-ERK activity in Hs578T/ERK cells (Fig. 4A) and moderately in HCC1806/ERK cells (Fig. 

4B).  

Taking together, our established FRET-ERK and FRET-AKT biosensor TNBC cell 

models are applicable for capturing ERK and AKT dynamic activities in response to 
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EGF/EGFR signaling cascades and inhibition of MAPK/ERK and PI3K/AKT upstream 

signaling pathways. 

 
Fig. 4. EGFR and ERK played a role in EGF-stimulated FRET-ERK. (A-B) Effects of EGFR, ERK2 or AKT1 siRNA 

knockdown on EGF-stimulated FRET-ERK in Hs578T/ERK (A) and HCC1806/ERK (B) cells. FRET reporter cells were 

transfected with siRNAs for 48 h and serum-starved overnight prior to exposure to EGF at 50 ng/ml. Five basal 

images were taken before EGF was added. 

 

3.3. FRET-ERK and FRET-AKT imaging-based kinase inhibitor screening reveals multiple 

signaling pathways interacting with ERK and AKT kinase activity for TNBC cell proliferation 

MAPK/ERK and PI3K/AKT pathways are the major intracellular mechanisms in response to 

extracellular signaling cues to control cell survival, proliferation, cell cycle and DNA 

damage 129-133. To characterize ERK and AKT dynamic kinase activities in relation to kinase 

inhibition and proliferation in TNBC cells, we performed high-throughput FRET screening 

and proliferation screening with 378 inhibitors (Selleckchem®) targeting 118 kinases in the 

FRET-ERK and FRET-AKT biosensor TNBC cells above. FRET imaging was automated 

continuously for 90 min in the presence of kinase inhibitors (1 µM), and proliferation assay 

was performed 4 days after treatment. To evaluate FRET kinase activities in response to 

individual inhibitors, we modeled each temporal FRET dynamics curve based on FRET/CFP 

ratio and extracted fitted value for maximum FRET effect (MaxMagnitudeFRET). Pearson 

correlation analysis of the fitted value for each replicate showed high reproducibility of 

the FRET screening in each FRET biosensor cell line (r > 0.8, Fig. 5A-D). Pearson coefficient 

r for proliferation assays demonstrated high reproducibility of the replicate proliferation 

screens (r > 0.9, Fig. 5E-H). The maximum FRET effect was plotted to relative proliferation 

for each kinase inhibitor for each FRET biosensor cell line. Given that the positive control 

for FRET-ERK (i.e. selumetinib) and FRET-AKT (i.e. AZD5363) achieved 0.8 and 0.96, 

respectively, we considered half maximum inhibitory effect on proliferation (50%) and 

FRET/CFP ratio 0.9 for FRET-ERK activity and 0.98 for FRET-AKT activity as effective 

inhibition. Consequently, 44 kinase inhibitors were screened to effectively inhibit both 

FRET-ERK activity and proliferation in HCC1806/ERK cells, while only 8 in Hs578T/ERK cells 

(Fig. 5I-J). In HCC1806/AKT and Hs578T/AKT biosensor cells, 14 and 26 inhibitors were 

selected, respectively (Fig. 5K-L). The FRET-ERK biosensor inhibitors mainly target signaling 

components in RTK and MAPK pathways, and the FRET-AKT effective inhibitors mostly 
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suppress the kinases of PI3K/AKT pathway (Fig. 5M). The FRET-ERK and FRET-AKT 

biosensor inhibitors also block the signaling networks of angiogenesis, cell cycle, 

epigenetics, NF-κB, cytoskeletal signaling, JAK/STAT and DNA damage, indicating their 

interplay with MAPK/ERK and PI3K/AKT pathways.  

 
Fig. 5. FRET KI screen identifies differential kinase dependencies in TNBC cells. (A-H) Reproducibility of FRET 

kinase inhibitor (KI) screen on FRET (A-D) and cell proliferation (E-H). Pearson correlation coefficient r showing 

reproducibility of replicate screen in FRET reporter cells. Maximum magnitude FRET effect (MaxMagnitudeFRET) 

was extracted from fitted time-lapse FRET dynamic curve. Blue dots, MEKi. Green dots, AKTi. (I-L) Association of 

relative proliferation of each KI with maximum magnitude effects on FRET in reporter cell lines. KIs showing 

relative proliferation ≤ 50% and MaxMagnitudeFRET ERK (AKT) ≤ 0.9 (0.98) are numbered and circled. (M) Donut 

plot of KIs selected from (I-L). Numbers of KIs and their targeted signaling pathways are annotated. 
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3.4. FRET-ERK and FRET-AKT imaging for ERK and AKT activity visualizes RTK/MAPK 

and PI3K/AKT dependencies for TNBC cell proliferation 

The observation above that RTK, MAPK and PI3K/AKT pathways were most frequently 

targeted by FRET-ERK and FRET-AKT biosensor inhibitors, suggests their essential role in 

TNBC cell proliferation. Next, we explored the relationship between the FRET effect 

(MaxMagnitudeFRET) and proliferation in response to inhibitors targeting RTK, MAPK and 

PI3K/AKT pathways. In response to MAPK inhibitors (MAPKi), both HCC1806 and Hs578T 

FRET-ERK biosensor cell lines displayed strong positive correlation between cell 

proliferation and FRET-ERK activity (r = 0.8318 and r = 0.8557, respectively) (Fig. 6A). While 

 
Fig. 6. Correlation between inhibition of FRET-ERK and cell proliferation by selective kinase inhibitors. (A-B) 

Association of MaxMagnitudeFRET with relative proliferation of KIs targeting MAPK signaling (MAPKi, A) and 

Receptor tyrosine kinase (RTKi, B) in FRET-ERK reporter cells. 95% confidence band is shown in grey. Significance 

is set at Pearson correlation coefficient r > 0.5 (red). (C-D) Clustering of FRET-ERK activity dynamics against 

MAPKi (C) and RTKi (D). Heatmaps were vertically clustered across KIs, annotated with relative proliferation and 

corresponding targets. FRET/CFP ratio was normalized to DMSO control. Arrow indicates when KIs were added. 

 

the proliferation of HCC1806/ERK cells was highly related to RTK-mediated FRET-ERK 

activity (r = 0. 7623), Hs578T/ERK cells were poorly responsive to RTK inhibitors (RTKi) with 

low correlation (r = 0.3680) in proliferation and FRET-ERK activity (Fig. 6B). Furthermore, 

hierarchical analysis of time-resolved FRET dynamics data clustered the MAPKi effect on 

FRET-ERK biosensor cells, revealing some MEK inhibitors correlatively inhibiting FRET-ERK 
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activity and proliferation in both HCC1806/ERK and Hs578T/ERK cells (Fig. 6C). A group of 

RTKi, including EGFR inhibitors (EGFRi), displayed concurrent inhibitory effect on FRET-ERK 

activity and proliferation in HCC1806/ERK cells, not in Hs578T/ERK cells (Fig. 6D), 

indicating the RTKi resistance in Hs578T cells. 

In FRET-AKT biosensor cells, positive correlation in FRET-AKT activity and 

proliferation was monitored in Hs578T/AKT cells when treated with PI3K inhibitors (PI3Ki, 

r = 0.7383) or AKT inhibitors (AKTi, r = 0.5534), whereas HCC1806/AKT cells were less 

responsive to PI3K/AKT inhibition (Fig. 7A-B). Consistently, FRET-AKT dynamics clustering 

displayed the sensitivity to PI3K/AKT signaling inhibition in Hs578T/AKT cells, but 

resistance in HCC1806/AKT cells (Fig. 7C-D). 

Altogether, our integrated FRET biosensor and kinase inhibitor screening dissects 

the RTK/MAPK-dependent proliferation in HCC1806 TNBC cells that are resistant to 

PI3K/AKT inhibition, and the PI3K/AKT-dependent proliferation in Hs578T TNBC cells that 

are RTKi/MEKi-resistant. 

 
Fig. 7. Correlation between inhibition of FRET-AKT and cell proliferation by selective kinase inhibitors. (A-B) 

Association of MaxMagnitudeFRET with relative proliferation of KIs targeting PI3K (PI3Ki, A) and AKT (ATKi, B) in 

FRET-AKT reporter cells. 95% confidence band is shown in grey. Significance is set at Pearson correlation 

coefficient r > 0.5 (red). (C-D) Clustering of FRET-AKT activity dynamics against PI3Ki (C) and AKTi (D). Heatmaps 

were vertically clustered across KIs, annotated with relative proliferation and corresponding targets. FRET/CFP 

ratio was normalized to DMSO control. Arrow indicates when KIs were added. 

 

3.5. MEKi-resistant and AKTi-resistant TNBC cells display differential FRET-ERK and 

FRET-AKT dynamics in response to RTK/MAPK and PI3K/AKT inhibition  

To confirm the findings on kinase signaling dependencies in AKTi-resistant HCC1806 and 

RTKi/MEKi-resistant Hs578T TNBC cells, we further investigated the inhibitory effects of 

RTK/MAPK and PI3K/AKT inhibitors in escalating doses (0.316, 1 and 3.16 µM) on FRET-
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ERK and FRET-AKT dynamics in the FRET-ERK and FRET-AKT biosensor cell lines. Treatment 

 
Fig. 8. Potency of selected kinase inhibitors on FRET-ERK and FRET-AKT activity. (A) Concentration response 

FRET-ERK activity dynamics for selumetinib, TAK733, gefitinib and erlotinib. (B) Representative images taken 

from (A) at 1 µM. Raw FRET/CFP ratio was color-coded in rainbow scale. Scale bar = 100 µm. (C) Concentration 

response of FRET-AKT activity dynamics for GSK1059615, BEZ235, AZD5363 and GSK690693. Three basal images 

were taken prior to KI treatment in dose range (µM). KIs showing positive correlation between 

MaxMagnitudeFRET and proliferation are marked in red. Arrow indicates when KIs were added. 
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with MEKi, selumetinib decreased FRET/CFP ratio in HCC1806/ERK and more significantly 

in Hs578T/ERK cell lines in a dose dependent fashion, while TAK733 effectively inhibited 

FRET-ERK activity even at low dose (0.316 µM) in both cell lines (Fig. 8A, upper panels). 

Distinctively, EGFRi gefitinib and erlotinib dramatically decreased FRET-ERK signal in 

HCC1806/ERK cells, but hardly ever in Hs578T/ERK cells (Fig. 8A, lower panels), revealing 

the EGFRi resistance in Hs578T cells. These differential FRET-ERK dynamic changes in 

HCC1806/ERK and Hs578T/ERK cells were captured, representatively upon 30 min 

exposure to MEKi selumetinib and TAK733 and EGFRi geftinib and erlotinib at 1µM (Fig. 

8B). Next, PI3Ki and AKTi conferred inhibitory effect on FRET-AKT activity in both 

HCC1806/ERK and Hs578T/AKT cell lines, yet, in different patterns. The inhibited FRET-AKT 

by PI3Ki GSK1059615 and BEZ235 in HCC1806/ERK cells was gradually recovered within 

one hour, whilst the FRET-AKT in Hs578T cells was steadily restrained in dose dependence 

(Fig. 8C, left panels).  AKTi AZD5363 and GSK690693 suppressed FRET-AKT activity more 

effectively in Hs578T/AKT cells than in HCC1806/AKT cells (Fig. 8C, right panels). As a 

result, our FRET biosensor-based live imaging deciphered the ERK dynamic responsiveness 

to EGFRi in AKTi-resistant HCC1806 TNBC cells and the AKT dynamic responsiveness to 

PI3Ki and AKTi in MEKi-resistant Hs578T cells that are also highly refractory to EGFRi. 

 

3.6. EGFRi-refractory TNBC cells sustain ERK signaling for proliferation 

In EGFRi-refractory Hs578T TNBC cells, EGFRi failed to inhibit FRET-ERK activity, while the 

FRET-AKT activity was targetable by PI3Ki and AKTi, suggesting that the downstream ERK 

signaling bypasses EGFR inhibition, leading to resistance. Thus, we further addressed how 

the FRET-ERK dynamic activity is associated with proliferative responses to EGFRi, MEKi, 

PI3Ki and AKTi, respectively, in dose ranges. The proliferation assays demonstrated that 

Hs578T/ERK cells were highly resistant to EGFRi (gefitinib and erlotinib), maintaining low 

sensitivity to MEKi (selumetinib and TAK733) and highly responding to PI3Ki (BEZ235) and 

AKTi (AZD5363) (Fig. 9A, left). Contrastingly, the AKTi-resistant HCC1806/ERK cells were 

responsive to EGFRi and MEKi but relatively insensitive to PI3Ki and AKTi (Fig. 9A, right). 

Next, we assessed if the FRET-ERK activity dynamics would reflect the ERK 

phosphorylation status in Hs578T/ERK and HCC1806/ERK cells in response to 

representative inhibitors. Strikingly, EGFRi gefitinib eliminated ERK phosphorylation (p-ERK) 

in HCC1806/ERK cells, but left the downstream p-ERK signaling intact in Hs578T/ERK cells 

(Fig. 9B-C). MEKi suppressed ERK phosphorylation in both cell lines, correlating with 

downregulated FRET-ERK activity dynamics, while PI3Ki and AKTi conferred no significant 

changes on p-ERK status in the cells, as expected. Taken together, the FRET-ERK dynamic 

activity was indicative of ERK signaling and proliferation of TNBC cells in response to 

inhibition of signaling pathways, such as RTK, MAPK and PI3K/AKT. 
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Fig. 9. Differential response of TNBC cells to inhibitors targeting different kinase signaling components. (A) 

Proliferative response of FRET-ERK reporter cells to EGFRi (gefitinib and erlotinib), MEKi (selumetinib and 

TAK733), PI3Ki BEZ235 and AKTi AZD5363 in a concentration range. (B) Effects of representative KI gefitinib, 

BEZ235, selumetinib and AZD5363 on ERK (AKT) phosphorylation in FRET-ERK (AKT) reporter cells. FRET reporter 

cells were treated with KIs at 1 µM for 30 min. (C) Quantification of phosphorylated ERK level, derived from (B). 

The expression level was normalized to total ERK and further compared to that in DMSO-treated cells. 

 

4. Discussion 

TNBC is an aggressive disease with unfavorable prognosis 104, 105. Currently, there are no 

effective targeted therapies approved for the treatment of TNBC patients. Given the 

pivotal role of EGFR/MAPK and PI3K/AKT signaling in controlling cell growth, survival and 

proliferation, central nodes of these pathways, MEK and AKT, have been emerging as 

promising targets for cancer drug discovery 134, 135. MEK inhibitors and AKT inhibitors have 

been explored for the treatment of TNBC in the past decades. However, the clinical 

outcomes are unfavorable due to drug-induced activation of alternative survival signaling 

pathways 58, 136. Here we have established and systematically characterized a panel of 

FRET-ERK and FRET-AKT TNBC reporter cell lines. We have applied this FRET reporter panel 

in high-throughput screening to uncover contextual kinase signaling dependencies in TNBC 

that modulate AKT and ERK pathways. Thus, we identified ten signaling pathways 

associated with the proliferative response of TNBC to kinase drugs.  

Different TNBC cell lines demonstrate alternative resistance to AKT or MEK 

inhibitors, suggesting dependencies on either ERK or AKT signaling for their enhanced 

proliferation. In AKTi-resistant cells, targeting various receptor tyrosine kinases, MAPKs, 

cell cycle-related kinases, PI3K/AKT and angiogenesis caused a downregulation of FRET-

ERK dynamics, accompanied by attenuated proliferation. This included inhibitors targeting 

VEGFR (ZM 306416 and AEE788), ALK (AP26113), MEK (TAK733), cell cycle (AZD7762 and 

TAK901), and Src (dasatinib). MEKi-resistant cells were addicted to PI3K/AKT and cell cycle 

regulated FRET-AKT activity. Further, we note that targeting PI3K/AKT and angiogenesis 

pathways did suppress FRET-ERK activity.  

The MAPK signaling and PI3K/AKT signaling are two canonical pathways of RTK 

signal transduction, functioning in a variety of cellular processes 100, 137. Transcriptomics 

and proteomics profiles on TNBC samples indicate that activation of both pathways is 

frequently observed, but can be attributed to variable reasons. Ras and Raf are rarely 
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mutated in TNBC 19, 106. However, activation of upstream RTKs and inactivation of negative 

regulators, such as NF1 mutation and DUSP4 loss, lead to active MAPK signaling 58, 77, 138, 139. 

Activation of PI3K pathway, either directly by PI3KCA mutation or indirectly by PTEN or 

INPP4B loss, is common in TNBC tumors 19, 106, 140. Our KI screening data have 

demonstrated that the effects of MAPK inhibition on TNBC cell proliferation positively 

correlate with their efficacy on ERK activity. The inhibitory effects of RTKi on cell 

proliferation and ERK activity are better correlated in RTKi/MEKi-resistant cells than AKTi-

resistant cells. Inhibition of PI3K/AKT signaling is efficacious to suppress cell proliferation 

in RTKi/MEKi-resistant subgroups. Complementary to accumulating molecule signature 

studies, our findings on differential kinase dependencies using our FRET reporter panel, 

provide experimental evidence for the development and prioritization of precision 

medicine for TNBC cohorts.  

Kinase drugs have been preferably pursued as promising targeted therapeutics 

due to the pivotal role of kinase molecules in signal transductions and corresponding cell 

biological processes 111, 135, 141. Given the hypothesis that kinases with enhanced 

expression or activating mutations hold the essentialities in cancer cell progression, gene 

expression signatures have been extensively studied and employed to identify common 

genetic background within cancer types 142, 143. However, a number of studies suggest that 

gene expression is rarely indicative of kinase activity, perturbation of which is a key factor 

for evaluating the effectiveness of kinase drugs 144, 145. In this study, establishment of high-

content FRET-based live cell imaging enables dynamic quantitative detection of 

intracellular activity of ERK and AKT, two key elements in kinase signaling cascades. Our 

results illustrate that the influences on kinase activity incarnate the proliferative response 

of TNBC to kinase drugs in a temporal and direct way. We anticipate that FRET-based 

signaling reporters will contribute substantially to monitor the efficacy of candidate kinase 

inhibitors, but also will contribute to the further understanding of their mode-of-action in 

relation to crosstalk with well-defined signaling components in cancer, including ERK and 

AKT signaling.  

In summary, our work describes an integrated protein kinase dependency 

identification and functional validation approach that identifies TNBC kinase addictions, 

potential targetable pathways and associated targeted therapeutics. We demonstrate the 

feasibility of FRET imaging-based high-content screening of intracellular kinase activity in 

assessing kinase specificity and possible signaling crosstalk. In particular, our study reveals 

the intact ERK kinase signaling which drives TNBC drug resistance against RTKi/MAPKi-

targeted therapies. Besides RTKi and MAPKi, AKTi-resistant cells are also responsive to cell 

cycle inhibition via ERK downregulation. Future studies should aim at broadening the 

range of cancer relevant kinase biosensors and translating this approach to in vitro/in vivo 

models that are closer to the clinic, including cultures of patient-derived xenograft.  
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Abstract 

Triple-negative breast cancer (TNBC) is molecularly intricate, with limited therapeutic 

options. Although approximately 80% of TNBC overexpresses epidermal growth factor 

receptor (EGFR), TNBC is generally resistant to EGFR targeted therapies, including EGFR 

tyrosine kinase inhibitors lapatinib, gefitinib and erlotinib. Understanding compensatory 

signaling mechanisms that mediate the EGFR inhibitor resistance may facilitate to harness 

effective targeted therapies for TNBC. Here, kinome RNA-interference loss-of-function 

screen and pharmacological inhibition profiling have defined the vulnerability of 

AKT/mTOR signaling in EGFR inhibitor resistant TNBC cells. Contrarily, EGFR/MAPK 

signaling is vulnerable for TNBC cells resistant to mTOR inhibition. EGFR inhibitor lapatinib 

and kinome siRNA combinatorial screening identified numerous kinase targets that 

alleviate lapatinib resistance, including FYN, KIT, HK2, NME6 and DCK. Intriguingly, 

silencing of FYN, a Src family kinase, enhanced EGFR autophosphorylation and 

downstream AKT phosphorylation. Consequently, pharmacological inhibition of different 

components of the EGFR/PI3K/AKT axis synergized with FYN depletion. Our results 

indicate FYN as an EGFR signaling suppressor mediating TNBC resistance to EGFR targeted 

therapies in TNBC cells that do have increased expression of EGFR. We suggest FYN 

expression as a potential vulnerability for EGFR inhibitor drug resistance in TNBC.  
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Introduction  

Triple-negative breast cancer (TNBC) does not express progesterone receptor (PR), 

estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) that are 

vulnerable to ER, PR and/or HER2-targeted therapies for other breast cancer types 107. 

Although comprehensive genomic profiling has characterized more than six molecular 

subtypes of TNBC 8, none of them has been benefited from molecularly targeted therapies. 

TNBC still relies on cytotoxic chemotherapies, yielding unfavorable prognoses, with high 

likelihood of distant recurrence and death during the first 3-5 years after diagnosis 4. 

Treatment of TNBC remains a profound clinical challenge. The lack of treatment options 

for TNBC makes identifying alternative TNBC vulnerable targets paramount 6. 

Many of protein kinases have been defined to play essential roles in cancer 

initiation and progression and drug resistance 146, 147. Proto-oncogenic kinases include 

receptor tyrosine kinases (RTK), BCR-ABL, PIK3CA and MAPK kinases driving proliferation 

and angiogenesis in cancer 111. The epidermal growth factor receptor (EGFR) has been 

defined as a key oncogenic RTK, which coordinates multiple pro-mitogenic signal 

transduction cascades, principally the Ras-Raf-MEK-ERK, PI3K-AKT-mTOR and Src-STAT3 

signaling pathways, to promote cell proliferation, motility, and survival 148-150. As frequent 

overexpression of EGFR is observed in various cancer types, such as lung and colorectal 

cancer and glioblastoma  148, 149, 151, 152, EGFR has been representing an attractive 

therapeutic target for cancer targeted therapies 153, eliciting high response rates 

improving patient clinical outcomes 25, 154. Approximately >80% of TNBC tumors have 

increased expression of EGFR, hence EGFR targeted therapies have been clinically 

explored for treating TNBC patients 25, 155. Also, therapies targeting MAPK/ERK and 

PI3K/AKT/mTOR kinases downstream of EGFR signaling have been trialed 156, 157. Yet, the 

clinical benefits of these targeted therapies for TNBC have been disappointing, due to low 

response rates and resistance 150. The mechanisms of TNBC resistance to targeted 

therapies are likely owing to mutations of the drug targets and compensation by 

interactive dysregulated signaling pathways 158-160, suggesting to explore alternative 

combinatorial targeted therapies blocking vulnerable kinase targets in compensatory 

signaling pathways. 

More than 500 protein kinases are encoded in the human genome 161, 162. Protein 

kinases are one of the most targeted groups of drug targets 146. Our previous studies have 

shown that TNBC cells, regardless of molecular subtypes, are commonly resistant to EGFR 

inhibitors (EGFRi) 163 and differentially responsive to MEK inhibitors (MEKi) and AKT 

inhibitors (AKTi) (van de Noord et al, submitted), as well as mTOR inhibitors (mTORi) (He 

et al, submitted). In this study, by means of high-throughput screen of 720 siRNAs 

targeting the whole kinome and kinase-related components, in combination with EGFRi 

lapatinib, we aimed to define alternative signaling pathways and kinase targets vulnerable 

for therapy-refractory TNBC cells and synergistically targetable with EGFR targeted 
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therapies. Our kinome-wide siRNA screen and validation of targeted effects by kinase 

inhibitors revealed that alternatively targeting AKT/mTOR and EGFR/MAPK pathways 

succumbed resistant TNBC cells to EGFRi and mTORi, and blocking basal cell cycle 

machinery effectively overcame the differential EGFRi- and mTORi-resistant phenotypes of 

TNBC cells. Combined drug and kinome siRNA screen identified several novel kinase 

targets, including FYN, KIT, HK2, NME6 and DCK, whose silencing sensitized EGFRi-

refractory TNBC cells to the clinically applied EGFR targeted therapies, such as lapatinib 

(Lap), gefitinib (Gef) and erlotinib (Erl). Importantly, the Src family kinase FYN 164 was 

defined to act as a negative regulator of EGFR activity in the EGFRi-resistance of TNBC cells. 

Targeting FYN enhanced activation of EGFR and AKT signaling, facilitating the effects of 

EGFR/PI3K/AKT directed inhibitors on signaling inhibition, thereby restoring TNBC cell 

responsiveness. Our work demonstrated unique kinase dependencies in therapy-resistant 

TNBC cells and revealed FYN as a potential kinase target vulnerable for EGFRi-refractory 

TNBC. 

 

Materials and methods 

Reagents and antibodies 

All kinase inhibitors were purchased from Selleckchem® (Huissen, the Netherlands). The 

phospho(Ser473)-AKT (9271), phospho(Thr202/Tyr204)-p44/42 MAPK (ERK1/2, 9101), 

phospho(Ser2448)-mTOR (5536S), phospho((Tyr1148))-EGFR (4404) and 

phospho(Thr37/46)-4EBP1 (2855) antibodies were from Cell Signaling TECHNOLOGY® 

(Bioké, Leiden, Netherlands). EGFR (1005) antibody was from Santa Cruz (Heidelberg, 

Germany). FYN antibody [N1C2] (GTX109428) was from GeneTex (Irvine, US). The antibody 

against tubulin (T-9026) and human epidermal growth factor (EGF, E9644) were from 

Sigma Aldrich (Zwijndrecht, the Netherlands).  

 

Cell culture 

Cell line Hs578T (ATCC-HBT-126) and MDA-MB-231 (ATCC-HBT-26) were purchased from 

ATCC. Cell line HCC1806, SUM229PE and SUM52PE were kindly provided by Prof. John W. 

M. Martens (Erasmus Medical Centre, Rotterdam, the Netherlands). All cell lines were 

authenticated by short tandem repeat (STR) profiling as previously described 165, and 

subjected to Mycoplasma test using the Mycosensor PCR kit (#302108, Stratagene). Cells 

were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum, 25 

U/mL penicillin and 25 µg/mL streptomycin in a humidified incubator at 37°C with 5% CO2. 

