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1 INTRODUCTION



Introduction

Molecular epidemiology

Epidemiology refers to the study of the distribution of health and disease
conditions, their determinants, and their risk factors in variously defined
populations. Molecular epidemiology is a subfield of epidemiology that is
particularly interested in how changes at the molecular level contribute to these
biological traits and disease susceptibilities. Such information is used to predict
the individual disease risk in the population, predict the prognosis of patients,
or to monitor the effect of interventions in a biomedical or clinical setting. The
information gathered at the molecular level includes, among others, genetic
variation (inter-individual differences in the DNA sequence), transcriptomic
variation (in the expression levels of genes), epigenomic variation (changes in
the function of DNA without changing the DNA sequence itself, e.g., through
modification of the accessibility of the DNA), metabolomic variation (in the levels
of metabolites) and proteomics (in levels and activity of proteins), collectively
referred to as omics. Driven by recent technological advances, researchers are
able to routinely measure such molecular phenotypes on a genome-wide scale in
large numbers of study participants, providing a detailed view of a person’s full
genomic profile.

The molecular epidemiology field particularly investigates common and
complex diseases, the development of which is influenced by multiple genes and
environmental risk factors. In fact, twin-and family-based studies have shown
that many common traits and diseases are influenced by a significant genetic
component, in addition to being affected by environmental factors [Thomas,
2010]. However, these specific types of studies have generally been unable to
pinpoint which specific locations on the genome are responsible for a phenotypic
trait (reviewed in Botstein and Risch [2003]). Genetic studies have subsequently
identified large numbers of specific genetic variants in the genome that associate
with quantitative traits, such as serum cholesterol levels, blood pressure, and a
range of disease conditions (reviewed in Visscher et al. [2012]). However, the
understanding of how the variants identified by these Genome Wide Association
Studies (GWAS) affect the trait or onset of disease is often hampered, as the
majority (over 90%) of the strongest associated variants do not directly affect
the production of a protein [Hindorff et al., 2009]. Because of this, these
variants are thought to affect a biological trait through effects on transcriptional
regulation. This process determines the degree to which any gene in the genome
is switched on or off in a particular cell through transcription from DNA to RNA.
This process is orchestrated by transcription factors, an important collection of
proteins that initiate transcription, which ultimately determines a phenotypic
trait. Understanding transcriptional regulation is crucial, as its dysregulation often
forms a key element of disease development [Lee and Young, 2013]. Hence, this
thesis aims to better understand how genetic variation influences transcriptional
regulation, which is the first step in understanding how genetic variants affect a
phenotypic trait.
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From correlation to causation

In addition to the aforementioned genetic studies, inter-individual differences
in many different aspects of an individual’s genomic profile (such as the
transcriptome, methylome, and others) are routinely related to phenotypic traits.
For example, changes in the expression of several genes could be related to
the presence or absence of a specific cardiovascular disease (CVD), potentially
providing insight into the genes contributing to CVD development. However, as
epidemiological research is observational in nature, making any causal claims
about an association between any of the (molecular) determinants and a
phenotypic outcome is often impossible. For example, suppose that changes in the
expression of a particular gene are indeed strongly correlated to the presence of a
CVD in the general population (Figure 1.1). At face value, it may seem reasonable
to conclude the changes in gene expression are one of the causal drivers behind
developing this CVD, but several important factors hinder us from drawing such
conclusions. Firstly, the causal relation could be the other way around, where
the presence of a CVD itself induces changes in the expression levels of that
gene, a phenomenon known as reverse causation. In addition, other factors could
influence both the expression levels of the gene as well as the risk of developing a
CVD, thereby introducing a correlation between them (Figure 1.1). This scenario
is known as confounding, and is particularly problematic in epidemiological
research, as confounding variables may not always be known. Failing to account
for such confounding factors could then lead to the false conclusion of a causal
relationship between the expression levels and lung cancer (Figure 1.1).

