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Myeloid cells represent an important component of the tumor microenvironment 
(TME) as they have been shown to contribute to tumor progression and impact 
therapy response. As a result, immunomodulatory agents targeting myeloid cells 
are currently being evaluated in clinical trials. To maximize the success of these 
compounds and to develop new therapeutic approaches, understanding the 
biology of the targeted cell and the effects of these drugs is of utmost importance. 
Here, I will discuss important aspects of immune cell complexity, focusing on the 
phenotype of tumor-associated macrophages (TAMs), the impact of macrophage-
targeting drugs on chemotherapy response, approaches to achieve anti-tumor 
immunity in poorly immunogenic tumors and the challenges to study neutrophils.

The challenging definition of macrophage functional identity 

Initially, macrophages were described to have different polarization states: 
they could either be classically activated or alternatively activated. These terms 
originated from studies in the early 1990s which showed that macrophages 
cultured in the presence of IL-4 displayed a different phenotype as compared to 
ones cultured in the presence of IFNg, which showed an “alternative” phenotype1. 
Years later, in 2000, the observation that macrophages isolated from different 
mouse strains had a different arginine metabolism which influenced lymphocytes 
to produce either Th1 or Th2 cytokines, led to the M1/M2 dichotomy2. Although 
the authors, who described these macrophage phenotypes in the original report, 
discussed the possibility of a “continuum of phenotypes between M1 and M2 
macrophages”, the M1/M2 dichotomy dominated the macrophage field for almost 
two decades. However, this binary generalization is rather limiting and unlikely 
to occur in a complex in vivo system. In fact, macrophages are one of the most 
plastic cells of the immune system. Based on in vitro experiments we now know 
that macrophages can change their phenotype based on various stimuli they 
receive in the environment3. This dynamic behavior of macrophages is critical for 
the protection against several insults for which a quick adaptation and response is 
necessary. To solve the complexity of macrophage definition, it was proposed that, 
besides an accurate description of the methodology used, studies should define 
these cells by the stimulus they receive4. For example, macrophages stimulated in 
vitro with IL-4 would be termed M(IL-4). Although this terminology would be useful 
for in vitro experiments, this nomenclature based on the type of activator would 
be challenging for in vivo studies, as multiple and unforeseeable mediators might 
be responsible for shaping the macrophage phenotype. Because of the effects that 
different stimuli have on the phenotype and function of macrophages, the local 
environment where they reside plays an important role in shaping their phenotype. 
An elegant study by Lavin et al. showed that transplantation of differentiated 
peritoneal macrophages into the alveolar cavity resulted in a transcriptomic switch 
that closely resembled the profile of lung macrophages5. These data reiterate 
the plasticity of fully differentiated macrophages that can reshape and acquire a 
different transcriptomic identity based on the tissue environment. 
The M1/M2 terminology also became popular in the cancer field where it was used 
to define TAMs as pro-tumoral (M2) or anti-tumoral TAMs (M1)6. Interestingly, single-
cell RNA-sequencing of immune cells isolated from human breast tumors revealed 
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the co-existence of M1 and M2 signatures in the same macrophage7, strengthening 
the concept of a continuum of activation states as opposed to the static M1/M2 
paradigm. This concept of plasticity implies that distinct TMEs differently affect TAM 
phenotype. To test this hypothesis, in chapter 3 of this thesis, we isolated TAMs 
from the mammary tumors of two genetically engineered mouse models (GEMMs), 
in which macrophages and cancer cells co-evolve mimicking the human situation. 
While K14cre;Cdh1F/F;Trp53F/F (KEP) mammary tumors8 resemble an invasive lobular 
carcinoma (ILC) histotype of breast cancer, the MMTV-NeuT (NeuT) tumors, which 
overexpress an activated form of neu, model HER2+ breast cancer9. Interestingly, the 
transcriptomic profile of TAMs from the KEP and the NeuT model were found to be 
more similar to macrophages of the mammary gland compared to macrophages that 
reside in other tissues, like the spleen and bone marrow, indicating that the tissue 
of origin dictates macrophage identity. Indeed, we observed that these TAMs have 
a common signature probably related to the mammary tissue where they arose. 
Nevertheless, we also identified a unique signature for both TAMs, strengthening 
the concept that distinct tumor milieus differently influence the macrophage 
transcriptomic profile. Several reasons may explain the different macrophage 
reprograming, including the genetic make-up of the tumor, the histological 
subtype of the tumor, and/or the presence of different stromal characteristics like 
fibroblasts and collagen fibers. Expanding this analysis to additional GEMMs for 
mammary tumorigenesis could identify tumor characteristics that associate with 
similar TAM transcriptomic profiles. In addition, it would be interesting to perform 
the same computational analysis on macrophages isolated from different tumor 
stages to obtain a dynamic overview on how particular features are gained, lost 
or changed during tumor growth. Importantly, with our analysis we only focused 
on the inter-tumoral heterogeneity of macrophages between tumor models. It 
may also be interesting to address the intra-tumoral diversity of macrophages by 
single cell RNA-sequencing and spatial transcriptomic10, in order to assess how the 
macrophage profile changes based on location (e.g.: centre, rim, vicinity to necrotic 
areas) or contact with neighbouring cells.