 

SRB proliferation assay 

A sulforhodamine B (SRB) colorimetric assay was used to measure total amount of 

proteins indicative of cell proliferation, as previously described 125. 
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High-throughput human kinome siRNA screen 

The primary screen was carried out by use of kinase SMARTpool siRNA library containing 

720 siRNAs targeting human kinome-wide 720 kinases and kinase-related components (GE 

Dharmacon, Lafayette, CO, USA). In the validation screen, SMARTpool siRNA and single 

siRNA_1, _2, _3 and _4 that comprise the SMARTpool mix were used to target each 

candidate hit. To silence target genes, 50 nM siGENOME Human SMARTpool siRNA mix 

was transfected into cells, which were seeded overnight in 96-well plate with optimized 

densities, by transfection reagent INTERFERin (Polyplus-Transfection SA, Illkirch-

Graffenstaden, France) according to the manufacturer’s instructions. A pool of 720 kinase 

siRNAs at stock concentration of 1 µM, which has no effect on gene expression, was taken 

as non-targeting siRNA control (siCtrl). The medium was refreshed 24 h post-transfection 

and TNBC cells were transfected for 2 days and proliferated for 4 days under indicated 

condition. In drug and siRNA combination screen, drug solution was supplemented to cells 

2 days post siRNA transfection at indicated concentration, followed by 4-day treatment. 

SRB colorimetric assay was used as read-out for cell proliferation. Primary kinome siRNA 

screen data were analyzed using an unbiased sample-based analysis as previously and 

presented in Z scores 166.  

 

Western Blotting and gene expression data 

Cells were seeded in 12-well plates at the appropriate density. For stimulation/starvation 

assays, medium was refreshed with serum-free medium (SFM) the following day and cells 

were starved overnight. Thereafter, cells were stimulated with 100 ng/ml EGF (Sigma; 

E9644) for 30 min in SFM. Cells were lysed with RIPA buffer containing 1% 

protease/phosphatase inhibitor cocktail (Sigma-Aldrich, P8340). Proteins were resolved by 

SDS-PAGE and transferred to polyvinylidine difluoride membranes. Membranes were 

blocked in 5% BSA in Tris-buffered saline with 0.05% Tween-20 (TBS-T), followed by 

overnight incubation with primary antibodies, washing, and 1 h incubation with HRP-

conjugated secondary antibodies. Chemiluminescence was generated in the presence of 

HRP substrate and detected with an Amersham Imager 600 (GE Healthcare Life Sciences, 

Eindhoven, the Netherlands). Log2-based RNA-seq expression profile of TNBC cell lines 

was retrieved from our own established data (Koedoot et al, submitted). 

 

Gene network and pathway analysis 

The STRING database (version 10.5) (https://string-db.org) was applied to analyze and 

integrate direct and indirect protein-protein interactions (PPI) and functional associations 

of screened kinase hits. The interaction networks were further analyzed and visualized 

using Cytoscape v3.7.0. Metascape portal 167 (http://metascape.org) that combines over 

40 independent knowledgebases, such as GO Biological Processes, KEGG pathway, 

Reactome gene sets, Canonical Pathways, CORUM complexes; DAVID functional 

http://metascape.org/
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annotation tool was used to visualize the functionally enriched pathways and identify 

MCODE (molecular complex detection) complex of kinase targets, statistically significant 

(p < 0.05) with ≥ 3 targets per cluster. 

 

Statistical analysis 

Pearson correlation analysis was performed using GraphPad Prism 7. Statistical analysis of 

all experimental data was performed using two-way ANOVA (* p < 0.05, ** p < 0.01, *** p 

< 0.001). All experiments were performed in at least three independent biological 

replicates. Data were expressed as mean ± SEM. Significance was set at p < 0.05. The 

hierarchical clustering in heatmap was performed using CRAN pheatmap package in 

RStudio (version 0.99.887). 

 

Results 

TNBC cells display differential phenotypic responses to EGFR and mTOR targeted 

therapies 

TNBC patients have not been benefited from targeted therapies in the clinic, owing to the 

heterogeneous nature of TNBC 107. Despite frequent overexpression of EGFR in ~80% 

TNBC tumors 150, 168, 169, targeting EGFR is ineffective for treating TNBC patients 170, 171. To 

 
Figure 1. Differential responses of TNBC Hs578T and HCC1806 cells to EGFR inhibitors (EGFRi) and mTOR 

inhibitors (mTORi). (A) Resistance of Hs578T cells to EGFRi (lapatinib, gefitinib, erlotinib) and HCC1806 cells to 

mTORi (rapamycin, everolimous, temsirolimus), at 1 µM. (B) Dose responses of Hs578T and HCC1806 to lapatinib 

(Lap) and rapamycin (Rap).  Cells were treated with inhibitors at indicated concentrations for 4 days, followed by 

SRB proliferation assay. Proliferation of cells was presented as % of control, normalized to non-treatment 

condition with DMSO. 

 

understand the phenotypic responses of TNBC cells to targeted therapies, we have 

previously screened several clinically applied kinase-targeting small molecules across ~20 

TNBC cell lines. Consistent to the clinical results, our previous study has demonstrated the 

common resistance in >85% of TNBC cell lines to various EGFRi, including Lap, gefitinib 

(Gef) and erlotinib (Erl) 163, as shown representatively for the TNBC cell line Hs578T (Figure 

1A). Exceptionally, one TNBC cell line HCC1806 was found to display sensitivity to the 

EGFR targeted therapies. Intriguingly, the EGFRi-sensitive HCC1806 cells were strongly 
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resistant to different mTORi, such as rapamycin (Rap), temsirolimus and everolimus, 

whereas the EGFRi-refractory Hs578T cells were highly responsive to the mTOR-targeted 

therapies (Figure 1A). The EGFRi-refractory Hs578T cells and the mTORi-refractory 

HCC1806 cells were phenotypically responsive in proliferation inhibition to mTORi Rap and 

EGFRi Lap, respectively, in dose dependent manner (Figure 1B). These differential 

phenotypic responses of TNBC cells to EGFR and mTOR targeted therapies implicated 

alternative kinase dependencies in the refractory TNBC cells, rationalizing the discovery of 

vulnerable kinase targets bypassing inhibition of EGFR-related or mTOR-related signaling, 

to combat TNBC resistance.  

 

Kinome siRNA screen reveals specific vulnerable kinase targets in EGFRi- and mTORi-

resistant TNBC cells 

To identify alternatively vulnerable kinase targets in the circumstance of EGFRi-resistance 

of TNBC, we next performed human kinome-wide siRNA screen targeting 720 protein 

kinases and kinase-related components in the EGFRi-refractory and mTORi-sensitive 

Hs578T cells, compared to the EGFRi-sensitive and mTORi-resistant HCC1806 cells. The 

 
Figure 2. Kinome siRNA screen of EGFRi-resistant Hs578T and mTORi-resistant HCC1806 TNBC cells. (A-B) Effect 

of replicate kinome siRNA screens of Hs578T cells (A) and HCC1806 (B) cells was presented in Z scores. Cells were 

transfected with siRNAs for 2 days, and then refreshed and cultured for 4 days, followed by SRB proliferation 

assay. Pearson correlation coefficient r was representative for reproducibility of replicate screens in Hs578T (r = 

0.9098) and HCC1806 (r = 0.9129) cells. (C) Heatmap clustering displaying differential targeting effects of kinome-

wide siRNAs on Hs578T and HCC1806 cells. Color in blue indicated inhibitory effect on proliferation; in black, no 

effect; in red, enhanced effect. (D) Ranking of individual siRNA targeting effect on Hs578T cell proliferation. (E) 

Ranking of individual siRNA targeting effect on HCC1806 cell proliferation. The effect with Z score < -1.5 (black 

bars) was considered significant on proliferation inhibition. The significant hits were numbered in pie charts. The 

effects of siRNA targeting EGFR (siEGFR) and siRNA targeting mTOR (simTOR) were indicated.  
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targeting effect of each siRNA on cell proliferation was presented in Z score, displaying 

high reproducibility in the replicate screens of Hs578T (Pearson coefficient r = 0.9098) 

(Figure 2A) and HCC1806 (r = 0.9129) cells (Figure 2B). Hierarchical clustering revealed 

distinct vulnerabilities of Hs578T and HCC1806 cells to the kinome RNA interference 

(Figure 2C; Supplementary Table S1), indicating the different kinase dependencies within 

these TNBC cell lines. Of 720 kinases, 42 vulnerable kinase targets were screened showing 

significant targeted effects (Z score < -1.5) on proliferation inhibition of Hs578T cells 

(Figure 2D), and 49, on HCC1806 proliferative inhibition (Figure 2E). 

Consistent to the phenotypic responses to EGFRi and mTORi kinase inhibitors 

(Figure 1), the EGFRi-resistant Hs578T cells were highly prone to mTOR siRNA (simTOR) 

silencing (Figure 2D), while the mTORi-resistant HCC1806 cells were strongly sensitized by 

EGFR siRNA (siEGFR) silencing (Figure 2E). Remarkably, among 42 kinase targets that were 

vulnerable for the EGFRi-refractory Hs578T cells, mTOR was centered in the protein-

protein interaction (PPI) network, and the cell cycle and mTOR pathways were the most 

vulnerable (Figure 3A), involving the cell cycle kinases PLK1, CDKN2D, CHEK1 and WEE1 

and the mTOR signaling components RPS6KA2, STRADA and mTOR (Supplementary Table 

S2). Within the PPI network of 49 vulnerable kinase targets for the mTORi-resistant 

HCC1806 cells, EGFR was tightly connected with other components, and the pathways 

downstream EGFR signaling, such as MAPK pathway, Ras pathway and PI3K/AKT, and the 

FoxO signaling pathways, were significantly enriched (Figure 3B; Supplementary Table S2). 

Commonly, 12 kinases were vulnerable for both cell lines, including, MAP3K9, CHEK1, 

WEE1, RPS6KA2, GUCY2D, RELA, PMVK, AURKA, CAMKIINALPHA, PCTK3, PLK1, CDC2L1, 

which are functionally involved in cell cycle pathway (Figure 3C). 

Next, we reasoned if pharmacological inhibition of the enriched signaling clusters 

above could attenuate proliferation of the TNBC cells. To this end, we treated the cells 

with groups of kinase inhibitors pharmacologically targeting EGFR/MAPK, AKT/mTOR and 

cell cycle signaling, respectively. In line with the findings of kinome siRNA screen, the 

kinase inhibitor response profiling exhibited that the EGFRi-refractory Hs578T cells were 

responsive to inhibition of AKT/mTOR signaling by different AKT inhibitors (AKTi) and 

mTORi (Figure 3D), remaining resistant to diverse EGFRi and less responsive to various 

MEK inhibitors (MEKi) targeting MAPK signaling (Figure 3E). In contrast, the mTORi-

resistant HCC1806 cells were sensitive to EGFR/MAPK inhibition by the EGFRi and MEKi 

and relatively resistant to AKT and mTOR inhibition. Consistently, both cell lines were 

sensitive to pharmacological inhibitors targeting cell cycle protein kinases, such as PLK, 

CDK and Chk (Figure 3F).  

The results above indicated that alternative addictions to AKT/mTOR signaling 

and EGFR/MAPK signaling pathways might confer therapy-refractory phenotypes on TNBC 

cells. Obstruction of mTOR-centralized network may sensitize the EGFRi-refractory Hs578T 

cells, while blockage of EGFR/MAPK signaling dependency in the mTORi-resistant HCC1806 
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cells may restore responses to mTOR-targeted therapies. Targeting PLK, CDK and Chk 

signaling in the basal cell cycle machinery makes the TNBC cells responsive, suggesting the 

vulnerabilities of the cell cycle related kinase targets for the refractory TNBC cell types. 

 
Figure 3. Distinct kinase dependencies of EGFRi-refractory Hs578T cells and mTORi-resistant HCC1806 cells. (A-

C) STRING protein-protein interaction (PPI) network and KEGG pathway enrichment of 42 kinase targets 

vulnerable for EGFRi-resistant Hs578T (A), 49 for mTORi-resistant HCC1806 (B), and 12 for both Hs578T and 

HCC1806 cells (C). The primary targets EGFR and mTOR were circled in blue. Edge thickness indicated the 

interaction score. Red color signified the connected kinases. Unconnected kinases were marked in grey. (D-F) 

Proliferative responses of Hs578T and HCC1806 cells to AKT inhibitors (AKTi) and mTORi (D), to EGFRi and MEK 

inhibitors (MEKi) (E), and to cell cycle related PLK1 inhibitors (PLKi), CDK inhibitors (CDKi) and Chk inhibitors (Chki) 

(F). Cells were treated with inhibitors at 1 µM for 4 days, followed by SRB proliferation assay.  

 

Lapatinib and kinome siRNA combination screen identifies vulnerable kinase targets 

sensitizing TNBC cells to EGFR inhibition 
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Cancer drug resistance is a multifaceted process involving different mechanisms, such as 

target alteration, alternative cell surface receptors, escape from apoptosis, and DNA 

damage repair, hence combination of targeted therapies has been applied to sensitize 

resistant cancer cells 75. Resistance to EGFR targeted therapies is a common phenotype of 

TNBC, despite high levels of EGFR expression and clear inhibition of EGFR in TNBC tumor 

cells 170, 171, suggesting alternative survival signaling pathways bypassing EGFR inhibition, 

 
Figure 4. Combined lapatinib and kinome siRNA screen of EGFRi-refractory Hs578T cells. (A) Effect of siRNA and 

combined siRNA and lapatinib (siRNA + Lap) on Hs578T cell proliferation. Cells were transfected with siRNAs for 2 

days, followed by 4-day treatment with Lap at 1 µM or DMSO as control. Percentage proliferation (% of control) 

was relative to siCtrl + DMSO control. (B) Fold change (FC) of proliferation in comparison of siRNA alone to siRNA 

+ Lap combination (siRNA / siRNA + Lap). 96 primary hits with FC > 1.5 were selected, significantly synergizing 

with Lap to inhibit proliferation. (C) Deconvolution screen of Lap synergistic hits with SMARTpool siRNA and 

individual (1, 2, 3 and 4) siRNAs. Heatmap showed top 30 hits enabling > 50% of proliferation under SMARTpool 

siRNA silencing alone. (D) FC of proliferation (siRNA / siRNA + Lap) controlled by the 30 hits. Five Lap synergistic 

hits with significant effect by SMARTpool and ≥ 2/4 individual siRNAs (FC > 1.5) were marked in red. (E) 

Metascape bar graph viewing top enrichment clusters of the 30 hits. Color scale represented statistical 

significance by p-values in log base 10, Log10(P). (F) MCODE algorithm displaying the most densely connected 

hits. 
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such as AKT/mTOR as shown above. Therefore, to identify kinome-wide alternative kinase 

targets that are synergistically targetable with EGFR inhibition, thereby understanding the 

mechanisms underlying EGFRi resistance in TNBC cells, we performed kinome siRNA 

screen in combination with EGFRi Lap (at a clinically relevant dose, 3.16 µM 172) in the 

EGFRi-refractory Hs578T cells. The results showed that the majority of kinases were 

vulnerable by siRNA silencing to enhance the inhibitory effect of Lap on Hs578T cell 

proliferation (Figure 4A). We selected kinases, whose silencing per se controlled >20% of 

proliferation and enhanced 1.5 fold change (FC) of inhibition when combined with Lap 

(siRNA / siRNA + Lap), as potential synergistic hits. Consequently, 96 hits were selected as 

potential targets vulnerable for Lap resistance in Hs578T cells (Figure 4B; Supplementary 

Table S3). These hits were further validated for their vulnerabilities by deconvolution 

screen with SMARTpool siRNA and 4 deconvoluted siRNAs. 30 hits were further ranked by 

their SMARTpool siRNA direct silencing effect on >50% of proliferation control (Figure 4C, 

Supplementary Table S4) and selected for their siRNA silencing effect significantly 

synergizing Lap with FC ratio (siRNA / siRNA + Lap) greater than 1.5 (Figure 4D), being 

considered the most vulnerable kinase targets sensitizing TNBC cells to EGFRi Lap.  

Next, Metascape pathway enrichment analysis 167 identified 14 clusters where the 

30 Lap synergistic kinase targets were significantly enriched (Figure 4E). The most 

statistically enriched cluster was related to protein autophosphorylation, involving  60% of 

the Lap synergistic kinase targets (18/30), including FYN, ABL1, EPHB3, HCK, IRAK1, KIT, 

MAP3K10, PTK6, VRK2, DSTYK, PKDCC, PIK3R3, PIP4K2C, CAMKK1, HK2, BMPR2, PDK3 and 

SKAP1 (Supplementary Table S5). Peptidyl-tyrosine autophosphorylation and positive 

regulation of kinase activity clusters were highly ranked, involving 12 (FYN, ABL1, HCK, 

PTK6, PIK3R3, MAPK8, EPHB3, IRAK1, SKAP1, KIT, IRAK2 and BMPR2) and 18 (FYN, ABL1, 

IRAK1, IRAK2, KIT, MAP3K10, DSTYK, CAMKK1, MAPK8, PIK3R3, HCK, STK36, SKAP1, PTK6, 

PDK3, VRK2, HIPK1 and DGKB), respectively. Remarkably, MCODE (Molecular Complex 

Detection) algorithm identified a tyrosine autophosphorylation network node where FYN, 

ABL1, HCK and PIK3R3 were densely connected (Figure 4F) and frequently enriched in the 

phosphorylation and kinase activity related clusters, suggesting their essential implications 

in TNBC resistance to EGFR targeted therapies.  

 

Lapatinib synergistic kinase target FYN negatively regulates EGFR/AKT signaling 

Among the 30 significant Lap synergistic targets, FYN, KIT, HK2, NME6 and DCK displayed 

on-target silencing effects by pooled and deconvoluted siRNAs (≥ 2/4) to synergize EGFRi 

Lap (Figure 4C-D). These five targets were further validated for their targeting effects in 

combination with Lap at 3.16 µM, compared to non-targeting siRNA control (siCtrl) (Figure 

5A). Ligand EGF binding results in EGFR autophosphorylation and activation of 

downstream signaling 173. As Lap synergistic targets were largely involved in regulation of 

autophosphorylation and kinase activity (Figure 4E, Supplementary Table S5), we then 
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further tested their targeting effects on EGFR signaling activation in EGF stimulation. 

Silencing of these Lap synergistic kinase targets, except for KIT, generally upregulated EGF-

induced EGFR phosphorylation at Y1148, a major autophosphorylation site of EGFR 173, as 

detected by anti-phospho-EGFR (pY1148) antibody. Of them, the targeting effect of FYN 

on EGFR signaling upregulation was most significant, implying its strong negative 

regulation on EGFR activity (Figure 5B-C). Downstream of the upregulated EGFR signaling 

by FYN silencing upon EGF stimulation, phosphorylation of AKT, rather than ERK or mTOR, 

was increased (Figure 5B-C). Consistently, FYN silencing significantly enhanced the 

pharmacological inhibitory effect on cell proliferation by EGFRi Lap, Gef and Erl, PI3K 

inhibitors (PI3Ki) BEZ235 (BEZ) and AKTi AZD5363, not by MEKi selumetinib (Sel) and Src 

inhibitors (Srci) dasatinib (Das) (Figure 5D). Yet, while FYN knockdown strongly synergized 

the pharmacological inhibitory effect of EGFRi Lap on proliferation, simultaneous FYN and 

EGFR silencing did not lead to the similar synthetic lethal effect (Figure 5E), further 

suggesting the essential impact of FYN on EGFR signaling activation. However, co-silencing 

of FYN and AKT showed a synergistic effect, similarly to the effect of FYN silencing with 

EGFRi Lap (Figure 5E).  

FYN and the PI3K regulatory subunit, PIK3R3, were tightly interactive in the 

tyrosine autophosphorylation MCODE network (Figure 4F). Together, the results above 

suggested that FYN negatively regulated EGFR signaling pathway and downstream AKT 

effector. Hence, targeting FYN released EGFR/PI3K/AKT signaling, thereby restoring 

responses of TNBC cells to EGFR/PI3K/AKT-directed treatments, independently of MAPK 

signaling.  

  
Figure 5. FYN silencing enhanced EGFR/PI3K/AKT signaling in EGFRi-refractory Hs578T cells. (A) Validation of 

Lap synergistic hits KIT, FYN, HK2, NME6 and DCK in EGFRi-refractory Hs578T cells. Cells were transfected with 

SMARTpool or 4 single siRNAs for 2 days prior to 4-day Lap treatment. (B) Silencing effects of Lap synergistic hits 

on EGF-induced EGFR signaling. Hs578T cells were transfected with SMARTpool siRNAs for 2 days, starved 
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overnight, and then exposed to EGF (100 ng/ml) for 30 min. (C) Quantification of EGFR and AKT phosphorylation 

level in response to EGF, relative to tubulin, data derived from (B). (D) Effects of FYN silencing on Hs578T cellular 

response to EGFRi (Lap, Gef and Erl), MEKi selumetinib (Sel), Src inhibitor (Srci) dasatinib (Das), PI3Ki BEZ235 

(BEZ), and AKTi AZD5363 (AZD). (E) Co-silencing Effects of FYN and EGFR or AKT on Hs578T cell proliferation (two-

way ANOVA * p < 0.05, ** p < 0.01, *** p < 0.001).  

 

FYN silencing-mediated lapatinib synergy associates with active EGFR/PI3K/AKT 

signaling 

Next, we questioned whether FYN silencing-mediated Lap synergy was associated with 

expression and activation of EGFR and the downstream active AKT signaling in TNBC cells. 

We chose three TNBC cell lines, Hs578T, MDA-MB-231 and SUM229PE, with high EGFR 

expression, and one EGFR negative TNBC cell line SUM52PE as negative control (Figure 6A). 

All these TNBC cell lines expressed overall similar levels of FYN, with Hs578T cells showing 

the highest expression. Downstream active p-AKT was positively detected in SUM52PE 

and Hs578T cell lines, but were largely absent in MDA-MB-231 and SUM229PE cell lines 

(Figure 6B), consistent with our previous findings (van de Noord et al, submitted). 

Treatment with the EGFR inhibitors lapatinib, gefitinib and erlotinib did not affect 

SUM52PE cells, as they lack expression of EGFR. In contrast, Hs578T, MDA-MB-231 and 

SUM229PE were commonly resistant to the EGFR targeted therapies, despite the presence 

of EGFR (Figure 6B-C), recapitulating our previous findings 163. FYN is a member of Src 

family 164. Treatment with inhibitors for FYN (FYNi) PP1, PP2 and saracatinib (Sar), which 

also potently inhibit other Src family members (Selleckchem®), did not cause any cellular 

responses (Supplementary Figure S1A), exhibiting common resistance of these TNBC cell 

lines to single FYN inhibition. Moreover, the FYNi PP1, PP2 or Sar did also not synergize 

with EGFRi Lap to inhibit proliferation of Hs578T cells (Supplementary Figure S1B), 

suggesting that FYN kinase activity does not bypass EGFR signaling inhibition. Remarkably, 

siRNA silencing of FYN significantly synergized with EGFRi Lap, PI3Ki BEZ and AKTi AZD in 

the EGFR positive and p-AKT positive Hs578T cells, but not in the EGFR negative SUM52PE 

and the p-AKT negative MDA-MB-231 and SUM229PE cells (Figure 6E). FYN silencing 

enhanced upstream EGFR and downstream AKT phosphorylation (Figure 5B), and 

synergized with knockdown of AKT, but not EGFR, to inhibit proliferation (Figure 5E). 

Together, these results indicated that EGFR expression and phosphorylation and EGFR-

activated downstream PI3K/AKT signaling were essential for FYN silencing-mediated 

sensitization of TNBC cells to EGFR targeted therapies, such as Lap, as illustrated (Figure 

6E), further suggesting FYN as a potential target vulnerable for TNBC resistance to EGFR 

inhibition. This combinatorial effect of FYN and EGFR targeting seems highly TNBC context 

dependent, and warrants strategies for stratifying drug sensitivity for individual TNBC 

patients.  
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Figure 6. Association of FYN silencing-mediated lapatinib synergy with EGFR and p-AKT expression. (A) Log2-

based RNA-seq gene expression levels of FYN and EGFR in SUM52PE, Hs578T, MDA-MB-231 and SUM229PE 

TNBC cell lines. (B) Expression of EGFR, FYN, and phosphorylated AKT (p-AKT) in the TNBC cell lines. (C) 

Proliferative responses of the TNBC cell lines to EGFRi Lap, Gef and Erl. Cells were treated with EGFRi at 1 µM for 

4 days, followed by SRB proliferation assay. (D) Effects of FYN silencing on cellular responses of the TNBC cell 

lines to EGFRi Lap, PI3Ki BEZ and AKTi AZD (two-way ANOVA * p < 0.05, ** p < 0.01, *** p < 0.001). (E) Diagram 

illustrating mechanisms underlying FYN silencing-mediated Lap synergy. FYN negatively regulated EGFR activity, 

limiting downstream PI3K/AKT signaling, rendering TNBC cells refractory to EGFRi Lap (i). RNA interfering (RNAi) 

of FYN released the negative regulation of EGFR, amplifying EGFR signaling responsiveness to EGFRi Lap (ii). 

Release of EGFR activity from FYN RNAi enhanced downstream AKT signaling, leading sensitivity to PI3Ki BEZ (iii) 

and AKTi AZD (iv). 

 

Discussion 

TNBC commonly expresses high level of EGFR 150, 151. However, in most cases the TNBC 

disease is poorly responsive to EGFR targeted therapies 25, 174. Various resistance 

mechanisms can operate in cancer, such as increased drug efflux, mutations of the drug 

targets, DNA damage repair, and alternation of signaling pathways to evade cell death 24, 

174, 175. Activated downstream pathways, primarily the Ras-Raf-MEK-MAPK and PI3K-AKT 
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pathways, are causatively one of the major resistance mechanisms to EGFR tyrosine 

kinase inhibitors in lung cancer 24, 175. The molecular mechanism of TNBC resistance to 

EGFR targeted therapies is yet uncertain. In this study, our siRNA-based kinome-wide loss 

of function screen revealed numerous vulnerable kinase targets mediating proliferative 

phenotypes of EGFRi-refractory TNBC cells. Among these kinase targets, mTOR was the 

most vulnerable and centralized in the interactive signaling network. These kinases fell 

mainly into cell cycle (such as PLK1, CHEK1 and WEE1) and mTOR signaling (such as 

RPS6KA2 and mTOR) pathways, and cancer-related metabolism process (including FGFR1 

and GCK). Treatment with inhibitors targeting AKT/mTOR signaling attenuated 

proliferation of EGFRi-refractory TNBC cells. In addition, we defined addiction to 

EGFR/MAPK signaling in one mTORi-resistant TNBC cell line. These results indicated that 

TNBC cells develop alternative addictions, for instance, to AKT/mTOR signaling pathway, 

to gain resistant phenotypes against EGFR targeted therapies. Exploration of the kinase 

targets vulnerable for EGFRi-refractory phenotype of TNBC cells may further facilitate 

understanding the resistance mechanisms and identifying selective targeted therapies 

against the alternative kinase addictions in TNBC cells. Importantly, vulnerabilities of 

EGFRi- and mTORi-resistant TNBC cells to inhibitors targeting cell cycle kinases, such as 

PLK, CDK and Chk, reflected the dependency of TNBC cells on basal cell cycle machinery 

for maintaining cell proliferation.  