One way to circumvent these issues is by involving the DNA sequence
in the analysis, which is formed at conception, and generally does not change
over the course of a lifetime - with some exceptions. This implies genetic
variation precedes all other phenotypic variation, so a phenotype could not have
changed the DNA sequence itself (i.e., reverse causation). As a result, genetic
approaches are generally free from confounding or reverse causation, suggesting
any association between genetic variation and a disease phenotype or quantitative
trait must have started at the DNA sequence level. This principle has been widely
applied by GWAS by mapping quantitative trait loci (QTL) through investigating
a set of genetic variants distributed across all chromosomes. Using statistical
hypothesis testing, each genetic variant is formally tested for an association with
a phenotype. Investigating all possible correlations between a set of genetic
variants and a phenotypic outcome enables the identification of individual genetic
variants associated with that phenotype (reviewed by Visscher et al. [2012]).
Given a certain statistical significance threshold, any genetic variant significantly
associated with that phenotype is then a possible candidate for further research.
Using this approach, GWAS have successfully uncovered numerous genetic loci
associated with any of an increasing number of phenotypes studied (reviewed
by Visscher et al. [2012, 2017]). Despite the properties of genetics virtually
guaranteeing a directed relation between genotype and phenotype, GWAS do have
their limitations.

The first drawback pertains to the interpretation of their results. As the
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Figure 1.1: Depiction of the relationship between gene expression levels, a specific
cardiovascular disease (CVD), and possible confounders, such as cholesterol levels.
A correlation between gene expression and the CVD (dashed line) may lead
to the conclusion of a possible causal relation between the two. However, a
third, confounding variable, cholesterol levels, may causally influence both gene
expression and the presence of the CVD (solid arrows), inducing a correlation
between them without there being an actual causal relation (confounding).

sample sizes used in GWAS increase, providing more statistical power, so do
the number of identified variants. For example, an early GWA study for height
identified at least 180 independent variants [Lango Allen et al., 2010], while a
recent study in roughly 700,000 individuals identified 3,290 independent genetic
variants associated with height, an 18-fold increase in the number of genetic
variants identified [Yengo et al., 2018]. Indeed, the number of statistically
significant hits for several different phenotypes seem to be ever increasing, are
located all over the genome, and are often located near genes with no apparent
connection to the phenotype under study [Boyle et al., 2017]. This observation
has led to the postulation that many complex phenotypes are not influenced by
just several genes, but rather that these phenotypic traits are omnigenic, where
almost all genes are in some way related to the phenotypic trait under study [Boyle
et al., 2017]. Boyle et al. specifically suggest that while a set of core genes are
responsible for most of the phenotypic variation, most other genes in the genome
contribute as well, even if just marginally. Hence, there would be a limited return
on investing more resources towards increasing sample sizes.

Moreover, a large proportion of the identified variants are located in
non-coding regions [Visscher et al., 2012] - regions that do not encode for
protein sequences, and as a result do not directly alter a protein’s function in
a cell. Therefore, it is assumed the identified genetic variants are involved in
transcriptional (dys)regulation [Hindorff et al., 2009; Manolio, 2010; Edwards
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et al., 2013], a key element of disease [Lee and Young, 2013]. This has sparked
a field known as molecular quantitative trait loci (QTL) mapping, which uses
similar methodology to GWAS, in order to explore the genetic underpinnings of
transcriptional regulation. Instead of investigating a single phenotype, molecular
QTL mapping investigates many different molecular phenotypes simultaneously.
For example, investigating gene expression levels (Westra et al., 2013), DNA
methylation levels [Bell et al., 2011], and histone modifications [Pelikan et al.,
2018]. While this approach does provide a crucial first step towards better
understanding how genetic variation influences transcriptional regulation, it
does not allow for the next step: inter-relating different types of non-genetic
omics data. For example, the interplay between the expression of different
genes, or between genes and DNA methylation at CpG sites is still obstructed by
confounding and reverse causation. Ideally, we would also be able to investigate
these associations, and even posit causal hypotheses about such associations and
the way they influence phenotypic endpoints.

Causality is not easily demonstrated, however, and hindered by the confounding
factors mentioned earlier (Figure 1.1). In principle, experimental manipulation of
one variable, while keeping everything else fixed, is necessary to prove the causal
effect of that variable on another variable. Sometimes, it is possible to conduct
lab experiments to achieve this, either by altering the expression of genes using
different techniques. For example, using techniques involving the breakdown of
RNA molecules, or by genome-editing using CRISPR-Cas to make targeted changes
in the DNA sequence itself. Regrettably, using these techniques to investigate
all the possible leads generated by omics-wide association studies is not always
an option. Either the sheer number of possible genes to investigate makes it
infeasible to do so, or ethical considerations prevent researchers from applying
these experimental techniques in human subjects.

