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Disease variants alter transcription factor levels

Main

Most disease-associated genetic variants are noncoding, making it challenging
to design experiments to understand their functional consequences [Manolio,
2010; Visscher et al., 2012]. Identification of expression quantitative trait loci
(eQTLs) has been a powerful approach to infer the downstream effects of disease-
associated variants, but most of these variants remain unexplained [Westra et al.,
2013; Wright et al., 2014]. The analysis of DNA methylation, a key component
of the epigenome [Bernstein et al., 2007; Mill and Heijmans, 2013], offers highly
complementary data on the regulatory potential of genomic regions [Gutierrez-
Arcelus et al., 2013; Tsankov et al., 2015]. Here we show that disease-associated
variants have widespread effects on DNA methylation in trans that likely reflect
differential occupancy of trans binding sites by cis-regulated transcription factors.
Using multiple omics data sets from 3,841 Dutch individuals, we identified 1,907
established trait-associated SNPs that affect the methylation levels of 10,141
different CpG sites in trans (false discovery rate (FDR) < 0.05). These included
SNPs that affect both the expression of a nearby transcription factor (such as
NFKB1, CTCF and NKX2-3) and methylation of its respective binding site across
the genome. Trans methylation QTLs effectively expose the downstream effects of
disease-associated variants.

To systematically study the role of DNA methylation in explaining the
downstream effects of genetic variation, we analyzed genome-wide genotype and
DNA methylation in whole blood from 3,841 samples from five Dutch biobanks
[Tigchelaar et al., 2015; van Greevenbroek et al., 2011; Schoenmaker et al.,
2006; Willemsen et al., 2013; Hofman et al., 2013] (Figure 3.1, Supplementary
Table 1 and Supplementary Note). We found cis methylation quantitative trait
locus (meQTL) effects for 34.4% of all 405,709 CpGs tested (n = 139,566 at a
CpG-level FDR of 5%, P < 1.38 x 10™%), typically with a short physical distance
between the SNP and CpG (median distance = 10 kb; Supplementary Figure 3.1).
By regressing out the effect of the primary meQTL for each of these CpGs and
repeating the cis-meQTL mapping, we observed up to 16 independent cis-meQTLs
for each CpG site (Supplementary Table 2), totaling 272,037 independent cis-
meQTL effects. We found that few factors determine whether a CpG site shows
a cis-meQTL effect other than variance in the methylation levels of the CpG
site involved (Supplementary Figures 2 and 3). The proportion of variance
in methylation explained by SNPs, however, is typically small (Supplementary
Figure 3.3b). When accounting for this strong effect of CpG variation, we found
only modest enrichments and depletions of cis-meQTL CpG sites in CpG island
and genic annotations (Supplementary Figure 3e) or when using annotations
for biological function based on chromatin segmentations of 27 blood cell types
(Figure 3.2a).

