
Immune cell complexity in the tumor microenvironment of breast cancer
Salvagno, C.

Citation
Salvagno, C. (2019, October 22). Immune cell complexity in the tumor microenvironment of
breast cancer. Retrieved from https://hdl.handle.net/1887/79824
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/79824
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/79824


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/79824 holds various files of this Leiden University 
dissertation. 
 
Author: Salvagno, C. 
Title: Immune cell complexity in the tumor microenvironment of breast cancer 
Issue Date: 2019-10-22 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/79824
https://openaccess.leidenuniv.nl/handle/1887/1�


CHAPTER 3



Transcriptional signatures derived from 
murine tumor-associated macrophages 
predict outcome in breast cancer 
patients

Sander Tuit1,2,*, Camilla Salvagno3,*, Theodore S. Kapellos1,*, 
Cheei-Sing Hau3, Lea Seep1, Marie Oestereich1, Kathrin Klee1, 
Karin E. de Visser3, #, Thomas Ulas1,# and Joachim L. Schultze1,4, #

1 	 Genomics and Immunoregulation, LIMES Institute, University of 		
	 Bonn, Carl-Troll-Str. 31, 53113 Bonn, Germany 

2 	 Department of Anatomy and Embryology, Leiden University Medical 
	 Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
3 	 Division of Tumor Biology & Immunology, Oncode Institute, the 
	 Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX 		

	 Amsterdam,The Netherlands
4	 Platform for Single Cell Genomics and Epigenomics (PRECISE) at the 
	 German Center for Neurodegenerative Diseases and the University 	

	 of Bonn, Sigmund-Freud-Str. 27, 53127 Bonn, Germany
* 	 shared first authorship
# 	 shared last authorship

Corresponding authors: E-mail: j.schultze@uni-bonn.de, tel: (+49) 228 7362787; 
			   E-mail: k.d.visser@nki.nl, tel: (+31) 20 5126104

Submitted for publication



Ab
st
ra
ct

Tumor-associated macrophages (TAMs) are frequently the most abundant 
immune cells in murine and human cancers and are associated with poor 
survival. Here we generated TAM molecular signatures from K14cre;Cdh1flox/
flox;Trp53flox/flox (KEP) and MMTV-NeuT (NeuT) transgenic mice which 
resemble human invasive lobular carcinoma (ILC) and HER2+ tumors, 
respectively. Determination of TAM-specific signatures in breast cancer 
required relationship analysis with healthy mammary tissue macrophages, 
since comparison with other macrophage populations overestimated TAM-
specific gene expression. TAMs from the two models featured a distinct 
transcriptomic profile and KEP-derived signatures reliably predicted 
outcome in ILC patients, indicating that translation of murine TAM signatures 
to patients warrants consideration of the cancer subtype. Collectively, we 
show that a transgenic mouse tumor model can be utilized to derive a TAM 
signature for human breast cancer outcome prediction and we provide a 
generalizable strategy for determining and applying immune cell signatures 
provided the murine model reflects the human disease.  
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Introduction
     
The immune system plays an important role during tumor development, progression 
and therapy response and immune cells have evolved into attractive targets of 
therapeutic manipulation in cancer patients 1–3. Ongoing and future attempts to 
fine-map the immune cell landscape of tumors will give us a full picture of the 
tumor microenvironment (TME) and may provide novel biomarkers and therapeutic 
targets 4. Myeloid cells and, in particular, tumor-associated macrophages (TAMs) 
are a major component of the TME 5. In the majority of cancer types, TAMs are 
often described as pro-tumorigenic and an enrichment of TAMs - as defined 
by immunohistochemistry and flow cytometry - has been linked to poor clinical 
outcome in several cancer types, including breast and lung cancers 6,7.  
More recently, large multi-omics datasets from different cancer types consisting of 
thousands of human samples have been used to classify tumors based on immune 
cell-derived molecular signatures that could potentially be exploited in the future 
to improve patient stratification and therapeutic strategies 8–10. For example, in 
colorectal cancer and T cell lymphomas, T cell-related gene signatures based on 
transcriptomic data were successfully used to diagnose, classify and predict disease 
outcome 11,12. However, despite the enormous progress in the deconvolution of 
such data 13, the association of TAMs with clinically predictive signatures is not yet 
resolved.  
Previous approaches to define might have been hampered by the fact that 
macrophages possess a tissue-specific transcriptional profile 14–16. Consequently, 
the identification of TAM-specific signatures is not possible without access to 
healthy tissue macrophages of the same organ. Such reference data are still very 
limited 17 and efforts, such as the Human Cell Atlas18 are not yet ready to provide 
such information. Whether or not the generation of cell type-specific signatures by 
single-cell transcriptomics 19–23 will be sufficient to infer TAM-specific signatures is 
currently not clear, considering the sparse nature of single-cell RNA-seq data.
In light of current shortcomings, we propose an alternative approach to define TAM-
specific signatures and test their clinical applicability for outcome prediction. We first 
defined TAM signatures in well-defined murine tumor models by comparison with 
macrophages from different organs including the organ of tumor origin. For proof-
of-principle, we generated TAM signatures from the K14cre;Cdh1flox/flox;Trp53flox/
flox (KEP) murine breast cancer model 24 which recapitulates human ILC, the second 
most common histotype in humans, accounting for 10-15% of all breast cancers 
and the MMTV-NeuT (NeuT) breast cancer model25 which has been indicated to 
resemble HER-2 positive breast cancers. Beside showing a shared transcriptional 
profile, TAMs from the two models present unique molecular signatures, illustrating 
the impact of the tumor subtype on TAMs. Tumor model-specific TAM signatures 
were then applied to clinical samples from large existing multi-omics studies26,27 to 
assess the value of these TAM-specific signatures for predicting clinical outcome.
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Results