Although RNA sequencing is a powerful tool it is important to consider that 
these results on TAM phenotype provide only descriptive data and not functional 
information. Nevertheless, the potential functionality of these cells could be 
extrapolated from transcriptomic analysis. For example, TAMs from the NeuT 
model, and to a lesser extent also from the KEP model, upregulate genes involved 
in angiogenesis-related processes, suggesting that these macrophages may 
support tumor growth by secreting growth factors and promoting angiogenesis. In 
addition, gene expression data may also provide some insights on the biology of 
TAMs. In preclinical models, TAMs were demonstrated to originate from circulating 
CCR2+ monocytes in the MMTV-PyMT mouse model for breast cancer11, while in 
the MMTVneu model, which bears the unactivated form of HER2, the increased 
accumulation of TAMs in the tumors was the result of major local proliferation12. In 
chapter 3 of this thesis, we observed that TAMs isolated from the KEP model are 
highly proliferative compared to TAMs from the NeuT model, suggesting that in KEP 
tumors TAMs may originate from local proliferation rather than differentiation of 
monocytes. These data highlight that different, and probably multiple, mechanisms 
can give rise to TAMs and future studies should assess whether the transcriptomic 
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profile of macrophages can determine their ontogeny.
In chapter 3 of this thesis we show that the specific gene signature of TAMs from 
the KEP tumors associates with poor survival in two separate cohorts of ILC patients, 
while the specific gene signature of TAMs from the NeuT tumors fails to do so in 
the same groups of patients. These findings were quite surprising as our signature, 
derived from a pure TAM population, was applied to the transcriptome profile of 
bulk tumor samples containing multiple different cell types. This association may 
suggest that this novel set of genes derived from murine macrophages could 
have prognostic value. However, it is important to note that more studies should 
confirm the value of the KEP TAM signature in predicting outcome and response to 
specific type of therapies. For example, it would be interesting to assess whether 
patients with tumors enriched in this signature would benefit from the treatment 
with macrophage-targeting agents. In addition, it would be interesting to apply the 
core signature of TAMs from the NeuT model to gene expression data from HER2+ 
breast cancer patients, and perform the same analysis. It should be noted that in 
other breast cancer models, two populations of intratumoral macrophages are 
found and distinguished based on CD11b expression11,12. Differently from the KEP 
tumors which contains only CD11bhigh macrophages (chapter 5 of this thesis), NeuT 
tumors display both macrophage populations, although with some variability. To 
fairly compare these two models, only CD11bhigh macrophages were analyzed in our 
study. However, both macrophage signatures of TAMs from the NeuT model should 
be tested for their ability to predict survival in HER2+ patients.
In conclusion our data, together with other studies, indicate that one unique TAM 
phenotype does not exist; rather the plasticity of macrophages to different stimuli 
determines a distinct phenotype in certain environments and not in others. This 
diversity in TAM phenotype may have consequences for the efficacy of macrophage-
targeting drugs, as targeting particular TAM phenotypes might not be therapeutically 
beneficial.

Targeting inflammation as an anti-cancer strategy

The importance of gaining knowledge on the therapeutic effects of CSF-1R blockade
The acknowledgment of the TME as a crucial component for tumor establishment 
and growth13 and the realization that myeloid cells often facilitate tumor 
development formed a rationale for developing approaches to clinically target 
these cells. TAMs represent an important target because 1) their presence within 
the TME strongly associates with poor prognosis across tumor types14, 2) they are 
abundant in the majority of tumor types15, and 3) preclinical data show that they 
contribute to tumor growth and metastasis by supporting angiogenesis, stimulating 
cancer cell proliferation and migration and suppressing anti-tumor immune 
responses16-21. Approaches to therapeutically target TAMs aim at depleting the pool 
of macrophages, blocking their recruitment or skewing their polarization towards 
an anti-tumor phenotype.
Thanks to the knowledge gained over the last 40 years on macrophage biology, 
blocking CSF-1/CSF-1R signaling pathway, which is essential for macrophage 
survival, denotes an attractive strategy to eliminate macrophages and suppress 
tumor growth. Several therapeutic approaches aiming at interfering with this 
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pathway have been developed, including antibodies against the receptor (anti-CSF-
1R), the ligand (anti-CSF-1), and inhibitors of the tyrosine kinase domain of CSF-1R. 