We contrasted these modest functional enrichments to those of CpGs whose
methylation levels correlated with gene expression in cis (that is, expression
quantitative trait methylation (eQTM)) by generating RNA-seq data for 2,101 of
3,841 individuals in our study. Using a conservative approach that maximally
accounts for potential biases (Online Methods), we identified 12,809 unique
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Figure 3.1: (a) In the illustration, the relationships between a SNP, DNA
methylation at nearby CpGs and associations with the gene itself are shown. Boxes
represent the median and interquartile range (IQR); whiskers extend to the outer
quartile plus 1.5 times the IQR. The top left plot shows the observed meQTL
between cg23533927 and rs7806458. The top right plot shows the observed
eQTL between TMEM176B and rs7806458. The observed methylation-expression
association (eQTM) between TMEM176B and ¢g23533927 is shown below the
gene. The bottom left plot shows the data before correction for the cis-eQTL
and cis-meQTL; the eQTM effect after correction for cis-eQTLs and cis-meQTLs
is shown in the bottom right plot. (b) Two overlaid pie charts. The inner chart
indicates the proportion of tested CpGs harboring meQTLs. Over 35% of all tested
CpGs show evidence of harboring a meQTL, either in cis or trans. The outer chart
indicates what CpGs are associated with gene expression in cis (in total, 3.2%).
(c¢) Replication of peripheral blood trans-meQTLs in lymphocytes.
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Figure 3.2: (a-c) Over- or under-representation of CpGs in predicted chromatin
states for cis-meQTLs (a), eQTMs (b) and trans-meQTLs (c). Gray bars reflect
uncorrected enrichment; colored bars reflect enrichment after correction for
factors influencing the likelihood of harboring a meQTL or eQTM, including
methylation variability. Bar graphs show odds ratios; error bars, 95% confidence
intervals. CGI, CpG island; TssA, active TSS; TssAFInk, flanking active TSS;
TxFInk, transcribed at a gene’s 5/ or 3/ end; Tx, strong transcription; TxWK,
weak transcription; EnhG, genic enhancer; Enh, enhancer; ZNF/Rpts, ZNF genes
and repeats; Het, heterochromatin; TssBiv, bivalent/poised TSS; BivFInk, flanking
bivalent TSS/enhancer; EnhBiv, bivalent enhancer. (d) Decision tree for predicting
the direction of the effects of eQTMs. Each subplot shows the distributions for
positive (blue) and negative (red) associations for that subset of the data. Dashed
vertical lines correspond to the optimal split used by the algorithm. The boxes in
the leaves show the number of positive and negative effects in each of the leaves.
(e) Receiver operator characteristic curve showing the performance of the decision
tree. AUC, area under the receiver operating curve.
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CpGs that correlated with 3,842 unique genes in cis (CpG-level FDR < 0.05).
eQTMs were enriched for mapping to active regions, for example, in and around
active transcription start sites (TSSs) (3-fold enrichment, P = 1.8 x 10~°!) and
enhancers (2-fold enrichment, P = 1.1 x 10~!39; Figure 3.2b). The majority
of eQTMs showed the canonical negative correlation with transcriptional activity
(69.2%), but a substantial minority of correlations were positive (30.8%), in line
with recent evidence that DNA methylation does not always negatively correlate
with gene expression [Hu et al., 2013]. As expected, negatively correlated
eQTMs were enriched in active regions such as active TSSs (3.7-fold enrichment,
P = 9.5 x 107202), Positive correlations primarily occurred in repressed regions
(for example, Polycomb-repressed regions, 3.4-fold enrichment, P = 5.8 x 107193)
(Supplementary Figure 4). The sharp contrast between positively and negatively
associated eQTMs enabled us to predict the direction of the correlation. A
decision tree trained on the strongest eQTMs (those with FDR < 9.7 x 1076,
n = 5,137), using data on histone marks and distance relative to genes, could
predict the direction with an area under the curve of 0.83 (95% confidence
interval, 0.78 — 0.87) (Figure 3.2d,e).

We next ascertained whether trans-meQTLs are biologically informative,
as previous trans-eQTL mapping studies demonstrated that identifying trans
expression effects provides a powerful tool to uncover and understand the
downstream biological effects of disease-associated SNPs [Westra et al., 2013;
Yao et al., 2015; Huan et al., 2015]. We focused on 6,111 SNPs that were
previously associated with complex traits and diseases (’trait-associated SNPs’;
Online Methods and Supplementary Table 3). We observed that one-third of these
trait-associated SNPs (1,907 SNPs; 31.2%) affected methylation in trans at 10,141
CpG sites, totaling 27,816 SNP-CpG combinations (FDR < 0.05, P < 2.6 x 10~7;
Figure 3.3a). This represents a fivefold increase in the number of CpG sites
affected as compared with a previous trans-meQTL mapping study [Lemire et al.,
2015]. We evaluated whether the trait-associated SNPs themselves were likely
to underlie the trans effects or whether the associations could be attributed to
other SNPs in moderate linkage disequilibrium (LD). Of the 1,907 trait-associated
SNPs with trans effects, 1,538 (87.2%) were in strong LD with the top SNP
(r? > 0.8), indicating that the GWAS SNPs are indeed the driving force behind
many of the trans-meQTLs. Of note, because of the sparse coverage of the Illumina
HumanMethylation450 BeadChip, the true number of CpGs in the genome that are
altered by these trait-associated SNPs will be substantially higher.

To validate our trans-meQTLs, we performed a replication analysis in a set
of 1,748 lymphocyte samples [Lemire et al., 2015]. Of the 18,764 overlapping
trans-meQTLs, 94.9% had a consistent allelic direction in the replication data
(Figure 3.1e and Supplementary Table 4). This indicates that the identified trans-
meQTLs are robust and are not caused by differences in cell type composition.
Further analysis of SNPs known to influence blood cell composition [Orru et al.,
2013; Roederer et al., 2015] showed no or only few effects in trans and alternative
adjustments of the methylation data corroborated the stability of the trans effects,
with both approaches indicating a limited influence of cell type composition
(Supplementary Tables 5, 6, 7 and Supplementary Note).
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After identifying trans-meQTLs, we assessed whether their respective SNPs
also affected the expression of the genes associated with the CpGs in trans. By
overlaying the trans-meQTLs and cis-eQTMs, we could link 436 SNPs to 850
genes, totaling 2,889 SNP-gene pairs. We found significant associations (trans-
eQTLs; FDR < 0.05) for 8.4% of these effects, and 91% of these effects showed
the expected direction of effect given the directions of effect for the trans-meQTL
and cis-eQTM (Supplementary Table 8).