Fortunately, it is possible to use observational omics data to at least provide
some evidence of causality. The aforementioned method of molecular quantitative
trait loci (QTL) mapping may provide a starting point through its investigation of
genetic effects on different molecular phenotypes, forming the basis for so-called
Mendelian Randomization (MR)-type methods [Davey Smith and Hemani, 2014].
Given that several key assumptions are met [Burgess et al., 2016], MR makes it
possible to find causal evidence for an association between two genes that would
normally be plagued by confounding and reverse causation.

In this thesis, we aim to take a step towards finding such causal evidence
regarding transcriptional regulation by applying different data-analytical
approaches to several large-scale, population-based omics datasets. Specifically,
we first systematically investigate the effects of genetic variation on gene
expression and DNA methylation. Next, we use these results as a springboard
to move beyond associations between genetics and gene expression and DNA
methylation, and posit and evaluate causal hypotheses about underlying
mechanisms and transcriptional networks.

Before we do so, we will first go into more detail about the concepts and
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Introduction

terminology necessary for the remainder of this thesis, starting with transcriptional
regulation, and how the epigenome plays an important role in that process.
Next, we discuss how molecular QTL mapping could be used as a first step in
investigating the genetic underpinnings of transcriptional regulation, followed by
a description of Mendelian Randomization-type methods aiming to move beyond
the associations generated by molecular QTL mapping. Lastly, we underscore the
importance of big data in all of these methods, and how combined efforts play a
key role in this.

Transcriptional regulation

Transcriptional regulation describes how sequences of DNA are transcribed into
RNA, which are subsequently translated into the proteins that perform a wide
variety of functions in the cell, and is imperative in keeping an organism healthy
[Lee and Young, 2013]. Transcription is accomplished by RNA polymerases,
enzymes moving along the DNA, translating it into RNA. While several types of
RNA molecules exist, many are the product of protein-coding genes, yielding
messenger RNA (mRNA). Another key element in transcription are so-called
transcription factors, proteins that orchestrate transcriptional regulation by
binding to specific DNA sequences (motifs) within cis-regulatory regions (close to
the gene of interest, e.g., within the target gene promoter, Figure 1.2), initiating
transcription. The ability of a transcription factor to influence the transcriptional
activity of the target gene depends on several aspects. For example, genetic
variation could change the motif, altering the binding potential of the transcription
factor. Alternatively, epigenomic modifications may also influence binding by
altering the accessibility of the chromatin to RNA polymerases through DNA
methylation or histone modifications, either enhancing or decreasing binding
potential [Hu et al., 2013].

Epigenome

The epigenome encompasses different molecular components, including histone
modifications, and non-coding RNAs, all influencing transcription in a different
way (Figure 1.2). In this thesis, we focus on DNA methylation, a widely
studied and well-characterized epigenomic process. The relatively stable nature of
methylation over time, and the advancements in high-throughput arrays targeting
methylation make it a useful mark to study. In mammals, the most common form
of DNA methylation is the addition of a specific molecule, a methyl group, to a
single base of the DNA, a cytosine in the dinucleotide CG. Commonly referred to
as CpG, where the ’p’ represents the phosphate backbone of the DNA, an estimated
60% to 80% of the roughly 28 million CpGs that are part of the human genome
are methylated, typically repressing gene expression [Smith and Meissner, 2013].

DNA methylation plays a vital role in development [Smith and Meissner,
2013] and is further implicated in several well-known processes, including
genomic imprinting [Ferguson-Smith, 2011], carcinogenesis [Laird, 2005]. Most
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Figure 1.2: Simplified schematic overview of the interplay between epigenomic
marks, transcription factor binding, and transcription. In the top panel,
unmethylated CpGs and active histone marks (histone mark H3K9ac, in green)
typically allow for the binding of transcription factors on their respective binding
sites (indicated by blue and red) in the promoter of the target gene. This initiates
transcription, where a RNA molecule is formed. Methylated CpGs and repressive
histone marks, however, change the structure of the chromatin, packing it tightly.
This makes the DNA inaccessible for transcription factors, not allowing them to
bind. As a result, the target gene is not expressed.
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notably, DNA methylation is a key element of X-chromosome inactivation (XCI;
Yasukochi et al. [2010]; Sharp et al. [2011]), a process where one of two copies
of the X-chromosome present in females is silenced [Lyon, 1961]. XCI can be
considered a paradigm to study epigenomic regulation [Morey and Avner, 2010]
through the identification of autosomal genetic variants affecting X-chromosome
DNA methylation.