Monotherapy treatment with CSF-1R inhibitors exert anti-tumor effects in several 
preclinical models22-30, but not in others31, including the KEP mouse model (chapter 
5 of this thesis). These differences might reflect the different function of TAMs 
elicited by the distinct TME, the biology of the tumor model, or may reflect the 
different experimental designs used, such as the type of inhibitor, tumor stage at 
the start of the treatment and/or doses. Because cancer patients are often treated 
with chemotherapy, many preclinical studies also evaluated the effect of CSF-1R 
inhibition in the context of chemotherapy. Targeting the CSF-1R pathway in various 
experimental tumor models enhances the cytotoxic efficacy of chemotherapy24,25,31-34, 
including in studies where anti-CSF-1R monotherapy does not have any effect on 
tumor control31. Indeed, in chapter 5 of this thesis we observed that anti-CSF-1R 
monotherapy does not affect tumor growth in the KEP mouse model of breast cancer. 
However, anti-CSF-1R synergized with platinum-containing drugs, i.e. cisplatin and 
oxaliplatin, resulting in prolonged tumor-specific survival. Besides blocking the 
main survival signaling pathway in macrophages which results in decreased TAM 
numbers in some tumor settings, the secondary effects of anti-CSF-1R treatment 
on the TME are not fully elucidated. A better understanding of the impact of 
anti-CSF-1R in vivo may explain the therapeutic benefits achieved in combination 
with chemotherapeutic drugs. In this regard, chapter 5 of this thesis describes a 
novel mechanism-of-action of the antibody against CSF-1R in improving cisplatin 
response. Anti-CSF-1R treatment induces an upregulation of type I interferon (IFN) 
in the KEP mammary tumor which significantly enhanced the efficacy of cisplatin. 
However, the increase in type I IFN does not enhance the efficacy of a different type 
of chemotherapeutic agent, the taxane docetaxel. A possible explanation could be 
that the anti-CSF-1R-induced expression of type I IFNs sensitizes tumor cells to the 
mechanism-of-action of platinum-containing drugs, which damage the DNA, and 
not of taxanes, which inhibit mitosis. In addition, it is now widely acknowledged 
that cytotoxic drugs exert also immunomodulatory effects, as described in chapter 
4 of this thesis. Therefore, it might be plausible that chemotherapy-induced effects 
on immune cells might underline the therapeutic activity of CSF-1R inhibition and 
cisplatin. Although promising, the number of chemotherapeutic agents tested in 
this study is limited, therefore correlating the synergistic effects of anti-CSF-1R with 
certain classes of drugs is currently not possible. Future studies should expand the 
number of chemotherapeutic agents to be examined, including other taxane-based 
chemotherapies such as paclitaxel and DNA-damaging agents that do not belong to 
the platinum-containing drug family, including doxorubicin and cyclophosphamide 
which are commonly used in the clinic. In addition, it would be interesting to assess 
the effect of anti-CSF-1R in combination with cisplatin on metastasis. Our study 
showed that anti-CSF-1R alone does not affect the metastasis-specific survival in the 
KEP-based model of spontaneous breast metastasis. However, as with the primary 
tumor growth, the combination could prolong distant metastasis free survival. 
Currently, immunomodulatory drugs blocking the CSF-1/CSF-1R axis are under 
clinical evaluation as a monotherapy or in combination with other therapies, 
including chemotherapy, for several types of solid tumors35. Although preliminary 
results of phase I and II clinical trials display good tolerability to the drugs, early 
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results on their anti-cancer efficacy describe low and variable clinical benefits in 
several types of tumors35. Currently there are clinical trials ongoing with anti-CSF-1R 
in combination with paclitaxel36, another taxane-based drug like docetaxel used in 
our study. However, our data suggest that this class of drug might not be suitable 
to achieve a synergistic therapeutic advantage. Particularly, in light of our data 
showing that anti-CSF-1R treatment induces type I IFN response in cancer patients, 
choosing the optimal cytotoxic drug is of utmost importance to maximize the effects 
of CSF-1R targeting agents. Interestingly, of all the tumor types tested for response 
to CSF-1/CSF-1R-targeting drugs, only diffuse-type tenosynovial giant cell tumor 
showed very encouraging results with a response rate higher than 80%35,37. These 
tumors are characterized by overexpression of CSF-1 and high numbers of CSF-1R+ 
macrophages38. Although it is thought that the clinical activity of CSF-1R-targeting 
drugs mainly rely on blocking this signaling pathway in recruited myeloid cells, 
cancer cells can also express the receptor38, raising the question on the importance 
of targeting this pathway in malignant cells for the outcome of the therapy. 