In contrast to cis-meQTL CpGs, trans-meQTL CpGs showed substantial
functional enrichment: they were enriched around TSSs and depleted in
heterochromatin (Figure 3.2c) and were strongly enriched for being an eQTM
(1,913 CpGs (18.9%), 5.2-fold enrichment, P = 2.3 x 107'°)). Among
the 1,907 trait-associated SNPs that made up the trans-meQTLs, there was
an over-representation of GWAS-identified SNPs associated with immune- and
cancer-related traits (Figure 3.3a). The large majority of trans-meQTLs were
interchromosomal (93%; 9,429 CpG-SNP pairs) and included 12 trans-meQTL
SNPs (yielding 3,616 unique CpG-SNP pairs) that each showed downstream trans-
meQTL effects across all 22 autosomal chromosomes (trans bands; Figure 3.3b).

We subsequently studied the nature of these trans-meQTLs. Using high-
resolution Hi-C data [Rao et al., 2014], we identified 720 SNP-CpG pairs
(including 402 CpG sites and 172 SNPs) among the trans-meQTLs that overlapped
with an interchromosomal contact, which is 2.9-fold more than expected
by chance (P = 3.7 x 107126; Figure 3.3a,b). The enrichment for Hi-C
interchromosomal contacts remained after removing SNPs that were responsible
for trans bands (P = 1.7x107%!). Hence, interchromosomal contacts may produce
associations between SNPs and CpGs in trans. To characterize the 720 SNP-CpG
pairs overlapping with interchromosomal contacts, we examined motif enrichment
using three motif enrichment analysis tools (HOMER, PWMEnrich and DEEPbind;
Heinz et al. [2010]; Alipanahi et al. [2015]). These analyses showed that the
402 CpG sites involved frequently overlapped with binding sites for CTCF, RAD21
and SMC3 (P = 2.3 x 107, P = 3.5 x 107° and P = 5.1 x 107°, respectively),
factors known to regulate chromatin architecture [Zuin et al., 2014; Splinter et al.,
2006]. An analysis of ChIP-seq data on CTCF binding confirmed this finding (1.8-
fold enrichment, P = 5.2 x 10~7).

We next tested whether the trans-meQTLs reflected the effect of differential
transcription factor binding for transcription factors that mapped close to
the SNPs. The rationale for this hypothesis is that binding of transcription
factors has been linked to changes in local DNA methylation, primarily loss of
methylation upon transcription factor binding and gain of methylation after loss
of transcription factor occupancy [Gutierrez-Arcelus et al., 2013; Tsankov et al.,
2015]. This model suggests that trans-meQTLs may be attributed to SNPs affecting
the expression of a transcription factor in cis and that the SNP allele preferentially
has a unidirectional effect on DNA methylation. In line with this prediction, we
observed that, if a SNP was associated with multiple CpG sites in trans (at least
10, n = 305), the direction of the association of the SNP was consistently skewed
toward either increased or decreased DNA methylation. On average, 76% of the
CpGs for each trans-meQTL SNP displayed the same direction of effect (50%
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Disease variants alter transcription factor levels

expected, P = 10~!!!; Figure 3.4a). A significant skew in the direction of the
allelic effect was present for 59.7% of the 305 individual SNPs with at least 10
trans-meQTL effects, and this proportion increased to 95.2% for the 104 SNPs with
at least 50 trans-meQTL effects (binomial P < 0.05), suggesting that differential
transcription factor binding might explain a substantial fraction of trans-meQTLs.

To explore this mechanism further, we combined ChIP-seq data on
transcription factor binding at CpGs with the expression effects in cis of SNPs
to directly examine the involvement of transcription factors in mediating trans-
meQTLs. Among the trait-associated SNPs influencing at least 10 CpGs in trans
(n = 305), we identified 13 trans-meQTL SNPs with strong support for a role of
transcription factors (Figure 3.4a).

The most striking example was a locus on chromosome 4 (Figure 3.4b),
where two SNPs (rs3774937 and rs3774959; in strong LD) were associated with
ulcerative colitis [Jostins et al., 2012]. The top SNP, rs3774937, was associated
with differential DNA methylation at 413 CpG sites across the genome, 92% of
which showed the same direction of effect—that is, lower methylation—associated
with the minor allele (binomial P = 2.72x1059). Of the 380 CpG sites with lower
methylation, 147 (38.7%) overlapped with a nuclear factor (NF)-xB transcription
factor binding site (2.75-fold enrichment, P = 5.3 x 10732), as derived from
Encyclopedia of DNA Elements (ENCODE) NF-x<B ChIP-seq data in blood cell
types (Figure 3.4c). Three motif enrichment analysis tools (HOMER, PWMEnrich
and DEEPbind) [Heinz et al., 2010; Alipanahi et al., 2015] corroborated the
enrichment of NF-xB-binding motifs for the 413 CpG sites (Figure 3.4c). Notably,
SNP rs3774937 is located in the first intron of NFKB1, and we found that the minor
allele was associated with higher NFKB1 expression (Figure 3.4a). Of the 413
CpGs in trans, 64 were eQTMs and showed a coherent gene network (Figure 3.4d)
that was enriched for immunological processes related to NFKB1 function [Pers
et al., 2015] (Figure 3.4e). Taken together, these results support the idea that the
minor allele of rs3774937, which is associated with increased risk of ulcerative
colitis, decreases DNA methylation in trans by increasing NFKBI expression in cis.