Characterization of TAMs in two murine breast cancer models 
We first characterized TAMs isolated from two spontaneous murine breast cancer 
models; the KEP (FVB background)24 and the NeuT (Balb/c background) models 25 
(Fig. 1a). Tumorigenesis in KEP mice is driven by the stochastic loss of E‐cadherin 
and p53 by Keratin 14-specific Cre expression. These mice develop mammary 
tumors between 6-8 months of age and the disease resembles ILC in its pathology 
and progression 24. In contrast, NeuT mice develop mammary tumors at 4 months of 
age due to the transgenic overexpression of the activated form of the rat oncogene 
Neu (ortholog of the human HER2) 25, previously indicated to resemble HER2+ breast 
tumors.   
Assessment of the myeloid cell compartment in mammary tumors of both breast 
cancer models identified a CD11bhiF4/80low/- population which contained Ly-6Chi 
monocytes and Ly-6GhiLy-6Clow neutrophils and a CD11bhiF4/80hi macrophage 
population, hereafter referred to as TAMs (Fig. 1b-c). Next, we compared by 
immunohistochemistry the prevalence of macrophages in the mammary glands 
of age-matched WT mice, KEP and NeuT mice bearing early lesions and KEP and 
NeuT mice bearing tumors and found that both models were characterized by an 
increased accumulation of TAMs (Fig. 1d). Quantification of their numbers showed 
that CD11bhiF4/80hi macrophages represented 30% and 6% of the total live cells in 
the KEP and NeuT mammary tumors, respectively (Fig. 1e).
Further characterization of the macrophage phenotype showed that TAMs from 
the KEP and not from the NeuT model have lower expression of the mannose 
receptor CD206, while a higher proportion of TAMs in the NeuT model and not in 
the KEP model expresses higher levels of MHC-II compared to macrophages from 
the mammary gland of WT mice (Suppl. Fig. 1a-d). In addition, a significant increase 
in the frequency of Ki67+ TAMs was observed only in the KEP model compared to 
macrophages from healthy mammary glands of wild type FVB mice, (Suppl. Fig. 1e-
f). Based on these data, we defined and sorted CD11bhiF4/80hi breast cancer TAMs, 
as well as tissue-resident macrophages from the mammary gland of KEP and NeuT 
mice (MTMs (KEP model), MTMs (NeuT model)), mammary tissue macrophages 
from KEP mice containing early neoplastic lesions, but not palpable tumors (MTMs 
(PRE-KEP model)) and spleen and bone marrow of WT and mammary tumor-bearing 
mice (WT spleen/BM (KEP/NeuT model) and spleen/BM (KEP/NeuT model)) for 
genome-wide assessment of transcriptional regulation (Suppl. Fig. 2a-h).
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Fig. 1 | Mammary tumorigenesis in two transgenic mouse models is characterized by macrophage 
influx. (a) Schematic representation of the macrophage sample collection for RNA sequencing. (b-
c) Representative dot plots of a KEP mammary tumor (b) and a NeuT tumor (c) stained for F4/80 
and CD11b, confirming absence of monocytes (Ly-6G-Ly-6C+) and neutrophils (Ly-6G+Ly-6Clow) in the 
F4/80+CD11b+ TAM population. Dot plots are gated on CD45+ cells. (d) Representative images of 
immunohistochemical F4/80 staining of a mammary gland from a WT FVB mouse, an early lesion in 
the mammary gland of a 4 months old KEP mouse and a KEP tumor (upper row); and of a mammary 
gland of a WT Balb/c mouse, an early lesion in the mammary gland of a 2 months old NeuT mouse and 
an NeuT mammary tumor (lower row), scale bar= 20 um. (e) Average percentage of CD11b+ F4/80+ 
macrophages gated on live cells in mammary glands and mammary tumors of KEP mice (left graph) 
and in mammary glands and mammary tumors of NeuT mice (right graph). Data are mean ± SEM from 
n=5-6 animals per group and were analyzed with a Mann‑Whitney test, *p < 0.05, **p < 0.001.