To overcome EGFRi-refractory phenotypes of cancer cells, another option is to 

define potential combinatorial inhibition of alternative signaling activations to enhance 

cellular responsiveness to EGFR targeted therapies. Clinical data confirmed that PIK3CA 

oncogenic mutation resulted in dramatically suppressed sensitivity of lung 

adenocarcinomas to EGFRi 176. A genome-wide loss-of-function screen identified PI3K 

hyperactivation was associated with lapatinib resistance of HER2-positive breast cancer 

cells and could be reversed by PI3Ki BEZ235 177. Loss of PTEN, which mediates activation of 

AKT, contributes to erlotinib resistance in colorectal cancer 178. Our EGFRi lapatinib and 

kinome siRNA combination screen identified a group of kinases vulnerable for lapatinib 

resistance of TNBC cells. The majority of the kinases were functionally enriched in 

regulation of protein phosphorylation and kinase activity. Among them, the kinases ABL1, 

FYN, HCK, IRAK1, KIT, PIK3R3, PTK6 and SKAP1 were most commonly clustered and 

annotated to regulate tyrosine autophosphorylation, an essential process that RTKs and 

non-receptor tyrosine kinases undergo to be self-phosphorylated and activated. These 

results suggested that these signaling regulatory components might regulate 

autophosphorylation and activation of EGFR, leading to resistance of TNBC cells to EGFR 

targeted therapies. Therefore, targeting these vulnerable kinase targets may potentially 

unleash effective EGFR inhibition by EGFR tyrosine kinase inhibitors, such as gefitinib, 

erlotinib and lapatinib, for treating the refractory TNBC.  
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Our subsequent EGFRi lapatinib and siRNA deconvolution screen has functionally 

validated a few kinases, including FYN, KIT, HK2, NME6 and DCK, as potential vulnerable 

targets for lapatinib resistance of TNBC cells. Most importantly, silencing of these kinases, 

particularly FYN, a member of Src family kinases (SFKs), enhanced the ligand EGF binding-

induced autophosphorylation of EGFR and activation of downstream PI3K/AKT signaling, 

thereby enabling EGFRi lapatinib to effectively inhibit EGFR/PI3K/AKT signaling and 

restoring the responsiveness of TNBC cells. SFKs are non-receptor tyrosine kinases, 

including Src, Fyn, Yes, Blk, Yrk, Frk, Fgr, Hck, Lck, Srm, and Lyn 179. SFKs intensively 

integrate with transmembrane RTKs and transduce RTK signaling to downstream effectors, 

such as PI3K, AKT and STAT3, promoting cell proliferation, survival, migration, invasion and 

drug resistance 179, 180. FYN is overexpressed in various cancers, including prostate cancer, 

head and neck carcinoma and melanoma 181, 182. Yet, the role of FYN overexpression in 

cancer is to be well defined. One study presents that overexpression of FYN in prostate 

cancer supports FYN as a novel potential target for prostate cancer therapy 181, whereas 

another shows that loss of FYN expression in prostate cancer and high levels of FYN in 

benign prostatic hyperplasia propose FYN as a potential tumor suppressor 183. Functionally, 

in breast cancer, while FYN knockdown does not attenuate tumor cell proliferation and 

tumor growth rate of basal type breast cancer MDA-MB-231 cells, depletion of FYN 

suppresses metastatic ability of MDA-MB-231 tumor cells 184. FYN promotes mesenchymal 

phenotypes of basal type breast cancer cells through epithelial-mesenchymal transition 

via STAT5/NOTCH2 signaling node 184. Increased FYN activity blocks EGFR mitogenic 

signaling to suppress growth of keratinocytes 164. Phospho-proteomics profiling has linked 

FYN, as well as LYN and LCK, to EGFRi lapatinib resistance in a cohort of HER2 positive 

breast tumors following lapatinib treatment 185. Here, our results have defined FYN as a 

negative regulator of EGFR signaling, specifically on autophosphorylation and kinase 

activity of EGFR, mediating lapatinib resistance in TNBC cells. Depletion of FYN enhanced 

EGF-induced EGFR autophosphorylation and downstream AKT phosphorylation. FYN 

silencing synergized with lapatinib in EGFR-positive but not in EGFR-negative TNBC cells, 

while co-silencing of FYN and EGFR in EGFR-positive TNBC cells did not support the 

synergistic effect, suggestive of the regulatory effect of FYN on EGFR phosphorylation level 

but not EGFR expression. Particularly, the synergistic effect of FYN silencing and EGFR 

pharmacological inhibition by lapatinib required active AKT signaling, indicating a 

prerequisite of an intact EGFR/PI3K/AKT signal route for the FYN silencing-mediated 

synergy. Our work reveals that FYN-mediated EGFR/PI3K/AKT signaling is one mechanism 

of TNBC resistance against EGFR targeted therapies, supporting FYN as a potential 

vulnerable target for EGFRi-refractory TNBC.  
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Supplementary data 

 
Figure S1. Proliferative responses of TNBC cells to FYN inhibitors (FYNi) PP1, PP2 and saracatinib (Sar) alone (A) 

and in combination with EGFRi Lap (B). Cells were treated with FYNi at 1 µM alone or in combination with Lap at 

3.16 µM for 4 days, followed by SRB proliferation assay. 

 

Table S1. Differential targeting effects of kinome-wide siRNAs on Hs578T and HCC1806 cells. 

 

Table S2. KEGG pathway enrichment of direct targeting kinases in Hs578T and HCC1806 cells. 

 
 

Table S3. 96 Lap synergistic kinase targets for EGFRi-refractory Hs578T cells. 

 

Table S4. Deconvolution screen of 96 Lap synergistic kinase targets in Hs578T cells. 

 

Table S5. Metascape gene annotation and pathway enrichment of 30 Lap synergistic kinase targets. 

 

Pathway Enrichment of 42 kinase targets in Hs578T cells

Category Term -logP PValue Symbols

KEGG_PATHWAY hsa04110:Cell cycle 2.0567 0.008776 PLK1, CDKN2D, CHEK1, WEE1

KEGG_PATHWAY hsa04150:mTOR signaling pathway 1.7665 0.017121 RPS6KA2, STRADA, MTOR

KEGG_PATHWAY hsa05230:Central carbon metabolism in cancer 1.6858 0.020618 FGFR1, GCK, MTOR

KEGG_PATHWAY hsa05215:Prostate cancer 1.4293 0.037217 FGFR1, RELA, MTOR

Pathway Enrichment of 49 kinase targets in HCC1806 cells

Category Term -logP PValue Symbols

KEGG_PATHWAY hsa04010:MAPK signaling pathway 5.9751 1.06E-06 EGFR, RPS6KA2, RELA, MAP3K8, MAPKAPK3, PDGFRB, PAK1, MAPKAPK2, CHUK, MAP3K11

KEGG_PATHWAY hsa04068:FoxO signaling pathway 5.7906 1.62E-06 PRKAG3, EGFR, CDKN1B, PIK3CB, PLK1, ATM, CHUK, PCK1

KEGG_PATHWAY hsa05215:Prostate cancer 4.3985 3.99E-05 EGFR, CDKN1B, PIK3CB, RELA, PDGFRB, CHUK

KEGG_PATHWAY hsa04151:PI3K-Akt signaling pathway 3.9773 1.05E-04 EGFR, CDKN1B, FLT1, PIK3CB, RELA, PDGFRB, CHUK, SYK, PCK1

KEGG_PATHWAY hsa04014:Ras signaling pathway 3.3618 4.35E-04 EGFR, FLT1, PIK3CB, RELA, PDGFRB, PAK1, CHUK

Pathway Enrichment of 12 kinase targets in both Hs578T and HCC1806 cells

Category Term -logP PValue Symbols

KEGG_PATHWAY hsa04114:Oocyte meiosis 2.2891 0.00514 RPS6KA2, PLK1, AURKA

KEGG_PATHWAY hsa04110:Cell cycle 2.1952 0.00638 PLK1, CHEK1, WEE1

Pathway Enrichment 

GroupID Category Term Description LogP Log(q-value) InTerm_InList Genes Symbols

1_Summary GO Biological Processes GO:0046777 protein autophosphorylation -11.2472622 -6.930 9/235 25,2049,2534,3055,3654,3815,4294,5753,7444,25778,91461,8503,79837,84254,3099,659,5165,8631ABL1,EPHB3,FYN,HCK,IRAK1,KIT,MAP3K10,PTK6,VRK2,DSTYK,PKDCC,PIK3R3,PIP4K2C,CAMKK1,HK2,BMPR2,PDK3,SKAP1

2_Summary GO Biological Processes GO:0038083 peptidyl-tyrosine autophosphorylation -6.96820337 -3.253 4/37 25,2534,3055,5753,8503,5599,2049,3654,8631,3815,3656,659ABL1,FYN,HCK,PTK6,PIK3R3,MAPK8,EPHB3,IRAK1,SKAP1,KIT,IRAK2,BMPR2

3_Summary GO Biological Processes GO:0033674 positive regulation of kinase activity -6.57270683 -3.126 8/574 25,2534,3654,3656,3815,4294,25778,84254,5599,8503,3055,27148,8631,5753,5165,7444,204851,1607ABL1,FYN,IRAK1,IRAK2,KIT,MAP3K10,DSTYK,CAMKK1,MAPK8,PIK3R3,HCK,STK36,SKAP1,PTK6,PDK3,VRK2,HIPK1,DGKB

4_Summary Canonical Pathways M186 PID PDGFRB PATHWAY -6.36614423 -3.003 5/129 25,2534,3055,5599,8503,3815,3099,8631,3654,7444,2049,91461,204851ABL1,FYN,HCK,MAPK8,PIK3R3,KIT,HK2,SKAP1,IRAK1,VRK2,EPHB3,PKDCC,HIPK1

5_Summary KEGG Pathway hsa04072 Phospholipase D signaling pathway -6.099446 -2.861 5/146 1606,1607,2534,3815,8503,25,2049,3099DGKA,DGKB,FYN,KIT,PIK3R3,ABL1,EPHB3,HK2

6_Summary GO Biological Processes GO:0046834 lipid phosphorylation -5.99472614 -2.823 4/64 1606,1607,8503,79837,5599,3815DGKA,DGKB,PIK3R3,PIP4K2C,MAPK8,KIT

7_Summary GO Biological Processes GO:0090407 organophosphate biosynthetic process -5.96452684 -2.823 8/691 1606,1633,3099,5165,8503,8566,10201,79837,2534,659,3654,3656DGKA,DCK,HK2,PDK3,PIK3R3,PDXK,NME6,PIP4K2C,FYN,BMPR2,IRAK1,IRAK2

8_Summary KEGG Pathway hsa04360 Axon guidance -5.71144786 -2.649 5/175 25,659,2049,2534,8503,3055,3815,92,8631,25778,5753,27148,5599ABL1,BMPR2,EPHB3,FYN,PIK3R3,HCK,KIT,ACVR2A,SKAP1,DSTYK,PTK6,STK36,MAPK8

9_Summary GO Biological Processes GO:0030501 positive regulation of bone mineralization -4.85987918 -2.048 3/39 92,659,91461,5599,8503,25,204851,3055,3654,3815ACVR2A,BMPR2,PKDCC,MAPK8,PIK3R3,ABL1,HIPK1,HCK,IRAK1,KIT

10_Summary GO Biological Processes GO:0044089 positive regulation of cellular component biogenesis -4.42485898 -1.789 6/541 25,2049,3055,3815,8631,79837ABL1,EPHB3,HCK,KIT,SKAP1,PIP4K2C

11_Summary KEGG Pathway hsa05200 Pathways in cancer -4.00905126 -1.506 5/395 25,3815,5599,8503,27148,659,25778,92ABL1,KIT,MAPK8,PIK3R3,STK36,BMPR2,DSTYK,ACVR2A

12_Summary GO Biological Processes GO:0048514 blood vessel morphogenesis -3.84175921 -1.410 6/690 25,659,2049,3099,8503,204851,3815,5599,79837,3055ABL1,BMPR2,EPHB3,HK2,PIK3R3,HIPK1,KIT,MAPK8,PIP4K2C,HCK

13_Summary GO Biological Processes GO:0018105 peptidyl-serine phosphorylation -3.42436367 -1.195 4/289 4294,5165,5599,7444MAP3K10,PDK3,MAPK8,VRK2

14_Summary GO Biological Processes GO:0007224 smoothened signaling pathway -3.27014482 -1.093 3/133 4294,27148,204851MAP3K10,STK36,HIPK1

15_Summary GO Biological Processes GO:0045926 negative regulation of growth -2.4177288 -0.475 3/264 659,5753,10201,25BMPR2,PTK6,NME6,ABL1

Gene Annotation 

Input ID Gene ID Gene Symbol Description

STK36 27148 STK36 serine/threonine kinase 36

PIK3R3 8503 PIK3R3 phosphoinositide-3-kinase regulatory subunit 3

IRAK1 3654 IRAK1 interleukin 1 receptor associated kinase 1

PIP5K2C 79837 PIP4K2C phosphatidylinositol-5-phosphate 4-kinase type 2 gamma

PTK6 5753 PTK6 protein tyrosine kinase 6

CAMKK1 84254 CAMKK1 calcium/calmodulin dependent protein kinase kinase 1

BRD2 6046 BRD2 bromodomain containing 2

KIT 3815 KIT KIT proto-oncogene, receptor tyrosine kinase

FYN 2534 FYN FYN proto-oncogene, Src family tyrosine kinase

LOC91461 91461 PKDCC protein kinase domain containing, cytoplasmic

MAPK8 5599 MAPK8 mitogen-activated protein kinase 8

DGKA 1606 DGKA diacylglycerol kinase alpha

IRAK2 3656 IRAK2 interleukin 1 receptor associated kinase 2

SCAP1 8631 SKAP1 src kinase associated phosphoprotein 1

KIAA1361 None None

ABL1 25 ABL1 ABL proto-oncogene 1, non-receptor tyrosine kinase

NME6 10201 NME6 NME/NM23 nucleoside diphosphate kinase 6

DGKB 1607 DGKB diacylglycerol kinase beta

BMPR2 659 BMPR2 bone morphogenetic protein receptor type 2

MAP3K10 4294 MAP3K10 mitogen-activated protein kinase kinase kinase 10

HK2 3099 HK2 hexokinase 2

PDXK 8566 PDXK pyridoxal kinase

ACVR2 92 ACVR2A activin A receptor type 2A

EPHB3 2049 EPHB3 EPH receptor B3

DUSTYPK 25778 DSTYK dual serine/threonine and tyrosine protein kinase

DCK 1633 DCK deoxycytidine kinase

PDK3 5165 PDK3 pyruvate dehydrogenase kinase 3

HCK 3055 HCK HCK proto-oncogene, Src family tyrosine kinase

VRK2 7444 VRK2 VRK serine/threonine kinase 2

HIPK1 204851 HIPK1 homeodomain interacting protein kinase 1
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Abstract 

Purpose 

Owing to its genetic heterogeneity and acquired resistance, triple-negative breast cancer 

(TNBC) is not responsive to single-targeted therapy, causing disproportional cancer-

related death worldwide. Combined targeted therapy strategies to block interactive 

oncogenic signaling networks are being explored for effective treatment of the refractory 

TNBC subtype. 

Methods 

A broad kinase inhibitor screen was applied to profile the proliferative responses of TNBC 

cells, revealing resistance of TNBC cells to inhibition of the mammalian target of 

rapamycin (mTOR). A systematic drug combination screen was subsequently performed to 

identify that AEE788, an inhibitor targeting multiple receptor tyrosine kinases (RTKs) 

EGFR/HER2 and VEGFR, synergizes with selective mTOR inhibitor rapamycin as well as its 

analogs (rapalogs) temsirolimus and everolimus, to inhibit TNBC cell proliferation. 

Results 

The combination treatment with AEE788 and rapalog effectively inhibits phosphorylation 

of mTOR and 4EBP1, relieves mTOR inhibition-mediated upregulation of cyclin D1, and 

maintains suppression of AKT and ERK signaling, thereby sensitizing TNBC cells to the 

rapalogs. siRNA validation of cheminformatics-based predicted AEE788 targets has further 

revealed the mTOR interactive RPS6K members (RPS6KA3, RPS6KA6, RPS6KB1 and 

RPS6KL1) as synthetic lethal targets for rapalog combination treatment. 

Conclusions 

mTOR signaling is highly activated in TNBC tumors. As single rapalog treatment is 

insufficient to block mTOR signaling in rapalog-resistant TNBC cells, our results thus 

provide a potential multi-kinase inhibitor combinatorial strategy to overcome mTOR-

targeted therapy resistance in TNBC cells.  

 

Keywords 

Multi-kinase inhibitor; mTOR-targeted therapy; Drug resistance; Triple-negative breast 

cancer (TNBC); Polypharmacology 
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Background 

Triple-negative breast cancer (TNBC) constitutes a small subtype (10-20%) of breast cancer, 

but causes the majority of breast cancer-related deaths 104, 186. As defined by the absence 

of ER and PR expression and HER2 overexpression, TNBC is not curable by hormone 

receptor or HER2-targeted therapies 187. Furthermore, TNBC is highly heterogeneous. 

Gene expression profiling has further classified TNBC into six unique molecular subtypes, 

namely basal-like (BL1 and BL2), mesenchymal (M), mesenchymal stem-like (MSL), 

immunomodulatory (IM), and luminal androgen receptor-like (LAR) subtype 8. The TNBC 

molecular signatures have been explored for targeted therapies in clinical trials, including 

those targeting receptor tyrosine kinases (RTKs, e.g. EGFR, VEGFR, c-Met), PI3K/AKT, 

Ras/MAPK, JAK/STAT, cell cycle regulators 107, 188. Yet, TNBC has not benefited from above 

mono-targeted therapies so far, due to intrinsic or acquired resistance 107. 

The mammalian target of rapamycin (mTOR), a conserved serine/threonine 

protein kinase, is a central regulator of cell growth and proliferation, by sensing and 

integrating multiple signals from growth factors and nutrient signals 189, 190. mTOR 

hyperactivity is frequently observed in TNBC compared to other breast cancer subtypes 

and is often correlated with poor prognosis, underpinning the potential of mTOR-targeted 

therapy for TNBC treatment 39, 134, 191. Although mTOR-targeted interventions, such as 

rapamycin and its analogs (rapalogs) temsirolimus and everolimus, delay progression and 

extend survival, patients with TNBC eventually develop resistance to mTOR inhibitors with 

undesired outcome 112, 134. Evidence has shown that rapalog treatment could release 

mTOR negative feedback on upstream kinases and activate compensatory pathways, for 

instance, PI3K/AKT and MAPK/ERK signaling pathways, thereby bypassing mTOR inhibition 
192-194. This observation underscores the need for alternative combinatorial therapeutic 

approaches for TNBC treatment. 

Since oncogenic pathways incorporate multiple signaling components and axes to 

promote tumor malignancy, monotherapy may not be sufficient for long-term control of 

TNBC 134, 192, 195. Hence, simultaneously targeting different signaling molecules represents a 

promising strategy to impede tumor growth and progression 190, 196. Several reports have 

documented that co-targeting growth factor receptors and mTOR exerts cooperative anti-

cancer effects in various cancer types, including TNBC 197-201. However, these studies focus 

on a particular combination in the questioned cancer type. Little is known about the 

interactive kinases involved in rapalog resistance and the mechanisms of the 

combinatorial effect remain unclear. Here, we systematically screened a broad collection 

of kinase inhibitors across a large panel of TNBC lines treated with rapamycin. Our data 

demonstrated that multiple targeted kinase inhibition, for instance, by inhibitor AEE788, 

sensitizes TNBC cells to various mTOR inhibitors, rapamycin, temsirolimus and everolimus. 

Integrated cheminformatics study and siRNA validation revealed additional putative 

targets of AEE788, which interact closely with mTOR signaling. Most importantly, our 
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study provided an efficacious approach for exploring cancer combination treatment. 

Moreover, the combinatorial therapy is more effective than single drug application and 

thus demonstrates a therapeutic advantage over either agents as a monotherapy in TNBC 

treatment. 

 

Methods 

Cell culture 

TNBC cell lines used were representative for different TNBC subtypes, including basal-like 

1 (BL1) HCC38, HCC1143, HCC1937 and MDA-MB-468, basal-like 2 (BL2) HCC70, HCC1806 

and SUM149PT, mesenchymal (M) BT549, mesenchymal stem-like (MSL) Hs578T, MDA-

MB-231, MDA-MB-436 and SUM159PT, luminal androgen receptor (LAR) MDA-MB-453 

and SUM185PE, and unclassified BT20, SKBR7, SUM52PE, SUM229PE and SUM1315MO2. 

All human TNBC cell lines were cultured in RPMI-1640 medium supplemented with 10% 

fetal bovine serum, 25 U/mL penicillin and 25 µg/mL streptomycin in a humidified 

incubator at 37°C with 5% CO2. Normal breast cell line MCF10A was kindly provided by 

Prof. dr. Peter ten Dijke (LUMC, Leiden, the Netherlands) and maintained in DMEM/F12 

(Gibco) supplemented with 5% horse serum (Gibco), 20ng/ml epidermal growth factor 

(EGF) (Upstate), 100ng/ml cholera toxin (Calbiochem), 0.5 g/ml hydrocortisone (Sigma), 10 

g/ml insulin (Sigma), 100U/ml penicillin and 50 g/ml streptomycin (Gibco). Kidney cell line 

RPTEC was cultured in mixed F12/DMEM (1:1 ratio) medium and grown for over 10 days 

after confluency to be differentiated. 

 

Reagents and antibodies 

The library of 378-kinase inhibitors (L1200), rapamycin, temsirolimus, everolimus, AEE788, 

gefitinib, PD184352, palbociclib, and LY2835219 inhibitors were purchased from 

SelleckChem (Huissen, Netherlands). The phospho(Ser473)-AKT (9271), 

phospho(Thr202/Tyr204)-p44/42 MAPK (ERK1/2, 9101), phospho(Ser2448)-mTOR (5536S), 

phospho(Thr37/46)-4EBP1 (2855), phospho((Tyr1148))-EGFR (4404), 4EBP1 (8594), Cyclin 

B1 (4135), mTOR (4517), Beclin-1 (3738), AKT (9272) and p44/42 MAPK (ERK1/2, 4695) 

antibodies were from Cell Signaling (Bioké, Leiden, Netherlands). Cyclin D1 (sc-20044) and 

CDK4 (sc-601) antibodies were from Santa Cruz (CA, USA), The antibody against tubulin (T-

9026) and human epidermal growth factor (EGF, E9644) were from Sigma Aldrich 

(Zwijndrecht, The Netherlands). The antibody against GRP78/BiP (610978) was from BD 

Biosciences (NJ, USA). The LC3B (NB100-2220) antibody was from Novus biologics 

(Colorado, USA). 

 

Kinase inhibitor library combination screen 
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One day post-seeding into 96-well plates, cells were treated with individual kinase 

inhibitors alone or combined with rapamycin at 1 µM. After 4-day treatment, proliferation 

was evaluated by sulphorhodamine B (SRB) colorimetric assay 125. 

 

siRNA transfection 

To silence target genes, 50 nM siGENOME Human SMARTpool siRNA mix (GE Dharmacon, 

Lafayette, CO, USA) was transfected into cells by transfection reagent INTERFERin 

(Polyplus-Transfection SA, Illkirch-Graffenstaden, France) according to the manufacturer’s 

instructions. A pool of 720 kinase siRNAs at stock concentration of 1 µM, which has 

negligible effect on gene expression, was taken as control.  The medium was refreshed 24 

h post-transfection and transfected cells were used for experiments 48 h post-transfection. 

 

Annexin V/Propidium Iodide apoptosis assay 

To detect apoptosis, a live cell imaging of Annexin V-Alexa633/Propidium Iodide (AnV/PI) 

labeling was performed in real time. Cells were treated as indicated and labeled with AnV 

(250 ng/ml) that conjugates to phosphatidyl serine on the membranes of apoptotic cells, 

and PI (100 nM) that intercalates with DNA in apoptotic or necrotic cells. At the time 

points of 24, 48, 72 and 96 h, the AnV and PI in-taken cells were captured with a Nikon 

Eclipse Ti confocal microscope. Simultaneously, the nuclei of live cells were stained with 

DNA dye Hoechst 33342 (200 ng/ml) and imaged for cell density. Quantitative image 

analysis was performed with CellProfiler (v2.1.1). AnV and PI apoptosis fraction was 

calculated by normalization of AnV and PI positive cells to the total cell number. 

 

Immunofluorescence assay 

SUM149PT and HCC1143 cells were fixed 24 h after treatment with ice cold methanol for 

15 minutes, and were subsequently rinsed 3 times for 5 minutes with PBS. Afterwards, the 

cells were incubated with blocking solution (10% normal goat serum, 0.3% Triton-100 in 

PBS) for 1 h, rinsed 3 times for 5 min with PBS, followed by overnight incubation with 

primary antibody (1:300), washing, and 1 h incubation with second antibody. Nuclei stainig 

with Hoechst 33342 was performed as a final step together with the rinsing steps. The 

antibodies were diluted in antibody staining solution (1% BSA, 0.3% Triton-100 in PBS). All 

images were taken with confocal microscope Eclipse Ti-E from Nikon. 

 

Synergy assessment 

Combination Index (CI) was used to define synergism (CI < 1), additive effect (CI = 1) and 

antagonism (CI > 1) of combination drug treatment. The concentration of the single drug 

that inhibits 50% of cell proliferation (IC50) was determined by fitting the dose-response 

curve using GraphPad Prism 7.0 software. The CI was calculated using the formula “CI = CA, 
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50/IC50, A + CB, 50/IC50, B”, where CA, 50 and CB, 50 are the concentration of drug A and B used in 

combination to achieve 50% drug effect.  