The same analysis approach indicated that the 779 methylation effects
of rs8060686 in trans (associated with various phenotypes, including metabolic
syndrome [Kristiansson et al., 2012] and coronary heart disease [Lettre et al.,
2011]) were mediated by altered CTCF binding, which mapped 315 kb from
the trans-meQTL SNP. We observed strong CTCF ChIP-seq enrichment (603 of
the 779 CpGs in trans overlapping with CTCF binding; P = 1.6 x 107232) and
enrichment for CTCF motifs (Figure 3.5). Of these trans CpGs, only 13 were
observed previously in lymphocytes [Lemire et al., 2015]. Hence, the minor allele
of rs8060686 increased DNA methylation in trans, which could be attributed to
lower CTCF gene expression in cis.

We found another example of this phenomenon: 228 trans-meQTL effects
of four SNPs on chromosome 10, mapping near NKX2-3 and implicated in
inflammatory bowel disease [Jostins et al., 2012], were strongly enriched for
NKX2 transcription factor motifs and associated with NKX2-3 expression. Again,
a negative correlation was observed, in which the minor allele of rs11190140
decreased DNA methylation in trans at NKX2-3-binding sites and increased NKX2-
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Figure 3.5: (a) Depiction of the CTCF gene and rs8060686, associated with metabolic syndrome. The plot shows increased
expression of CTCF for the risk allele C. (b) In addition to influencing CTCF expression, rs8060686 also influences DNA
methylation at 779 CpGs in trans, increasing methylation levels at 87.7% of the affected CpG sites (dark gray). Outer chart,
many of the CpG sites (77.4%) overlap with CTCF-binding sites (20.3-fold enrichment, P = 1.62107232). (¢) Gene network of
the genes associated with 60 of the 779 CpGs (7.7%) with a trans-meQTL. In the top part of the figure, there is an illustration
of overlapping trans-meQTL (left) and trans-eQTL effects (right) for rs8060686.
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3 gene expression in cis (Supplementary Figure 5).

A height-associated locus [Soranzo et al., 2009] harboring four SNPs and
associated with 267 trans CpGs implicated a role for ZBTB38 in mediating trans-
meQTL effects (Supplementary Figure 6). In contrast to the aforementioned
transcription factors, which are all transcriptional activators, ZBTB38 is a
transcriptional repressor [Filion et al., 2006; Sasai and Defossez, 2009] and its
expression was positively correlated with methylation in trans, in line with our
observation that eQTMs in repressed regions are enriched for positive correlations.
Finally, the methylation effects in trans of rs7216064 (64 trans CpGs), associated
with lung carcinoma [Shiraishi et al., 2012], preferentially occurred at regions
binding CTCF, while the SNP was located in the BPTF gene, which encodes a
protein known to occupy CTCF-binding sites [Qiu et al., 2015] (Supplementary
Figure 7).

The possibility of linking trans-meQTL effects to an association with
transcription factor expression in cis and concomitant differential methylation
in trans at the respective binding site for the transcription factor is limited to
transcription factors for which ChIP-seq data or motif information is available.
To make inferences on transcription factors for which such data are not yet
available, we ascertained whether trans-meQTL SNPs were more often associated
with transcription factor gene expression in cis as compared with SNPs without
a trans-meQTL effect. We observed that 13.1% of the trait-associated SNPs that
produced trans-meQTLs also affected transcription factor gene expression in cis,
whereas only 4.5% of the trait-associated SNPs without a trans-meQTL affected
transcription factor gene expression in cis (Fisher’s exact P = 6.6 x 10713).

Here we report that one-third of known disease- and trait-associated
SNPs have downstream effects on methylation in trans and often are associated
with multiple regions across the genome. Our data suggest that the biological
mechanism underlying trans-meQTLs commonly involves a local effect on the
expression of a nearby transcription factor that influences DNA methylation at
the distal binding sites of that particular transcription factor. The direction
of downstream methylation effects is remarkably consistent for each SNP and
indicates that decreased DNA methylation is a signature of increased binding
of transcriptional activators. As such, our study identifies the previously
unrecognized functional consequences of disease-associated variants in noncoding
regions. These can be viewed online (see URLs) and will provide leads for
experimental follow-up.