Tissue origin dictates transcriptional regulation of TAMs 
Considering findings demonstrating that tissue macrophages are characterized by 
organ-specific transcriptional regulation 16, we first compared the transcriptome 
profiles of the TAMs derived from the two breast cancer models (KEP, NeuT) with 
publicly available TAM profiles of two lung cancer models (Lewis lung carcinoma 
cell line and lung adenocarcinoma cell line) and with the profiles of tissue-resident 
macrophages of the mammary gland or lung, respectively. In addition, macrophages 
harvested from seven organs derived from either WT, mammary tumor-bearing or 
helminth-infected mice as well as other immune and epithelial cells 16,28–31 were used 
as controls (Fig. 2a and Suppl. Fig. 3a-b). Cells of the macrophage/monocyte lineage 
clustered together, separated from T cells, neutrophils, NK cells and epithelial cells 
(Suppl. Fig. 3c).    
To elaborate the relationship between the different tissue-resident macrophages 
and cancer models, we performed sample-sample co-expression network analysis 
(CNA) based on Pearson correlation (cutoff 0.977) on all present genes. CNA showed 
a distinct cluster consisting of mammary gland tissue macrophages (MTMs) and 
TAMs derived from both breast cancer models, strongly suggesting that the tissue 
of origin dictates most of the transcriptional regulation in TAMs (Fig. 2b). This was 
similarly true for the lung cancer TAMs isolated from the two cancer cell line-based 
models which clustered together with the healthy lung-derived macrophages. To 
computationally validate these findings, we performed hierarchical clustering 
(HC) on the 1,000 genes with the highest variance within the dataset (Fig. 2c) and 
generated a Pearson correlation coefficient matrix (PCCM) (Fig. 2d). Both approaches 
supported our initial findings, clearly indicating that the TAMs of the two breast 
cancer models and the two lung cancer models were part of the mammary gland 
or lung clusters, respectively. Similarly, macrophages derived from spleen or bone 
marrow of tumor-bearing KEP or NeuT mice also clustered with the respective organ 
(Fig. 2c-d).  Moreover, we observed that the transcriptional differences between 
TAMs and their respective healthy tissue counterparts were less pronounced than 
those between healthy and helminth-infected animals (Fig. 2c-d).        
As an alternative to statistical models, we employed CNA on all genes and created a 
scale-free network (R2= 0.772) based on a Pearson correlation cutoff of 0.87 (Suppl. 
Fig. 4a-b). A total of 28 clusters were identified in the  Co-expression Network 
Analysis (CoCena2) cluster-condition heatmap (Fig. 2e) and specific gene signatures 
for each of the macrophage samples were discovered in this network as depicted in 
Suppl. Fig. 4c. We detected modules associated with classic macrophage functions, 
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such as scavenger receptors (Cd163, Mrc1, Cd36) and transcription factors (Maf) 
in MTMs, whereas we identified genes, such as the pro-inflammatory Il12b, the 
integrin Itgb8 and the G protein-coupled receptor Gpr31b mainly associated with 
breast cancer TAMs (Fig. 2f). Taken together, our data suggest that the tissue of 
origin dictates not only the transcriptomes of healthy tissue-resident macrophages, 
but also of TAMs and dictates their transcriptional programs.  
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Fig. 2 | Tissue of origin determines the fate of the macrophage phenotype. (a) Schematic 
representation depicting the bioinformatics workflow. (b) Network visualization of sample-centered 
correlation analysis where each node represents one sample. (c-d) HC and PCCM maps based on the 
1,000 genes with the highest variance within the dataset. Indicated in bold (d) are the disease state 
macrophages. (e) CoCena2 cluster-condition heatmap and (f) CoCena2 visualization of all present 
co-expressed genes in all tissues. Tissue-specific clusters for mammary gland/tumors are colored 
according to the clustering as seen in cluster-condition heatmap. Representative cluster-specific genes 
are noted next to them, GFC; Group Fold Change.
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Identification of TAM-specific transcripts
Although the comparison of TAMs with different tissue-resident macrophage 
populations revealed that the tissue of origin is the major driver of the global 
transcriptome in TAMs, we were also interested to determine truly TAM-specific 
gene expression profiles. In previous reports, TAM functionalities have been 
compared to macrophages isolated from a different tissue than the tumor origin32,33. 
We, in contrast, defined such genes by direct comparison of breast cancer TAMs with 
macrophages from age-matched healthy mammary gland tissue and related them 
to those derived from comparisons of TAMs with other tissue-resident macrophages 
(Fig. 3). We employed Venn diagrams to compare KEP-TAMs with either MTMs or 
splenic macrophages (KEP model) (Fig. 3b), as well as splenic macrophages (KEP 
model) with either KEP-TAMs or MTMs (KEP model) (Fig. 3c). We found that the 
fold change of differentially expressed (DE) genes in the TAMs versus splenic 
macrophages correlated better with the fold change of DE genes in the MTMs versus 
splenic macrophages (KEP model) (r=0.8) as opposed to the fold change of DE genes 
in the TAMs versus MTMs (KEP model) (r=0.28), indicating an overestimation of 
differential gene expression by TAMs when comparing to splenic macrophages (Fig. 
3b-c). This was also reflected in the respective FC/FC plots where many genes were 
similarly DE when plotting KEP-TAMs versus either MTMs (KEP model) or splenic 
macrophages (Suppl. Fig. 5a). Plotting KEP-TAMs versus splenic macrophages 
against MTMs indicated that the TAMs and MTMs displayed a transcriptome profile 
substantially different from that of splenic macrophages (Suppl. Fig. 5b). Similarly, 
the same pattern was observed in the NeuT model (Suppl. Fig. 5c-d) or when splenic 
macrophages were replaced with bone marrow macrophages in both breast cancer 
models (Suppl. Fig. 5e-h).      
To identify truly TAM-associated cell surface markers, we plotted genes elevated 
in TAMs in comparison to either MTMs or splenic macrophages from both models 
(Fig. 3d).  This analysis revealed  a small set of genes that was DE against both 
MTMs and splenic macrophages (cluster 3). Moreover, we also identified genes 
which were DE only against splenic macrophages (cluster 2) or MTMs (cluster 1) 
and which would wrongfully be included or excluded from downstream analysis 
if splenic macrophages were to be used as the reference macrophage population. 
Collectively, these analyses further support the notion that the determination of 
TAM transcriptomic profiles requires comparison to macrophages derived from the 
same tissue and strongly argue for the careful selection of reference macrophage 
populations.
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Fig. 3 | Inter-tissue comparison leads to false interpretation of changes in TAMs. (a) Schematic 
representation outlining the bioinformatics approach. (b-c) Venn diagrams of the comparisons of KEP-
TAMs with MTMs and splenic macrophages (KEP model) (b) and splenic macrophages with KEP-TAMs 
and MTMs (KEP model) (c). Correlation plots of the fold changes of the DE genes in the aforementioned 
comparisons are shown (right) for both Venn diagrams. (d) Heatmap visualization of z-transformed 
surface marker (SM) absolute expression values. Overlapping DE genes from KEP and NeuT models 
were extracted from FC/FC plots, filtered for SMs and plotted.
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TAM transcriptomes differ between different breast cancer models 
Our experimental setting also allowed us to define tumor model-specific regulation 
of macrophages (Fig. 4a). To define differences in TAM transcriptomes between the 
KEP and the NeuT model, we performed principal component analysis (PCA) (Fig. 
4b), HC of the 1,000 genes with the highest variance (Fig. 4c) and PCCM (Fig. 4d). 
All three approaches demonstrated that TAMs from both breast cancer models are 
more closely related to each other than to MTMs from healthy or early neoplastic 
lesions. However, we also identified tumor model-specific gene alterations in TAMs 
as depicted in the HC analysis of KEP and NeuT models (Fig. 4c, clusters 5 and 8, 
respectively), implying that the tumor subtype also shapes the transcriptional 
regulation of TAMs. Two clusters (1 and 4) are related to the different genetic 
backgrounds of the models as the same up or downregulated genes in KEP-
TAMs and NeuT-TAMs were also seen in MTMs (KEP model) and MTMs (NeuT 
model),respectively. Representative genes from clusters 5 (Hif1a, Vegfa, Itgam, 
Cxcr4, Il1rn) and 8 (Tlr12, Itga8, Itgb8, Icosl) of the HC are depicted in the model-
specific Volcano plots of Fig. 4e-f.
We next visualized the DE genes from the comparison of KEP-TAMs and NeuT-TAMs 
to the respective MTMs in Venn diagrams to determine the overlap between the 
two models and found a small overlap in both the upregulated (17%, upper diagram) 
and downregulated (26%, lower diagram) DE genes (Fig. 4g). Since we also had the 
opportunity to isolate MTMs (PRE-KEP model), we could determine whether there 
were already transcriptional changes in macrophages at this stage. However, the 
transcriptional changes of MTMs (PRE-KEP model) to KEP-TAMs were comparable 
to those of healthy MTMs to KEP-TAMs as shown in the respective Venn diagrams 
for upregulated (70%, upper diagram) and downregulated (50%, lower diagram) DE 
genes, suggesting that they are similar to each other (Fig. 4h).   
Based on the DE genes in both tumor models, we inferred overall biological changes 
by gene ontology enrichment analysis (GOEA) (Suppl. Fig. 6a-c). Common breast 
cancer TAM ontology terms included proliferation-related processes, regulation of 
innate immune responses and cell migration properties, wound healing processes 
and T cell activation processes (Suppl. Fig. 6a), whereas vasculature development 
and cell cycle-related processes (KEP-TAMs) and regulation of cell growth and 
angiogenesis-related processes (NeuT-TAMs) were associated with model-specific 
TAM populations (Suppl. Fig. 6b-c). Notably, the cell cycle-related processes were 
only significantly enriched in KEP-TAMs which is in line with the phenotypical 
observations of Suppl. Fig. 1e-f. In conclusion, our data show that the breast cancer 
subtype contributes to TAM transcriptional differences in different murine models. 
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Fig. 4 | Breast cancer subtype influences TAM phenotype ‑ conventional approach. (a) Schematic 
representation outlining the bioinformatics approach. (b) PCA using all present (12338) genes with 
principle components (PC1-2 and PC1-3) plotted in two-dimensional graphs. (c) HC map based on the 
1,000 genes with the highest variance within the dataset. 
Representative cluster-specific genes are noted next to them. (d) PCCM map based on the 1,000 genes 
with the highest variance within the dataset. (e) Volcano plot of the DE genes from the comparison 
KEP-TAMs with MTMs (KEP model). (f) Volcano plot of the DE genes from the comparison NeuT-
TAMs with MTMs (NeuT model). DE genes (FC ≥ 2, FDR-adjusted p-value ≤ 0.05) are indicated in red 
and representative upregulated DE genes are noted. (g) Venn diagram of the comparisons of KEP-
TAMs with MTMs (KEP model) and NeuT-TAMs with MTMs (NeuT model). (h) Venn diagram of the 
comparisons of KEP-TAMs with MTMs (PRE-KEP model) and KEP-TAMs with MTMs (KEP model).

