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Abstract

An increasing number of studies investigates the influence of local genetic
variation on DNA methylation levels, so called in cis methylation Quantitative Trait
Loci (meQTLs). A common multiple testing approach in genome-wide cis-meQTL
studies limits the false discovery rate (FDR) among all CpG-SNP pairs to 0.05
and reports on CpGs from the significant CpG-SNP pairs. However, a statistical
test for each CpG is not performed, potentially increasing the proportion of CpGs
falsely reported on. Here, we presented an alternative approach that does properly
control for multiple testing at the CpG level.

We performed cis-meQTL mapping for varying window sizes using publicly
available SNP and 450k data, extracting the CpGs from the significant CpG-SNP
pairs (FDR < 0.05). Using a new bait-and-switch simulation approach, we show
that up to 50% of the CpGs found in the simulated d ata may be false positives.
We present an alternative, two-step multiple testing approach using the Simes
and Benjamini-Hochberg procedures that does control the FDR among the CpGs,
as confirmed by the bait-and-switch simulation. This approach indicates the use
of window sizes in cis-meQTL mapping studies that are significantly smaller than
commonly adopted.

Our approach to cis meQTL mapping properly controls the FDR at the CpG
level, is computationally fast and can also be applied to cis eQTL studies.



Introduction

Genome-wide association studies (GWASs) are widely used to uncover the
genetic basis of complex disease. Disease-associated genetic variants identified
in GWASs are commonly located in non-coding regions, leaving the molecular
mechanism underlying the associations unclear [Visscher et al., 2012]. The likely
mechanism involves an effect on transcriptional activity of genes nearby (cis) or
located distantly (trans), for example by influencing epigenetic regulation [Mill
and Heijmans, 2013]. This can be studied by investigating the relationship
between genetic variation, epigenetic marks including DNA methylation and gene
expression. Already, many studies have reported on associations of specific
genetic variants with variation in gene expression (expression QTL or eQTLs,
Small et al. [2011]; Westra et al. [2013]) and DNA methylation, in particular
the methylation of cytosines in CpG dinucleotides (e.g., Heijmans et al. [2007];
Shi et al. [2014]; Wagner et al. [2014]) (DNA methylation quantitative trait
loci or meQTLs). Creating catalogs of meQTLs and eQTLs will be instrumental
in the discovery of genetic mechanisms determining DNA methylation and gene
expression, the possible interplay between the two, and eventually the etiology of
common diseases. To achieve this goal, further development of sound statistical
methodology will be important.

Typically in meQTL and eQTL studies, a GWAS (i.e., testing hundreds of
thousands to millions of single nucleotide polymorphisms, SNPs) is performed for
the level of methylation of every CpG measured or the level of transcription of
every gene (more generally, for every transcript or exon), respectively, leading
to a vast amount of possible combinations to investigate. While we will focus
on cis meQTL studies, we note that the same principles and problems may also
apply to cis eQTL studies. With the recent introduction of the Illumina 450k DNA
methylation array [Bibikova et al., 2011], meQTL studies have become possible
investigating over 400 thousand CpGs in large numbers of subjects. To test for
associations of methylation at CpGs with genetic variants in cis, that is locally,
studies have been considering SNPs anywhere between 5 kb [Gutierrez-Arcelus
et al., 2013] to 1,000 kb [Gibbs et al., 2010] from measured CpGs. Particularly
large window sizes will result in hundreds of millions statistical tests and thus
brings about a huge multiple testing problem. A common strategy to account
for multiple testing in meQTL studies is to control the false discovery rate (FDR;
Benjamini and Hochberg [1995]) of all significantly associated CpG-SNP pairs at
0.05 (e.g., Grundberg et al. [2013]; Drong et al. [2013]). This means that 5% of
all significantly associated CpG-SNP pairs are expected to be false positives.

Due to the extensive linkage disequilibrium (LD) in the human genome,
individual CpGs will frequently be associated with many SNPs. Hence, a particular
CpG will often occur many times in the list of significant CpG-SNP pairs. In
practice, this is redundant information because LD structure renders it impossible
to pinpoint the causal SNP responsible for the variation in DNA methylation using
statistical means (cf. GWAS; Pearson and Manolio [2008]; Feero et al. [2010]).
Hence, the results reported on and further analyses generally focus on the CpGs
in the list of significant CpG-SNP associations. That is, all CpGs that significantly
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associate with at least one SNP (e.g., Zhang et al. [2010]; Liu et al. [2013]; van
Eijk et al. [2012]). We will refer to this approach as the CpG-SNP pair-based
approach.