Although our data showed that CSF-1R blockade depletes intratumoral macrophages, 
we also describe that a small population of intratumoral F4/80+ cells expressing 
high levels of IFNa resists anti-CSF-1R treatment. In an attempt to identify the 
origin of these remaining TAMs, we showed that circulating monocytes have the 
potential to infiltrate the tumor of anti-CSF-1R-treated mice. However, we cannot 
exclude that the IFNa-producing F4/80+ cells are anti-CSF-1R therapy-resistant 
TAMs or repolarized TAMs. Notably, in this study we used a dosing schedule 
of CSF-1R blocking antibody that depletes 80% of TAMs; it would be interesting 
to investigate whether reducing the compound dose would avoid macrophage 
depletion without affecting the capacity of the agent to convert the TME into a type 
I IFN-enriched milieu. Furthermore, of all the strategies developed to inhibit the 
CSF-1/CSF-1R signaling pathway, we only tested the use of the anti-CSF-1R blocking 
antibody, raising the question whether other compounds would also induce a type 
I IFN response. Another study has shown that targeting CSF-1 with a neutralizing 
antibody in a preclinical model for pancreatic cancer reduced macrophage numbers 
while concomitantly skewing their polarization status into an anti-tumor activated 
state30. Interestingly, the remaining macrophages expressed IFNa, suggesting that 
targeting CSF-1 or inhibiting its binding to the receptor by anti-CSF-1R treatment 
may trigger type I IFN signaling. In addition, in a preclinical model for glioblastoma, 
treatment with a small molecule inhibitor of CSF-1R did not deplete TAMs, due to 
tumor-derived factors that sustained their survival, but repolarized them towards 
a tumor-inhibiting state that resulted in improved survival27. Unfortunately, IFNa 
expression was not assessed in these macrophages. The molecular mechanisms that 
induce type I IFN expression in cisplatin/anti-CSF-1R-treated mice are still unknown. 
However, because type I IFNs are stimulated by pattern recognition receptors (PRR), 
I hypothesize that the newly recruited monocytes or the remaining TAMs scavenge 
debris, RNA or DNA released from anti-CSF-1R-mediated macrophage cell death or 
dying cancer cells that triggers IFNa expression.
Another aspect that was not addressed in chapter 5 of this thesis is whether newly 
recruited or remaining macrophages in peripheral organs also start expressing type 
I IFNs and whether their overall phenotype is altered affecting their function. Beside 
reducing intratumoral macrophages28, CSF-1R-targeting drugs also decreases the 
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number of skin macrophages in patients39 and resident macrophages of other 
organs, like liver and colon, in cynomologus monkeys28. Data from CSF-1R-null mice 
revealed that tissue-resident macrophages of organs like skin and liver are depleted, 
while macrophages from organs such as spleen and lung are not, indicating that in 
these tissues other growth factors are involved in macrophage survival40,41. These 
data suggest that, if IFNa-producing macrophages derive from newly recruited 
monocytes, anti-CSF-1R treatment may result in monocyte influx in organs in which 
tissue-resident macrophages rely on CSF-1R signaling. On the other hand, in vitro 
treatment of bone marrow-derived macrophages with anti-CSF-1R showed an 
increase in IFNa expression, suggesting that macrophages in those organs where 
CSF-1R inhibition does not decrease macrophage number, may also be affected by 
anti-CSF-1R treatment. However, whether the recruited monocytes or resident-
macrophages in peripheral organs produce type I IFN and whether IFNa prevents, 
in combination with cisplatin, metastasis formation still needs to be elucidated. 

A fine balance between type I IFN-mediated immune-stimulation and immune-
suppression
Our study demonstrates that it is pivotal to induce the adequate type of inflamed 
TME, i.e. type I IFN-enriched, in order to boost the efficacy of platinum-containing 
drugs in the KEP model. The discovery of type I interferon (IFN) dates back to 1957 
when Isaacs and Lindenmann identified factors released upon exposure of cells to 
heat-inactivated influenza virus that protected or “interfered” with the replication 
of live viruses42. In humans, the type I IFN family includes 13 different IFNa proteins 
(14 in mice), one single IFNb protein and other, less studied IFNs, such as IFNe and 
IFNw43. Every cell can potentially produce type I IFNs upon activation of PRRs, like 
toll-like receptors (TLRs) and the cyclic GMP-AMP synthase (cGAS)/stimulator of 
IFN genes (STING) pathway, that recognize bacterial or viral components, including 
DNA and RNA. Subsequently, type I IFN molecules bind to their receptor that is 
composed of IFNAR1 and IFNAR2 subunits, either in a heterodimer or in an IFNAR1 
homodimer43. Upon binding, IFNs activate the kinases Janus kinase 1 (JAK1) and 
tyrosine kinase 2 (TYK2) which phosphorylate STAT1 and STAT2 to promote the 
expression of type I IFN-stimulated genes (ISGs). Type I IFN signaling is well known 
for its role in host defense against viruses and most of our knowledge to date 
derives from infection studies43. More recently several studies have addressed the 
role of type I IFN in cancer settings. Blocking type I IFN signaling by knocking-out 
IFNAR1 or by antibody-mediated blockade of IFNAR1 results in increased tumor 
development in several tumor models, including tumor cell inoculation models, 
methylcholanthrene (MCA)-induced sarcoma model and dextran sodium sulfate/
azoxymethane (DSS/AOM)-induced colitis-associated tumorigenesis44-48. Type I IFNs 
can have direct effects on tumor progression, by inducing apoptosis or blocking 
proliferation in cancer cells, by inhibiting angiogenesis, or indirectly by stimulating 
immune cells. Like during viral infections, also in a cancer setting type I IFNs 
exert their main immunomodulatory effects by activating DCs and stimulating 
antigen cross-presentation resulting in T cell activation and consequently tumor 
rejection49,50. Type I IFN signaling is also essential for the function and survival of 
cytotoxic T cells51 and NK cells47. Indeed, experiments with IFNAR1 KO bone marrow 
chimeras and tumor transplantation in IFNAR1 deficient hosts revealed that IFNAR1 
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signaling in hematopoietic cells is critical for engaging anti-tumor immunity44,50. In 
addition, downregulation of the transcription factor interferon regulatory factor 7 
(IRF7), which induces the transcription of type I IFNs and other ISGs, and its targets 
in 4T1 breast cancer cells fosters metastasis to the bone through immune escape52. 