Identification of TAM-associated hubs by CNA  
To link our information concerning differential transcriptional regulation within 
TAMs of different models to potential regulatory circuits, we utilized co-regulation of 
gene expression as our model and applied CNA on the DE genes between TAMs and 
MTMs in at least one of the breast cancer models (Fig. 5). The scale-free network 
(Fig. 5b, R2=0.714) comprised 8 modules and confirmed that the transcriptomes 
of KEP-TAMs and NeuT-TAMs consisted of genes which followed shared (turquoise 
module) and model-specific expression patterns (blue and magenta modules) 
(Fig. 5c). Immune-related DE genes which were co-expressed are shown for the 
turquoise (Ccr5, Cx3cr1, Cxcl16, Ifngr2, Itgav, Mmp14), blue (Cxcr4, Hif1a, Itgam) 
and magenta (Icosl, Itga8, Itgb8, Tlr12) modules in Fig. 5d.
We then went one step further and investigated the potential hierarchies in TAM-
associated gene regulation by building Intraclusteral Gene Interaction Networks 
(I-GINs) which extend the network approach. From the previous network analysis, 
we first focused on the gene module changed in both TAM models (turquoise 
module). We visualized the top 25% nodes based on degree and correlation and the 
top 25% correlation-ranked edges to identify known interactions from the STRING 
protein-protein interactions database (Fig. 5e). Subsequently, all edges to hubs were 
kept allowing a maximum of two edges between hubs. Already 46% of the identified 
interactions within the common breast cancer TAM network were known based on 
protein-protein interaction databases. Among the selected candidates, we detected 
cytokine receptors (Ifngr2), chemokines (Cxcl16) and metalloproteinases (Mmp14) 
which reflect the immune activation of breast cancer TAMs in the TME (Fig. 5f). 
Further assessment of the KEP-TAM- and NeuT-TAM-specific modules revealed the 
co-regulation of hypoxia factor (Hif1a) and scavenger receptors (Msr1) in the KEP-
TAM dataset and pathogen recognition receptors (Tlr12), co-stimulatory molecules 
(Icosl) and integrins (Itgax) in the NeuT-TAM dataset (Suppl. Fig. 7). Finally, the co-
expressed genes detected here presented a remarkably high degree of overlap with 
the DE genes identified by statistical models in Fig. 4c, further strengthening their 
relevance as breast cancer model-specific biomarkers in TAMs.
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Fig. 5 |Breast cancer subtype influences TAM phenotype ‑ co-expression-based approach. (a) 
Schematic representation outlining bioinformatics workflow. (b) CoCena2 logged network degree 
distribution with linear fitting. (c) CoCena2 cluster-condition heatmap. (d) CoCena2 visualization of all 
present co-expressed genes. Network nodes are colored according to their cluster membership and 
representative cluster-specific genes are noted. (e) Schematic representation outlining bioinformatics 
workflow for I-GIN construction for breast cancer TAM-specific genes (turquoise cluster). (f) I-GIN 
node coloring represents regulatory or receiving status obtained from a Bayesian approach and points 
out highly co-expressed genes and their known or proposed links to strongest correlated neighbors. 
Candidate genes mentioned in the text are highlighted in yellow boxes. GFC; Group Fold Change

Model-specific TAM gene signatures predict disease outcome in humans
To determine the clinical relevance of the identified murine model-specific TAM 
signatures, we next set out to translate our findings to humans. For this purpose, 
we generated a unique list of TAM-associated genes defined by statistical and co-
expression models (Fig. 6a), identifying 198 KEP-TAM associated genes, 227 NeuT-
associated genes and 116 common breast cancer TAM genes (Fig. 6b). As a next 
step, we interrogated RNA-seq samples derived from ILC patients within the TCGA 
(n=125) 26 and the METABRIC (n=147) 27 databases for their macrophage content 
(Fig. 6c and Suppl. Fig. 8a). We used linear support vector regression (LSVR) and 
the LM22 macrophage gene signature set 34 to describe the immune cell content 
of these samples. When ranking the samples for predicted macrophage content, it 
became clear that ILC patients have quite variable amounts of macrophages within 
their tumor microenvironment (Fig. 6c). We also tested whether the specific murine 
TAM signatures could be identified (Suppl. Fig. 8a). Indeed, when applying LSVR 
using signatures derived from KEP-TAMs, NeuT-TAMs and respective MTMs, the 
KEP-TAM signatures represented a major part in most of the ILC patients (TCGA 
cohort), while the NeuT-TAM signatures were present to a lower extent in most 
of the cases (Suppl. Fig. 8a), indicating that the murine KEP-TAM signatures might 
better reflect the biology of TAMs in ILC patients. 
Based on these encouraging results, we assessed the predictive value of these 
breast cancer model-specific TAM signatures for disease outcome. Kaplan-Meier 
analysis showed that the KEP-TAM signatures correlated with worse clinical 
outcome (p=0.037) of ILC patients from the TCGA cohort (Fig. 6d) and the METABRIC 
cohort (p=0.048) (Suppl. Fig. 8b). Importantly, the NeuT-TAM signatures were not 
enriched in ILC patients or did not correlate with better or worse overall survival 
in both patient cohorts (Fig. 6e and Suppl. Fig. 8c). To further prove the validity 
of these findings, we used gene signatures from the comparison of KEP-TAMs 
with splenic macrophages, random signatures and LSVR-derived total human 
macrophage signatures and assessed whether they were predictive of the outcome 
in the TCGA and METABRIC ILC cohorts (Fig. 6f-g, Suppl. Fig. 8d-g). In fact, none 
of these signatures showed a predictive value of disease outcome of ILC patients 
(separation of Kaplan-Meier groups or gene signature enrichment z score) in both 
cohorts. Collectively, these data indicate that the generation of meaningful gene 
signatures for outcome prediction derived from TAMs requires a clinically relevant 
murine model (here the KEP model for ILC) and the comparison of TAMs with their 
healthy tissue counterparts -here MTMs- instead of unrelated macrophage sources 
such as spleen or bone marrow.   
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Fig. 6 | KEP-TAM-specific signatures predict overall survival in ILC patients. (a) Schematic 
representation depicting the bioinformatics approach. (b) Venn diagrams of overlapping CoCena2- and 
ANOVA-derived gene sets for KEP-TAMs (up), NeuT-TAMs (middle) and breast cancer TAMs (bottom) 
(left), HC map of the union of KEP-TAM-, NeuT-TAM- and breast cancer TAM-specific genes (right). 
(c) The “LM22” signatures (Newman et al. 2015) were used as input to identify the relative fraction 
of several immune cell populations in the ILC specimens (TCGA cohort, n=125). (d-g) Kaplan-Meier 
survival analysis of TCGA ILC patients. ILC specimens having a significant enrichment for KEP-TAMs 
signature (d), NeuT-TAMs signature (e), random signature (f) and CIBERSORT macrophage signature 
(g) are visualized in red line and numbers. The rest of ILC patients are visualized in green line and 
numbers. Z score above 2 marks significant enrichment of gene signatures.