Methylation has traditionally been described as a repressive mechanism
[Kass et al., 1997; Miranda and Jones, 2007], where hypermethylation of mostly
CpG dense regions (CpG islands), often located in gene promoters [Illingworth
et al., 2010], are associated with repressed chromatin and transcriptional
repression [Smith and Meissner, 2013]. However, the relation between
methylation and transcriptional activity seems to be more complex than previously
appreciated [Battle et al., 2014], as a positive association between the two appear
to be fairly common [Gutierrez-Arcelus et al., 2013].

Lastly, while DNA methylation does not alter the DNA itself, methylation
levels are indeed dependent on sequence variation [Heijmans et al., 2007; Bell
et al., 2011]. Identifying genetic variants associated with DNA methylation
is therefore an often-used strategy to investigate the genetic underpinnings of
transcriptional regulation, often referred to as molecular quantitative trait loci
(QTL) mapping, and used throughout this thesis.

Starting from the bottom: using genetics to
investigate transcriptional regulation

As mentioned earlier, the generally immutable character of DNA [Belshaw et al.,
2004] virtually guarantees that genetic variation is the causal driver behind an
association with any other molecular phenotype, such as DNA methylation. Hence,
if one aims to understand the molecular mechanisms behind transcriptional
regulation, identifying genetic loci associated with other molecular phenotypes
pertaining to transcriptional regulation (e.g., DNA methylation or gene expression)
provides a good starting point. Molecular quantitative trait loci (QTL) mapping
is an often-used method to achieve this, and is one of the strategies used in this
thesis.

Design and objectives

The study design of methylation QTL (meQTL) and expression QTL (eQTL)
mapping in the current context is similar to that of a genome-wide association
study focused on identifying disease susceptibility or quantitative trait loci (which
I will call GWAS here), where a large number of unrelated individuals are
genotyped, and each measured genetic variant across the whole genome is tested
separately for an association with a molecular trait. Within molecular QTL
mapping, a distinction is often made between cis (local, typically within 250Kb to
1Mb), and trans (distal, usually outside 1Mb) molecular QTL mapping, where only
genetic variants local or distal to a gene or CpG site are taken into consideration.
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Its objectives, however, are different from a GWAS, as molecular QTL
mapping is often utilized to investigate two distinct issues. The first is to support
the interpretation of genetic variants identified by GWAS. Relating these genetic
variants to the expression of nearby or distant genes or methylation of relevant
CpG sites possibly yields a better understanding of the underlying mechanisms
leading to the phenotype under study. The other objective of molecular QTL
mapping is more basic, and relates to the fundamental question of the contexts in
which genetics influence expression and methylation levels, providing a general
understanding of the genetic influences on transcriptional regulation. By context
we mean, for example, the tissue-specificity of genome regulation, or its response
to environmental stimuli.

Early molecular QTL studies

While early molecular QTL studies have related genetic variation to gene
expression, these were often hypothesis-driven studies investigating one, or a
limited set of specific effects [Heijmans et al., 2007]. With the advent of
array-based technologies, genome-wide, hypothesis-free eQTL and meQTL studies
became feasible (e.g., Bell et al. [2011]). However, testing all genetic variants
for an association with all measured gene expression or methylation at CpG sites
results in a massively increased multiple testing burden, also compared to a GWAS
for a single phenotype, requiring increasingly larger sample sizes to overcome.
Despite the technological advancements, early studies often employed relatively
small sample sizes, limiting the statistical power. As a result, early studies limited
the number of tests performed by restricting the analysis to genetic variants
and genes or CpGs in close proximity (in cis), usually within 1Mb of either a
gene’s transcription start site or a CpG. These studies showed great potential,
as many genes and CpGs were found to harbor cis-eQTLs and cis-meQTLs [Bell
et al., 2011; Grundberg et al., 2012; Westra et al., 2013; Shi et al., 2014]. As
array technologies became cheaper, individual large cohorts and meta-analyses
allowed for the investigation of long-range (trans) effects, usually farther than 1
Mb [Westra et al., 2013; Lemire et al., 2015]. In addition, later studies showed
eQTLs and meQTLs may have tissue-, and population-specific effects [Grundberg
et al., 2012; Smith et al., 2014; GTEx Consortium, 2017; Yang et al., 2017]. This
finding is particularly relevant for diseases, which may develop in specific tissues
[Nica and Dermitzakis, 2008].