Finally, sustained activation of type I IFN signaling in chemotherapy-treated breast 
cancer cells induced dormancy in a T cell-dependent manner53. Interestingly, the 
dose of type I IFN seems to play a role in dictating the mechanisms by which tumors 
are rejected; low doses induce a T cell-mediated anti-tumor responses54, while high 
doses exert anti-angiogenic effects55. The role of type I IFNs in hindering cancer 
progression raises the question on their role in therapy response. Studies have 
described that radiotherapy and some chemotherapeutic drugs, like anthracyclines 
and cyclophosphamide stimulate type I IFN production in preclinical cancer 
models and patients56-59. Importantly, the secretion of type I IFNs are critical for 
the therapeutic efficacy of radiotherapy and anthracyclines as their anti-cancer 
efficacy is lost upon blockade of type I IFN signaling56,57,59. Differently from these 
studies, chapter 5 of this thesis shows that neither cisplatin nor docetaxel alone 
stimulate type I IFN expression in the KEP model. In line with this, blockade of type 
I IFN signaling does not affect cisplatin response. Only the synergistic effect of the 
cisplatin/anti-CSF-1R combination is dependent on anti-CSF-1R-induced type I IFNs. 
The difference in the effect of chemotherapy in inducing type I IFNs may be due to 
the type of chemotherapy used, the tumor model or the different composition of 
the TMEs.
Our work still leaves a question open: how does type I IFN exert its anti-cancer 
efficacy in cisplatin/anti-CSF-1R-treated mice? Our data only partially answer this 
question. We observed that the activity of type I IFN in combination with cisplatin 
is independent of CD8+ T cells, as the depletion of these cells did not influence the 
survival of cisplatin/anti-CSF-1R-treated mice. Additional studies are required to 
assess the role of other cytotoxic cells, such as NK cells. Our in vitro results showed 
that IFNa might have a direct inhibitory impact on KEP cancer cells, however, the in 
vivo relevance of this is still unknown. Notably, we only tested one IFNa subtype, 
IFNa1, which exert inhibitory effects on KEP cell line only at high concentrations. 
Despite the high sequence identity, the 14 IFNa molecules qualitatively differ 
in their potency against viral infections60 and in their anti-proliferative effects 
on cancer cells61. It is possible that the combinatorial activity of multiple IFNa 
subtypes and also IFNb might play a role in enhancing the cisplatin effect. In this 
regard, MDA MB231 breast cancer cells treated with cisplatin and IFNb displayed 
cell growth inhibition and apoptosis62. Although we did not observe an increase 
in apoptotic cells number in cisplatin/anti-CSF-1R-treated KEP tumors, other cell 
death modalities like necrosis or necroptosis may occur. In addition, because both 
cisplatin63 and type I IFNs64 have been shown to induce senescence in cancer cells, 
it might be interesting to assess the number of senescent cells in cisplatin/anti-
CSF-1R-treated tumors, as it may explain the absence of apoptosis and the reduced 
proliferation observed in these tumors.