Discussion

It is widely acknowledged that the immune system plays an important role in cancer 
development and progression 2. Macrophages are one of the major components 
within the TME 35 and accumulating evidence indicates that their abundance is 
linked to disease outcome 36. Here we provide a strategy to derive TAM-specific 
gene signatures and demonstrate that signatures derived from a transgenic murine 
tumor model for ILC can be used to predict outcome in two independent ILC 
cohorts (TCGA, METABRIC). These signatures could only be generated by proper 
comparison with the healthy tissue-resident macrophage counterparts, here 
MTMs, but not by comparison with macrophages derived from unrelated tissues, 
e.g. spleen or bone marrow. Moreover, we show that the global transcriptome of 
TAMs is mainly defined by tissue signals, although the tumor subtype also plays a 
crucial role in shaping the TAM transcriptional networks. Collectively, our approach 
illustrates how transcriptional regulation of TAMs derived from a murine model 
closely resembling the human disease (here ILC) 24 can be successfully translated 
into clinically meaningful disease outcome prediction.
Previous studies have defined TAM gene signatures by comparing TAMs to healthy 
tissue macrophages derived from tissues, such as the spleen 32,33. However, recent 
evidence highlighted the diversity of the transcriptomes and epigenomes of the 
several tissue-resident macrophage populations 14,16. With these findings at hand, 
it was conceivable to address whether such definitions would indeed lead to TAM-
specific signatures. We provide compelling evidence that TAMs still share most 
genes with their healthy tissue counterparts both in breast and lung and that the 
comparison of TAMs with macrophage populations derived from other organs 
or tissue sites mainly reflect tissue differences rather than TAM-specific gene 
expression. As a consequence, we strongly propose to study TAMs in the context 
of their healthy tissue counterparts when searching for truly TAM-related changes 
in gene expression and functions. Clearly, this can be easier achieved in murine 
model systems compared to human cancer samples where healthy tissue from the 
same organ is often not accessible. More recently, Cassetta et al. reported on a 37-
gene TAM signature derived from four breast cancer patients 17. This signature was 
mainly enriched in the Her2 breast cancer subtype or the ‘Claudin-low’ molecular 
subtype as defined by the PAM50 classification 37. Comparable to our results, this 
TAM signature could also be linked to worse outcome prediction of disease, albeit 
not specified for a particular breast cancer subtype which might be of importance 
for the development of new diagnostic and therapeutic strategies.  
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Indeed, another important finding of our study is the observation that only TAM-
specific signatures derived from the KEP model were predictive for outcome in ILC 
patients. Although the two breast cancer models shared tumor-associated changes, 
such as the upregulation of genes associated with regulation of immune cells, we 
also observed functionality differences between the two murine models, such as 
the cell cycle. Differences in functions between breast cancer TAM populations 
have been previously described 38,39. For instance, breast cancer TAM populations 
in different tumor models have been shown to differ in migratory behaviour and 
their ability to uptake fluorescent dextran 40. Similarly, macrophage function can 
differ with varying oxygen levels across different tumor models 41,42. Moreover, in 
the MMTV-PyMT mouse model both MTMs and TAMs are found in the mammary 
tumors, but only TAMs play a role in tumor progression 43,44. Collectively, our findings 
show that the tumor subtype affects the phenotype of TAMs inducing a unique TAM 
signature in the two models.
While concerns have been raised about the validity of murine cancer models 45, we 
demonstrate here that a carefully designed cancer model, such as the KEP model 
can directly lead to clinically translatable results – here the generation of outcome 
prediction signatures based on TAM transcriptomes. For example, these signatures 
or marker genes (derived from such signatures) could now be tested in prospective 
clinical trials to assess their performance on outcome prediction. In this context, it 
is important to stress that only the KEP-TAM-derived, but not the NeuT-TAM-based 
gene signatures were informative for the ILC patient cohorts, further illustrating the 
requirement for murine tumor models that match with the patient tumor subtype. 
Such models are then ideally suited to address further questions concerning the 
role of the myeloid cell compartment within the TME 46. 
While we could successfully translate population level information derived from 
the KEP model to a clinical question –namely outcome prediction–, other questions 
might need higher resolution analysis as it can be provided by single-cell -omics 
technologies 47. Such a question in our study is the assessment of the underlying 
heterogeneity in the MTMs (PRE-KEP model). It is very likely that although these cells 
were found to be transcriptionally very similar to MTMs at the bulk population level, 
substructure analysis might reveal concealed homogeneous subsets with distinct 
transcriptomic profiles that follow a spectrum ranging from those of MTMs to KEP-
TAMs. In this light, single-cell RNA-seq data from less than a hundred macrophages 
derived from 11 patients were described in an initial study 48 and a more recent study 
profiled more than 45,000 CD45+ cells from 8 patients also including macrophages 
23. While particularly the second study highlighted the enormous heterogeneity of 
the immune cell compartment in breast cancer corroborating previous findings 11,12, 
it is too early to link this rich information to patient outcome prediction. Clearly, 
further studies are required that link approaches as presented here with these 
exciting new single cell -omics technologies to evaluate their clinical potential for 
diagnosis, subclassification of disease or outcome prediction. 
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Materials and methods

Animals
The generation and characterization of K14cre;Cdh1F/F;Trp53F/F mice have been 
previously described in detail 24. The mice were backcrossed onto the FVB/N 
background and genotype was confirmed by PCR 24,49. MMTV-NeuT mice on a Balb/c 
background 25 were purchased from Charles River Laboratories (Calco, Italy) and 
were bred in house. Female K14cre;Cdh1F/F;Trp53F/F and MMTV-NeuT mice were 
monitored twice every week for the onset of mammary tumor formation by caliper 
and palpation measurement starting at 2 or 4 months of age, respectively. Mice 
were kept in open cages with food and water provided ad libitum at a 12-hour light/
dark cycle. Animal experiments were approved by the Animal Ethics Committee 
of the Netherlands Cancer Institute (Amsterdam, Netherlands) and performed in 
accordance with institutional, national and European guidelines for Animal Care 
and Use (CCD license: AVD3010020172688).

Macrophage isolation 
Macrophages were isolated according to 50. Briefly, mammary glands or mammary 
tumors (size±225mm2), spleen and bone marrow were harvested from 4 month old 
K14cre;Cdh1F/F;Trp53F/F female mice containing early lesions, 6-8 months old tumor-
bearing K14cre;Cdh1F/F;Trp53F/F, 4 month old tumor-bearing MMTV-NeuT female 
mice and age- and sex-matched FVB/N and Balb/c mice. Tumors and mammary glands 
were mechanically chopped with a McIlwain Tissue Chopper (Ted Pella, Inc, CA, USA) 
and were enzymatically digested for 1 hour at 37°C with 3 mg/ml collagenase type 
A (Roche) and 1.5 mg/ml porcine pancreatic trypsin (BD Biosciences) in serum-free 
DMEM medium. Digestion was stopped by the addition of DMEM supplemented 
with 8% FBS and the suspension was disaggregated through a 70 μm cell strainer. 
Spleens and bone marrow cells from tibiae and femora were harvested and 
disaggregated through a 70 μm cell strainer. Splenic suspensions were subsequently 
treated twice with NH4Cl erythrocyte lysis buffer for 3 min at room temperature. 
All single-cell suspensions were stained for 20 min at 4°C in the dark with anti-
mouse F4/80 (1:200; BM8; eBioscience) and anti-mouse CD11b (1:200; M1/70; 
eBioscience) in IMDM supplemented with 2% FBS, 0.5% beta-mercaptoethanol, 
0.5mM EDTA, Pen/Strep. Cells were then washed and incubated with magnetic 
MicroBeads (Miltenyi Biotec) following the manufacturer’s guidelines. Isolation 
of F4/80+ cells from the CD11b+-enriched fraction was performed on a BD FACS 
ARIA II sorter with Diva software (BD Biosciences). DAPI was added to select viable 
cells. Sorted macrophages were stored at -80°C in TRIzol (Invitrogen). Cell purity 
was determined on a FACSCalibur using CellQuestPro software (BD Biosciences) and 
data were analyzed using FlowJo software v9.9. 

Immunohistochemistry
Immunohistochemical analysis was performed by the Animal Pathology facility 
at the Netherlands Cancer Institute. Briefly, formaline-fixed paraffine-embedded 
tissues were blocked with 4% BSA/5% normal goat serum in PBS and stained with 
anti-mouse F4/80 (1:300; Cl:A3-1; AbD Serotec) after antigen retrieval with 20 ug/
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ml Proteinase K (Sigma-Aldrich) at 37°C for 20 min. Endogenous peroxidase activity 
was neutralized in 3% H2O2 in methanol for 20 min at room temperature. Slides 
were then incubated with biotinylated goat anti-rat secondary antibody (1:100; 
SouthernBiotech) followed by DAB detection. Samples were visualized with a 
BX43 upright microscope (Olympus) and images were acquired in brightfield using 
cellSens Entry software (Olympus) at 40X magnification. 
  