 

Western Blotting 

Cells were seeded in 6-well plates at the appropriate density. For stimulation/starvation 

assays, medium was refreshed with serum-free medium (SFM) the following day and cells 

were starved overnight. Thereafter, cells were pre-treated with drug solutions for 4 hours, 

then stimulated with 100 ng/ml EGF (Sigma; E9644) for 5 minutes in SFM. Cells were lysed 

with RIPA buffer containing 1% protease/phosphatase inhibitor cocktail (Sigma-Aldrich, 

P8340). Proteins were resolved by SDS-PAGE and transferred to polyvinylidine difluoride 

membranes. Membranes were blocked in 5% BSA in Tris-buffered saline with 0.05% 

Tween-20 (TBS-T), followed by overnight incubation with primary antibodies, washing, and 

1 h incubation with HRP-conjugated secondary antibodies. Chemiluminescence was 

generated in the presence of HRP substrate and detected with an Amersham Imager 600 

(GE Healthcare Life Sciences, Eindhoven, the Netherlands). Whenever relevant, the 

intensity of protein band was quantified using ImageJ software. 

 

Real time PCR (qPCR) assay 

RNA was isolated from TNBC cells using RNeasy (Qiagen). cDNA was generated from 400 

ng total RNA, using RNeasy Plus Kit from Qiagen. Real-time qPCR was performed in 

triplicate, using the SYBRGreen PCR MasterMix (Applied Biosystems) on a 7900HT fast 

real-time PCR system (Applied Biosystems). The primer sequences used were: forward 

ATCAAGTGTGACCCGGACTG, reverse CTTGGGGTCCATGTTCTGCT (human CCND1); forward 

CTGGTAAAGTGGATATTGTTGCCAT, reverse TGGAATCATATTGGAACATGTAAACC (human 

GAPDH). Relative mRNA levels after correction for GAPDH control mRNA were expressed 

using the 2-ΔΔCT method. 

 

Putative target prediction, validation and network analysis 

Candidate kinase targets of AEE788 were predicted by ligand-based target prediction 

model in ChEMBL database (version 23) and validated by siRNA knockdown plus 

rapamycin treatment. Bioactivity data for single protein targets in ChEMBL was used to 

train and validate two Naive Bayesian multi-label classifier models (at 1 µM and 10 µM 

bioactivity cutoffs respectively). Specifically, the model learns what sub-structural features 

of ligands correlate with activity against a certain target and assigns a score to each of 

these features. Bioactivity data was filtered for the presence of a pChEMBL value and only 

data with confidence score 9 was used. The model sums the individual feature scores for 

all the targets and comes up with a sorted list of likely targets with the highest scores. 

Validated gene targets showing higher FC (fold change) than control siRNA were taken as 

input to perform protein-protein interaction analysis in NetworkAnalyst 
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(http://www.networkanalyst.ca/NetworkAnalyst/faces/home.xhtml) using IMEx 

Interactome database. KEGG pathway database was used to generate gene network. 

 

Statistical analysis 

Kinase inhibitor (KI) library screen data were analyzed using an unbiased sample-based 

analysis with the formula “Z score = (individual KI sample - mean of all KI 

samples)/standard deviation of all KI samples”. The effect of individual KIs on cell 

proliferation inhibition was considered significant when their Z score < -1.5. Pearson 

correlation analysis was performed using GraphPad Prism 7.0. Statistical analysis of all 

experimental data was performed using two-way ANOVA (* p < 0.05, ** p < 0.01, *** p < 

0.001). Data were expressed as mean ± SEM. Significance was set at p < 0.05. The 

hierarchical clustering in heatmap was performed using CRAN pheatmap package in 

RStudio (version 0.99.887). 

 

Results 

TNBC cell lines are differentially responsive to mTOR inhibitor rapalogs  

To gain insights into TNBC dependency on mTOR signaling integration for proliferation and 

cell survival, a KI library (Selleckchem®) containing 378 small molecular inhibitors targeting 

various kinase signaling pathways was screened across 19 TNBC cell lines (Suppl. Table S1), 

which are representative for the six transcriptome-based subtypes of TNBC 8. All TNBC cell 

lines were exposed to individual inhibitors at 1 µM for 4 days, followed by measurement 

of cell proliferation. The effect of each inhibitor on proliferation was assessed by Z scores 

normalized to overall proliferative response. TNBC cell lines were largely resistant to the 

majority of the kinase inhibitors, without any clear correlation to the TNBC molecular 

subtypes (Fig. 1a). The proliferative response towards mTOR inhibitors was variable 

among TNBC cell lines. We distinguished 11 TNBC cell lines insensitive to different mTOR 

inhibitors (Fig. 1b), including rapamycin (Rap) and its analogues (i.e. rapalogs), zotarolimus, 

everolimus, ridaforolimus and temsirolimus. HCC1806 and SUM149PT were most resistant 

to rapologs, while Hs578T was most sensitive. 

Rapalogs are highly selective allosteric inhibitors of mTOR, by binding to 

FKBP12/rapamycin-binding domain to block mTOR Ser2448 phosphorylation and function 
202, 203. mTOR Ser2448 is a predominant phosphorylation residue for mTOR kinase activity 

in response to mitogen-derived stimuli 203. Therefore, we examined the inhibitory effect of 

rapamycin (Rap), temsirolimus (Tem) and everolimus (Eve), on Ser2448-mTOR 

phosphorylation with a focus on rapalog-resistant TNBC cell lines HCC1806 and SUM149PT 

and rapalog-sensitive Hs578T TNBC cells. The rapalogs potently inhibited phosphorylation 

of mTOR in the sensitive Hs578T cells, but not or less effectively in the resistant HCC1806 

and SUM149PT cells, respectively (Fig. 1c, d). These data suggest that mTOR kinase activity 

and its sustained phosphorylation render the TNBC cells resistant to rapalogs. 
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Fig. 1 Resistance profiling of TNBC cell lines to mTOR inhibitor rapalogs. a Heatmap presenting the responses of 

19 TNBC cell lines to 378 kinase inhibitors. Data were shown based on the effect of individual KI on proliferation 

(relative Z scores), subtype-annotated cell lines (clustered horizontally) and pathway-annotated inhibitors 

(clustered vertically). Strong inhibitory effect on proliferation was indicated in green and weak in red. b Response 

clustering of TNBC cell lines to mTOR inhibitors (mTORi). c Concentration range effects of rapalogs rapamycin 

(Rap), temsirolimus (Tem) and everolimus (Eve) on mTOR phosphorylation, in rapalog-resistant HCC1806 and, 

SUM149PT TNBC cells, compared to rapalog-sensitive Hs578T cells. Cells were treated with rapalogs in 

concentration range (µM) for 4 h. d Quantitative comparison of phosphorylated mTOR level to total mTOR level 

in rapalog-treated resistant and sensitive TNBC cells. 

 

Combinatorial drug screen identifies kinase inhibitors sensitizing TNBC cells to mTOR 

inhibition  

Next, to identify kinase inhibitors synergizing with mTOR inhibition in rapalog refractory 

TNBC cells, we further performed a drug screen with rapamycin (at 1 µM) in combination 

with the 378 kinase inhibitors (also tested at 1 µM) in the resistant SUM149PT cells. 

Pearson correlation coefficient r displayed high reproducibility of two replicate screens for 

KI (r = 0.9509) and KI and rapamycin (KI + Rap, r = 0.9115), respectively (Fig. 2a, b). 

Comparison of KI + Rap combinatory effect to the single KI effect on proliferation 

inhibition uncovered 9 potent KIs (Fig. 2c), which significantly enhanced inhibitory effect 

of rapamycin on proliferation of SUM149PT cells (Fig. 2d). These included one MEK 

inhibitor PD184352 and 8 RTK inhibitors, AEE788, afatinib, AC480, AZD8931, AZD9291, 

AST-1306, ZM 306416 and gefitinib that are described to target single or multiple 

EGFR/HER2 and VEGFR RTKs (Fig. 2e). We also performed rapamycin combination screen 

in the resistant HCC1806 cells in parallel. As HCC1806 cells were responsive to EGFR 

inhibitors, only additive effects were observed (Suppl. Fig. S1c; Suppl. Fig. S2).  

These data implicate that while the resistant SUM149PT cells poorly respond to 

inhibitors of EGFR or VEGFR and mTOR inhibitor rapamycin alone, concurrent blockage of 
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upstream EGFR or VEGFR RTK activity or MEK signaling transduction, and downstream 

mTOR signaling could converge re-sensitization of TNBC cells.  

 
Fig. 2 Identification of kinase inhibitors which sensitize TNBC cells to rapamycin. a, b Pearson correlation 

coefficient r showing reproducibility of replica screen of 378 kinase inhibitors alone (KI, a) or combined with 

rapamycin (KI + Rap, b). SUM149PT cells were treated for 4 days with 1 µM KI individuals alone or combined with 

1 µM Rap. Orange dots, DMSO control. Cyan dots, Rap only. c Effect comparison of KI alone to KI combined with 

Rap on proliferation of SUM149PT cells. The percentage of proliferation (% of control) was relative to DMSO. The 

ratio of percentage of proliferation was shown as fold change (FC, KI versus KI + Rap). Top synergistic inhibitors 

were marked in red. d Selected inhibitors reducing 40% proliferation with FC > 4 (extracted from Figure 2C, red 

dots) when combined with rapamycin. Error bars indicate screen replicates. e Kinase targets of the selected 

inhibitors and IC50 values of the inhibitors on corresponding targets (SelleckChem®). 

 

Multi-targeted RTK inhibitor AEE788 enhances proliferative inhibition and cell death in 

rapalog-resistant TNBC cells 

Next, we further validated the combinatorial effect of the most promising combinations 

on proliferative inhibition in the rapalog-resistant SUM149PT cells. We focused on the 

MEK inhibitor PD184352, EGFR inhibitor gefitinib and the multi-targeted RTK inhibitor 

AEE788. Cells were treated with rapamycin in a concentration range alone or combined 

with different concentrations of PD184352, gefitinib or AEE788. AEE788 synergized with 

rapamycin to inhibit SUM149PT cell proliferation in dose-dependent manner (Fig. 3a, top 

panel). In contrast, PD184352 and gefitinib (Suppl. Fig. S1a, b) displayed a more additive 

effect when combined with rapamycin. The synergistic effects of AEE788 and rapalogs, 

Rap, Tem and Eve, were further confirmed in SUM149PT as well as another rapalog-



 

67 
 

4 

resistant TNBC cell line HCC1143 (Fig. 3a). AEE788 significantly reduced the half-maximal 

 
Fig. 3 Synergistic effect of AEE788 and rapalogs on proliferative inhibition and cell death in rapalog-resistant 

TNBC cells. a Proliferative response of rapalog-resistant SUM149PT (left panel) and HCC1143 (right panel) TNBC 

cells, to rapalogs Rap, Tem and Eve in concentration range alone or combined with 0.316 µM and 1 µM AEE788 

respectively. b IC50 values (µM) of rapalogs in combination with AEE788, inducing 50% of proliferation inhibition 

in SUM149PT and HCC1143 cells. c Combination index (CI) of rapalog and AEE788 in SUM149PT and HCC1143 

cells. CI < 1 indicates synergism. d, e Combinatorial effects of Rap and AEE788 on SUM149PT (left panel, d) and 

HCC1143 (right panel, e) cell death. Cells were subjected to Annexin V/Propidium Iodide (AnV/PI) apoptosis 

assays after treatment for 24, 48, 72 and 96 h. Cisplatin (100 µM) was used as positive control. (two-way ANOVA 

* p < 0.05, ** p < 0.01, *** p < 0.001) 

 

inhibitory concentrations (IC50) of the rapalogs in both SUM149PT and HCC1143 cell lines 

(Fig. 3b). Combination index (CI) analysis detected the strong synergy of AEE788 and 
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rapalogs, overall with CI values < 0.5 (Fig. 3c). To detect the combinatorial effects of 

AEE788 and rapamycin on TNBC cell death, we performed Annexin V/Propidium Iodide 

apoptosis assay in SUM149PT and HCC1143 cell lines. Besides proliferative inhibition, the 

combination significantly enhanced apoptosis and necrosis 96 h post-treatment in 

SUM149PT cells (Figure 3d), and enhanced the monotherapy-induced apoptosis in 

HCC1143 cells, albeit not statistically significant (Figure 3e). Next, we evaluated the 

combinatorial effects on normal mammary cells MCF10A and renal cells RPTEC. 

Importantly, neither monotherapy nor combination significantly suppressed proliferation 

or induced cell death of MCF10A and RPTEC cells, suggesting that the combo effects might 

be cancer cell specific and less toxic in normal mammary and renal cells (Suppl. Fig. S3). 

Altogether, the KI combination not only inhibited TNBC cell proliferation, but also 

enhanced the monotherapy-induced apoptosis and necrosis, with minimal effects on 

normal mammary and renal cells. 

 

Co-treatment of rapamycin and AEE788 abolishes mTOR phosphorylation and sustains 

downregulation of ERK and AKT signaling in TNBC cells 

mTOR belongs to a complex network of regulatory feedback loops responsible for 

controlling upstream proliferative signaling pathways. The major upstream signaling in 

control of mTOR activity involves PI3K/AKT and MAPK/ERK, the two canonical pathways 

downstream of RTKs 189. Resistance to mTOR inhibition in cancer has been linked to 

activation of upstream PI3K/AKT and MAPK/ERK signaling, following rapalog treatment 194. 

Next, we investigated the synergistic effect of AEE788 and rapamycin on PI3K/AKT and 

MAPK signaling in TNBC cells. Treatment with AEE788 alone inhibited ERK and AKT 

phosphorylation in the resistant SUM149PT and HCC1143 cells (Fig. 4a). Single treatment 

with rapamycin slightly increased p-ERK in SUM149T and p-AKT in HCC1143 cells. The 

phosphorylation levels of mTOR and the target of mTOR, 4EBP1, were not affected by 

either AEE788 or rapamycin alone, further indicating the sustained mTOR signaling in the 

resistant TNBC cells. However, co-treatment of AEE788 and rapamycin almost completely 

abolished mTOR phosphorylation, whilst ERK and AKT phosphorylation remained inhibited 

(Fig. 4a, b). The synergistic effect of AEE788 and rapamycin on p-4EBP1 inhibition was 

marginal (Fig. 4a).  

As AEE788 has been described as an EGFR/VEGFR dual RTK inhibitor, we further 

evaluated the co-treatment effect of AEE788 and rapamycin on EGFR RTK signaling activity 

in both resistant SUM149PT and HCC1143 cells upon EGF stimulation (Fig. 4c). EGF 

treatment caused the activation of the EGF-receptor as evidenced by increased p-EGFR 

and downstream p-ERK and p-AKT. AEE788 effectively blocked EGF-stimulated 

phosphorylation of these components, in both SUM149PT and HCC1143 cells. It has been 

reported that 4EBP1 has multiple phosphorylation sites and an increase in 4EBP1 

phosphorylation is accompanied by a decrease in its electrophoretic mobility 204-206. EGF 
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also effectively caused enhanced p-mTOR and p-4EBP1. Rapamycin could inhibit 4EBP1 

phosphorylation by EGF in both cell lines but with no (SUM149PT) or limited (HCC1143) 

effects on mTOR activation; and, reversely, AEE788 could inhibit mTOR activation but with 

marginal effects on 4EBP1 phosphorylation. However, co-treatment with AEE788 and 

rapamycin particularly could shut-down the EGF-mediated phosphorylation of mTOR and 

4EBP1 signaling.  

 
Fig. 4 Combinatorial effect of AEE788 and rapamycin on mTOR signaling inhibition in rapalog-resistant TNBC 

cells. a Effects of AEE788 and Rap co-treatment on mTOR phosphorylation, upstream AKT and ERK and 

downstream 4EBP1 signaling in rapalog-resistant SUM149PT and HCC1143 cells. Cells were treated with 1-3.16 

µM AEE788 and 0.01 µM Rap alone or combined as indicated for 4 h. b Quantification of phosphorylated ERK to 

total ERK (top row), phosphorylated AKT to total AKT (middle row) and phosphorylated mTOR to total mTOR 

(bottom row) in SUM149PT and HCC1143 treated with AEE788 and Rap alone or combined as indicated. c Effects 

of AEE788 and Rap co-treatment on EGF-stimulated signaling transduction in SUM149PT and HCC1143 cells. Cells 

were starved in serum-free medium overnight, pre-treated for 4 h with AEE788 and Rap alone or combined as 

indicated, followed by exposure to 100 ng/ml EGF for 5 min. 4EBP1 can be phosphorylated at several sites, as 

indicated by multiple bands. The bottom band is the unphosphorylated form of 4EBP1. d Effects of AEE788 and 

Rap co-treatment for 24 h on autophagy (LC3B) and ER stress (BiP). e Effects of AEE788 and Rap co-treatment on 

Beclin-1 accumulation. Cells were subjected to immunofluorescence assay 24 h post-treatment. White arrows 

indicate the induction of Beclin-1. 

 

Several cellular processes have been linked to the immunogenicity of cell death, 

including autophagy and ER stress 207-210. Given that mTOR is a key regulator of autophagy, 
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we then tested the combination effect of autophagy in TNBC cells. Interestingly, the 

combination sustained the elevated LC3B level induced by monotherapy and 

demonstrated accumulated Beclin-1 expression 24 h post-treatment in both SUM149PT 

and HCC1143 cells (Fig. 4d, e). The combination increased the expression level of BiP, a 

key regulator of ER stress, 24 h post-treatment in SUM149PT cells, but not so much in 

HCC1143 cells (Fig. 4d), suggesting the involvement of immunogenic cell death-related 

events in TNBC cells by the combination treatment. 

 

 
Fig. 5 Validation of AEE788 potential targets synergizing with rapamycin in rapalog-resistant TNBC cells. a 

Radar chart displaying highly predicted targets of AEE788 in ChEMBL_23 database with 1 µM (blue) and 10 µM 

(red) as cutoff. b Screen of AEE788 targets with siRNA alone (siRNA) or in combination with 0.01 µM rapamycin 

(siRNA + Rap) in SUM149PT cells. siCtrl, siRNA control. c siRNA silencing effect of AEE788 targets synergizing with 

rapamycin. The ratio of percentages of proliferation was shown as FC (siRNA versus siRNA + Rap). Targets with 
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silencing effect over siCtrl (FC > 1.7, blue) were marked in red. d Protein-protein interactions of AEE788 targets 

(red) by NetworkAnalyst. Proteins interacting with mTOR signaling pathway were marked in green.  

 

Silencing of AEE788 targets enhances mTOR inhibition in TNBC cells 

Although AEE788 has been described as an inhibitor targeting multiple RTKs, we 

wondered whether the effect of AEE788 could be related to unanticipated 

polypharmacology, thus impacting through additional mechanisms of mTOR signaling. We 

used a cheminformatics approach to predict candidate alternative kinase targets of 

AEE788. ChEMBL is an open large-scale bioactivity database that contains comprehensive 

target inhibition information of thousands of drug-like molecules, including kinase 

inhibitor activity, allowing well-informed prediction of structure-based alternative kinase 

target prediction 211, 212. We firstly performed ligand-based target prediction for AEE788. 

With 1 µM and 10 µM activity cutoffs, 9 kinases showed high prediction scores and as 

such putative targets of AEE788, including RPS6KB1, AKT2, CDK7, EGFR, MAPKAPK2, CLK4, 

JAK2, AKT3 and VEGFR2 (Fig. 5a). To refine the scale of target list, we selected kinases 

showing prediction score greater than 0.1 and kinases with an IC50 of AEE788 smaller 

than 1 µM according to the publically available data 213. As a result, 30 putative kinase 

targets were selected. To validate the potential contribution of these kinases in the 

interaction with rapamycin, we performed a targeted rapamycin and siRNA synthetic 

lethal screen in SUM149PT cells (Fig. 5b). The synthetic lethal screen revealed 13 

candidate targets (Fig. 5c). We anticipated that these validated targets would take part in 

connected signaling networks and, therefore, would all individually impact on the 

rapamycin sensitivity. Indeed, protein-protein interaction network analysis revealed a 

close interaction of the various putative kinase targets of AEE788 (Fig. 5d; Suppl. Table S2). 

Interestingly, the well-known mTOR target RPS6KB1 as well as other RPS6K family 

members RPS6KA3, RPS6KA6 and RPS6KL1, were mapped in the network, supporting the 

synergistic drug interaction of AEE788 with rapamycin on mTOR signaling. In addition, 

ABL2 and PDGFRB were predicted and validated as potential targets involved in rapamycin 

synergy. Of relevance, rapalog-resistant TNBC cell lines SUM149PT, HCC1143, SUM159PT 

and HCC38 poorly responded to inhibitors targeting the verified targets of AEE788, 

including EGFR, VEGFR, PDGFR, ABL and S6K (Suppl. Fig. S2). Taken together, the above 

data suggests that AEE788 synergizes with rapamycin in suppressing TNBC cell 

proliferation by targeting several EGFR, VEGFR, PDGFR, ABL and different S6K kinases that 

are all connected to mTOR signaling. 

 

AEE788 abolished rapalog-upregulated cyclin D1 expression in TNBC cells 

Finally, we looked into the mechanism how AEE788 and rapalogs impact on cell 

proliferation. Inhibition of mTOR by rapamycin blocks cell cycle progression and cell 

proliferation has been linked to disruption of the cyclin dependent kinase 4 (CDK4)-cyclin 
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D1 complex 214. Therefore, we next addressed the role of cyclin D1 in the synergistic effect 

of AEE788 and rapalogs on proliferation of rapalog-resistant SUM149PT and HCC1143 

TNBC cell lines. Unexpectedly, we observed that rapalogs Rap, Tem and Eve did not 

 
Fig. 6 Co-treatment with AEE788 prevents rapalog-induced cyclin D1 upregulation in resistant TNBC cells. a 

Combinatorial effects of AEE788 and rapalogs (Rap, Tem and Eve) on expression of cell cycle regulatory proteins 

in SUM149PT and HCC1143 cells. Cells were treated with 1 µM AEE788 and 0.01 µM rapalogs (Rap, Tem and Eve) 

alone or combined as indicated, for 8 h and 24 h, respectively. b Cyclin D1 protein expression levels relative to 

tubulin in SUM149PT and HCC1143 cells treated with AEE788 and rapalogs alone or combined as indicated. c 

Cyclin D1 mRNA expression level relative to GAPDH in SUM149PT and HCC1143 cells treated with AEE788 and 

rapalogs alone or combined as indicated. d Effect of CCND1 siRNA silencing (siCCND1) on proliferation inhibition 

of SUM149PT and HCC1143 cells treated with 0.01 µM rapalogs or DMSO control (two-way ANOVA * p < 0.05, ** 

p < 0.01, *** p < 0.001). siCtrl, siRNA control. Significant effect of rapalogs treatment alone on proliferative 

inhibition was observed (** p < 0.01). 

 

suppress but upregulated cyclin D1 protein expression and mRNA levels of CCND1 (the 

gene encoding cyclin D1) in SUM149PT and HCC1143 TNBC cells after short- (8 h) and 

long-term (24 h) treatment (Fig. 6a-c). This suggests a positive-feedback loop activation 

upon rapalog treatment, thereby counteracting the anti-proliferative effect of rapalogs. 

Rapalogs slightly increased CDK4 levels, but did not affect cyclin B1 expression in the TNBC 

cells (Fig. 6a). When co-treated with AEE788, the rapalog-induced cyclin D1 upregulation 

was blocked at both the mRNA and protein levels (Fig. 6a-c). Moreover, co-treatment of 
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AEE788 and rapalogs led to downregulation of cyclin B1 and CDK4 expression in both 

TNBC cell lines (Fig. 6a). These results suggested that AEE788 synergized with rapalog to 

abrogate cyclin D1 upregulation thereby inhibiting cell proliferation. Next, we silenced 

cyclin D1 by siRNA-based CCND1 knockdown in SUM149PT and HCC1143 cells, in 

combination with rapalogs Rap, Tem and Eve, respectively. While silencing cyclin D1 alone 

considerably impaired SUM149PT and HCC1143 cell proliferation, this inhibitory effect 

was significantly enhanced when combined with rapalogs Rap, Tem or Eve (Fig. 6d). In 

support of a role of CDK4/cyclin D1 in the resistant phenotype of rapamycin, an enhanced 

inhibition on proliferation was observed in SUM149PT and HCC1143 cells when co-treated 

with rapamycin and selective CDK4/6 inhibitor palbociclib or LY2835219 (Suppl. Fig. S3), 

albeit not as effective as AEE788. 

 

Discussion 

mTOR acts as a central regulator of multiple signaling networks in control of cell growth, 

proliferation and survival 189, 215. mTOR signaling is frequently upregulated in malignant 

tumors, including TNBC, highlighting the potential of mTOR kinase targeted therapy in 

cancer modulation 112, 134, 189, 190. However, patients with TNBC often experience mTOR 

targeting failure due to acquired resistance and activation of bypass surviving pathways 192, 

194, 216. Our drug combination screen revealed that co-treatment with AEE788, a multiple 

RTK-targeted inhibitor, restores the sensitivity of TNBC cells towards the clinically applied 

mTOR inhibitors (rapamycin, temsirolimus and everolimus). The effect of AEE788 is likely 

due to polypharmacology to shut down the crosstalk among receptors as well as mTOR 

pathway within signaling networks in the resistant scenario. The combination of targeted 

agents profoundly improves therapeutic efficacy and overcome resistance that might 

develop under single-agent therapy. 

 mTOR inhibition can relieve distinct negative feedback loops that normally serve 

to attenuate upstream RTKs, PI3K and MAPK signaling, leading to rapalog resistance 217. As 

such, mTOR inhibition alone is not sufficient to overcome the entire oncogenic program 

propagated from the alternate proliferative signaling pathways. By exploiting high-

throughput kinase drug combination screen, our study has identified the effective kinase 

inhibitor, AEE788, that can block compensatory mechanisms conferring aberrant cell cycle 

progression upon rapalog treatment. The repression of EGFR/VEGFR and mTOR related 

pathways in concert seemingly reverts processes predominantly responsible for 

uncontrolled TNBC tumor proliferation. Our results are in line with the above observations 

that co-inhibition of upstream RTKs (such as EGFR, VEGFR, PDGFR and IGF1R), PI3K and 

MAPK signaling transduction and mTOR signaling elicited enhanced therapeutic efficacy in 

various cancer types.  