A large proportion of CpGs among the FDR significant CpG-SNP pairs may
be false positives [Bell et al., 2011; Westra et al., 2013]. To obtain a list of
CpGs influenced by genetic variation in cis that is properly controlled for multiple
testing, we propose to formally test each CpG, obtaining a single valid P -value
per CpG and control the FDR among those P -values, which we will refer to as the
CpG-based approach. Using a new bait-and-switch simulation scheme we compare
the proportion of falsely identified CpGs using the CpG-SNP pair-based approach
and our proposed CpG-based approach in simulated data.

Methods

Data

We used Illumina 450k DNA methylation data [Heyn et al., 2013] and Illumina
HumanHap 550k SNP data [Niu et al., 2010] on 96 unrelated healthy Caucasian-
Americans. The DNA samples were obtained from lymphoblastoid cell lines
included in the Human Variation panel (sample set HD100CAU; Coriell Cell
Repositories). Both data sets are publicly available from the GEO data repository
(accession numbers GSE36369 and GSE24260, respectively). The SNP array data
were imputed to 30,038,302 SNPs based on the 1000 Genomes CEU reference
panel and using IMPUTE v2 [Howie et al., 2009]. A dosage value ranging from 0
to 2 reflected the uncertainty in the imputation for the imputed SNPs. We selected
SNPs with a minor allele frequency above 5%, a minimum call rate of 95%, and
an imputation quality score of at least 0.4, leaving 6,596,758 SNPs for analysis.

The quality control of the 450k array was done based on the signal
intensities and detection P -values. We set any beta values [Du et al., 2010],
a measure of the DNA methylation fraction, with a corresponding detection P -
value lower than 0.01 to missing. Next, we removed any samples with a log2
median intensity under 10.5 in either the methylated or the unmethylated signal.
In addition, we removed any probes or samples with a call rate lower than
95%. Lastly, we removed probes mapping to the sex chromosomes, mapping
ambiguously to the genome [Chen et al., 2013], or with a SNP in the interrogated
CpG (MAF > 1% in 1000 Genomes). These filters resulted in 423,825 probes
left for analysis out of the 482,421 probes on the array targeting CpG sites. The
normalization of the 450k data consisted of a correction for background signal,
followed by a dye-bias correction. Both procedures were performed using the
methylumi package [Davis et al., 2013]. All further analyses were done using beta
values. To verify that genotype and methylation data were linked to the correct
sample identified, MixupMapper was used [Westra et al., 2011]. For 77 out of
93 samples remaining after quality control, SNP and methylation data could be
linked (Supplementary Tables 1 and 2).
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meQTL mapping

We tested all associations between genotypes and methylation of CpGs in cis,
that is, locally, defined by window sizes from 1 kb to 500 kb around each CpG,
calculating the Spearman rank correlation between the imputed dosage values
and beta values. To this end, we use the Matrix eQTL package [Shabalin,
2012]. Because the Matrix eQTL package is only able to calculate the Pearson
correlation, which is less robust to outliers than the Spearman rank correlation,
we pre-calculated the ranks of the observed values for all CpGs and SNPs as
input for Matrix eQTL to obtain a test on the basis of the Spearman correlation.
The Matrix eQTL package provides a list of all CpG-SNP pairs tested across
all windows evaluated and the P -values reflecting the statistical significance of
the associations. Obtaining a list of statistically significant CpG-SNP pairs was
achieved by limiting the false discovery rate (FDR) among the CpG-SNP pairs to
0.05.