Flow cytometry
Single-cell suspensions were stained with anti-mouse CD45 (1:200; 30-F11; BD 
Biosciences), anti-mouse CD45 (1:200; 30-F11; eBioscience), anti-mouse CD11b 
(1:400; M1/70; Biolegend), anti-mouse CD11b (1:200; M1/70; eBioscience), anti-
mouse F4/80 (1:200; BM8; eBioscience), anti-mouse CD206 (1:100; MR5D3; AbD 
Serotec), anti-mouse Ly-6C (1:400; HK1.4; eBioscience), anti-mouse Ly-6G (1:200; 
1A8; BD Biosciences), anti-mouse Ly-6G (1:200; 1A8; Biolegend) and anti-mouse 
MHC-II (1:200; M5/114.15.2; eBioscience) for 20 min at 4°C in the dark in PBS 
supplemented with 0.5% BSA. 7AAD (1:20; eBioscience) or Fixable Viability Dye 
(1:1000; eBioscience) or Fixable aqua dead cell dye (1:100, ThermoFisher Scientific) 
were added to exclude dead cells. For Ki67 detection in macrophages, cells were 
fixed and permeabilized with the Foxp3/transcription factor staining Buffer set 
kit (ThermoFisher Scientific) as manufacturer’s recommendations, followed by 
incubation with Fc block (CD16/CD32 purified; 1:50; 2.4G2; BD Biosciences) and 
stained with Ki67 or anti-mouse IgG2a. Experiments were performed using a LSRII 
flow cytometer (BD Biosciences) and data analysis were performed using FlowJo 
software v9.9. 
  
Library preparation 
Total RNA was extracted using the RNeasy Mini and Micro Kits (Qiagen). RNA (10 ng) 
was converted into cDNA libraries using the Ovation RNA-Seq system V2 and Encore 
Rapid library systems protocols (NuGEN) and samples were sequenced on a HiSeq 
1500 system (Illumina). 

Standard bioinformatic analysis
Publicly available datasets 16,28–31 were trimmed using fastx trimmer (-l 50 -i Sample.
fastq -o Sample_trim50.fastq) to 50 bp reads to match our experimental settings. 
Our and the pre-processed publicly available data were aligned against the murine 
mm10 reference genome using TopHat2 (v2.0.11) default parameters 51. The 
breast cancer datasets are available under GSE126268. Altogether three different 
datasets were composed; one containing only our two breast cancer models, one 
including our dataset and further available tissue macrophage datasets and another 
including our dataset and other tissue macrophage and immune cell types. The 
aligned reads were then imported into Partek Genomics Suite v6.6 (PGS) separately 
to deduct gene and transcript information before performing normalization using 
the DESeq2 package 52 in R (v3.0.2). Normalized read counts were floored to a 
value of at least 1 after batch correction. Finally, the datasets were filtered to a 
minimum value of 10 counts per group. The 1000 genes with the highest variance 
and DE gene calculations were performed utilizing a one-way ANOVA model in PGS. 
Genes with FC ≥ 2 and FDR ≤ 0.05 were defined as differentially expressed and were 
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visualized in volcano plots and FC/FC plots using SigmaPlot (v12.0) (Systat Software) 
and correlation plots. For more detailed analysis, the ANOVA model was filtered 
based on the respective gene lists 53. TAM-specific surface marker expression was 
visualized in a heatmap using Mayday 54.    

Comparative and biological function-related bioinformatic analysis
Global similarity comparisons between macrophage populations were performed by 
correlation analysis based on Pearson correlation coefficients (Pearson correlation 
≥ 0.977) using BioLayout Express3D 55. The correlation network was visualized in 
Cytoscape (http://www.cytoscape.org/). The structure of our breast cancer dataset 
was visualized utilizing PCA on all expressed genes. HC and PCCM were performed 
on the 1000 genes with the highest variance within the dataset using default 
settings in PGS. To link DE genes to known biological functions, GOEA was applied 
on DE gene sets extracted from FC/FC plots. Subsequently, Cytoscape was used to 
visualize GOEA results in a global view using the plug-ins BiNGO 56, EnrichmentMap57 
and Word Cloud58. 

CoCena2

To define differences and similarities in transcript expression patterns among 
the different groups, CoCena2 (Construction of co-expression Network Analysis - 
automated) was performed based on Pearson correlation. Either all 15,425 present 
genes or the union of DE genes (2,123 genes) from the three comparisons KEP-
TAMs versus MTMs from the KEP model, NeuT-TAMs versus MTMs from the NeuT 
model and KEP-TAMs versus MTMs from the PRE-KEP model were used as the 
input. Pearson correlation was performed using the R package Hmisc (v4.1-1). 
To increase data quality, only significant (p<0.05) correlation values were kept. A 
Pearson correlation coefficients cutoff of 0.878 (all present genes; 7,610 nodes and 
310,789 edges) and of 0.87 (union DE genes; 1,992 nodes and 52,392 edges) was 
chosen to construct scale-free networks. The nodes were colored based on the 
Group Fold Change (GFC), the mean of each condition versus overall mean for each 
gene respectively, for each group separately. Unbiased clustering was performed 
using the “label propagation” algorithm in igraph (v1.2.1) and was repeated 1000 
times. Genes assigned to more than 5 different clusters during the iterations got no 
cluster assignment. The mean GFC expression for each cluster and condition were 
visualized in the Cluster/Condition heatmap. Clusters smaller than 10 genes were 
not shown.

I-GIN (Intraclusteral Gene Interaction Network) 
To further investigate condition-specific clusters (KEP and NeuT model shared 
signatures: turquoise [289 genes], NeuT-specific signatures: magenta [236 genes] 
and KEP-specific signatures: blue [255 genes]), an I-GIN was constructed based 
on the CoCena2 results To enhance the structure and information access of the 
respective networks, hub genes were identified for each network separately. A 
gene was defined as hub gene, having a mean correlation greater or equal 75% 
of the connected edges. Maximal the top 25 most correlated and the two highest 
correlated edges with other hubs edges were visualized. All edges were classified 
as either already known or unknown via STRING database v1.20.0. Genes having 
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more than 5 known connections were additionally defined and labeled as hubs. 
All known interactions to hubs were kept and the resulting network nodes were 
sized according to their degree of connectivity in the resulting network. All edges 
in the network were colored grey and only known interactions were colored red. 
Hub genes were colored based on their property being regulating (purple) or being 
regulated (blue) by another gene. This information was calculated using Bayesian 
Network Analysis.

Bayesian Network Analysis
Bayesian Network Analysis is a probabilistic model that uses statistical dependencies 
and independencies between features to infer and describe their causal relations 
within the network. In this study, Bayesian Network Analysis was used to calculate 
the causal relationship of each gene pair within the cluster of interest defined 
by CoCena2, providing additional information about the direction of regulation 
between two connected nodes within the I-GIN network. Bayesian Network Analysis 
extracted information from the turquoise, the blue and the magenta clusters and a 
greedy-search hill-climbing algorithm from the R-package “bnlearn” v4.4 59 was used 
to create a network that best fits the observed data and represents the conditional 
dependencies and independencies between the genes within the cluster of interest. 
The network structure was then used to determine the regulatory status of each 
gene, classifying it as receiving if its number of parent nodes exceeded its number 
of children or as regulating if its number of children exceeded its number of parents. 
Genes were color-coded with respect to their regulatory status. We classified genes 
as “hot spots” with high regulatory potential, if their children-to-parent ratio (CP-
ratio) exceeded the value 5. 