Sustained mTOR signaling drives resistance to targeted therapeutics in cancer 

treatment 216. In TNBC tumor cells, mTOR signaling is frequently upregulated 218. We 
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demonstrated that while rapalogs alone were insufficient to inhibit the sustained mTOR 

signaling in resistant TNBC cells, co-treatment of rapalogs with the multi-targeted RTK 

inhibitor AEE788 synergistically blocked mTOR phosphorylation in SUM149PT and 

HCC1143 cells. Interestingly, SUM149PT cells have been characterized for the 

constitutively activated EGFR via a self-sustaining amphiregulin autocrine loop, and 

subsequently, altered receptor signaling and gene expression 219, 220. While the KI 

combination blocked the EGF-mediated downstream EGFR signaling in both SUM149PT 

and HCC1143 cells, further considerations need be taken on whether the synergy is 

associated with RTK signaling cascades mediated by particular protein kinase receptor 

ligands (such as EGF, amphiregulin etc). Another mechanism of resistance to mTOR 

inhibition in cancer is the rapalog-mediated activation of upstream PI3K/AKT and 

MAPK/ERK signaling 194. Co-treatment with AEE788 and rapamycin maintained the 

inhibitory effect on AKT and ERK signaling in TNBC cells. These data suggest that AEE788 

and rapamycin synergistically inhibit the sustained mTOR activity in TNBC cells, thus 

blocking mTOR’s potential feedback loop on activation of alternative ERK and AKT 

proliferative signaling pathways.  

 Polypharmacology, the action of drugs against multiple targets 196, is commonly 

observed in drug development including the effective marketed kinase inhibitors 221. Our 

ChEMBL-based cheminformatics analysis demonstrated that AEE788 is a kinase inhibitor 

that likely targets several kinases; this is consistent with other reports using protein kinase 

assays 198, 222. Complementary to a recent kinobeads study on target landscape of clinical 

kinase drugs 221, our cheminformatics approach presented that the multi-targeted RTK 

inhibitor AEE788 likely interacts with EGFR, VEGFR, ABL2, PDGFRB and several mTOR 

signaling pathway components, including  AKT and S6K family members. Subsequent 

siRNA-based knockdown of these various kinases, e.g. RTKs (EGFR, VEGFR2/3 and PDGFRB), 

AKTs (AKT2 and AKT3) and RPS6Ks (RPS6KA3, RPS6KA6, RPS6KB1 and RPS6KL1), 

MAPKAPK2, ABL2 and CDK7 sensitized rapalog-resistant TNBC cells to rapamycin. Several 

reports have demonstrated the synergistic effects of targeting EGFR or MEK on anti-mTOR 

therapies in TNBC 199, 223-225. However, our study demonstrated that simultaneous use of 

EGFRi gefitinib or MEKi PD184352 only exerts additive effects on rapamycin-mediated 

proliferative inhibition, suggesting that AEE788-rapalog synergy results presumably from 

multi-targeted kinase inhibition. These data support the anticipated polypharmacology of 

AEE788 as the mode-of-action of the synergy with rapalogs. Further studies are required 

to determine the detailed kinome target landscape of AEE788 in TNBC.  

mTOR pathway regulates cell growth through its downstream effectors, such as 

4EBP1 and RPS6KB1 189, 215. Another primary way that mTOR confers its regulatory effects 

on cell proliferation is to upregulate expression of the cell cycle regulator cyclin D1 226. 

CCND1, the cyclin D1 encoding gene, is frequently amplified in breast cancer, and 

depletion of cyclin D1 suppresses breast cancer progression 137, 227. In response to mTOR 
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inhibition, however, cyclin D1 is elevated by everolimus in various types of cancer 200, 201. 

Consistently, we found that treatment with rapalogs (rapamycin temsirolimus and 

everolimus) commonly upregulated cyclin D1 in rapalog-resistant TNBC cells, indicating an 

alternative activation of cyclin D1 proliferative signaling pathway after mTOR inhibition. 

Considering that cyclin D1 was lost in the presence of the AEE788-rapalog combination, 

AEE788 seems to compensate the undesired effects of rapalog, further highlighting the 

therapeutic advantage of the drug combination. Interestingly, while we discovered the 

AEE788-rapamycin interaction through a wider screening effort in TNBC cells, our findings 

were further supported by the observations on the synergistic effects of AEE788-

everolimus combination in prostate, germ and renal tumor cell lines 198, 200, 201. Moreover, 

a xenograft-bearing mice study also documented the beneficial action of AEE788-

everolimus combination in glioblastoma tumor regression 228. However, these studies did 

not further the mode-of-action of AEE788. Since AEE788 is recognized as a multiple 

targeting kinase inhibitor, their observations were limited to EGFR/VEGFR, lacking of the 

notion on other potentially targeted candidate kinases. Our study, for the first time, 

revealed the synergy on rapalogs treatment in TNBCs and its underlying 

polypharmacology by utilizing integrated systematic screen and cheminformatics 

approach. Moreover, either genetic or pharmacological ablation of cyclin D1 significantly 

enhanced mTOR-inhibition mediated proliferative inhibition. This is concordant with the 

recent reports on the synergistic anti-cancer activity of combined CDK4/6 and mTOR 

targeting 229-231. 

In conclusion, our work supports that polypharmacology to target multiple kinase 

targets in combination with rapalog treatment may offer a distinct combinatorial benefit 

to TNBC patients that are otherwise resistant to mTOR-targeted therapeutics. 
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Supplementary material 

 
Suppl. Fig. S1 Effects of co-treatment with PD184352, gefitinib or AEE788 on rapamycin-mediated proliferative 

inhibition in TNBC cells. SUM149PT (a, b) and HCC1806 (c) cells were treated with Rap in dose range alone or 

combined with PD184352 (PD), gefitinib (Gef) or AEE788 (AEE) at indicated concentrations for 4 days, followed 

by SRB proliferation assay. 

Suppl. Fig. S2 Proliferation response of rapalog-resistant TNBC cell lines towards VEGFR, EGFR, PDGFR, ABL and 

S6K inhibitors. TNBC cells were treated with KI at 1 µM for 4 days, followed by SRB proliferation assay. Strong 

inhibitory effect on proliferation was indicated in green and weak in red. 
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Suppl. Fig. S3 Combinatorial effect of rapamycin and AEE788 on proliferation and cell death of MCF10A (a) and 

RPTEC (b) cells. Proliferative response (upper panel, SRB absorbance), early apoptosis (middle panel, AnV+) and 

late apoptosis/necrosis (bottom panel, PI+) of MCF10A and RPTEC cells, to Rap alone or combined with AEE788 

respectively. Cisplatin (100 µM) was used as positive control. 

 
Suppl. Fig. S4 Combinatorial effect of rapamycin and inhibitors targeting CDK4/6-Cyclin D1 complexes on 

proliferation of rapalog-resistant SUM149PT (a) and HCC1143 (b) TNBC cells. Cells were treated Rap alone, or in 

combination with selective CDK4/6 inhibitor palbociclib or LY2835219 at 0.01 µM for 4 days (two- way ANOVA * 

p < 0.05, ** p < 0.01, *** p < 0.001). 

 

Suppl. Table S1 Molecular subtypes of TNBC cell lines. 

 
 

 

basal-like 1 (BL1) basal-like 2 (BL2) mesenchymal (M) mesenchymal stem-like (MSL) luminal androgen receptor (LAR) unclassified

HCC1937 HCC1806 BT549 Hs578T MDA-MB-453 BT20

HCC1143 SUM149PT SUM159PT SUM185PE SKBR7

HCC38 HCC70 MDA-MB-231 SUM52PE

MDA-MB-468 MDA-MB-436 SUM229PE

SUM1315MO2
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Suppl. Table S2 Node table in protein-protein interactions of AEE788 potential targets. 

 

Id Node Degree Betweenness Id Node Degree Betweenness

P00533 EGFR 391 178881.7 P46934 NEDD4 6 4332.63

P09619 PDGFRB 74 20524.36 P03372 ESR1 5 7738.14

P50613 CDK7 66 35914.58 P12931 SRC 5 3009.24

P23443 RPS6KB1 56 26521.88 P29353 SHC1 5 2745.16

P31751 AKT2 53 26567.47 P62993 GRB2 5 910.52

Q9UK32 RPS6KA6 38 19388.73 Q16543 CDC37 4 7079.36

P35968 VEGFR2 38 11501.12 P42224 STAT1 4 2445.99

P51812 RPS6KA3 37 14817.52 P05067 APP 4 2088.79

P42684 ABL2 36 12328.21 P46108 CRK 4 516.6

P49137 MAPKAPK2 32 12761.96 P19174 PLCG1 4 516.6

P35916 VEGFR3 11 2613.92 P16333 NCK1 4 516.6

P07900 HSP90AA1 9 14538.16 O94875 SORBS2 3 2467.85

P08238 HSP90AB1 9 14538.16 Q16539 MAPK14 3 1871.29

P0CG48 UBC 8 16809.34 P27361 MAPK3 3 827.61

Q9HAZ1 CLK4 8 4077.61 P48740 MASP1 3 726.74

… …

… …

Q96HN2 AHCYL2 1 0 P08151 GLI1 1 0
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Abstract 

The genetically heterogeneous triple-negative breast cancer (TNBC) continues to be an 

intractable disease, due to lack of effective targeted therapies. Gene amplification is a 

major event in tumorigenesis. Genes with amplification-dependent expression are being 

explored as therapeutic targets for cancer treatment. In this study, we have applied 

ADMIRE (Analytical Multi-scale Identification of Recurring Events) analysis and transcript 

quantification in the TNBC genome across 222 TNBC tumors (n = 118 TCGA and n = 104 

Metabric) and identified 148 candidate genes with positive correlation in copy number 

gain (CNG) and gene expression. siRNA-based loss-of-function screen of the candidate 

genes has validated EGFR, MYC, ASAP1, IRF2BP2 and CCT5 genes as drivers promoting 

proliferation in different TNBC cells. MYC, ASAP1, IRF2BP2 and CCT5 display frequent CNG 

and concurrent expression over 2173 breast cancer tumors (cBioPortal dataset). More 

frequently are MYC and ASAP1 amplified in TNBC tumors (> 30%, n = 320). In particular, 

high expression of ASAP1, the ADP-ribosylation factor (Arf) GTPase-activating protein, is 

significantly related to poor metastatic relapse free survival of TNBC patients (n = 257, bc-

GenExMiner). Furthermore, we have revealed that silencing of ASAP1 modulates 

numerous cytokine and apoptosis signaling components, such as IL1B, TRAF1, AIFM2 and 

MAP3K11 that are clinically relevant to survival outcomes of TNBC patients. ASAP1 has 

been reported to promote invasion and metastasis in various cancer cells. Our findings 

that ASAP1 is an amplification-dependent TNBC driver gene promoting TNBC cell 

proliferation, functioning upstream apoptosis components and correlating to clinical 

outcomes of TNBC patients, support ASAP1 as a potential actionable target for TNBC 

treatment.  

 

Keywords 

Recurrent copy number gain; Driver gene; Whole transcriptome sequencing; Triple-

negative breast cancer; ASAP1  
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Background  

Triple-negative breast cancer (TNBC) represents a particularly proliferative and aggressive 

subtype of breast cancer, associated with large size of tumors, high mitotic rate of tumor 

cells, high tumor grade and metastasis, causing poor prognosis and high mortality rate of 

patients 107. TNBC constitutes 15-20% of breast cancer, being clinically characterized by 

the lack of expression of estrogen receptor (ER), progesterone receptor (PR) and the 

absence of amplification of human epidermal growth factor receptor 2 (HER2), which are 

the known drivers of other breast cancer types 232. The absence of actionable targets 

defined in TNBC cells leads to clinical failure of targeted therapies in TNBC patients. 

Cytotoxic chemotherapy remains the conventional systemic treatment for TNBC patients, 

resulting in adverse effects and unfavorable outcomes 77, 233. Identification of actionable 

targets for TNBC treatment is a continuous effort. 

 Gene copy number alterations (CNAs) are a hallmark in the cancer genome 49. 

Gains or losses of gene copy are important somatic genomic aberrations contributing to 

tumorigenesis 106. Changes in gene copy number result in corresponding changes in 

expression of the affected genes, causing phenotypes 234. Copy number gains (CNGs), 

increasing from the two DNA copies present in normal diploid genome, sometimes to 

several hundred copies (known as amplification), are observed to frequently occur on 

cancer driver genes 235, 236. Oncogenic driver genes with increase in DNA copy number and 

expression have been identified and explored as potential drug targets for targeted 

therapies in cancer 237. For instance, the HER2 gene, which is amplified in ~30% of primary 

breast cancers 238, has been proven as an actionable target for trastuzumab antibody 

targeted therapy and lapatinib inhibitor targeted therapy treating patients with HER2-

amplified breast cancer 239. Therefore, identification of CNG-driven genes and their 

amplification-dependent overexpression provides opportunities for discovering potential 

cancer driver genes as therapeutic targets for therapy-refractory cancer. 

 A number of studies have demonstrated the genomic heterogeneity in TNBCs, 

being dominated by substantial mutational burdens, including CNAs and genomic 

rearrangements 106, 240. CNA genomic profiling based on separate TNBC sample groups 

have reported the TNBC-related recurrent CNAs on various chromosome regions 241. Yet, 

integrative analysis of CNG frequency and CNG-driven gene expression in the TNBC 

genome is limited.  

In this study, we applied the ADMIRE (Analytical Multi-scale Identification of 

Recurring Events) algorithm to identify candidate driver genes that are frequently 

amplified by recurrent CNGs, in correlation with their RNA expression levels, in 222 triple-

negative tumors from TCGA (n=118) 19 and Metabric (n=104) 232 datasets. As a result, 148 

genes were identified, with a significant and positive correlation in their gene 

amplification and expression. These amplification-driven genes were subsequently 

validated by loss-of-function screen for their biological function in TNBC cell proliferation, 



 

83 
 

5 

followed by assessment of their expression and amplification in broad breast cancer cell 

lines and tumors, and evaluation of their clinical relevance using multiple large public 

breast cancer datasets 242, 243. Consequently, we characterized the known oncogenes MYC 

and EGFR and the novel candidate genes ASAP1, IRF2BP2 and CCT5 as cancer drivers in 

promoting proliferation of TNBC cells. MYC and ASAP1 were observed to be more 

frequently amplified and highly expressed in TNBC than non-TNBC tumors. Specifically, 

high expression of ASAP1, an ADP-ribosylation factor (Arf) GTPase-activation protein 

regulating cell motility and invasiveness 244, is significantly relevant to poor metastatic 

relapse-free survival (MRFS) of patients with TNBC tumors, not non-TNBC tumors. 

Transcriptome analysis further revealed that ASAP1 regulates various cytokine and 

apoptosis signaling components that are significantly associated with TNBC prognosis. Our 

work discovered ASAP1 as an amplification-dependent gene driving TNBC proliferation, 

survival and progression, supporting the potentiality of ASAP1 as a therapeutic target for 

the treatment of TNBC. 

 

Methods 

Cell culture 

Human TNBC cell lines BT549, Hs578T and SUM149PT were cultured in RPMI-1640 

medium supplemented with 10% fetal bovine serum, 25 U/mL penicillin and 25 µg/mL 

streptomycin in a humidified incubator at 37°C with 5% CO2. 

 

Selection of amplification-dependent candidate driver genes in TNBC genome by 

integrated AMDIRE copy number region analysis and transcript expression 

quantification  

ADMIRE analysis 245 was performed to detect genomic regions with recurrent copy 

number gains across 222 triple-negative tumors (n=118 from TCGA; n=104 from Metabric). 

Segmented copy number profiles for both TCGA 19 and the discovery set of Metabric 232 

were obtained and used as input for the ADMIRE analysis. ADMIRE was configured to 

control its false discovery rate at 0.01. The recurrently altered copy number regions 

identified by ADMIRE were filtered in order to enrich regions most likely to harbor driver 

genes. Importantly, ADMIRE regions may be nested within larger regions, where the 

higher nesting levels correspond to more focal and more frequently altered regions. Our 

filtering only kept the regions detected at the highest nesting level. In addition, regions 

were kept only if they spanned at least one, but no more than 100 genes. Next, the genes 

contained in those regions were identified and selected as candidate driver genes, if their 

mRNA expression profile showed a positive correlation with their copy number. For this, 

the RNA-Seq data for TCGA analyzed using RSEM transcript quantification and the 

microarray expression data for Metabric were applied. The correlation was tested using 

Spearman correlation, where the Log-ratio copy number estimates were correlated with 
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the expression values. Correction for multiple testing was performed by controlling the 

false discovery rate at 0.1. The ADMIRE analysis and the subsequent filtering steps were 

performed separately for TCGA and Metabric, after which the resulting gene lists were 

merged. 

 

siRNA-mediated loss-of-function screen 

The primary screen was carried out by use of siGENOME Human SMARTpool siRNAs (GE 

Dharmacon, Lafayette, CO, USA) targeting 148 ADMIRE candidate driver genes. In the 

validation screen, SMARTpool siRNA and single siRNA_1, _2, _3 and _4 that comprise the 

SMARTpool mix were used to validate each candidate hit. Cells were seeded overnight in 

96-well plate at an optimized density for BT549 (8,000 cells/96-well), Hs578T (8,000 

cells/96-well) and SUM149PT (10,000 cells/96-well), and transfected with 50 nM siRNA by 

transfection reagent INTERFERin (Polyplus-Transfection SA, Illkirch-Graffenstaden, France) 

according to the manufacturer’s instructions. We used a pool of 720 kinase siRNAs at 

stock concentration of 1 µM in our laboratory as a negative control (siCtrl), this has no 

significant effect on expression of any single kinase genes; siRNA against KIF11 was used 

as positive control. The medium was refreshed 24 h post-transfection and TNBC cells were 

transfected for 2 days and proliferated for 4 days under indicated condition. SRB 

colorimetric assay was used as read-out for cell proliferation.  

 

SRB proliferation assay 

A sulforhodamine B (SRB) colorimetric assay was used to measure total amount of 

proteins indicative of cell proliferation, as previously described 125. 

 

Real time RT-qPCR assay 

RNA was isolated from TNBC cells, which were transfected with corresponding siRNA for 

72 h, using RNeasy (Qiagen). cDNA was generated from 400 ng total RNA, using RNeasy 

Plus Kit from Qiagen. Real-time RT-qPCR was performed in triplicate, using the SYBRGreen 

PCR MasterMix (Applied Biosystems) on a 7900HT fast real-time PCR system (Applied 

Biosystems). The primer sequences used were: forward CAGCCGGCGCTTCCC, reverse 

ATCAGAAAACGACCGGGACC (human ASAP1); forward CTGGTAAAGTGGATATTGTTGCCAT, 

reverse TGGAATCATATTGGAACATGTAAACC (human GAPDH). Relative mRNA levels after 

correction for GAPDH control mRNA were expressed using the 2-ΔΔCT method. 

 

DNA copy number alteration and mRNA expression profiling of candidate genes in 

breast cancer cell lines and tumors 

DNA copy number data of candidate genes in 20 TNBC cell lines were obtained from 

online resources 246. Log2-based RNA expression profiles of candidate genes in 52 breast 

cancer cell lines was retrieved from our own established RNA-Seq data. Copy number 
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alterations (CNAs) and mRNA expression of candidate hits in 2173 breast tumors were 

obtained from dataset “METABRIC, Nature 2012 & Nat Commun 2016” in cBioPortal 

(http://www.cbioportal.org/), an open-access resource for interactively exploring 

multidimensional cancer genomics 243 and the largest dataset with available DNA copy 

number (n = 2173) and mRNA expression (n = 1904) profiles. The 2173 breast tumor 

samples were filtrated by the immunohistochemistry (IHC) status of estrogen receptor 

(ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), 

resulting in 320 triple-negative tumors. 

 

Human whole transcriptome analysis of ASAP1 silencing effect 

TNBC cells were seeded into 96-well plate and transfected with optimal SMARTpool siRNA 

targeting ASAP1 (siASAP1), and siRNA control (siCtrl), as described above. The experiment 

was performed in biological triplicate. 72 h later, cells were washed with PBS and lysed in 

80 μl 1× BioSpyder lysis buffer. Lysates were frozen at − 80 °C and shipped to BioSpyder 

technologies on dry ice for human whole transcriptome targeted RNA sequencing TempO-

Seq analysis. Expression data for 21,111 transcripts were generated (BioSpyder 

Technologies, Inc., Carlsbad, CA, United States). Normalization and differential expression 

analysis were performed using DESeq2 package. Specifically, each siASAP1 condition was 

paired with the corresponding control siCtrl and the counts for each sample were 

normalized using the DESeq2 estimateSizeFactors function. Differential expression of each 

treatment relative to its respective control was measured using the Wald test. With 

baseMean of counts < 10 filtered, genes that were regulated by siASAP1 with significance 

(p value < 0.05 and absolute Log2 FC > 1) were considered significantly differentially 

expressed genes (DEGs).  

 

Gene functional enrichment analysis of ASAP1-regulated genes 

The DEGs, up- or down-regulated by silencing ASAP1, were uploaded to Metascape 167, an 

oriented resource combining functional enrichment, interactome analysis, gene 

annotation and membership research to leverage over 40 independent knowledgebases 

within one integrated portal (http://metascape.org). Pathway and process enrichment 

analysis was carried out with ontology sources of KEGG pathway, GO Biological Processes, 

Reactome Gene Sets, Canonical Pathways and CORUM. All genes in the genome were used 

as the enrichment background. Terms with p-value < 0.01, a minimum count of 3, and an 

enrichment factor (a ratio between the observed counts and the counts expected by 

chance) > 1.5 were collected and grouped into clusters based on their membership 

similarities. To further capture the relationship between the terms of pathways and 

processes, network of enriched terms were visualized using Cytoscape, where each node 

represents an enriched term and is colored by its cluster ID. Furthermore, if network 

contains between 3 and 500 proteins, protein-protein interaction enrichment analysis was 

http://www.cbioportal.org/
http://metascape.org/
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carried out with BioGrid, InWeb_IM and OmniPath to identify densely connected network 

components, presented in MCODE (Molecular Complex Detection) network node.  

 

Assessment of clinical relevance of candidate genes to survival prognosis of breast 

cancer patients 

The functionally validated candidate driver genes were further evaluated using Kaplan-

Meier analysis for their relation to overall survival (OS) of 1981 breast cancer patients 

according to their gene expression 243. Microarray DNA expression results from BrCa Gene-

Expression Miner (bc-GenExMiner) were used to classify prognostic association of ASAP1 

expression levels with metastatic relapse free survival (MRFS) of 257 TNBC patients 

(n=257) and ER+ BC patients (n=2519) using “optimal” splitting criterion 242. The ASAP1-

regulated DEGs involved in cytokine, lipid metabolism and apoptosis pathways were 

assessed for their relation to relapse-free survival of TNBC patients by Kaplan-Meier 

plotter using “Auto select best cutoff” 247. Mean expression of DEGs was used to assess 

their prognostic significance. 

 

Statistical analysis 

Pearson correlation analysis was performed using GraphPad Prism 7. Statistical analysis of 

all experimental data was performed using two-way ANOVA (* p < 0.05, ** p < 0.01, *** p 

< 0.001). Data were expressed as mean ± SEM. Significance was set at p < 0.05. The 

hierarchical clustering in heatmap was performed using CRAN pheatmap package in 

RStudio (version 0.99.887). 

 

Results 

ADMIRE analysis of TNBC genomes identifies TNBC candidate driver genes with 

recurrent copy number gain and correlated expression 

Recurrent CNAs have been recognized as the result of natural selection in tumor evolution, 

and hence the recurrently altered regions are likely to harbor cancer driver genes 248. In 

order to identify candidate driver genes for TNBC, we applied ADMIRE, a robust algorithm 

for the discovery of broad and focal recurring events 245, to detect genomic regions with 

frequent CNAs in a set of TNBC tumors (n = 118 for TCGA; n = 104 for Metabric). 

Aggregated DNA copy number profiles (Figure 1A) assisted in pinpointing recurrently 

altered regions (Figure 1B). Genes contained in the focal regions were further assessed 

with copy number and expression correlation analysis, as exemplified for the proto-

oncogene MYC and the RNA genes CASC8 (Cancer Susceptibility 8) and PVT1 (MYC 

activator) (Figure 1C). Genes showing positive correlation in mRNA expression levels and 

copy numbers were filtered out as candidate drivers (Figure 1D). The ADMIRE analysis and 

the subsequent filtering steps were performed separately for TCGA and Metabric cohorts. 

Subsequently, 148 genes were selected as candidate driver genes for TNBC (Additional file 
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1: Table S1). Next, functional enrichment analysis displayed the significant implication of 

 
Figure 1. Schematic selection of candidate driver genes with increases in copy number and expression in TNBC 

genome. (A) Discovery of genomic regions with recurrent copy number alterations using ADMIRE analysis. The 

top panel shows the aggregate copy number profile across 222 triple-negative breast tumors (n = 118 for TCGA; 

n = 104 for Metabric). The bottom panel shows the significant recurrent copy number regions, with gains in 

green and losses in red. (B) Zoomed in fragment of panel A, focusing on chromosome 8. The bottom panel 

reveals the small focal recurrent copy number gain on 8q for further analysis. (C) The genes contained in the 

focal region identified in panel B. (D) Scatterplot exemplifying the positive correlation of MYC gene expression 

with its copy number in TNBC patients. 
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the 148 genes in 18 KEGG pathways (Additional file 2: Figure S1). The 148 gene set was 

enriched in cancer-related pathways, including Central carbon metabolism in cancer, 

Proteoglycans in cancer, Pathways in cancer, Melanoma, Prostate cancer and Endometrial 

cancer. Moreover, these candidate drivers were implicated in various oncogenic signaling 

pathways that control cell growth, survival and motility, such as ErbB, PI3K-Akt, Ras, MAPK 

and Wnt pathways. Altogether, our ADMIRE genomics approach collected 148 candidate 

TNBC drivers that are frequently amplified by recurrent CNGs in the TNBC genome and 

significantly enriched in pathways that fuel cancer progression. 