Obtaining an FDR controlled list of CpGs influenced by genetic
variation

While the FDR among the CpG-SNP pairs is controlled at 0.05, there is no
guarantee that this is also true for the set of CpGs among these pairs. No
formal statistical test is performed for each CpG individually, testing the global
null hypothesis H0 of no association between the variation in methylation and
genetic variation in cis. In order to obtain a list of CpGs that is controlled at an
FDR of 0.05, we proceed as follows. First, we perform a statistical test to assess
the global null hypothesis H0,i of no association between a CpG i and the SNPs
in cis to obtain one valid P -value for each CpG. Next, we apply the Benjamini-
Hochberg procedure [Benjamini and Hochberg, 1995] to these P -values to obtain
an FDR controlled list of CpGs associated with genetic variation. Since commonly
used software packages return P -values pi,j for all CpG-SNP pairs (i, j) tested,
we propose to use the pi,j to test the global null hypothesis H0,i. The Bonferroni
correction multiplies the minimum of the observed P -values in a window by the
number of such P -values

Pi = ki min(p1,i, . . . , pki,i), (2.1)

where ki is the number of SNPs in that window. The Bonferroni correction is
conservative in the case of dependent P -values (like in the case of LD between
SNPs), since the effective number of tests done may be smaller than the number
of tests corrected for by Bonferroni. Hence, we propose to use the Simes procedure
[Simes, 1986] (see Supplemental Materials), a method developed specifically
to test a global null hypothesis H0. This method makes the extra assumption
of positive dependence among the P -values, similar to the Benjamini-Hochberg
procedure [Goeman and Solari, 2014]. The Simes procedure implicitly takes
these dependencies into account, yielding a less conservative P -value than the
Bonferroni correction. The Simes procedure orders the P -values belonging to CpG
i in ascending order, such that p(1),i ≤ · · · ≤ p(ki),i. Next, a P -value Pi for CpG
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i is calculated by multiplying each p(j),i by a smaller factor ki/j and taking the
minimum of these corrected P -values:

Pi = min

{
j :

ki
j
p(j),i

}
(2.2)

Both the Bonferroni procedure and the Simes procedure multiply the smallest P -
value p(1),i by ki. However, the Simes procedure multiplies the larger pi,j by a
smaller factor, making the Simes procedure a more liberal procedure in the case
of positively correlated P -values.

Estimating the CpG level false discovery proportion in
a simulated setting using the bait-and-switch simulation
procedure

We have discussed two approaches to compiling a list of CpGs influenced
by genetic variation: the CpG-SNP pair-based approach and our CpG-based
approach. We will now discuss a novel data-based simulation scheme called
the bait-and-switch simulation to provide an assessment of the performance of
these approaches in terms of the proportion of CpGs falsely identified as being
significantly associated with genetic variation in a realistic simulation setting.
Because simulation of realistic genome-wide genotype and methylation data is
hard to do from scratch, we choose to modify the current data set in such a way
that we have knowledge of what null hypotheses are true, i.e. which CpGs should
not associate with any genetic variation. This simulation consists of several steps
and is depicted in Figure 2.2A:

1. Within-window correction: perform the Simes correction within each CpG’s
window separately. Take the minimum adjusted P -value as the P -value for
this CpG.

2. Between-windows correction: control the FDR among the newly calculated
P -values to obtain a list of FDR significant CpGs.

3. The data consisting of FDR significant CpGs will be called the bait set. The
rest of the data, the non-significant CpGs, are called the switch set.

4. Permute the methylation values for the switch set, leaving the data in the
bait set and the genotype data intact.

5. Perform the CpG-SNP pair-based approach and the CpG-based approach on
the simulated data, obtaining a list of significant CpGs for each approach.
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To get an estimate of the CpG level FDR, we calculate the proportion of the
CpGs obtained in step 3 coming from the switch set. Although we do not know
which of the CpGs in the bait set are truly associated with genetic variation, we
do know that none of the CpGs in switch set have any such association. As a
result, the calculated FDP is a lower bound. The CpG level FDR is the average of
the different realizations of the FDP coming from many repetitions of the same
simulation experiment.