Identification of TAM core signatures
Core signatures for breast cancer TAMs, KEP-TAMs, NeuT-TAMs were defined by 
overlapping CoCena2 clusters and the respective DE genes. The breast cancer TAM 
core signatures are the intersection between the turquoise cluster and the common 
upregulated genes between KEP-TAMs versus MTMs (KEP model) and NeuT-TAMs 
versus MTMs (NeuT model). The KEP-TAM core signatures are the intersection 
between the blue cluster and the upregulated genes between KEP-TAMs versus 
MTMs (KEP model) and the NeuT-TAMs core signatures are the intersection between 
the magenta cluster and the upregulated genes between NeuT-TAMs versus MTMs 
(NeuT model). Subsequently, the union of the core signatures was visualized in a HC 
map using PGS. 
 
CIBERSORT deconvolution analysis 
CIBERSORT 34 was employed to characterize the relative contribution of immune 
cell populations to the TME of ILC patients. The normalized gene expression table 
of the TCGA ILC cohort was utilized as input mixture file and the published immune 
cell signatures “LM22” was used to compute the relative immune cell populations 
within bulk ILC samples (1,000 permutations). For custom signature generation by 
CIBERSORT, a gene expression matrix containing KEP-TAM and NeuT-TAM data was 
used as input.
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TAM enrichment analysis
Bulk RNA-sequenced ILC TCGA specimens 27 were accessed through the Genomic Data 
Commons (https://gdc.cancer.gov/; phs000178.v9.p8) and were aligned against the 
human hg19 reference genome using TopHat2 (v2.0.11) default parameters. The 
data were normalized with DESeq2 in R (v3.0.2) and floored to a value of at least 
1. Access to bulk ILC microarray specimens of the METABRIC cohort 26 was granted 
through the EGA depository (EGAD00010000162). The dataset was imported into 
PGS, quantile-normalized following log2 transformation of absolute expression 
values and subsequently filtered for probe sets exerting the highest variance. 
Genes were defined as expressed if the maximum value over all group means 
utilizing the classification in 27 was higher than 10 (TCGA) or 6.5 (log2 transformed; 
METABRIC). Before being able to ask whether the KEP-TAM or the NeuT-TAM 
signatures are enriched in the human TCGA or METABRIC datasets, the signatures 
were translated into human orthologues using the BioMart package 60 v2.36.1. The 
signature enrichment analysis for the human TCGA and METABRIC datasets was 
calculated using GSVA (v1.28.0) using the z-score method 61. Enrichment analysis 
were performed for the KEP-TAM core signatures, NeuT-TAM core signatures, KEP-
TAMs versus splenic macrophage core signatures (intersection of the blue cluster 
and KEP-TAM upregulated genes comparing KEP-TAMs versus splenic macrophages) 
and random signatures. Random gene signatures were generated by sampling a 
total of 450 genes from the union of signatures (breast cancer TAMs, KEP-TAMs 
and NeuT-TAMs) and randomly assigning them to three groups, each holding 150 
genes. For each patient and each combination of dataset (TCGA and METABRIC) and 
signature, an enrichment score was calculated. The tool Cutoff Finder 62 was used to 
define the optimal enrichment score cutoff where a patient shows an enrichment 
of the respective signatures.

Kaplan Meier survival analysis  
Kaplan-Meier survival analysis was performed utilizing the survival package in R 
(v3.0.2). 
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Supplementary Fig. 1 | Related to Fig. 1. TAMs in K14cre;Cdh1F/F;Trp53F/F mammary tumors express 
low levels of CD206 and have a proliferative phenotype compared to TAMs from the MMTV-NeuT 
model. (a-b) Percentage of CD206+ macrophages in KEP tumors and WT FVB mammary glands (a) or 
NeuT tumors and WT Balb/c mammary glands (b) as determined by flow cytometry. Representative 
dot plots are shown. The gating was based on fluorescence-minus-one sample for CD206. (c-d) 
Percentage of MHC-II+ macrophages in KEP tumors and WT FVB mammary glands (c) or NeuT tumors 
and WT Balb/c mammary glands (d) as determined by flow cytometry. Representative dot plots are 
shown. (e-f) Percentage of Ki67+ macrophages in KEP tumors and WT FVB mammary glands (e) or in 
NeuT mammary tumor and WT Balb/c mammary glands (f) as determined by flow cytometry. Dot 
plots were gated on CD11b+F4/80+ macrophages. Representative dot plots are shown. Data are mean 
values ± SEM from n=3 animals per group and were analyzed with Mann‑Whitney test, *p < 0.05.
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Supplementary Fig. 2 | Isolation procedure of CD11b+F4/80+ macrophages from mammary tumor, 
mammary gland, spleen and bone marrow by magnetic and fluorescence-activated cell sorting. (a-
b) Representative dot plots of KEP (a) and NeuT (b) mammary tumors showing the CD11b+F4/80+ 
population before and after pre-enrichment by magnetic-activated cell sorting for CD11b+ cells. (c-f) 
Representative dot plots illustrating the gating strategy for the isolation of CD11b+F4/80+ macrophages 
from KEP tumors (c), mammary gland (d), spleen (e) and bone marrow (f) by fluorescence-activated cell 
sorting after enrichment of CD11b+ cells. (g) Dot plots showing the purity of the sorted macrophages 
in tumor, mammary gland, spleen and bone marrow of KEP mice. (h) Stacked bar plots showing 
the composition of KEP tumors in CD11b-, CD11b+F4/80- and CD11b+F4/80+ cells before and after 
macrophage sorting. Data are mean values ± SEM from 3 preps.