Methods

Cohort descriptions

The five cohorts used in our study are described briefly below. The number of
samples per cohort and references to full cohort descriptions can be found in
Supplementary Table 1.
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CODAM

The Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) [van
Greevenbroek et al., 2011] consists of a selection of 547 subjects from a larger
population-based cohort [van Dam et al., 2001]. Inclusion of subjects into CODAM
was based on a moderately increased risk of developing cardiometabolic diseases,
such as type 2 diabetes and/or cardiovascular disease. Subjects were included if
they were of European ancestry and over 40 years of age and additionally met
at least one of the following criteria: increased body mass index (BMI; > 25), a
positive family history for type 2 diabetes, a history of gestational diabetes and/or
glycosuria, or use of antihypertensive medication.

LifeLines-DEEP

The LifeLines-DEEP (LLD) cohort [Tigchelaar et al., 2015] is a subcohort of
the LifeLines cohort [Scholtens et al., 2015]. LifeLines is a multidisciplinary
prospective population-based cohort study examining the health and health-
related behaviors of 167,729 individuals living in the northern parts of the
Netherlands using a unique three-generation design. It employs a broad range
of investigative procedures assessing biomedical, sociodemographic, behavioral,
physical and psychological factors contributing to health and disease in the
general population. A subset of 1,500 LifeLines participants also take part in LLD
[Tigchelaar et al., 2015]. For these participants, additional molecular data are
generated, allowing for a more thorough investigation of the association between
genetic and phenotypic variation.

LLS

The aim of the Leiden Longevity Study (LLS) [Schoenmaker et al., 2006] is to
identify genetic factors influencing longevity and examine their interaction with
the environment as a means to develop interventions to increase health at older
ages. To this end, long-lived siblings of European descent were recruited together
with their offspring and their offspring’s partners, on the condition that at least
two long-lived siblings were alive at the time of ascertainment. For men, the age
criterion was 89 years or older; for women, the age criterion was 91 years or
older. These criteria led to the ascertainment of 944 long-lived siblings from 421
families, together with 1,671 of their offspring and 744 partners.

NTR

The Netherlands Twin Register (NTR) [Willemsen et al., 2013; Boomsma et al.,
2002, 2008] was established in 1987 to study the extent to which genetic and
environmental influences cause phenotypic differences between individuals. To
this end, data from twins and their families (nearly 200,000 participants) from all
over the Netherlands are collected, with a focus on health, lifestyle, personality,
brain development, cognition, mental health and aging.
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The Rotterdam Study [Hofman et al., 2013] is a single-center, prospective
population-based cohort study conducted in Rotterdam, the Netherlands. Subjects
were included in different phases, with a total of 14,926 men and women aged
45 years and over included as of late 2008. The main objective of the Rotterdam
Study is to investigate the prevalence and incidence of and risk factors for chronic
diseases to contribute to better prevention and treatment of such diseases in the
elderly.

Genotype data
Data generation

Genotype data was generated for each cohort individually. Details on the methods
used can be found in the individual papers (CODAM [van Dam et al., 2001];
LLD [Tigchelaar et al., 2015]; LLS [Deelen et al., 2014a]; NTR [Willemsen et al.,
2013]; RS [Hofman et al., 2013]).

Imputation and QC

For each cohort separately, the genotype data were harmonized toward the
Genome of the Netherlands (GoNL) using Genotype Hamonizer [Deelen et al.,
2014b] and subsequently imputed per cohort using Impute2 [Howie et al., 2009]
using GoNL [Deelen et al., 2014c] reference panel (v5). Quality control was also
performed per cohort. We removed SNPs based on imputation info-score (< 0.5),
HWE (P < 10™%), call rate (< 95%) and minor allele frequency (> 0.05), resulting
in 5,206,562 SNPs that passed quality control in each of the data sets.

Methylation data
Data generation

For the generation of genome-wide DNA methylation data, 500 ng of genomic
DNA was bisulfite modified using the EZ DNA Methylation kit (Zymo Research)
and hybridized on Illumina 450K arrays according to the manufacturer’s protocols.
The original IDAT files were generated by the Illumina iScan BeadChip scanner. We
collected methylation data for a total of 3,841 samples. Data was generated by the
Human Genotyping facility (HugeF) of ErasmusMC, The Netherlands (see URLs).

Probe remapping and selection

We remapped the 450K probes to the human genome reference (hg19) to correct
for inaccurate mappings of probes and identify probes that mapped to multiple
locations on the genome. Details on this procedure can be found in Bonder et al.
[2014]. Next, we removed probes with a known SNP (GoNL, MAF > 0.01) at
the single base extension (SBE) site or CpG site. Lastly, we removed all probes
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on the sex chromosomes, leaving 405,709 high quality methylation probes for the
analyses.