 

Loss-of-function screen validates the TNBC candidate driver genes in TNBC cell 

proliferation 

As a first step, we assessed the biological function of the 148 candidate genes in control of 

TNBC cell proliferation by siRNA-mediated loss of function screen in two TNBC cell lines, 

mesenchymal-like BT549 and basal-like SUM149T. High reproducibility was achieved for 

the duplicate screens in BT549 (r = 0.9212) and SUM149PT (r = 0.9127) (Figure 2A). Genes 

whose silencing controlled proliferation less than 60% were considered as candidate hits 

with significance (Figure 2B). Consequently, 41 primary hits were screened for BT549 and 

20 for SUM149PT cell line (Figure 2B-C). In total, 46 primary hits were selected, of which 

15 were common (Figure 2D; Additional file 3: Table S2).  

 
Figure 2. siRNA-mediated loss-of-function screen of candidate driver genes in TNBC cells. (A) Replicate siRNA 

screens of candidate driver genes in TNBC cell lines BT549 and SUM149T. siRNA silencing effect of candidate 

gene on cell proliferation was assessed 96 h after transfection and presented with sulforhodamine B (SRB) 

colorimetric raw values. (B) Normalized percentage of proliferation control by siRNA silencing. The number of 

genes (black) whose silencing led to > 40% proliferative inhibition was indicated in the pie chart, as primary hits. 



 

89 
 

5 

(C) Ranking and listing of the primary hits significantly controlling proliferation of BT549 and SUM149PT TNBC 

cell lines. siRNA targeting KIF11, positive functional control; siCtrl, non-targeting siRNA control. siRNA silencing 

effect on proliferation was relative to siCtrl. Error bars indicate variation of screen replicates. (D) Overlap primary 

hits in BT549 and SUM149T TNBC cell lines. 

 

Figure 3. Validation of candidate driver genes with concurrent copy number gain (CNG) and overexpression in 

TNBC cells. (A) mRNA expression of 46 primary hits in 20 TNBC cell lines. Violin plot indicates Log2 mRNA 

expression level of 46 primary hits in 20 TNBC cell lines retrieved from RNA-Seq analysis. Bars indicate CNG 

frequency of the hits in 20 TNBC cell lines. Genes with frequent CNG in ≥ 8/20 TNBC cell lines were marked in red. 

(B) siRNA validation of primary candidate hits with high frequent CNG in BT549, Hs578T and SUM149PT TNBC cell 

lines. SMARTpool siRNAs were used to target each hit. KIF11 was taken as positive control. (C) siRNA 

deconvolution validation of six candidate driver hits. The effects of SMARTpool (p) siRNA and single siRNA_1, _2, 

_3 and _4 on hits were compared for their proliferation control (%) in the TNBC cell lines. (D) Percentage of 

control proliferation (%) by optimized SMARTpool siRNAs targeting the six candidate hits. (E) CNA of the six 
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candidate driver genes in TNBC cell panel. “++”, high CNG; “+”, CNG; “/”, no copy number alteration; “-”, copy 

number loss. 

 

Next, we examined the CNG frequency of the 46 primary hits in 20 TNBC cell lines, 

representative for diverse molecular subtypes of TNBC. Ten candidate hits were found 

with CNG frequency across ≥ 8 TNBC cell lines (Figure 3A, lower panel). The CNG 

recurrence for MYC was found in 16/20 of TNBC cell lines, ASAP1 in 15/20, ANKH, CCT5 

and EGFR in 12/20, IRF2BP2 in 10/20, BNIP1, DRD1, SFXN1 and TMEM67 in 8/20, 

respectively. We also evaluated the mRNA expression level of the 46 primary hits in the 20 

TNBC cell line panel in our established RNA-Seq data (Figure 3A, upper panel). Given the 

nature of heterogeneity of TNBC, the correlation of expression and copy number of the 

primary hits varied among cell lines.  

To further validate the 10 candidate hits for their function in proliferation, we 

performed siRNA silencing in three TNBC cell lines, BT549, SUM149T and one more 

mesenchymal-like cell line Hs578T. Silencing of 6 hits, ASAP1, CCT5, IRF2BP2, DRD1 and 

two known oncogenes MYC and EGFR, potently inhibited proliferation (> 50%) in all three 

cell lines (Figure 3B), suggesting their driving role in TNBC cell proliferation. Deconvolution 

siRNA screen confirmed the effect of single siRNAs (≥ 2/4) on the proliferation-driving hits, 

mostly achieving > 50% of proliferation inhibition, ruling out the off-targeting effect of 

pooled siRNAs (Figure 3C). The optimized pooled siRNA silencing further validated the 

function of the driver hits in proliferation control (> 50%) (Figure 3D). Of note, the 

inhibitory effects on cell proliferation by silencing these six hits were, in general, 

concordant with CNA status in these cell lines (Figure 3E). 

 Collectively, our RNAi-based functional screen validated the ADMIRE-identified 

candidate driver genes and defined the role of MYC, EGFR, ASAP1, IRF2BP2, CCT5 and 

DRD1 in controlling proliferation of TNBC cells.  

 

Frequent amplification of ASAP1 in TNBC is significantly relevant to poor clinical 

outcome  

We next sought to address the correlation between CNA frequencies and expression levels 

of MYC, EGFR, ASAP1, IRF2BP2, CCT5 and DRD1 in broad breast cancer cell lines and 

breast tumors and the clinical relevance of the genes to patients with breast cancer. RNA-

Seq analyses of the transcriptome from our 52 BC cell lines demonstrated that the Log2-

based mRNA expression levels of MYC, EGFR, ASAP1 and CCT5 were higher in TNBC than 

non-TNBC cell lines (Additional file 4: Table S3), while similar high IRF2BP2 and low DRD1 

were expressed in both cell types (Figure 4A). The difference of EGFR expression in TNBC 

and non-TNBC cells was of significance. Next, we obtained Z score-based mRNA expression 

data for the hits in 1904 breast cancer (BC) tumors from cBioPortal database 232, 243, 249. 

MYC, EGFR, ASAP1 and IRF2BP2 were highly expressed in TNBC, compared to non-TNBC 
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tumors (Figure 4B). CCT5 expression was found lower in TNBC than non-TNBC breast 

 
Figure 4. ASAP1 amplification and overexpression in TNBC in association with poor clinical outcome. (A) Log2-

based mRNA expression of the six candidate hits in 52 breast cancer (BC) cell lines. Log2 values were obtained 

from established RNA-Seq data (two-way ANOVA *** p < 0.001). (B) Z score-based mRNA expression of the hits 

in 1904 BC tumors. Data were retrieved from the dataset “METABRIC, Nature 2012 & Nat Commun 2016” in 

cBioPortal dataset. (C) Correlation between CNA and gene expression of the candidate hits in the cohort of 1904 

BC tumors. Different copy-number amplifications (shallow deletion, diploid, gain, amplification) are presented 

per gene. (D) Amplification frequency of the candidate hits in the cohort of 2173 BC tumors. Data were retrieved 

from the dataset “METABRIC, Nature 2012 & Nat Commun 2016” in cBioPortal dataset. (E) Metastatic relapse-
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free survival (MRFS) Kaplan-Meier (KM) curve of ASAP1 in TNBC (n = 257) and ER+ BC (n = 2519) cohorts analyzed 

by bc-GenExMiner v4.2. 

 

tumors, and DRD1 showed no significant difference. We further illuminated the 

correlation between CNAs and expression levels of the genes in the cohort of 1904 BC 

tumors. While CNA events in deep or shallow depletion rarely or less occurred, EGFR, MYC, 

IRF2BP2, ASAP1 and CCT5 (except for DRD1) often underwent copy gain and amplification, 

acquiring CNA-driven expression in the breast tumors (Figure 4C). Moreover, MYC, ASAP1 

and IRF2BP2 were amplified in > 20% of all 2173 BC tumors (Figure 4D). Particularly, MYC 

and ASAP1 amplifications emerged more frequently in TNBC tumors (> 30%), suggesting 

TNBC subtype-related MYC and ASAP1 amplifications. Prognostic analysis demonstrated 

the association of the CNA-driven hits with overall survival of the cohort of 1981 BC 

patients 232, 249, indicating the significant implication of MYC and ASAP1 in poor disease 

outcomes (Additional file 5: Figure S2). More specifically, high ASAP1 expression was 

revealed to be related to worse MRFS of patients with TNBC (n=257), but not ER+ BC 

(n=2519) (Figure 4E), as assessed in the cohorts of BC patients 242. Together, we 

characterized MYC and ASAP1 as CNA-driven genes with frequent amplification and 

concurrent high expression in BC tumors. The CNA-driven amplification and expression of 

ASAP1 exhibited significant clinical impact particularly on TNBC progression. 

 

Transcriptomic analysis of the impact of ASAP1 depletion on gene expression in TNBC 

cells 

Amplification or deletion of a gene copy may affect the expression of genes located 

outside the amplified/deleted region itself via indirect mechanisms 250, 251. The ASAP1 gene, 

located at chromosome 8q24.1, encodes an Arf GTPase-activating protein (GAP) that 

induces hydrolysis of GTP bound to Arf proteins. ASAP1 has been reported to be involved 

in signal transduction, membrane trafficking and cytoskeleton remodeling 252 and promote 

proliferative, invasive and metastatic phenotypes of various cancer cells 244, 253. Whether 

CNA-driven ASAP1 amplification and overexpression influence gene expression at a 

genome-wide level in cancer cells is not addressed. To this end, we performed TempO-

Seq-based targeted whole genome RNA sequencing in the three TNBC cell lines BT549, 

Hs578T and SUM149PT that harbor ASAP1 amplification and high expression (Figure 3E). 

The cells were transfected with siRNA targeting ASAP1 (siASAP1) or non-targeting siCtrl in 

biological triplicate, respectively. The transcriptome TempO-Seq assays were run at a read 

depth of 6.8M per sample (Additional file 6: Figure S3A), achieving reproducibility with 

Pearson r values over 0.95 (Additional file 6: Figure S3B). Principal components analysis 

(PCA) of global changes in gene expression clustered various gene expression patterns 

across cell lines and transfections (Additional file 6: Figure S3C). Using DESeq2 package in 

R, the Log2 normalized transcriptome profiles displayed the differential effects of ASAP1 
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depletion on gene expression in the TNBC cells (Figure 5A). Silencing of ASAP1 by siASAP1 

decreased > 45% of ASAP1 mRNA levels in the TNBC cells (Figure 5B, left panel), 

warranting the effective knockdown of ASAP1 itself (Log2 FC -0.7 to -1.5) in the TempO-

Seq transcriptome panels (Figure 5B, right panel). Genes with 2-fold changes (absolute 

Log2 FC ≥ 1) in down- or up-regulation (p-value < 0.05) were selected in BT549 (311 down 

/ 495 up), Hs578T (133 down / 117 up) and SUM149PT (500 down / 401 up) cells, 

respectively (Figure 5C). Venn diagrams extracted differentially expressed genes (DEGs) 

that were significantly down- or up-regulated by ASAP1 depletion in the TNBC cell lines 

(Figure 5D; Additional file 7: Table S4). Consequently, 95 DEGs were downregulated, and 

79 DEGs upregulated in ≥ 2/3 of the TNBC cell lines, in total 174 DEGs, which were 

considered as common DEGs that were susceptible to the depletion of the amplification-

dependent ASAP1. 

 
Figure 5. Targeted whole transcriptome analysis of ASAP1 depletion-induced transcription reprogramming in 

TNBC cells. (A) Transcriptome expression profiling in BT549, Hs578T and SUM149PT TNBC cells after siRNA-

mediated depletion of ASAP1 (siASAP1). Log2 fold change (Log2 FC), siASAP1 versus siCtrl. (B) Targeting effect of 

siASAP1 on ASAP1 gene expression. Left panel, knockdown efficiency assessment by RT-qPCR (two-way ANOVA * 

p < 0.05, ** p < 0.01). TNBC cells were transfected with optimized SMARTpool siRNAs for 72 h. GAPDH was used 

as internal reference. Right panel, Log2 FC of ASAP1 upon knockdown. (C) Volcano plot of differentially expressed 

genes (DEGs) in ASAP1-depleted BT549, Hs578T and SUM149PT cells. The red and blue dots indicate down- and 

up-regulated DEGs, respectively, with p-value < 0.05 and absolute Log2 FC > 1. (D) Venn diagram of down- and 

up-regulated DEGs in BT549, Hs578T and SUM149PT TNBC cell lines. Upper panel, down-regulated DEGs; lower 

panel, upregulated DEGs. Common DEGs denote DEGs popping-up in at least two cell lines. 

 

ASAP1 regulates cytokine and apoptosis signaling components that are associated with 

TNBC prognosis 

Next, to evaluate the biological functions of 174 common DEGs that were susceptible to 

ASAP1 depletion, we conducted Metascape Pathway and Process Enrichment Analysis 

integrating the gene ontology sources, including GO Biological Process, KEGG pathway, 
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Reactome Gene Sets, Canonical Pathways and CORUM 167. Top 20 clusters were defined 

with their representative enriched terms (Figure 6A, left; Additional file 8: Table S5), 

including cytokine signaling pathways (cytokine signaling in immune system, response to 

interleukin-1, TNF-signaling pathway and regulation of inflammatory response), metabolic 

processes (regulation of lipid metabolic process and regulation of sulfur metabolic 

process), apoptosis signaling pathways (regulation of apoptosis signaling pathway and 

positive regulation of cell death), MAPK pathways (regulation of p38 MAPK cascade and 

MAPK signaling pathway), cell cycle arrest and P53 downstream pathway. Furthermore, 

network enrichment captured the interactions between the 20 clusters, as visualized using 

Cytoscape (Figure 6A, right). Strikingly, among the 20 clusters, the cytokine signaling in 

immune system, regulation of lipid metabolic process and regulation of apoptotic 

signaling pathway were most significantly enriched. Protein-protein interaction clustering 

algorithm identified neighborhoods within the networks where the ASAP1-regulated 

genes were densely connected, such as ANXA1, C3, CXCL1, CXCL2 and CXCL8 node 

(involved in immune response), IMPDH1, PSMC4 and RAN node (involved in nucleotide 

and protein metabolism), and APEX1, MCM6 and RBL2 node (involved in cell cycle G1/S 

phase transition) (Figure 6B). These results revealed the novel and essential biological 

functions of ASAP1 in multiple molecular pathways. 

Around 45% of ASAP1-regulated genes (78/174) were involved in cytokine 

signaling pathways (Additional file 9: Table S6), being interactive in cytokine signaling in 

immune system, response to interleukin-1, TNF-signaling pathway and regulation of 

inflammatory response. In regulation of apoptosis signaling and cell death pathways, 33 

genes were modulated by ASAP1 depletion. Unsupervised hierarchical heatmap classified 

the 21 positive and 20 negative regulators in cytokine signaling pathways, 5 positive and 

10 negative regulators in lipid metabolism pathway, and 8 positive and 9 negative 

regulators in apoptosis signaling pathways (Figure 6C), in the BT549, Hs578T and 

SUM149PT TNBC cell lines. As cytokine signaling pathways, e.g. TNF-signaling pathway, 

mediate extrinsic/intrinsic apoptosis 254, crosstalk might exist in the ASAP1-regulated 

cytokine and apoptosis signaling pathways. Indeed, among 33 ASAP1-regulated apoptosis 

genes, 23 genes (~70%) were interactive in cytokine signaling pathways (Additional file 9: 

Table S6), further stressing the implication of ASAP1 as a driver gene in cell survival and 

growth. Crosstalk was also observed between ASAP1-regulated genes in lipid metabolic 

process (17/31, ~50%) and cytokine signaling (Additional file 9: Table S6). To explore the 

association between these ASAP1-regulated cytokine, lipid metabolism and apoptosis 

genes and the survival of patients with TNBC, we performed Kaplan-Meier (KM) survival 

analysis using KM plotter 247. The results exhibited that, based on the mean expression of 

the selected genes in TNBC tumors, a low expression level of the negative regulators, 

which were downregulated under ASAP1 depletion, predicted longer relapse-free survival 

of TNBC patients with statistical significance (logrank p = 0.00015, HR = 2.76) (Figure 6D). 
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In contrast, low expression of positive regulators, which were upregulated by ASAP1 

depletion, implied significantly worse prognosis (logrank p = 0.0092, HR = 0.47).  

 
Figure 6. Metascape functional enrichment analysis and TNBC clinical relevance of ASAP1-regulated DEGs. (A) 

Top 20 clusters with their representative enriched term across input of 174 ASAP1-regulated DEGs. Left panel, 

heatmap of the 20 enriched terms. One term per cluster, colored by p-values. Log10(P) is the p-value in log base 

10. Right panel, network of the 20 enriched terms, colored by cluster ID, where nodes that share the same 

cluster ID are typically close to each other. (B) Representative Molecular Complex Detection (MCODE) network 

nodes, showing the ASAP1-regulated DEGs densely connected. (C) Log2 FC clustering of DEGs involved in 
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cytokine signaling, lipid metabolism and apoptosis pathways. Blue, negative regulators; red, positive regulators. 

(D) Relapse-free survival (RFS) KM curves of the DEGs from panel C in patients with TNBC. Mean expression of 

positive DEGs (DOWN) or negative DEGs (UP) was used. 

 

 Collectively, our data suggested that amplified ASAP1 is a key driver in TNBC 

progression by negatively regulating cell death pathways. The ASAP1-regulated genes in 

cytokine, lipid metabolism and apoptosis signaling pathways were clinically relevant to 

TNBC relapse-free survival. 

 

Discussion 

TNBC is characterized by its inter-tumoral heterogeneity. Based on gene expression 

signatures, TNBC has been further classified into more than six molecular subtypes 8, Yet, 

no effective molecular targeted therapies are currently available in the clinic for this type 

of breast cancer. Although TNBC demonstrates substantial genetic alterations 255, only two 

genes, TP53 and PIK3CA, have been found with mutation frequency in ~10% of TNBC 

patient tumors 106, indicating other driver mutations involved in TNBC progression. While 

amplification frequently occurs in cancer genomes, amplified genes are not always 

overexpressed 256. A recent study has applied integrative analysis combining gene 

expression, miRNA and copy number variation genomic profiles for TNBC patients (n=137) 

from TCGA to reclassify TNBC inter-tumoral heterogeneity 257. As overexpression is a 

requisite for amplified genes to function as drivers in cancer, we attempted to identify 

TNBC candidate driver genes by integrating DNA copy number change and mRNA 

expression omics data across 222 TNBC cases (TCGA dataset n=118 and Metabric n=104). 

Using recurrent event calling algorithm ADMIRE analysis and transcript expression 

quantification, we consequently identified 148 genes with frequent focal CNGs and 

concurrent high expression in the cohort of TNBC tumors. Among these genes several are 

well-known oncogenes with involvement in breast cancer, e.g. MYC, EGFR, CCNE1 and 

FGFR1, consistent to other studies 19, 106, 258. We also identified many novel candidates, 

such as TMEM67, ANKH, BNIP1, CCT5, ASAP1 and IRF2BP2. KEGG pathways enrichment 

displayed the implication of the genes mainly in cancer-related or oncogenic signaling 

pathways. Our integrated genomic analysis reveals frequent CNGs and amplification as 

driver mutations in the TNBC genome. This large group of 148 candidate genes, displaying 

positive correlation in recurrent DNA CNGs and high RNA expression levels in the TNBC 

genome, may represent potential drivers during the course of TNBC progression.  

Our current siRNA-based proliferation screen validated several candidate genes 

promoting TNBC cell proliferative phenotype, including the known oncogenes MYC and 

EGFR and the novel candidates ASAP1, IRF2BP2, CCT5 and DRD1, indicating the implication 

of amplification-dependent drivers in TNBC proliferation. These genes (except for DRD1) 

acquired CNG/amplification and high expression in breast tumors. In particular, 
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amplification of MYC and ASAP1 is highly frequent in TNBC (35% and 30.3%, respectively) 

compared to non-TNBC tumors (25.5% and 22.6%, respectively). The amplification-based 

MYC oncogene has been found in various solid tumors, including kidney and colorectal 

cancers and breast cancer subtypes, including TNBC 47, 259, indicating MYC amplification as 

a frequent driver mutation in cancer. A recent study has revealed that MYC alterations are 

mutually exclusive with PIK3CA, PTEN, APC, or BRAF alterations 260, suggesting MYC 

amplification as a distinct driver mutation in the cancer genome. The novel candidate, 

ASAP1, has also been reported to be frequently amplified, accompanied by enhanced 

expression, in different types of cancers, including pancreatic ductal adenocarcinoma, 

prostate cancer and melanoma 261, 262, exceptionally in primary breast cancer where 

overexpression of ASAP1 was described to be independent of ASAP1 amplification 263. 

These early results, though not reported for breast cancer, underline the impact of ASAP1 

amplification over the cancer genome. Here, our results initially interpret that, similar to 

other cancer types, the aggressive breast cancer subtype TNBC acquires driver mutations, 

such as amplification-dependent overexpression of MYC and ASAP1, to progress, in spite 

of genetic heterogeneity. Of significance for ASAP1, we showed that knockdown of ASAP1 

inhibits cell proliferation in different TNBC cell lines and high expression of ASAP1 is 

associated with poor metastatic relapse-free survival of patients with TNBC but not ER+ 

breast cancer, compelling the role of ASAP1 in TNBC progression, promoting not only 

proliferation but also metastasis.  

In this study, we demonstrated for the first time the effect of ASAP1 on 

transcriptomic regulation in TNBC cells. ASAP1 (also named DDEF1 or AMAP1) was 

identified on the basis of Arf activity as a phospholipid-dependent Arf GTPase-activating 

protein and was found to bind to and be phosphorylated by Src family proteins and focal 

adhesion kinase (FAK) and to associate with focal adhesions 264, 265. ASAP1 has been shown 

to promote cell proliferation and invasion in different cancer cells, including lung, 

colorectal, prostate and breast cancer cells 244, 261, 266. High ASAP1 expression level was 

found in and was required for invadopodia formation in invasive MDA-MB-231 TNBC 

breast cancer cells, and interfering ASAP1-mediated protein complex inhibited metastasis 

of MDA-MB-231 derived xenografts 263. Overexpression of ASAP1 has been reported to be 

associated with poor metastasis-free survival in prostate, colorectal cancer and ovarian 

cancer and malignant phenotypes of primary breast cancers 244, 263, 267. We showed that 

depletion of ASAP1 in different TNBC cells led to reprogramming of gene expression 

mainly in cytokine and apoptosis interactive signaling pathways, by upregulating positive 

regulators and downregulating negative regulators of the pathways. For instance, silencing 

ASAP1 downregulated the components in the identified mitotic cell cycle G1/S phase 

transition network node, including the anti-apoptotic APEX1  that is abnormally expressed 

in numerous human solid tumors and positively correlated with cancer progression 268, the 

proliferation marker MCM6  that is predictive for poor prognosis in breast cancer 269, and 
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the direct AKT target RBL2 270. In addition, expression of genes involved in lipid metabolic 

process was also vulnerable to ASAP1 depletion, suggesting the novel role of ASAP1 in 

metabolism-related tumorigenesis, as lipid metabolism has been linked to cancer 

development by causing abnormal expression of various genes and dysregulating 

cytokines and signaling pathways 271. Most importantly, numerous ASAP1-regulated genes, 

particularly those that were downregulated when ASAP1 was targeted, displayed 

significant relevance to relapse-free survival of TNBC patients, indicating ASAP1 as an 

upstream regulator in driving TNBC progression.  

Deconvolution of genetic alterations in cancer genome, such as focal CNAs, has 

provided an excellent possibility to classify new cancer subtypes and identify novel 

therapeutic targets for naïve resistant cancers 235, 236, 257. Our work elucidated extensive 

amplification-dependent gene expression alterations in TNBC, revealing ASAP1 as a 

potential TNBC driver functioning upstream of cytokine and apoptosis genes in promoting 

proliferation and survival. ASAP1 emerges as a potential diagnostic marker as well as 

therapeutic target for cancer, as ASAP1 has been found to be implicated in multiple 

oncogenic processes in various cancers 244, 261, 267. Our results suggest that targeting the 

upstream regulator ASAP1 and its downstream target genes may provide actionable 

therapeutic strategies for overcoming the intractable TNBC disease, as well as other 

resistant cancer types overexpressing ASAP1.  
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Additional file 3. Table S2. Primary hits of siRNA-mediated loss-of-function screen. 

 
 

Additional file 4. Table S3. BC cell line panel. 