Suppl. Figure 2 – Related to Figure 1
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Suppl. Figure 3 – Related to Figure 2
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Supplementary Fig. 3 | Murine macrophages are distinguished from other immune cell populations 
by their transcriptome. (a) Schematic representation outlining bioinformatics workflow. (b) HC based 
on the 1,000 genes with the highest variance within the dataset. Macrophage transcriptomes derived 
from different organs (mammary gland, bone marrow, spleen, peritoneum, lung, brain, liver, large 
intestine and small intestine) and disease states (tumor, pre-lesion and helminth infection) were 
collectively named macrophages. (c) PCA using all present (15,782) genes with principle components 
(PC1-3) plotted in two-dimensional graphs.
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Schematic representation depicting the bioinformatics workflow. (b) CoCena2 logged network degree 
distribution with linear fitting. (c) Networks were colored according to Group Fold Changes (GFCs) for 
each condition, respectively (condition mean versus overall mean).
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Suppl. Figure 5 – Related to Figure 3
a
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Supplementary Fig. 5 | Inter-tissue comparison leads to false interpretation of changes in TAMs. 
(a) FC/FC plot of the union of DE genes showing the fold change in expression of genes in KEP-TAMs 
compared to MTMs (KEP model) (y-axis) against KEP-TAMs compared to splenic macrophages (KEP 
model) (x-axis). (b) FC/FC plot of the union of DE genes showing the fold change in expression of 
genes in KEP-TAMs compared to splenic macrophages (KEP model) (y-axis) against MTMs (KEP model) 
compared to splenic macrophages (KEP model) (x-axis). (c) FC/FC plot of the union of DE genes showing 
the fold change in expression of genes in NeuT-TAMs compared to MTMs (NeuT model) (y-axis) against 
NeuT-TAMs compared to splenic macrophages (NeuT model) (x-axis). (d) FC/FC plot of the union of DE 
genes showing the fold change in expression of genes in NeuT-TAMs compared to splenic macrophages 
(NeuT model) (y-axis) against MTMs (NeuT model) compared to splenic macrophages (NeuT model) 
(x-axis). (e) FC/FC plot of the union of DE genes showing the fold change in expression of genes in 
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KEP-TAMs compared to bone marrow macrophages (KEP model) (y-axis) against KEP-TAMs compared 
to MTMs (KEP model) (x-axis). (f) FC/FC plot of the union of DE genes showing the fold change in 
expression of genes in KEP-TAMs compared to bone marrow macrophages (KEP model) (y-axis) against 
MTMs (KEP model) compared to bone marrow macrophages (KEP model) (x-axis). (g) FC/FC plot of the 
union of DE genes showing the fold change in expression of genes in NeuT-TAMs compared to bone 
marrow macrophages (NeuT model) (y-axis) against NeuT-TAMs compared to MTMs (NeuT model) 
(x-axis). (h) FC/FC plot of the union of DE genes showing the fold change in expression of genes in 
NeuT-TAMs compared to bone marrow macrophages (NeuT model) (y-axis) against MTMs (NeuT 
model) compared to bone marrow macrophages (NeuT model) (x-axis). Each dot represents one gene 
where red and blue dots indicate positive or negative fold change differences in both comparisons and 
grey dots correspond to opposite fold change differences across the axes.



Chapter 372   |

Protein phosphorylation and related metabolism

Vasculature development

Leukocyte migration

Mitosis spindle organization-related processes

Protein localization to kinetochore

Chromosome localization

Protein complex biogenesis/assembly

Immune system-related processes

Pos. reg of developmental processes

Neg. reg. of apoptosis

Biosynthesis and metabolism-related processes

Regulation of DNA repair/cellular response to stress

Neg. reg. of cell cycle-related processes

DNA/RNA biosynthesis and metabolism

Leukocyte migration

Cell cycle-related processes

Suppl. Figure 6 – Related to Figure 4
a

b

Endothelial cell differentiation

Actin cytoskeleton organization

Neg. reg. of cytotoxicity

Immune cell activation

Immune cell proliferation

Cell-cell adhesion

Wound healing processes

Angiogenesis-related processes

Reg. of cell growth

Cell motility

Cell development, differentiation

Protein localization

Response to lipids
Reg. of biosynthesis
and metabolism

Reg. of response to stimulus

Reg. of GTPase signal transduction

Pos. reg. of response 
to wounding

Pos. reg. protein phosphorylation

Neg. reg. of apoptosis

Pos. reg. of intracellular protein transport

Pos. reg. of immune 
cell activation

KEP-TAM-specific genes

NeuT-TAM-specific genes

T-cell activation processes

Eosinophil migration

Reg. of cellular 
adhesion

Wound healing 
processes Wound healing 

processes

Reg. of protein transport

Cation homeostasis

Proliferation-related
processes

Lipid metabolism
Actin cytoskeleton
organization

Neg. reg. of vasculature 
development

Cellular response to
bacterial lipopeptide

Reg. of innate immune response
(defense response)

GTPase signal transduction

Reg. of apoptosis

Cytokine biosynthesis (IL-2)

Neg. reg. of apoptosis

Neg. reg. of transcription
-based processes

Metabolism and biosynthesis-
related processes

Pos. reg. of 
phospholipase activity

Fatty acid transport

Developmental processes

Endocytosis

Cell migration-related processes

down-regulation

highest

highest

up-regulation

Breast cancer TAM-specific genes

c

0.01

0.00

F
D

R
 q

-va
u
e

0.01

0.00

F
D

R
 q

-va
u
e

down-regulation

highest

highest

up-regulation0.01

0.00

F
D

R
 q

-va
u
e

0.01

0.00

F
D

R
 q

-va
u
e

down-regulation

highest

highest

up-regulation0.01

0.00

F
D

R
 q

-v
a
u
e

0.01

0.00

F
D

R
 q

-va
u
e

Supplementary Fig. 6 | GOEA of breast cancer TAM-, KEP-TAM- and NeuT-TAM-specific genes. (a-c) 
Network visualization of GOEA using BiNGO and EnrichmentMap based on model-specific DE genes 
derived from (a) breast cancer TAM-, (b) KEP-TAM- and (c) NeuT-TAM-specific genes. Node size and 
color (positively enriched GO terms) and node border width (negatively enriched GO terms) represent 
corresponding FDR-adjusted enrichment p-values (p-value: ≤0.05). Enriched gene ontology terms 
mentioned in the text are highlighted in yellow boxes.
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Supplementary Fig. 7 | I-GIN of KEP-TAM- and NeuT-TAM-specific genes. (a-b) I-GIN construction 
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Suppl. Figure 8 – Related to Figure 6
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Supplementary Fig. 8 | Validation of Kaplan-Meier survival analysis of breast cancer model-specific 
signatures. (a) KEP-TAM, NeuT-TAM, splenic and bone marrow macrophage and MTM signatures from 
both models were computed using CIBERSORT and their relative abundance in the ILC specimens was 
calculated. (b) Kaplan-Meier overall (left) and disease-specific (right) survival analysis of METABRIC 
ILC patients (n=147). ILC specimens having a significant enrichment for KEP-TAMs signature are 
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visualized in red line and numbers. The rest ILC patients are visualized in green line and numbers. 
(c) Kaplan-Meier overall (left) and disease-specific (right) survival analysis of METABRIC ILC patients. 
ILC specimens having a significant enrichment for NeuT-TAMs signature are visualized in red line and 
numbers. The rest ILC patients are visualized in green line and numbers. (d) Kaplan-Meier overall 
(left and middle) and disease-specific (right) survival analysis of TCGA (left, n=125) and METABRIC 
(middle and right) ILC patients. ILC specimens having a significant enrichment for KEP-TAMs signature 
(using splenic macrophages from the KEP model as a control) are visualized in red line and numbers. 
The rest ILC patients are visualized in green line and numbers. (e) Kaplan-Meier overall (left) and 
disease-specific (right) survival analysis of METABRIC ILC patients. ILC specimens having a significant 
enrichment for a random signature are visualized in red line and numbers. The rest ILC patients are 
visualized in green line and numbers. (f) Kaplan-Meier overall (left and middle) and disease-specific 
(right) survival analysis of TCGA (left) and METABRIC (middle and right) ILC patients. ILC specimens 
having a significant enrichment for a random signature macrophage signature are visualized in red line 
and numbers. The rest ILC patients are visualized in green line and numbers. (g) Kaplan-Meier overall 
(left) and disease-specific (right) survival analysis of METABRIC ILC patients. ILC specimens having a 
significant enrichment for a CIBERSORT macrophage signature are visualized in red line and numbers. 
The rest ILC patients are visualized in green line and numbers. Z score above 2 marks significant 
enrichment of gene signatures.