Normalization and QC

Methylation data was processed using a custom pipeline based on the pipeline
developed by Touleimat and Tost [2012]. First, we used methylumi to extract
the data from the raw IDAT files. Next, we removed incorrectly mapped probes
and checked for outlying samples using the first two principal components
(PCs) obtained using principal component analysis (PCA). None of the samples
failed our quality control checks, indicating high quality data. Following quality
control, we performed background correction and probe type normalization as
implemented in DASEN [Pidsley et al., 2013]. Normalization was performed per
cohort, followed by quantile normalization on the combined data to normalize
the differences per cohort. We used mix-up mapper [Westra et al., 2011] to
identify sample mix-ups between genotype and DNA methylation data, detecting
and correcting 193 mix-ups. Lastly, in order to correct for known and unknown
confounding sources of variation in the methylation data and increase statistical
power, we removed the first components which were not affected by genetic
information (22 PCs) from the methylation data using methodology we have
successfully used in trans-eQTL [Westra et al., 2013; Fehrmann et al., 2011] and
meQTL analyses [Touleimat and Tost, 2012].

RNA sequencing

Total RNA from whole blood was depleted of globin transcripts using the Ambion
GLOBIN clear kit and subsequently processed for sequencing using the Illumina
TruSeq version 2 library preparation kit. Paired-end sequencing of 2 x 50-bp
reads was performed using the Illumina HiSeq 2000 platform, pooling ten samples
per lane. Finally, read sets were generated for each sample using CASAVA,
retaining only reads passing the Illumina Chastity Filter for further processing.
Data were generated by the Human Genotyping facility (HugeF) of ErasmusMC,
the Netherlands (see URLSs).

Initial quality control was performed using FastQC v0.10.1 (see URLs),
removal of adaptors was performed using cutadapt [Martin, 2011] (v1.1) and
Sickle v1.2 (see URLs) was used to trim low-quality ends from the reads (min
length 25, min quality 20). Sequencing reads were mapped to the human genome
(hg19) using STAR [Dobin et al., 2013] v2.3.125. Gene expression quantification
was performed by HTseq-count. The gene definitions used for quantification were
based on Ensembl version 71, with the extension that regions with overlapping
exons were treated as separate genes and reads mapping within these overlapping
parts did not count toward expression of the normal genes.

Expression data on the gene level were first normalized using trimmed
mean of M values [Robinson and Oshlack, 2010]. Then, expression values were
log2 transformed, and gene and sample means were centered to zero. To correct
for batch effects, principal-component analysis (PCA) was run on the sample
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correlation matrix and the first 25 principal components were removed using
methodology that we have used before [Westra et al., 2013; Fehrmann et al.,
2011]; details are provided in Zhernakova et al. [2016].

Cis-meQTL mapping

To determine the effect of nearby genetic variation on methylation levels (cis-
meQTL, here defined as the relationship between a CpG and a SNP no further
than 250 kb apart), we performed cis-meQTL mapping using 3,841 samples for
which both genotype data and methylation data were available. To this end,
we calculated the Spearman rank correlation for each cohort, followed by meta-
analysis using a weighted Z-method described previously [Westra et al., 2013]. To
detect all possible independent SNPs regulating methylation at a single CpG site,
we regressed out all primary cis-meQTL effects and then performed cis-meQTL
mapping for the same CpG site to find secondary cis-meQTLs. We repeated this in
a stepwise fashion until no more independent cis-meQTLs were found.

To filter out potential false positive cis-meQTLs caused by SNPs affecting
the binding of a probe on the array, we filtered the cis-meQTL effects by removing
any CpG-SNP pairs for which the SNP was located in the probe. In addition, all
other CpG-SNP pairs for which the SNP was outside the probe but in LD (2 > 0.2
or D7 > 0.2) with a SNP inside the probe were also removed. We tested for LD
between SNPs in probes and in surrounding cis areas in the individual genotype
data sets, as well as in GoNL v5, to be as strict as possible in marking a QTL as a
true positive.

To correct for multiple testing, we empirically controlled the FDR at 5%.
For this, we compared the distribution of observed P values to the distribution
obtained from performing the analysis on permuted data. Permutation was
performed by shuffling the sample identifiers of one data set, thereby breaking the
link between, for example, the genotype data and the methylation or expression
data. We repeated this procedure ten times to obtain a stable distribution of P-
values under the null distribution. The FDR was determined by only selecting the
strongest effect for each CpG [Westra et al., 2013] in both the real analysis and
the permutations (probe-level FDR < 5%).

Cis-eQTL mapping

For a set of 2,116 BIOS samples we had also generated RNA-seq data. We used
this data to identify cis-eQTLs. Cis-eQTL mapping was performed using the same
method as cis-meQTL mapping. Details on these eQTLs are described in a separate
paper [Zhernakova et al., 2016].