Results

CpG-SNP pair-based meQTL mapping approach

We performed cis meQTL mapping, varying the window size from 1 kb to 500
kb. For each window size, we applied the the CpG-SNP pair-based approach,
obtaining a list of statistically significant CpG-SNP pairs and a list of the CpGs
among these CpG-SNP pairs, i.e. the CpGs that are associated with at least one
SNP. Despite the relatively small sample size, Figure 2.1 shows that the Benjamini-
Hochberg method finds an increasing number of CpG-SNP pairs with increasing
window size, with a maximum of 223,428 CpG-SNP pairs at a 200 kb window and
a maximum of 10,034 CpGs at the 100 kb window size. If we keep expanding
the search window around each CpG the multiple testing burden becomes too
great, leading to a slight decrease in the number of CpG-SNP pairs and CpGs in
that list. The increase in the number of CpG-SNP pairs can be mainly attributed
to linkage disequilibrium (LD). When observing a statistically significant CpG-
SNP pair, LD may virtually guarantee finding more significant CpG-SNP pairs if
that SNP is strongly correlated to other nearby SNPs and we expand the window
around each CpG. This is illustrated by the LocusZoom plot [Pruim et al., 2010]
for a CpG (cg12247378) associated with several SNPs on 22q13.1 in Figure 2.1B.
Many of the SNPs associated with this CpG are in LD and will be included with an
increasing window size.

Evaluating the CpG level false discovery proportion in a
simulated setting using the bait-and-switch simulation

LD causes identification of the causal SNP responsible for the variation in
methylation to be impossible by statistical means. Therefore, it would be more
insightful to consider individual CpGs only, instead of focusing on all CpG-SNP
pairs. Following the CpG-SNP pair-based approach, we report on the CpGs from
the FDR significant CpG-SNP pairs found (see Figure 2.1), i.e. the CpGs that
associate with at least one SNP. However, this set of CpGs has no guarantee of
FDR control and likely includes many false positive CpGs.

To evaluate the CpG level FDP among the in a controlled setting, we use the
bait-and-switch simulation scheme. We construct a new, simulated data set that is
very similar to the original data, but allows us to compute a lower bound on the
FDP among the CpGs. Performing the CpG-SNP pair-based approach for varying
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Figure 2.1: (A) The number of CpG-SNP pairs and the number of CpGs among
them for different window sizes in the real data. The grey line shows the number
of CpG-SNP pairs (FDR < 0.05). The black lines show the number of CpGs found.
The two different symbols denote the CpG-SNP pair-based approach (circles) and
our proposed CpG-based approach (triangles). Both the number of CpG-SNP pairs
and the CpGs among them increase with window size when using the CpG-SNP
pair-based approach. The CpG-based approach finds less CpGs, and reaches an
optimum at at a 500 base pair window size. (B) CpGs associated with genetic
variation are often associated with many SNPs due to LD. The LocusZoom plot
shows the associations between CpG cg12247378 (22q13.1) and the SNPs in its
window. The left y-axis shows the P -value corresponding to the association with
the methylation levels on a -log10-scale, the right axis shows the recombination
rate. The color coding indicates the r2 between the SNPs, based on 1000 Genomes,
build hg19. Many of the associated SNPs are in strong LD with one another.
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window sizes on the simulated data set yields a list of CpGs associated with at least
one SNP and a list of all CpG-SNP pairs at an FDR of 0.05, similar to the results
in Figure 2.1A. In the simulated data set we know for which CpGs we permuted
the methylation values and thus are false positives (see Figure 2.2B). Strikingly,
a large portion of the identified CpGs using the CpG-SNP pair-based approach
seem to be false positives, especially for larger window sizes (Figure 2.2). Even
when using a very small 0.5 kb window size, we find an estimated FDP of 0.1 (SE
= 0.0006, based on 5 permutations), meaning at least 10% of the CpGs found
among the CpG-SNP pairs in the simulated data are coming from the permuted
switch set, i.e. are not truly associated with a SNP. This number greatly increases
to 49.1% (FDP = 0.49, SE = 0.002, based on 5 permutations) for the 500 kb
window size. While we can only claim that up to 50% of the CpGs found in the
simulated data are false positives, this approach will probably yield an inflated
proportion of falsely identified CpGs in the original data too. Our proposed CpG-
based approach, however, controls the FDP at 0.05 (SE 0.001-0.005, based on 5
permutations) for all window sizes.