Systemic administration of recombinant type I IFN is approved for haematological 
diseases and for melanoma at high-risk of recurrence after surgical resection, 
for which modest benefits were associated with intratumoral influx of DCs and T 
cells65,66. In breast cancer patients, type I IFN gene signatures have been shown 
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to correlate with increased bone metastasis-free survival or with metastasis-free 
survival in general52,67,68. However, administration of recombinant type I IFN in 
breast cancer and ovarian patients did not give the desired results because of the 
severe side effects and limited survival benefits69-71. These data suggest that a more 
physiological way to induce type I IFN production might promote better anti-cancer 
responses. In this regard, our study suggests that CSF-1R blockade may be used as 
a strategy to induce intratumoral type I IFNs. Importantly, we observed an increase 
in ISGs in the tumor of cancer patients treated with anti-CSF-1R compared to their 
baseline levels. Our data also implicate the use of agents that trigger type I IFN, 
like STING agonists72, in order to enhance the anti-cancer efficacy of chemotherapy, 
bypassing the side effects of anti-CSF-1R on tissue-resident macrophages. Notably, 
STING agonists are now being tested in clinical trials73-75. 
Although type I IFNs are generally thought to be beneficial for anti-tumor immunity, 
prolonged activation of the pathway might lead to opposite effects. Indeed, like 
during infections, it is crucial that, after the initial inflammatory response against 
the pathogens, a resolution phase takes place to restore tissue homeostasis. In this 
regard, type I IFNs, which are important for the initial inflammatory response, also 
induce immunosuppression. For example in tumor-bearing and in non-tumor-bearing 
mice, type I IFNs can induce the expression of programmed death-ligand 1 (PD-L1), 
an inhibitory molecule that prevents T cell activation, IL-10, and indoleamine 2,3 
deoxygenase (IDO), an enzyme involved in tryptophan metabolism that suppresses 
effector T cells76-80. In line with this, the therapeutic blockade of PD-L1 in combination 
with type I IFN treatment in cell line inoculation models resulted in better tumor 
control compared to mice that did not received the checkpoint inhibitor80,81. These 
data raise the question of whether the prolonged type I IFN signaling achieved in the 
KEP mice after CSF-1R blockade might induce immunosuppressive circuits. Indeed, 
we found that cisplatin/anti-CSF-1R treatment in KEP mice did not unleash an anti-
tumor response. In order to engage anti-tumor immunity, we had to breach through 
the immunosuppressive layer by further targeting immunosuppressive neutrophils 
in this poorly immunogenic tumor model, resulting in a T cell dependent better 
tumor control and extended survival. RNA-sequencing analysis on intratumoral 
neutrophils isolated from cisplatin/anti-CSF-1R-treated mice displayed a pronounced 
type I IFN signaling compared to neutrophils in cisplatin/control antibody-treated 
mice. These data indicate that neutrophils signal through type I IFN receptor in the 
TME, however whether this signaling promotes immunosuppressive abilities in 
these cells has not been elucidated. While some studies have suggested that type I 
IFNs can induce anti-tumor properties in neutrophils82, studies in chronic infections 
report that a type I IFN transcriptional signature in neutrophils in malaria-infected 
hosts and in patients with active tuberculosis correlated with tissue damage and 
disease pathogenesis83,84. It is possible that the type of IFN molecules, the set of 
ISGs expressed, the abundance of the receptor on cell surface and the duration 
of type I IFN signaling may all play a role in determining neutrophil function in 
different settings. Indeed, we observed that type I IFN-producing macrophages 
express higher levels of PD-L1 upon anti-CSF-1R treatment, raising the question 
of whether it is induced by IFNa in an autocrine mechanism occurring to resolve 
the inflammatory responses. In conclusion, we showed that although type I IFN is 
important to enhance the anti-cancer efficacy of cisplatin, future studies should 
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address whether sustained type I IFN signaling can be detrimental in cisplatin/anti-
CSF-1R-treated mice.

Targeting neutrophil-derived immunosuppression
Because of the immunosuppressive function of neutrophils in the KEP model, 
chapter 5 of this thesis suggests that targeting neutrophils may be an attractive 
therapeutic option for cancer therapy. Indeed, a high neutrophil-to-lymphocyte 
ratio in the circulation of several cancer types is linked to poor prognosis in 
patients85. However, total depletion of neutrophils is not desirable as it might 
increase the risk of serious opportunistic infections. Current approaches under 
clinical evaluation aim at blocking neutrophil migration by targeting CXCR1 and 
CXCR2, two chemokine receptors important for neutrophil recruitment in the tumor 
bed86,87. Other attractive approaches for inhibiting neutrophils include targeting the 
IL1b-IL-17-G-CSF inflammatory axis that leads to neutrophil expansion in several 
models, including the KEP model88. Importantly, drugs targeting this pathway are 
already clinically approved for the treatment of other inflammatory conditions like 
psoriasis, suggesting the possibility of a quick and easy transfer of these drugs to 
the treatment of cancer89. Future clinical studies should assess the efficacy of these 
neutrophil-targeting agents in patients with neutrophil expansion in combination 
with anti-CSF-1R treatment or type I IFN-stimulating drugs and chemotherapy.