Expression quantitative trait methylation analysis

To identify associations between methylation levels and the expression levels of
nearby genes (cis-eQTMs), we first corrected our expression and methylation
data for batch effects and covariates by regressing out the principal components
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and regressing out the identified cis-meQTLs and cis-eQTLs, to ensure that the
associations identified between CpG sites and gene expression levels were not due
to shared genetic effects. We mapped the eQTMs in a window of 250 kb around
the TSS of a transcript. Further statistical analysis was identical to that for cis-
meQTL mapping. For this analysis, we were able to use a total of 2,101 samples
for which both genetic, methylation and gene expression data were available. To
correct for multiple testing, we controlled the FDR at 5%; the FDR was determined
by only selecting the strongest effect for each CpG [Westra et al., 2013] in both
the real analysis and the permutations.

Trans-meQTL mapping

To identify the effects of distal genetic variation on methylation (trans-meQTLs),
we used the same 3,841 samples that we had used for cis-meQTL mapping. To
focus our analysis and limit the multiple-testing burden, we restricted our analysis
to SNPs that have previously been found to be significantly correlated with traits
and diseases. We extracted these SNPs from the NHGRI GWAS catalog and
also used recent GWAS not yet in the NHGRI GWAS catalog and studies on the
Immunochip and Metabochip platforms that are not included in the NHGRI GWAS
catalog. We compiled this list of SNPs in December 2014. For each SNP, we
only investigated CpG sites that mapped at least 5 Mb from the SNP or on other
chromosomes. Before mapping trans-meQTLs, we regressed out the identified
cis-meQTLs to increase the statistical power of trans-meQTL detection (as done
previously for trans-eQTLs [Westra et al., 2013]) and to avoid designating an
association as trans that might be due to long-range LD (for example, within the
human leukocyte antigen (HLA) region). To ascertain the stability of the trans-
meQTLs, we also performed trans mapping using uncorrected methylation data
and data corrected for cell type proportions. In addition, we performed meQTL
mapping on SNPs known to influence cell type proportions in blood [Orru et al.,
2013; Roederer et al., 2015].

To filter out potential false positive trans-meQTLs due to cross-hybridization
of the probe, we remapped the methylation probes with very relaxed settings
identical to those used in Westra et al. [2013], with the difference that we only
accepted mappings if the last bases of the probe including the SBE site were
accurately mapped to the alternative location. If the probe mapped within our
minimal trans window, 5 Mb from the SNP, we removed the effect as being a false
positive trans-meQTL.

We controlled the FDR at 5%, identical to in the aforementioned cis-meQTL
analysis.

Trans-eQTL mapping

To check whether trans-meQTL effects also showed in gene expression levels, we
annotated the CpGs with a trans-meQTL to genes using our eQTMs. Using the
2,101 samples for which both genotype and gene expression data were available,

46



we performed trans-eQTL mapping, associating SNPs known to be associated with
DNA methylation in trans with their corresponding eQTM genes.

Annotation and enrichment tests

Annotation of CpG sites was performed using Ensembl [Flicek et al., 2013] (v70),
the UCSC Genome Browser [Kent et al., 2002] and data from the Epigenomics
Roadmap project [Kundaje et al., 2015]. We used Epigenomics Roadmap
annotation for the SBE site of the methylation site using 27 blood cell types. We
used both the histone mark information and the chromatin marks in blood-related
cell types only, as generated by the Epigenomics Roadmap project. Summarizing
the information over the 27 blood cell types was carried out by counting the
presence of histone marks in all the cell types and scaling the abundance: that
is, the score would be 1 if a mark is bound in all cell types, whereas the score
would be 0 if it is present in none of the blood cell types.

To calculate enrichment of meQTLs or eQTMs for any particular genomic
context, we used logistic regression because this allowed us to account for
covariates such as CpG methylation variation. For cis-meQTLs, we used the
variability in DNA methylation, the number of SNPs tested and the distance to
the nearest SNP for each CpG as covariates. For all other analyses, we used only
the variability in DNA methylation as a covariate.

We used transcription factor ChIP-seq data from the ENCODE project for
blood-related cell lines (narrow-peak data). We overlapped CpG locations with
ChIP-seq signals and performed a Fisher’s exact test to determine whether the
trans-meQTL probes associated with a SNP overlapped a ChIP-seq region more
often than other trans-meQTL probes.

Enrichment of known sequence motifs among trans-CpGs was assessed
using the PWMEnrich package in R, HOMER [Heinz et al., 2013] and DEEPbind
[Alipanahi et al., 2015]. For PWMEnrich, the 100-bp sequence around each
interrogated CpG site was used, and as a background set we used the top
CpGs from the 50 permutations used to determine the FDR threshold of the
trans-meQTLs. For HOMER, the default settings for the identification of motif
enrichment were used, and the same CpG sites derived from the permutations
were used as background. For DEEPbind, we used both the permutation
background as described for HOMER and the permutation background as
described for PWMEnrich.