A FDR controlled list of CpGs influenced by genetic variation

To obtain a valid list of CpGs that are significantly associated with genetic variation
in cis in the original data, we calculated one P -value per CpG, testing the
global hypothesis of no association between variation in methylation any of the
SNPs in its window. We calculated these P -values by means of the the Simes
procedure. The Simes procedure implicitly takes into account the correlation
structure among the SNPs, making it a more powerful method than, e.g., the
conservative Bonferroni method. After this within-window correction, we applied
the Benjamini-Hochberg procedure to the resulting P -values, controlling the FDR
among the CpGs to 0.05. Figure 2.1A shows that this approach identifies a
maximum of 3,721 CpGs at a 500 base pair window size (black line, triangles).
This suggests that strongly associated SNPs are often in close proximity to the CpG,
as reported earlier [Bell et al., 2011; Gutierrez-Arcelus et al., 2013]. To show
that this approach does control the FDP among the CpGs at the desired level,
we again conducted the same bait-and-switch simulation experiment, applying
our proposed CpG-based approach on the simulated data set. While our approach
seemingly discovers fewer CpGs than the CpG-SNP pair-based approach to meQTL
mapping when applied to the original data, the FDR among the CpGs identified in
the simulated data is controlled at 0.05 (Figure 2.2B).

Discussion

We report on a CpG-based multiple testing approach in meQTL mapping to identify
individual CpGs whose methylation level is influenced by genetic variation in cis.
Our approach is based on the application of the Simes procedure within a window
around each CpG to obtain a single P -value per CpG, followed by the Benjamini-
Hochberg procedure to control the FDR across CpGs. Strikingly, this approach
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suggests that optimal window sizes for the identification of cis meQTLs are much
smaller than frequently used in the literature (up to 10s of kb instead of 100s
of kb). These smaller window sizes are in line with reports that SNPs strongly
associated with a CpG are often in close proximity to the CpG [Bell et al., 2011;
Gutierrez-Arcelus et al., 2013]. The large window sizes used in literature may
stem from the CpG-SNP pair-based approach reporting on the CpGs from a list of
all FDR significant CpG-SNP pairs. Using the bait-and-switch simulation we show
that the latter approach yields up to 50% falsely identified CpGs in simulated data.
Our proposed approach controls the CpG level FDR at the desired level and still
identifies a substantial number of CpGs associated with genetic variation in cis.

Our method can be directly applied to the output of commonly used QTL
mapping software, e.g., Matrix EQTL, which returns P -values corresponding to
every CpG-SNP pair tested. In addition, the current method does not require the
use of permutations to control the FDR, making it a fast and easy-to-use approach.
While permutations are still feasible for small 450k array data sets, this becomes
burdensome for large data sets, particularly when using bisulphite-sequencing
data measuring millions of CpG sites.

When calculating one P -value for the window around each CpG site it
is important to account for LD between SNPs in the window. Not doing so
will substantially reduce statistical power. Therefore, some methods, like the
Bonferroni correction, may be too conservative. The Simes procedure implicitly
takes LD into account by multiplying larger P -values with smaller factors.
Although the Simes procedure seems to perform well in terms of CpGs found,
it still does not fully capture the correlation structure. A possible solution would
be to estimate the number of independent tests for each window, e.g., using GATES
[Li et al., 2011] or TATES [van der Sluis et al., 2013], accounting for the number
of independent tests done. However, this may be computationally expensive. Our
proposed approach is unable to distinguish between two independent SNP effects
on the methylation levels of a CpG. It only allows for making claims about the
global null hypothesis of no association with any genetic variant in cis. This
approach takes into account that the causal variant cannot be identified with
statistical means only. Another limitation is that there currently is no valid method
to determine the optimal window size for a study prior to QTL-mapping. In
general, the optimal window size will be greater for studies with higher statistical
power. Our study suggests that the optimal window size will be 10-50 kb instead
of the commonly used 100s kb , which will reduce statistical power by dramatically
increasing the number of tests.

In this paper we introduced the bait-and-switch simulation method to
estimate the true false discovery proportion among CpGs with a meQTL in cis
in simulated data. This approach indicated up to 50% of identified CpGs in our
simulated data may be false positive. While we know this is true in the simulated
data, we cannot extrapolate this to the original data. It is likely that the common
approach to multiple testing also brings about an increased CpG level FDR in
the real data. This finding may also be an issue for cis expression QTL studies
and possibly trans QTL studies. Interpretation of results based on the common
approach evaluated here should be interpreted with caution.
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Development of statistical methodology will aid in getting a complete
catalogue of meQTLs and eQTLs that is key in understanding the mechanisms
underlying the association of non-coding genetic variants with disease phenotypes.
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