 

ADAM32 AXIN1 CAMK2B DBNL FBXL14 IRF2BP2 MYRFL PLEKHF1 RASA3 TFDP1

ADAM9 BACE2 CARS DCUN1D2 FBXW11 KCNMB4 NCOR2 PLXNC1 RBM12B TGFBR3

ADCY4 BAG4 CCNE1 DDAH1 FGF18 KIAA1217 NPM1 POLD2 RIPK3 TIAL1

ADIPOR2 BAI2 CCT2 DDHD2 FGFR1 KIAA1429 NRIP1 POLM RRP7A TM2D2

ADPRHL1 BCL11A CCT5 DHRS1 FLJ12443 LANCL2 NTRK3 POP4 RTN4IP1 TMEM247

ADSSL1 BNIP1 CDC73 DRD1 GAB1 LCN7 OGG1 PPP1R9A SACM1L TMEM67

AIM1 BRD9 CEP170B DUSP1 GMPR2 LDLRAD4 OLFML2B PRKWNK1SF3A1 TMEM8A

ANKH BRF1 CFH EGFR GPR128 LHFP OTULIN PROZ SFXN1 TRIO

ANKRD10 BRPF1 CLPTM1L EPHA3 GRK5 LMCD1 PANK3 PTK2 SGSM2 TRIP13

ARFGEF3 BTBD6 CNOT2 ERC1 GUCY1A3 LRRC6 PAPOLG PUS10 SIVA TTLL3

ARHGEF7 BTG3 CREBRF F10 HRH2 LTB4R2 PCK2 QRSL1 SPDL1 USP25

ASAP1 C14orf79 CTIF F7 HTPAP MET PDGFRA RAB20 STK10 VOPP1

ATF6 C19ORF2 CTNNB1 FAM105A INF2 MRPL28 PEF1 RAD18 TADA3L WHSC1L1

ATP11A C6orf203 CUL4A FAM193A ING1 MSX2 PHGDH RAD54B TARBP1

ATP4B CACNA2D3CXADR FANCD2 IRAK2 MYC PLEKHA2 RARS TENS1

BT549 SUM149PT

Genes % control STDEV Genes % control STDEV Genes % control STDEV

SPDL1 15.78547 0.028709 GMPR2 49.54181 0.119077 SF3A1 20.80776 0.02984

F7 20.16426 0.08556 DDHD2 51.09423 0.045467 TTLL3 28.32151 0.085348

LHFP 22.43687 0.060953 ANKH 51.3599 0.009051 LHFP 29.34977 0.099702

TTLL3 23.45475 0.122612 F10 51.43992 0.059609 CCT2 34.78913 0.101753

SF3A1 26.83166 0.112501 TM2D2 51.55195 0.104935 OGG1 40.60104 0.09454

SIVA 28.4481 0.023476 CCT2 51.94246 0.068448 SIVA 40.79477 0.049073

HRH2 32.91971 0.065549 INF2 52.07369 0.20202 CARS 41.26568 0.011031

FGFR1 34.08162 0.100692 TMEM8A 52.0865 0.049144 SPDL1 45.89733 0.050205

CTIF 34.10723 0.19601 CCT5 53.11398 0.055013 BRF1 46.21027 0.253498

MYC 35.06749 0.00594 LCN7 53.35084 0.007778 EGFR 46.7855 0.001131

CARS 36.17179 0.170483 RRP7A 53.71574 0.07962 HRH2 46.9852 0.221819

OGG1 36.82797 0.00792 RASA3 53.89179 0.017183 BNIP1 49.50071 0.113915

BRF1 37.37852 0.030688 ASAP1 54.25989 0.073115 CCT5 51.82249 0.071701

TMEM247 40.93148 0.05077 ANKRD10 55.46341 0.045538 RRP7A 52.29043 0.135835

POLM 41.42441 0.069155 LTB4R2 55.87632 0.110804 CTIF 52.41859 0.021496

CNOT2 43.43136 0.067104 IRF2BP2 56.17721 0.024112 FBXW11 53.07727 0.056639

DRD1 44.48124 0.074034 BNIP1 57.83205 0.019658 USP25 56.31704 0.055861

TADA3L 44.7085 0.006223 ERC1 58.58106 0.104935 PLEKHF1 56.51971 0.124734

BRPF1 44.81093 0.118087 SFXN1 58.86593 0.039527 BACE2 57.50624 0.108682

CDC73 45.49591 0.123037 TMEM67 59.1252 0.015981 ADPRHL1 58.4898 0.07064

PLEKHF1 49.42338 0.130037

Cell line Subtype Cell line Subtype Cell line Subtype

BT20 TNBC SUM102PT TNBC MDAMB134VI non_TNBC

BT549 TNBC SUM1315MO2 TNBC MDAMB175VII non_TNBC

DU4475 TNBC SUM149PT TNBC MDAMB330 non_TNBC

HCC1143 TNBC SUM159PT TNBC MDAMB361 non_TNBC

HCC1187 TNBC SUM185PE TNBC MDAMB415 non_TNBC

HCC1395 TNBC SUM229PE TNBC MPE600 non_TNBC

HCC1599 TNBC SUM52PE TNBC OCUBF non_TNBC

HCC1806 TNBC BT474 non_TNBC SKBR3 non_TNBC

HCC1937 TNBC BT483 non_TNBC SKBR5 non_TNBC

HCC38 TNBC CAMA1 non_TNBC SUM190PT non_TNBC

HCC70 TNBC EVSAT non_TNBC SUM225CWN non_TNBC

Hs578T TNBC HCC1419 non_TNBC SUM44PE non_TNBC

MDAMB157 TNBC HCC1500 non_TNBC T47D non_TNBC

MDAMB231 TNBC HCC1569 non_TNBC UACC893 non_TNBC

MDAMB435s TNBC HCC1954 non_TNBC ZR751 non_TNBC

MDAMB436 TNBC HCC202 non_TNBC ZR7530 non_TNBC

MDAMB453 TNBC HCC2218 non_TNBC

MDAMB468 TNBC MCF7 non_TNBC
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Additional file 7. Table S4. siASAP1 targeted DEGs in three TNBC cell lines. 

 
Additional file 8. Table S5. Enrichment of ASAP1-regulated genes in 20 clusters. 

 
Additional file 9. Table S6. ASAP1-regulated genes in cytokine signaling, lipid metabolic process and apoptosis 

signaling pathways. 

17 DEGs popped up in all three TNBC cell lines18 DEGs popped up in Hs578T and BT549 cell lines16 DEGs popped up in Hs578T and SUM149PT cell lines44 DEGs popped up in SUM149PT and BT549 cell lines95 DEGs popped up in at least two TNBC cell lines133 DEGs popped up in Hs578T cell line311 DEGs popped up in BT549 cell line500 DEGs popped up in SUM149PT cell line2 DEGs popped up in all three TNBC cell lines14 DEGs popped up in Hs578T and BT549 cell lines22 DEGs popped up in Hs578T and SUM149PT cell lines41 DEGs popped up in SUM149PT and BT549 cell lines79 DEGs popped up in at least two TNBC cell lines117 DEGs popped up in Hs578T cell line495 DEGs popped up in BT549 cell line401 DEGs popped up in SUM149PT cell line

SNCA RASGRP3 TBC1D5 MGP SNCA MOCOS LUM SNAPIN PLA2G4C FNBP4 CNOT4 ARNTL2 PLA2G4C FNBP4 ARNTL2 PHLDB1

MRPS27 PNMA2 SCG2 MYL6 MRPS27 SNCA HIST3H3 ADORA1 ULK1 TRIM16L TGFBR1 WDR4 ULK1 CASP1 GMEB1 ACADVL

SREBF2 FHL1 UBL7 ADA SREBF2 TWISTNB RAPGEF4 TIMELESS SERPINE1 C1S SIK1 FNBP4 TRIM16L CHMP7 ATP6V1A

SSR2 ZNF25 KIF3B MAGED1 SSR2 DKC1 MGP MELK SQSTM1 PLPP3 CAB39L TRIM16L CNOT4 WDR4 TRIM56

MMGT1 CGREF1 CHST14 ARPIN MMGT1 ENTPD5 SIAE HIST1H2AE HMGA2 NFKBIZ ACADVL SERPINE1 ATXN7L1 KLF6 CMPK1

BEX3 RBL2 YBX3 TMBIM6 BEX3 RASGRP3 MLLT3 PARVB CD68 C3 E2F3 SQSTM1 SLC25A24 CDK5RAP2UBXN4

CETN2 RNASE4 CENPH TXNDC12 CETN2 SMC5 NTN5 ADA CTSD GBP1 SLC30A1 HMGA2 IL31RA MECP2 IRF6

PCBD1 C12orf49 HIST1H2AIC1orf198 PCBD1 AMMECR1LLRRN1 SH3BP2 AIFM2 SLC7A11 RELL2 CD68 SERPINE1 DNAJC11 WWC1

RPS26 OLFML2B SLC39A1 TCEAL8 RPS26 SV2A SEMA5B FKBP11 HELZ2 ARHGAP23PQLC2 CTSD TGFBR1 RMND5B E2F3

ERGIC1 ANKRD13CRELL1 SMUG1 ERGIC1 ETV4 MCOLN3 BOC IRGQ KIAA1217 ACAP3 AIFM2 GBP2 TMEM87A ZNF248

UBE2M SLC38A1 FANCC PYURF UBE2M ESPL1 KREMEN1 MTUS1 TAP1 DDX52 DUSP4 HELZ2 AKR1B10 SAFB TGFBR1

KIAA1191 THOC3 CEP89 TMEM14A KIAA1191 SPPL3 CDON BEX3 MMP1 EGF COL16A1 IRGQ TOR1B GGA1 NFRKB

TRIQK CLIC4 FABP5 ATOX1 TRIQK MCRIP2 EPHA3 MAD2L2 KRT15 PANX2 VEGFA TAP1 DDR1 BCAR3 PPP1R21

PNKD SLC14A1 LRRC23 EBP PNKD EARS2 KRTAP5-9 NEMP2 MMP3 EID3 RFTN1 MMP1 HSPB8 TVP23C SLC30A1

ACAT1 ARL2BP NME1 HIST1H4E ACAT1 TK1 CFHR1 CHDH SLC37A2 NRP2 KRT15 LANCL2 IGF2R PPP1R15B

ANXA1 EMB IMPDH1 VKORC1 ANXA1 ARNT2 ZNF430 C14orf80 FAM71F2 INHBA MMP3 CYTH4 GPX1 BRF2

DHCR24 RRAGA PSMB4 DHCR24 RACGAP1 RAB20 CDKN2D TNIP3 ADAM19 CNOT4 SQSTM1 ZMYND11 CNOT4

EBPL PDK3 RASGRP3 IGFBP3 PIGY TPRG1 BMF RNF19B TGFBR1 C1S BDP1 CSNK1D

… …

… …

MCTS1 ZNF25 RAB4B RERG HIST1H2AM FGD6 PTPRB NFKBIZ SENP5 MGAT4B RHBDF1

Upregulated genesDownregulated genes

GroupID Category Term Description LogP Log(q-value)InTerm_InListGenes Symbols

1_SummaryReactome Gene SetsR-HSA-1280215Cytokine Signaling in Immune system -7.58181 -3.368 21/690 301,330,1846,2633,2919,2920,3383,3553,3569,3576,3656,4312,4314,5692,5704,6175,6655,7422,8878,9040,115362,51433,476,968,3624,4830,5054,5165,5901,6696,79931,718,6622,11221,7046,7185,7857,90,1950,5787,8091,8828,25932,100,23657,8613,100287171,1509,8728,55214,4061,84619,133418ANXA1,BIRC3,DUSP4,GBP1,CXCL1,CXCL2,ICAM1,IL1B,IL6,CXCL8,IRAK2,MMP1,MMP3,PSMB4,PSMC4,RPLP0,SOS2,VEGFA,SQSTM1,UBE2M,GBP5,ANAPC5,ATP1A1,CD68,INHBA,NME1,SERPINE1,PDK3,RAN,SPP1,TNIP3,C3,SNCA,DUSP10,TGFBR1,TRAF1,SCG2,ACVR1,EGF,PTPRB,HMGA2,NRP2,CLIC4,ADA,SLC7A11,PLPP3,WASHC1,CTSD,ADAM19,P3H2,LY6E,ZGPAT,EMB

2_SummaryGO Biological ProcessesGO:0019216regulation of lipid metabolic process -6.71756 -3.056 15/397 37,301,476,718,2171,3553,5165,5901,5934,6622,6721,57546,85441,150094,100287171,38,100,1718,1950,3614,4830,5092,10682,23583,113189,6696,84650,23657,25953,8613,100996939ACADVL,ANXA1,ATP1A1,C3,FABP5,IL1B,PDK3,RAN,RBL2,SNCA,SREBF2,PDP2,HELZ2,SIK1,WASHC1,ACAT1,ADA,DHCR24,EGF,IMPDH1,NME1,PCBD1,EBP,SMUG1,CHST14,SPP1,EBPL,SLC7A11,PNKD,PLPP3,PYURF

3_SummaryGO Biological ProcessesGO:2001233regulation of apoptotic signaling pathway -6.67568 -3.056 15/400 90,3383,3553,3624,5054,7009,7046,7185,7857,8406,8531,9500,28978,51060,90427,27018,100,1307,3569,328,968,6622,8091ACVR1,ICAM1,IL1B,INHBA,SERPINE1,TMBIM6,TGFBR1,TRAF1,SCG2,SRPX,YBX3,MAGED1,TMEM14A,TXNDC12,BMF,BEX3,ADA,COL16A1,IL6,APEX1,CD68,SNCA,HMGA2

4_SummaryGO Biological ProcessesGO:0070555response to interleukin-1 -6.67334 -3.056 11/199 301,2633,3383,3553,3569,3576,3656,5692,5704,6622,8878,968,1509,6890,9371,23180,23657,25953,1871,4175,5934,91768,51433,1069,3018,8367,64946,2273,8091,330,7046,8329,79931,9040,1950,4850,9500,90427ANXA1,GBP1,ICAM1,IL1B,IL6,CXCL8,IRAK2,PSMB4,PSMC4,SNCA,SQSTM1,CD68,CTSD,TAP1,KIF3B,RFTN1,SLC7A11,PNKD,E2F3,MCM6,RBL2,CABLES1,ANAPC5,CETN2,HIST1H2BB,HIST1H4E,CENPH,FHL1,HMGA2,BIRC3,TGFBR1,HIST1H2AI,TNIP3,UBE2M,EGF,CNOT4,MAGED1,BMF

5_SummaryGO Biological ProcessesGO:0010942positive regulation of cell death -5.99662 -2.673 19/716 301,1871,3569,3624,4296,4314,6622,6655,7046,8091,8406,8878,9040,9500,10687,27018,84883,90427,150094ANXA1,E2F3,IL6,INHBA,MAP3K11,MMP3,SNCA,SOS2,TGFBR1,HMGA2,SRPX,SQSTM1,UBE2M,MAGED1,PNMA2,BEX3,AIFM2,BMF,SIK1

6_SummaryKEGG Pathwayhsa04668 TNF signaling pathway -5.94758 -2.673 8/108 330,2919,2920,3383,3553,3569,4314,7185,3576,8091,64332,2633,5692,5704,8531BIRC3,CXCL1,CXCL2,ICAM1,IL1B,IL6,MMP3,TRAF1,CXCL8,HMGA2,NFKBIZ,GBP1,PSMB4,PSMC4,YBX3

7_SummaryGO Biological ProcessesGO:0042762regulation of sulfur metabolic process -5.48635 -2.449 4/15 5165,6622,23657,57546,37,301,1950,2171,3553,5692,5704,5901,6721,150094,25953,38,100,2977,3614,4830,10606,4314,718,8605,113189,100996939PDK3,SNCA,SLC7A11,PDP2,ACADVL,ANXA1,EGF,FABP5,IL1B,PSMB4,PSMC4,RAN,SREBF2,SIK1,PNKD,ACAT1,ADA,GUCY1A2,IMPDH1,NME1,PAICS,MMP3,C3,PLA2G4C,CHST14,PYURF

8_SummaryGO Biological ProcessesGO:0051048negative regulation of secretion -5.14609 -2.297 10/232 100,301,1950,2633,3553,3624,6622,7009,7779,25953,2171,3383,6721,28978,3569,6696,23568,56666,476,2273,150094ADA,ANXA1,EGF,GBP1,IL1B,INHBA,SNCA,TMBIM6,SLC30A1,PNKD,FABP5,ICAM1,SREBF2,TMEM14A,IL6,SPP1,ARL2BP,PANX2,ATP1A1,FHL1,SIK1

9_SummaryGO Biological ProcessesGO:0050727regulation of inflammatory response -5.12193 -2.297 14/468 100,301,330,716,718,3553,3569,4314,5054,5692,6622,11221,64332,115362,3656,5704,23180,79931,3576,7422,7857,3383,90,7046,2295,8091,1950,6696,6721,8828,4312,7185,8613,7009,3624,1509,23568,81573ADA,ANXA1,BIRC3,C1S,C3,IL1B,IL6,MMP3,SERPINE1,PSMB4,SNCA,DUSP10,NFKBIZ,GBP5,IRAK2,PSMC4,RFTN1,TNIP3,CXCL8,VEGFA,SCG2,ICAM1,ACVR1,TGFBR1,FOXF2,HMGA2,EGF,SPP1,SREBF2,NRP2,MMP1,TRAF1,PLPP3,TMBIM6,INHBA,CTSD,ARL2BP,ANKRD13C

10_SummaryKEGG Pathwayhsa05219 Bladder cancer -4.96566 -2.170 5/41 1871,1950,3576,4312,7422,718,5054,9779,3553,6622,330,3569,6655,7046,7185,25780,11037,81573,5934,3383,23568,84619E2F3,EGF,CXCL8,MMP1,VEGFA,C3,SERPINE1,TBC1D5,IL1B,SNCA,BIRC3,IL6,SOS2,TGFBR1,TRAF1,RASGRP3,STON1,ANKRD13C,RBL2,ICAM1,ARL2BP,ZGPAT

11_SummaryGO Biological ProcessesGO:0007050cell cycle arrest -4.93932 -2.167 10/245 1718,3576,3624,4850,5934,7046,8091,10669,10670,81617,90,301,328,1069,2273,4175,5692,5704,51433,1950,3553,9371,150094DHCR24,CXCL8,INHBA,CNOT4,RBL2,TGFBR1,HMGA2,CGREF1,RRAGA,CAB39L,ACVR1,ANXA1,APEX1,CETN2,FHL1,MCM6,PSMB4,PSMC4,ANAPC5,EGF,IL1B,KIF3B,SIK1

12_SummaryGO Biological ProcessesGO:0030198extracellular matrix organization -4.83036 -2.070 12/368 1307,2295,3383,3569,4312,4314,5054,6696,7046,8728,169611,100287171,1509,55214,90427COL16A1,FOXF2,ICAM1,IL6,MMP1,MMP3,SERPINE1,SPP1,TGFBR1,ADAM19,OLFML2A,WASHC1,CTSD,P3H2,BMF

13_SummaryGO Biological ProcessesGO:0001781neutrophil apoptotic process -4.70553 -1.991 3/8 301,3569,23657,100,1307,3383,3553,7422,8613,8728,11221,64332,285613,718,2633,3576,5054,2176,3624,716,23180,328,475,1718,4314,6622,6890,127544,4830,8091,968,1509,2171,2919,3614,5787,7779,25932ANXA1,IL6,SLC7A11,ADA,COL16A1,ICAM1,IL1B,VEGFA,PLPP3,ADAM19,DUSP10,NFKBIZ,RELL2,C3,GBP1,CXCL8,SERPINE1,FANCC,INHBA,C1S,RFTN1,APEX1,ATOX1,DHCR24,MMP3,SNCA,TAP1,RNF19B,NME1,HMGA2,CD68,CTSD,FABP5,CXCL1,IMPDH1,PTPRB,SLC30A1,CLIC4

14_SummaryGO Biological ProcessesGO:1900744regulation of p38MAPK cascade -4.62438 -1.931 5/48 3553,7422,11221,285613,768211,1846,1950,2633,3383,3569,3624,3656,4296,7046,9500,6622,8091,4314,6696,7009,8531,23657,51060,493861IL1B,VEGFA,DUSP10,RELL2,RELL1,DUSP4,EGF,GBP1,ICAM1,IL6,INHBA,IRAK2,MAP3K11,TGFBR1,MAGED1,SNCA,HMGA2,MMP3,SPP1,TMBIM6,YBX3,SLC7A11,TXNDC12,EID3

15_SummaryGO Biological ProcessesGO:0031667response to nutrient levels -4.24516 -1.648 13/491 38,100,968,3383,3553,6696,6721,7009,8408,9779,10670,81788,150094,476ACAT1,ADA,CD68,ICAM1,IL1B,SPP1,SREBF2,TMBIM6,ULK1,TBC1D5,RRAGA,NUAK2,SIK1,ATP1A1

16_SummaryCanonical PathwaysM145 PID P53 DOWNSTREAM PATHWAY -4.21964 -1.644 7/137 1509,1871,3732,5054,6696,6890,84883,718,9040CTSD,E2F3,CD82,SERPINE1,SPP1,TAP1,AIFM2,C3,UBE2M

17_SummaryReactome Gene SetsR-HSA-8953897Cellular responses to external stimuli -4.11338 -1.561 13/506 475,1871,3018,3569,3576,5692,5704,7422,8091,8367,8408,10670,51433,301,1069,4175,64946ATOX1,E2F3,HIST1H2BB,IL6,CXCL8,PSMB4,PSMC4,VEGFA,HMGA2,HIST1H4E,ULK1,RRAGA,ANAPC5,ANXA1,CETN2,MCM6,CENPH

18_SummaryKEGG Pathwayhsa04010 MAPK signaling pathway -4.01103 -1.521 9/255 1846,1950,3553,4296,6655,7046,8605,11221,25780,3569,5692,5704DUSP4,EGF,IL1B,MAP3K11,SOS2,TGFBR1,PLA2G4C,DUSP10,RASGRP3,IL6,PSMB4,PSMC4

19_SummaryGO Biological ProcessesGO:0043254regulation of protein complex assembly -3.92418 -1.474 12/457 3383,4312,4314,5704,6622,7111,7422,8408,90427,115362,348110,100287171,1307,7046,301,1950,3553,6721,51433ICAM1,MMP1,MMP3,PSMC4,SNCA,TMOD1,VEGFA,ULK1,BMF,GBP5,ARPIN,WASHC1,COL16A1,TGFBR1,ANXA1,EGF,IL1B,SREBF2,ANAPC5

20_SummaryGO Biological ProcessesGO:0050930induction of positive chemotaxis -3.90638 -1.465 3/14 3576,7422,7857,7046,8828CXCL8,VEGFA,SCG2,TGFBR1,NRP2
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ACVR1 IRAK2 ACADVL ACVR1

ADA KIF3B ANXA1 ADA

ADAM19 LY6E ATP1A1 AIFM2

ANAPC5 MAGED1 C3 ANXA1

ANKRD13C MCM6 FABP5 APEX1
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C1S P3H2 SREBF2 HMGA2

C3 PDK3 PDP2 ICAM1
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CD68 PNKD SIK1 IL6

CENPH PSMB4 WASHC1 INHBA
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CXCL1 RFTN1 IMPDH1 SCG2
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CXCL8 SCG2 PCBD1 SIK1

DUSP10 SERPINE1 EBP SNCA

DUSP4 SLC7A11 SMUG1 SOS2

E2F3 SNCA CHST14 SQSTM1

EGF SOS2 SPP1 SRPX

EMB SPP1 EBPL TGFBR1

FHL1 SQSTM1 SLC7A11 TMBIM6

FOXF2 SREBF2 PNKD TMEM14A

GBP1 TAP1 PLPP3 TRAF1

GBP5 TGFBR1 PYURF TXNDC12

HIST1H2AI TMBIM6 UBE2M

HIST1H2BB TNIP3 YBX3

HIST1H4E TRAF1

HMGA2 UBE2M

ICAM1 VEGFA

IL1B WASHC1

IL6 YBX3
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Additional file 2. Figure S1. KEGG pathway enrichment analysis of 148 candidate driver genes. Orange line 

indicated where P-value = 0.05, whereas cyan dots indicated the number of mapped genes in each pathway. 

Pathways involved in cancer progression were highlighted in red. 

 

 
Additional file 5. Figure S2. Association of CNA-driven candidate hits, including oncogene MYC and novel driver 

gene ASAP1, with overall survival of 2173 breast cancer patients. Kaplan Meier plot was generated in cBioPortal 

using dataset “METABRIC, Nature 2012 & Nat Commun 2016”. 
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Additional file 6. Figure S3. Quality control transcriptomic TemO-Seq analysis. (A) Sequencing library size 

distribution across treatments. (B) Sequencing reproducibility. Pearson correlation coefficient r was calculated 

among each replicate against triplicate mean per treatment. (C) Principle component analysis (PCA) across 

treatments using Log2 read counts. Red circle, cell line clustering; blue circle, treatment clustering. 
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Worldwide, breast cancer remains the leading cause of female cancer-related death1. 

TNBC, characteristic of the absent expression of ER, PR and HER2 amplification, represents 

the most aggressive form of all breast cancer subtypes, is highly heterogeneous and 

associated with worse prognosis186, 187. Despite the initial increased response to the 

standard-of-care chemotherapy, TNBC often exhibits intrinsic or acquired drug resistance, 

and subsequently, recurs in local and distal organs. Targeted therapies have long been 

pursued for the treatment of TNBC, but rarely demonstrate satisfactory clinical outcomes. 

Therefore, improved understanding of the intricate biological basis underlying TNBC 

insensitivity to targeted agents and defining new therapeutic opportunities are of the 

upmost importance. The work presented in this thesis was aimed at understanding the 

molecular mechanisms of TNBC drug resistance, discovering TNBC-specific kinase signaling 

transduction dependencies and identifying novel drug targets and effective therapies for 

TNBC. The results from the chapters were summarized and discussed in a broader context 

and future perspectives were also provided.  

1. FRET imaging in cancer drug discovery 

With the advent of a vast number of fluorescent proteins and advanced microscopy 

facilities, fluorescence optical imaging has been widely employed in preclinical cancer drug 

discovery. Fluorescence-based functional imaging approaches have been extending our 

understanding of cancer biology and drug efficacy, by providing high-throughput 

phenotypic readouts, including changes in morphology, cell proliferation, invasion, 

migration and angiogenesis99, 272. In Chapter 2 I exploited a FRET (fluorescence resonance 

energy transfer)-based high throughput imaging approach to investigate the dynamics of 

ERK and AKT kinase activity in response to a collection of kinase inhibitors (KIs) in TNBC 

cell lines. FRET, also known as Förster resonance energy transfer, refers to the 

nonradiative transfer of excited state energy between colocalized donor and acceptor 

fluorophores273-275. When combined with genetically encoded kinase reporters, FRET 

microscopy enables the direct visualization of kinase activity in highly spatiotemporal 

resolution in living cells119.  

ERK and AKT are two key signaling elements of the canonical Ras/MAPK and 

PI3K/AKT/mTOR pathways, respectively. Activation of PI3K/AKT/mTOR pathway is 

common in TNBC41, 112, 134, due to the recurrent copy number loss of negative regulators 

(e.g., PTEN, INPP4B) and activating mutation of PIK3CA19. Analogous to PTEN loss, 

Ras/MAPK pathway is often activated by the loss of NF1 and DUSP4, despite the scarcity of 

activating mutations in TNBC. In Chapter 2, the MEKi-resistant and AKTi-resistant TNBC 

cell models were transfected to stably express FRET-based biosensors specifically for ERK 

and AKT activity, allowing for high-throughput FRET imaging. Upon exposure to KI library, 

real-time ERK and AKT activity dynamics were recorded and quantified, and subsequently, 

the key parameters were correlated with proliferative response. This study has associated 
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ERK and AKT kinase activity with the anti-tumor effects of kinase drugs and revealed 

differential kinase dependencies of treatment-refractory TNBC cells. The work has not 

only advanced the live cell high-content imaging-based quantification of kinase activity 

profiles in TNBC, but also discovered possible off-target effects of clinical kinase drugs.  