Using data published by Rao et al. [2014], we were able to intersect the
trans-meQTLs with information about the 3D structure of the human genome
using combined Hi-C data for both inter- and intrachromosomal data at 1 kb
and the quality threshold of E30 in the GM12878 LCL. Both the trans-meQTL
SNPs and trans-meQTL probes were put in the relevant 1-kb blocks, and for these
blocks we looked up the chromosomal contact value in the measurements by Rao
et al. Surrounding the trans-meQTL SNPs, we used an LD window that spanned
maximally 250 kb from the trans-meQTL SNP and had a minimal 72 value of 0.8.
If a Hi-C contact was indicated between a SNP block and a CpG site, we flagged
the region as positive for Hi-C contacts. As background, we used the combinations
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found in our 50 permutated trans-meQTL analyses, taking for each permutation
the top trans-meQTLs that were similar in size to those from the real analysis.

Prediction of eQTM direction

We predicted the direction of eQTM effects using both a decision tree and a naive
Bayes model (as implemented by Rapid-miner v6.3 [Hofmann and Klinkenberg,
2013]). We built the models on the strongest eQTMs (FDR < 9.73 x 10~%). For
the decision tree, we used a standard cross-validation setup with 20 folds. For the
naive Bayesian model, we used double-loop cross-validation: performance was
evaluated in the outer loop using 20-fold cross-validation, while feature selection
(using both backward elimination and forward selection) took place in the inner
loop using tenfold cross-validation. Details about double-loop cross-validation can
be found in de Ronde et al. [2014]. During the training of the model, we balanced
the two classes, making sure we had an equal number of positively correlating and
negatively correlating CpG-gene combinations, by randomly sampling a subset
of the over-represented negatively correlating CpG-gene combination group. We
chose to do so to circumvent labeling al eQTMs as negative, as this is the class to
which the majority of the eQTMs belonged.

In the models, we used CpG-centric annotations: overlap with Epigenomics
Roadmap chromatin states, histone marks and relationships between the histone
marks, GC content surrounding the CpG site and relative locations from the CpG
site to the transcript.

DEPICT

To investigate whether there was biological coherence in the trans-meQTLs
identified for the NFKBI locus, we performed gene set enrichment analysis for
the genes near the trans-CpG sites of the ulcerative colitis genetic risk factor
(which maps in the NFKBI locus). To do so, we adapted DEPICT [Pers et al.,
2015], a pathway enrichment analysis method that we originally developed for
GWAS. Instead of defining loci with genes by using the top associated SNPs
(as is done when analyzing GWAS data), we used the eQTM information to
empirically link trans-CpGs to genes (that map close to the CpGs). Within
DEPICT gene set enrichment, significance is determined by using a background
set of genes. As background in the adapted DEPICT enrichment analyses, we
matched our background to the results from the actual trans-meQTL and eQTM
analyses: matching was performed by generating a set of background CpGs (and
corresponding correlating eQTM genes), by selecting an equal number of CpGs for
which we had found trans-meQTL effects with SNPs that map outside the NFKB1
locus. By doing so, we ensured that the characteristics of these background CpGs
were the same as those for the real NFKBI1 trans-meQTL CpGs, both in terms of
CpG variance and the requirement that they also show a significant correlation
with expression levels of genes close to the CpG (that is, a cis-eQTM), ensuring
that the corresponding input genes for DEPICT had the same expression variation
distribution in the actual NFKB1 analysis and in the background. Subsequent
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pathway enrichment analysis was conducted as described before [Pers et al.,
2015], and significance was determined by controlling the FDR at 5%.

URLs

All results can be queried using our dedicated QTL browser at http:
//www.genenetwork.nl/biosqtlbrowser. Data were generated by the
Human Genotyping facility (HugeF) of FErasmusMC, the Netherlands
(http://www.glimDNA.org/). Cohort webpages are as follows: LifeLines,
http://lifelines.nl/lifelines-research/general; Leiden Longevity Study,
http://www.healthy-ageing.nl/ and http://www.leidenlangleven.nl/;
Netherlands Twin Registry, http://www.tweelingenregister.org/; Rotterdam
Studies,  http://www.erasmusmc.nl/epi/research/The-Rotterdam-Study/;
Genetic Research in Isolated Populations program, http://www.epib.nl/
research/geneticepi/research.html#gip; CODAM study, http://www.
carimmaastricht.nl/; PAN study, http://www.alsonderzoek.nl/. Software
used included the following: FastQC, http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/;  Sickle, https://github.com/najoshi/sickle;
PWMEnrich: PWM enrichment analysis v.4.6.0, https://bioconductor.riken.
jp/packages/3.2/bioc/html/PWMEnrich.html.

Accession codes

All results can be queried using our dedicated QTL browser (see URLs). Raw data
were submitted to the European Genome-phenome Archive (EGA) under accession
EGAS00001001077.
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