Neutrophils can exert immunosuppressive functions by several mechanisms90. For 
example, neutrophils express enzymes, such as arginase I (ARG1) and IDO, that 
consume amino acids important for T cell function and survival like L-arginine and 
tryptophan, respectively91,92. Also, the release of reactive oxygen species and nitric 
oxide by the activity of ARG1 and inducible nitric oxide synthase (iNOS) inhibits the 
ability of T cells to recognize the specific peptide by affecting the T cell receptor 
(TCR) conformational flexibility93. Although our group has previously reported that in 
the KEP-based model of spontaneous breast cancer metastasis immunosuppressive 
and pro-metastatic neutrophils express high levels of iNOS88,94, additional studies 
are required to elucidate the mechanisms employed by neutrophils to prevent an 
anti-tumor immune response in cisplatin/anti-CSF-1R-treated mice. 
One proposed advantage of therapies targeting the immune compartment of the 
TME is that, differently from cancer cells, these cells are genetically stable cells, thus 
less prone to acquire therapy resistance. However, considering the plasticity and 
versatility of the immune system, resistance mechanisms to immunomodulatory 
drugs may derive from compensatory inflammatory cues. In several types of tumor 
models, macrophage inhibition triggered an influx of neutrophils with tumor-
supporting functions in the TME that reinstates tumor progression95-98. Some of 
these studies showed that neutrophils compensate for the depletion of TAMs 
by employing the same pro-tumoral mechanisms of TAMs, such as production 
of metalloproteinase-9 and activation of the PI3K signaling pathway to induce 
angiogenesis and immunosuppression96,97. Differently from these studies, our work 
suggests that upon CSF-1R inhibition, neutrophils do not take over macrophage 
activities, but, unlike macrophages, exert immunosuppressive functions. The 
therapeutic efficacy of targeting macrophages and neutrophils in cisplatin-treated 
KEP is mediated by inducing type I IFNs by intratumoral macrophages and by 
unleashing anti-tumor responses.
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The challenge to study neutrophils in cancer

Similar to macrophages, neutrophils are highly plastic cells which dynamically adapt 
to changes in the environment. Reflecting the M1/M2 binary definition, it was 
proposed that also tumor-associated neutrophils could be described as N1 or N2 
with anti- and pro-tumoral properties, respectively99. TGFb was found to be the key 
molecule to skew neutrophils towards a N2 phenotype99. G-CSF is another mediator 
known to induce pro-metastatic neutrophils with immunosuppressive or pro-
angiogenic functions88,100-103. Conversely, IFNb has been reported to shift neutrophil 
profile towards an N1 phenotype in vivo104. In vitro treatment of neutrophils with a 
cocktail of cytokines including GM-CSF and IFNg has been shown instead to induce 
the generation of neutrophils with an antigen-presenting ability105. Interestingly, 
a subset of neutrophils with antigen-presenting abilities was also found in lung 
cancer patients106. These data suggest that different stimuli may sculpt neutrophils 
in unique ways. Like for macrophages, a static binary state of neutrophil activation 
is unlikely to exist; rather, their functional identity is dynamically and continuously 
determined by stimuli in the environment. As a consequence, the function of 
neutrophils in distinct TME may differ. Although the majority of the studies 
demonstrate the pro-tumorigenic and pro-metastatic role of neutrophils, others 
report tumor-inhibiting properties100. Neutrophil depletion is the main strategy 
used by these studies to identify the function of these cells. However, current 
approaches are either non-specific (e.g.: anti-GR1 antibodies or CXCR2 antagonists) 
or with non-durable effects (e.g.: anti-Ly6G antibody or genetic model based on 
administration of diphtheria toxin107). To circumvent these issues, chapter 6 of this 
thesis describes a novel mouse model for the conditional and reversible depletion 
of neutrophils. This model, called hMRP8-ATTAC, expresses caspase 8 fused to the 
FKBP domain under the control of the human MRP8 promotor, which is mainly 
active in neutrophils. The model relies on the administration of a chemical dimerizer 
which binds with high affinity to two FKBP domains, leading to the dimerization and 
activation of caspase 8 and resulting in apoptosis108. Despite the high expression of 
the transgene mainly in neutrophils and their reduction after dimerizer injection, 
we did not observe neutrophil depletion in tumor-bearing hMRP8-ATTAC mice. 
The challenge of depleting neutrophils is that they are relatively short-lived, they 
are continuously produced in the bone marrow and ablating neutrophils activates 
feedback mechanisms to increase granulopoiesis100. In tumor-bearing hosts, this 
phenomenon is amplified, as tumors induce high levels of G-CSF pressing the bone 
marrow to release new neutrophils88. The continuous neutrophil production and 
the fact that the dimerizer has a half-life of approximately 5 hours, might explain 
why we did not observe neutrophil ablation in tumor-bearing hMRP8-ATTAC mice. 