Considering the heterogeneous nature of this disease and the intricate pathway 

interconnections, potential use of our FRET imaging-based approach has yet to be made 

by incorporating multiple kinase biosensors in various TNBC cell lines representative for 

different molecular subtypes. A simultaneous application in non-TNBC cells and normal 

mammary cells could also aid in finding TNBC-specific kinase signaling addictions and 

discovering undesired adverse effects. Besides ERK and AKT sensors, a large amount of 

other FRET probes (kinases, GTPases, phosphoinositides, Ca2+ and metabolites) have also 

been developed and used in multiple biological imaging studies276-278. Recently, Kuchenov 

and colleagues have described a high-content imaging platform using 40 FRET biosensors 

to profile cancer-relevant signaling networks279. Despite that the authors announced the 

potential of the platform to image up to 384 FRET sensors in a single experiment, how the 

complex signaling crosstalk is related to the various biological processes and eventually 

influence the cancer phenotypes is yet to be addressed. Our study in Chapter 2 

demonstrated the feasibility of quantifying real-time kinase activity in TNBC cells in 

response to clinical kinase drugs and correlating with cell proliferation, a hallmark of 

cancer. Our work has revealed the differential kinase dependencies in MEKi- and AKTi-

resistant TNBC cells, thus providing new opportunities to explore effective therapeutic 

kinase targets in treatment-refractory cancer cells, as well as assess the drug efficacy and 

possible off-target effects of clinically used drugs. 

It is obvious that a lacking of tumor microenvironment has limited the translation 

of the findings derived from 2D cell culture into the clinic. This disadvantage can be 

compensated by utilizing the advanced and clinically relevant organoids and PDXs systems. 

As fluorescence imaging profoundly relies on the detection of emitted light, the 

absorbance and scattering by various tissues can constrain the depth in which the light 

penetrates. Another downside of fluorescence imaging is that the intrinsic fluorescence of 

biomolecules, and in some cases the kinase drugs, increases background signals. Another 

major application of FRET is fluorescence lifetime imaging microscopy (FLIM), which is 

suitable for the analysis of intracellular environment, independent of intensity-based 

ratiometric FRET calculation. In contrast to bulk FRET analyses where signals from FRET 

molecules in varied conformational states are captures and averaged, single-molecule 

FRET (smFRET) measurement allows for elucidating the structural heterogeneity of FRET in 

individual signaling molecules280. Nonetheless, along with the advances in optical 

microscopy, well-designed FRET probes and improved image analysis algorithms, FRET 

imaging has proved imperative and valuable in studying cancer biology and drug efficacy.  
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2. Exploring novel therapies for TNBC via high-throughput screen  

High-throughput compound or gene screening plays an essential role in identifying novel 

therapeutic targets and combination treatment in cancer therapy. Protein kinases 

represent attractive drug targets due to their involvement in various cellular functions. 

Chapter 2 utilized FRET imaging technology to screen a well-established inhibitor library 

containing about 400 kinase drugs in TNBC cells. The library spans 14 signaling pathways 

by targeting 118 kinases. Integrated proliferative response profiling and ERK- and AKT-

based kinase activity dynamics analysis uncovered the differential kinase signaling 

dependencies of treatment-resistant TNBC cells. Specifically, MEKi-resistant cells were 

responsive to inhibitors against PI3K pathway but refractory to EGFR-targeted inhibitors, 

whereas AKTi-resistant cells were sensitive to EGFR/MAPK pathway blockade but showed 

resistance against mTOR inhibitors. These findings suggest that the molecularly 

heterogeneous TNBC may leverage alternate surviving pathways to by-pass kinase-

targeted inhibition, thereby conferring resistance. However, the screening only partially 

explained the regulatory effects of the kinome on TNBC cell proliferation as the KIs target 

less than one third protein kinases (118/518). Moreover, less selective KIs could increase 

the likelihood of false discovery.  

In contrast, genetic perturbation permits high-throughput screening in the 

desired set of genes, such as the entire genome or specifically the kinome. Suppression of 

gene expression can be achieved either by RNAi (siRNA and shRNA), or by CRISPR/Cas9 

technology. Recently, an in vivo study has reported 40 novel modulators of breast cancer 

response to paclitaxel by performing genome-wide RNAi281. A gene signature was derived 

from the screen hits with the potential to predict patient outcomes. By carrying out 

kinome-scale siRNA screen, Chapter 3 identified specific vulnerable kinase targets in 

EGFRi- and mTORi-resistant TNBC cells. Pharmacological inhibition of these targets greatly 

suppressed TNBC cell proliferation in different resistant scenarios, highlighting the 

potential of targeting these kinase vulnerabilities to combat the hard-to-treat disease. 

Moreover, a kinome-wide siRNA screen has been performed in combination with lapatinib 

in Chapter 3 to study the synthetic lethality interactions with EGFR-targeted inhibition and 

discover potential therapies to overcome EGFRi-resistance. Unlike compound screen, 

siRNA screening provides a high specificity for targeting the protein kinases in question, 

with the potential to look into the kinase signaling network in the kinome scale. This work 

has led to the identification of FYN kinase as a negative regulator of EGFR/PI3K/AKT 

pathway in EGFRi-resistant TNBC cells. Thus, dual targeting of EGFR and FYN could lead to 

cell death in TNBC cells representing the intact pathway. In addition, targeting FYN also 

enhanced the anti-proliferative effects of PI3Ki and AKTi. This is in line with the finding in 

Chapter 2 that EGFRi/MEKi-resistant cells were responsive to PI3K/AKT inhibition as the 

resistant cells were more likely to depend on elevated PI3K pathway for proliferation in 
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the presence of FYN. However, whether pharmacological inhibition of FYN could synergize 

with EGFR inhibitors has yet to be confirmed. Supportively, several FYN inhibitors have 

been developed, albeit less selective. 

Using high-throughput KI screening, Chapter 4 has discovered a novel 

combination therapy (i.e., AEE788 + rapamycin) to overcome mTORi-resistance in TNBCs. 

Various types of cancer arise owing to dysfunction of mTOR signaling, and can confer 

higher susceptibility to mTOR inhibitors. Despite rapalogs (rapamycin and its analogs) have 

proven effective in a range of preclinical studies, clinical success is restricted to only a few 

rare cancers. It was reported that rapalogs are cytostatic, thus unlikely to cause tumor 

regression. When used as monotherapy, rapalogs exhibited modest anti-tumor activity 

due in part to incomplete mTOR inhibition. Other mechanisms underlying this insensitivity 

involve redundant signal transduction and feedback loops. Rapalog-mediated mTORC1 

inhibition is thereby not sufficient to induce comprehensive pathway inactivation, 

necessitating the development of combination therapy in this scenario. The AEE788 + 

rapamycin combination identified in Chapter 4 represents a novel therapeutic strategy to 

combat TNBC. In this study, cheminformatics-based target prediction and validation using 

siRNA have revealed putative targets of AEE788, which play key roles in determining 

rapalog efficacy. The combination, by targeting multiple kinases, not only sustains 

inhibited MAPK activity, but also effectively suppresses mTOR signaling, thereby eliciting 

synergistic anti-proliferative effects in TNBC. In addition, the findings are complementary 

to the presently published target spectrum of the kinase drug AEE788. The synergistic 

effects of AEE788-everolimus combination have been reported in prostate, germ and 

renal tumor cell lines198, 200, 201. Specifically, by exploiting the integrated compound screen, 

target prediction and validation approach, I discovered the potential combination therapy 

for TNBC, and studied the mechanisms of action of the synergy in the highly 

heterogeneous TNBC. Provided the reported toxicity of AEE788 in clinical trials282, 283, 

reduced doses of both drugs in the combination might decrease adverse effects while 

generating synergistic anti-tumor effect. Nevertheless, future studies assessing the effects 

in in vivo models are warranted for potential translation of the results in the clinic.  

3. Bioinformatics-based therapeutic target identification 

Genetic alterations are thought to be favored during the initiation, development and 

progression of cancer in an evolutionary fashion106, 284, 285. Over 80% TNBCs exhibits TP53 

mutation19, being a major reason for causing gene instability in this disease. Insightful 

analysis of genomic sequencing data in breast cancer exploiting bioinformatics holds the 

promise for the identification of novel therapeutic targets152, 286, 287. For example, two 

independent bioinformatics-based studies have demonstrated that PIM kinase regulated 

chemotherapy response in TNBC and can be explored as novel targeted therapy288, 289. In 
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Chapter 5, ADMIRE analysis of copy number and gene expression profiles was performed 

across a set of triple-negative tumors. This work has led to the discovery of several novel 

TNBC driver genes, besides the known oncogene EGFR and MYC. Of the identified driver 

genes, I functionally validated the most promising driver gene ASAP1 (an Arf GTPase-

activating protein) and revealed its biological role in TNBC progression through 

transcriptome-wide bioinformatics study. Of relevance, high level of ASAP1 expression 

correlates with poor prognosis in patients with TNBC. Several studies have also reported 

the role of ASAP1 in breast cancer invasion and metastasis263, 290-292. Studies by Onodera 

and colleagues showed that ASAP1 was localized at invadopodia together with cortactin 

and paxillin to form a trimeric protein complex, which accelerated extracellular matrix 

degradation and subsequently promoted tumor cell motility and invasion263. Consistently, 

among the most significantly enriched GO terms derived from DEGs upon ASAP1 depletion, 

as shown in Chapter 5, are extracellular matrix organization and regulation of protein 

complex assembly. With a couple of small molecule modulators of GTPase-activating 

proteins (including ASAP1) being developed293, 294, the regulatory role of ASAP1 in tumor 

invasion and migration can be assessed in more relevant 3D systems (such as tumor 

organoids and PDXs), and thus assisting in the translation of the potential driver gene 

ASAP1 into a clinical therapeutic target. 

4. Future perspectives 

A major concern in this thesis is to which extent the findings can be translated into the 

clinic. Monolayer cell culture has been the main cancer model for conducting the research. 

Although several studies have argued that a sufficiently large panel of breast cancer cell 

lines represents the genomic and proteomic landscape of breast tumors and provides a 

reasonable model for breast cancer study91, 284, 295, the results derived from 2D culture 

systems can be variable when tested in 3D and in vivo models, which more realistically 

mimic the cell-cell communication and microenvironment93, 99, 296, 297. By utilizing state-of-

art CRISPR/Cas gene editing technology, genome-wide integration of fluorescent proteins 

into PDX models allows us to monitor the dynamics of gene expression in living TNBC cells 

affected by the identified novel therapies. The continuing efforts in enlarging the biobank 

of breast tumor organoid and well-established PDX mouse models both provide an 

excellent possibility to assess the findings of this thesis for potential clinical translation. 

Another concern is that the evaluation of the anti-cancer effect of the proposed 

therapeutic targeting strategies has been limited to proliferation assays. Multi-faceted 

functionality studies are merited in a context-dependent manner. Application of our 

established FRET imaging approach in 3D culture of PDX-derived TNBC cells could better 

dissect the tumor heterogeneity in both highly temporal and spatial resolution. In addition, 

single-cell sequencing has proved to be an imperative tool to study the transcriptional 

diversity and variability in therapeutic response within a range of cancer types, including 
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TNBC. More importantly, future assessment of the novel therapies discovered in this 

thesis using organoids and PDXs would prove invaluable in advancing precision medicine 

in TNBC.   

5. Conclusions 

 Altogether, the aim of the studies presented in this thesis was to systematically identify 

gene/kinase susceptibilities of refractory TNBC cells, and reveal novel potent targeted 

therapies for TNBC as monotherapy or in combination with approved kinase drugs. The 

work has identified important kinase signaling dependencies of TNBC cell proliferation 

(Chapter 2) and discovered novel multi-kinase targeting strategy to overcome mTORi 

resistance (Chapter 4) using compound library screen, found key regulators of TNBC 

resistance against EGFR-targeted inhibitors (Chapter 3), and identified and validated novel 

driver genes via integrated computational algorithms and bioinformatics approach 

(Chapter 5). This work provides novel insights into the molecular basis of TNBC response 

to clinical kinase drugs and provokes potential therapeutic targeting strategies for the 

incurable TNBC. 
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Summary 

Uncovering vulnerabilities in triple-negative breast cancer 

Triple-negative breast cancer (TNBC) constitutes a small subtype (~15%) of breast cancer, 

but causes the majority of breast cancer-related deaths. As defined by the absence of ER 

and PR expression and HER2 overexpression, TNBC is not curable by hormone receptor or 

HER2-targeted therapies. Furthermore, TNBC is highly heterogeneous and most aggressive. 

To date, cytotoxic chemotherapy remains the mainstay in the management of TNBC. 

Despite the initial response to the standard-of-care chemotherapy, TNBC often exhibits 

intrinsic or acquired drug resistance, and subsequently, recurs in local and distal organs. 

Targeted therapies have long been pursued for the treatment of TNBC, but rarely 

demonstrate satisfactory clinical outcomes. Therefore, improved understanding of the 

intricate biological basis underlying TNBC insensitivity to targeted agents and defining new 

therapeutic opportunities are of the upmost importance. The aim of the studies presented 

in this thesis was to systematically identify gene/kinase susceptibilities of refractory TNBC 

cells, and reveal novel potent targeted therapies for TNBC as monotherapy or in 

combination with approved kinase drugs. 

 Chapter 2 exploited a FRET (fluorescence resonance energy transfer)-based high 

throughput imaging approach to quantitatively monitor ERK and AKT dynamic activity in 

MEKi-resistant and AKTi-resistant TNBC cells in response to the 378 kinase inhibitors. By 

deriving a mathematical model to integrate proliferative response profiling and ERK- and 

AKT-based kinase activity dynamics analysis, I revealed unique kinase dependencies on 

RTK/MAPK and PI3K/AKT pathways that are distinctly targetable in the resistant TNBC cells. 

Specifically, MEKi-resistant cells were responsive to inhibitors against PI3K pathway but 

refractory to EGFR-targeted inhibitors, whereas AKTi-resistant cells were sensitive to 

EGFR/MAPK pathway blockade but showed resistance against mTOR inhibitors. The work 

provides new opportunities to explore effective therapeutic kinase targets in treatment-

refractory cancer cells, as well as assess the drug efficacy and possible off-target effects of 

clinically used drugs. 

By carrying out kinome-scale siRNA screen, Chapter 3 identified specific 

vulnerable kinase targets in EGFRi- and mTORi-resistant TNBC cells. Pharmacological 

inhibition of these targets greatly suppressed TNBC cell proliferation in different resistant 

scenarios, highlighting the potential of targeting these kinase vulnerabilities to combat the 

hard-to-treat disease. Moreover, a kinome-wide siRNA screen was performed in EGFRi-

resistant TNBC cells in combination with lapatinib treatment. The combination screen 

investigated the synthetic lethality interactions with EGFR-targeted inhibition. The results 

have demonstrated that, a Src family member FYN, conferred TNBC resistance against 
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EGFR kinase-targeted inhibition via negatively regulating EGFR/PI3K/AKT signaling. 

Targeting FYN released the activity of downstream PI3K and AKT signaling, rationalizing 

the co-targeting strategy to subvert drug resistance against inhibitors targeting 

EGFR/PI3K/AKT signaling axis in cancer cells with elevated EGFR expression, including 

TNBC. 

In Chapter 4, a broad kinase inhibitor library screening was carried out across ~20 

TNBC cell lines representative for six main TNBC subtypes. The research demonstrated a 

poor correlation of TNBC molecular subtypes with their proliferative responses to various 

kinase inhibitors. This study explored effective combined drug treatment to overcome 

TNBC resistance to mTOR inhibitors. The targets of the identified synergistic kinase 

inhibitors were predicted by cheminformatics-based survey and functionally validated by 

siRNA-mediated gene suppression. The AEE788 + rapamycin combination identified in this 

chapter represents a novel therapeutic strategy to combat TNBC. The putative targets of 

AEE788 have been revealed in determining rapalog combination efficacy. The combination, 

by targeting multiple kinases, not only sustains inhibited MAPK activity, but also 

effectively suppresses mTOR signaling, thereby eliciting synergistic anti-proliferative 

effects in TNBC. In addition, the findings are complementary to the presently published 

target spectrum of the kinase drug AEE788. Chapter 4 revealed the synergistic effects of 

multi-kinase targeted inhibitor AEE788 on rapalogs treatment in TNBCs. 

Chemoinformatics-guided target prediction and validation further pronounced the 

polypharmacology mechanisms underlying the synergy. 

Genetic alterations are thought to be favored during the initiation, development 

and progression of cancer in an evolutionary fashion. Over 80% of TNBCs exhibits TP53 

mutation, being a major reason for causing gene instability in this disease. Insightful 

analysis of genomic sequencing data in (triple negative) breast cancer exploiting 

bioinformatics holds the promise for the identification of novel therapeutic targets. 

Chapter 5 has exploited the robust ADMIRE algorithm to analyze the copy number and 

gene expression profiles across a set of triple-negative tumors. The analysis prioritized 148 

candidate genes driving TNBC cell growth and proliferation. siRNA-based functional screen 

further validated, besides known EGFR and MYC oncogenes, novel driver genes including 

ASAP1 which showed high amplification frequency and gene expression in TNBC cohorts. 

Of relevance, high level of ASAP1 expression correlates with poor prognosis in patients 

with TNBC. TempO-Seq-based targeted whole genome RNA sequencing analysis concluded 

that, the novel TNBC driver gene ASAP1, regulates various cytokine and apoptosis 

signaling components that are significantly associated with TNBC prognosis, supporting 

the potentiality of ASAP1 as a therapeutic target for the dismal disease. 
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In summary, the work presented in this thesis has identified important kinase 

signaling addictions of drug-resistant TNBC cells and key regulators conferring kinase 

inhibitor resistance, and discovered novel driver genes and combinatorial targeting 

strategies to subvert drug resistance. These studies provide new insights into the 

molecular basis underlying TNBC responses to clinical kinase drugs and provoke potential 

therapeutic targeting strategies for the incurable TNBC. 
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Samenvatting 

Het blootleggen van kwetsbaarheden bij triple negatieve borstkanker 

Triple negatieve borstkanker (“triple-negative breast cancer”, TNBC) vormt een klein 

subtype (~ 15%) van borstkanker, maar veroorzaakt de meeste sterfgevallen door 

borstkanker. Zoals gedefinieerd door de afwezigheid van oestrogeen receptor (ER) en 

progesteron receptor (PR) expressie en humane epidermale groeifactor receptor 2 (HER2) 

overexpressie, is TNBC niet te genezen door hormoonreceptor- of op HER2-gerichte 

therapieën. Bovendien is TNBC zeer heterogeen en agressief. Tot op heden blijft 

chemotherapie de standaard bij de behandeling van TNBC. Ondanks een goede eerste 

response op reguliere chemotherapie, vertoont TNBC vaak intrinsieke of verworven 

resistentie tegen deze geneesmiddelen en keert vervolgens terug in lokale en distale 

organen. Doelgerichte therapieën worden al lang bestudeerd voor de behandeling van 

TNBC, maar vertonen zelden bevredigende klinische resultaten. Daarom is het begrijpen 

van de ingewikkelde biologische basis die ten grondslag ligt aan TNBC ongevoeligheid voor 

gerichte middelen en het definiëren van nieuwe therapeutische mogelijkheden van het 

grootste belang. Het doel van de studies in dit proefschrift was om systematisch de gen en 

kinase afhankelijkheden van resistente TNBC cellen te identificeren en nieuwe effectieve 

doelgerichte therapieën voor TNBC te onthullen als monotherapie of in combinatie met 

goedgekeurde kinase remmende medicijnen. 

Hoofdstuk 2 maakte gebruik van een op FRET (fluorescentie resonantie 

energieoverdracht) gebaseerde imaging techniek op grote schaal (“high-throughput”) om 

kwantitatief ERK en AKT dynamische activiteit te monitoren in MEK-remmer (MEKi) 

resistente en AKT-remmer (AKTi) resistente TNBC cellen na behandeling met 378 kinase 

remmers. Door een wiskundig model af te leiden om proliferatieve responses te profileren 

en ERK- en AKT-gebaseerde dynamische kinase-activiteitanalyse te integreren, onthulden 

wij unieke kinase afhankelijkheden van RTK / MAPK- en PI3K / AKT-routes die duidelijk 

kunnen worden aangegrepen in de resistente TNBC cellen. Zo reageerden MEKi-resistente 

cellen op remmers van de PI3K-pathway terwijl deze ongevoelig waren voor EGFR-gerichte 

remmers. In tegenstelling waren de AKTi-resistente cellen gevoelig voor EGFR / MAPK-

signaaltransductie-blokkade, maar vertoonden deze resistentie tegen mTOR-remmers. Dit 

werk biedt nieuwe mogelijkheden om effectieve therapeutische kinasedoelen in 

resistente kankercellen te onderzoeken, evenals de werkzaamheid van geneesmiddelen 

en mogelijke niet-doelgerichte (“off-target”) effecten van klinisch gebruikte 

geneesmiddelen te beoordelen. 

Door het uitvoeren van een siRNA-screening op schaal van het gehele kinase 

repertoire (kinoom), identificeerde Hoofdstuk 3 specifieke en kwetsbare kinasedoelen in 



128 
 

EGFRi en mTORi-resistente TNBC cellen. Farmacologische remming van deze doelen 

onderdrukte de proliferatie van TNBC cellen in verschillende resistente scenario's sterk, en 

dit benadrukte het potentieel van het aanpakken van deze kinase kwetsbaarheden om 

deze moeilijk te behandelen ziekte te bestrijden. Bovendien werd een kinoombrede 

siRNA-screening uitgevoerd in EGFRi-resistente TNBC cellen in combinatie met lapatinib 

behandeling. Deze combinatie screen onderzocht de synthetisch letale interacties van 

genen met EGFR-gerichte remming. De resultaten hebben aangetoond dat een Src-

familielid FYN TNBC resistentie veroorzaakte tegen EGFR-kinase gerichte remming door 

het negatief te reguleren van de EGFR / PI3K / AKT-signaleringsroute. Het aangrijpen van 

FYN bevrijdde de activiteit van onderliggende PI3K- en AKT-signaleringroutes, wat 

verklaart waarom deze gecombineerde aangrijpingsstrategie geneesmiddel resistentie 

tegen EGFR / PI3K / AKT-signalering terugdraait  in kankercellen met verhoogde EGFR-

expressie, zoals TNBC.  

In Hoofdstuk 4 werd een high-throughput screening uitgevoerd op een grote set 

van kinase remmers over ~20 TNBC cellijnen die representatief zijn voor zes belangrijke 

TNBC subtypen. Het onderzoek toonde een zwakke correlatie aan van moleculaire 

subtypen van TNBC en hun proliferatieve reacties op verschillende kinase remmers. Deze 

studie onderzocht welke geneesmiddelcombinaties deze resistentie tegen mTOR-remmers 

kunnen overwinnen. De aangrijpingspunten van de geïdentificeerde synergetische kinase 

remmers werden voorspeld door op cheminformatica-gebaseerd onderzoek en werden 

verder functioneel gevalideerd door siRNA-gemedieerde gensuppressie. De AEE788 + 

rapamycin combinatie die in dit hoofdstuk werd geïdentificeerd, vertegenwoordigt een 

nieuwe therapeutische strategie om TNBC te bestrijden. De verschillende 

aangrijpingspunten van AEE788 zijn onthuld en verklaren de synergetische interactie met  

rapamycin en andere soortgelijke mTOR-remmers (rapalogen). De combinatie, door zich 

te richten op meerdere kinasen, ondersteunt niet alleen geremde MAPK-activiteit, maar 

onderdrukt ook effectief mTOR-signalering, waardoor synergetische antiproliferatieve 

effecten in TNBC worden opgewekt. Bovendien zijn de bevindingen complementair aan 

het momenteel gepubliceerde spectrum van aangrijpingspunten van het kinase-medicijn 

AEE788. Hoofdstuk 4 onthulde de synergetische effecten van de multi-kinase gerichte 

remmer AEE788 op de behandeling van rapalogen in TNBC's. Cheminformatica-geleide 

voorspelling van de aangrijpingspunten en experimentele validatie hiervan toonden 

verder de polyfarmacologische mechanismen aan die aan de synergie ten grondslag liggen. 

Men denkt dat genetische veranderingen evolutionair geselecteerd worden 

tijdens de initiatie, ontwikkeling en progressie van kanker. Meer dan 80% van de TNBC 

tumoren vertoont een TP53-mutatie, wat een belangrijke reden is voor het veroorzaken 

van genetische instabiliteit in deze ziekte. Inzichtelijke analyse van genomische sequenties 
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(“sequencing”) bij (triple negatieve) borstkanker met behulp van bio-informatica, kan 

daarom mogelijk nieuwe therapeutische aangrijpingspunten identificeren. Hoofdstuk 5 

heeft gebruik gemaakt van het robuuste ADMIRE-algoritme om het aantal genetische 

kopieën en genexpressieprofielen in een reeks triple-negatieve tumoren te analyseren. Uit 

deze analyse kwamen 148 kandidaat genen, die mogelijk TNBC celgroei en proliferatie 

aansturen, Een siRNA-screening van deze genen heeft, naast bekende EGFR- en MYC-

oncogenen, het belang van nieuwe aandrijvende (“driver”) genen verder gevalideerd, 

waaronder ASAP1, die ook een hoge amplificatiefrequentie en genexpressie in TNBC-

cohorten vertoonden. Van belang is dat een hoog niveau van ASAP1-expressie correleert 

met een slechte prognose bij patiënten met TNBC. Een TempO-Seq-gebaseerde 

kwantitatieve analyse van RNA moleculen (“RNA sequencing”) liet zien dat het nieuwe 

TNBC driver-gen ASAP1 verschillende cytokine- en apoptose-signaalcomponenten 

reguleert die significant geassocieerd zijn met TNBC prognose. Dit ondersteunt verder de 

potentie van ASAP1 als een therapeutisch doelwit voor deze agressieve ziekte. 

Samenvattend heeft het in dit proefschrift gepresenteerde werk belangrijke 

kinase-verslavingen van resistente TNBC cellen blootgelegd, belangrijke regulatoren 

geïdentificeerd die resistentie tegen kinase remmers verlenen, en nieuwe driver-genen en 

combinatorische aangrijpingsstrategieën ontdekt om resistentie tegen geneesmiddelen te 

ondermijnen. Deze studies bieden nieuwe inzichten in de moleculaire basis die ten 

grondslag ligt aan de reacties op klinische kinase-geneesmiddelen van TNBC tumoren en 

bieden potentiële therapeutische aangrijpingsstrategieën aan voor deze slecht 

behandelbare vorm van borstkanker. 
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