Future studies should assess whether a more constant dimerizer treatment would 
be more successful in reducing neutrophil numbers. In this regard, it would be 
interesting to investigate a dimerizer formulation to be supplied in the animal chow 
or in the drinking water.
Besides total ablation of neutrophils, future studies should also focus on specific 
gene deletion in neutrophils. For example, it was discovered that the MET proto-
oncogene in neutrophils is important for their chemotaxis and anti-tumoral and anti-
metastatic effects109. The hMRP8;Cre mouse model, in which the cre recombinase is 
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expressed under the control of the neutrophil-specific promotor, could be crossed 
with a mouse model bearing LoxP-flanked genes of interest, resulting in neutrophil-
specific gene knockouts. However, the generation of these transgenic mice is time 
and cost-consuming. A strategy to accelerate genetic studies in neutrophils could be 
the in vitro manipulation of bone marrow progenitors in order to obtain knocked-
out or knocked-down genes specifically in neutrophils followed by bone marrow 
reconstitution with these cells, allowing for testing in parallel the function of 
multiple genes of interest. These types of experiments may be used to answer some 
of the questions described above. For example, by knocking-out IFNAR1 specifically 
in neutrophils, it would be interesting to assess the effect of type I IFN signaling 
in the immunosuppressive abilities of neutrophils in cisplatin/anti-CSF-1R-treated 
mice.
In conclusion, future studies should aim at generating new in vivo tools for the 
study of neutrophils, in order to obtain a better understanding of the role played by 
neutrophils in different aspects of tumor biology. 

Concluding remarks

The TME is a complex network in which several cell populations exert a variety 
of functions that can favor or limit tumor growth and progression. This thesis 
focuses on the complexity of myeloid cells in the TME, highlights the need to better 
understand the effects of immunomodulatory agents and proposes the design of 
combinatorial strategies targeting several aspects of the TME for the treatment 
of breast cancer. In particular, our data suggest that creating a favorable TME and 
targeting immunosuppressive cells are two steps necessary to engage anti-tumor 
immunity in breast cancer. In addition to targeting pro-tumoral immune cells or 
creating an advantageous TME for immune-stimulation, directly stimulating the 
anti-tumor cytotoxic activity of T cells represents an attractive strategy against 
cancer. One of the most studied approaches is the use of immune checkpoint 
inhibitors, which are blocking antibodies directed against molecules that inhibit 
T cell function, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and 
programmed cell death protein 1 (PD-1) on T cells, or against one of its ligands, PD-
L1, expressed by a variety of cells including myeloid cells and tumor cells110. The use 
of checkpoint inhibitors in clinical trials showed remarkable results in several types 
of cancer including melanoma, non-small cell lung carcinoma, Hodgkin’s lymphoma 
and bladder cancer111-115. The successes of this therapeutic approach resulted in 
the selection of cancer immunotherapy as the breakthrough of 2013 by the journal 
Science116 and the award of the Nobel Prize in Physiology or Medicine 2018 to James 
P. Allison and Tasuku Honjo for their discovery of CTLA-4 and PD-1, respectively117. 
However, not all tumor types respond equally to checkpoint inhibitors. In triple 
negative breast cancer (TNBC) patients, checkpoint inhibitors as monotherapies 
show a modest response rate that varies between 5 and 30%118, raising the 
possibility that a more immunosuppressed TME and/or a lower mutational burden, 
as compared to other tumors types, contribute to the poor response. Further 
evaluation of the efficacy of checkpoint inhibitors in combination with conventional 
chemotherapy in breast cancer patients is currently ongoing. A phase III clinical trial 
in TNBC patients, showed promising results of anti-PD-L1 therapy in combination 
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with paclitaxel, especially in the subgroup of patients that expresses PD-L1119. In 
addition, the immunomodulatory properties of low dose chemotherapy are also 
appealing to be exploited in combination with immunotherapy. In this regard, 
a clinical trial at the NKI led by Dr. Marleen Kok in metastatic TNBC patients is 
evaluating the effects of five different conventional therapies, including low dose 
chemotherapy and radiotherapy, in conditioning the tumor microenvironment to 
the following treatment with checkpoint inhibitors120,121. In addition to conventional 
therapies, the efficacy of checkpoint inhibitors is currently under evaluation in 
combination with CSF-1R-targeting agents35. Results from these clinical trials will 
provide further information on the importance of modulating the TME in order to 
achieve anti-tumor immunity. 
Overall in my thesis I have explored the role of myeloid cells in conventional therapy 
response in breast cancer. My results suggest that suppressive cells are an important 
roadblock for successful anti-cancer therapy. Therefore, future therapeutic 
approaches, including immunotherapies, should include combinational therapies 
that counteract myeloid cells. Additionally, this thesis highlights the importance of 
considering the effects of conventional therapies on intratumoral cells other than 
cancer cells for treatment decisions.
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