Limitations

Despite these early successes and the utility of molecular QTL mapping, molecular
QTL studies do suffer from a number of limitations, some of which are similar
to those in GWAS. As briefly mentioned above, early molecular QTL studies were
plagued by smaller sample sizes, restricting statistical power. While technological
advancements have made it possible to utilize larger sample sizes, they are also
responsible for the increasing dimensionality of data. For example, commonly
used methylation arrays have gone from investigating 27,000 CpGs to over
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850,000 CpGs, a 31.5-fold increase in the number of CpGs interrogated. Next-
generation sequencing will only add to the number of variables measured.

In addition, the data itself are often influenced by undesirable variation
due to technical factors, as well as usually not well understood variation due to
biological and environmental context. For example, measuring the subjects in
different batches introduces systematic differences in the measurements, adding
noise to the data, and possibly even confounding the analysis [Buhule et al., 2014;
van Iterson et al., 2017]. Biological influences of poorly understood measurable
variation include those resulting from differences in age [Garagnani et al., 2012]
or sex [McCarthy et al., 2009; Hall et al., 2014] or smoking [Zeilinger et al., 2013],
while environmental factors or lifestyle differences often add poorly understood
and unmeasured variation, e.g., caused by diet [Heijmans et al., 2008].

Lastly, linkage disequilibrium (LD) causes many neighboring genetic
variants to all be associated to the same gene expression or CpG site methylation
levels. Pinpointing the causal variant amidst strongly correlated, but non-causal
variants is therefore challenging, and even impossible on the basis of statistical
evidence alone. To complicate things even further, a genetic variant may be
associated with multiple nearby genes or CpGs [Bell et al., 2011], hampering the
annotation of this variant with a single gene.

Beyond molecular QTL mapping: moving towards
causality

Molecular QTL mapping is an important first step in investigating how genetic
variation influences transcriptional regulation, as it aids in the interpretation of
GWA studies, and is a precursor to Mendelian Randomization-type approaches.
However, molecular QTL mapping itself does not go beyond the link between
genetic variation and other molecular phenotypes. Inter-relating different omics
data – e.g., gene expression data - may provide additional information on gene
function, regulatory networks [Stuart et al., 2003; de la Fuente, 2010], and its
dysregulation in disease [Lee and Young, 2013]. Ideally, one would be able to
explore how a genetic variant affects a phenotype through different omics layers,
such as through a gene network. Similar to the lung cancer example (Figure 1.1),
confounding factors induce strong correlations among the gene expression levels,
despite the possible lack of a causal relationship between them. In addition, they
do not indicate any directionality of the association.

In the face of these limitations, Mendelian Randomization (MR) provides
an approach that uses genetics as a causal anchor to investigate causal hypotheses
[Davey Smith and Hemani, 2014]. The fundamental idea behind MR is that
genetic variation can mimic the effects of an exposure. The analogy with a
treatment in a clinical randomized controlled trial (RCT) often helps, where
subjects are randomized over different treatment arms by the researcher. This
randomization ensures any association between the treatment and a clinical
outcome is not confounded. As alleles are passed down randomly from parents
to offspring, the resulting genotype is analogous to the experimental treatment
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Figure 1.3: Underlying principle of Mendelian Randomization in genome research.
A relationship between two genes (nearby gene, distant gene) is confounded
by several factors. An instrumental variable is used as a way to manipulate
the expression levels of a nearby gene, generating a proxy for its expression
levels. This proxy is associated with the expression levels of the distant gene.
This approach assumes the instrumental variable is not affected by any of
the confounders inducing a correlation between the nearby and distant genes.
Furthermore, it is assumed the instrumental variable does not directly influence
the distant gene, but that any effect of the instrumental variable on the distant
gene is mediated only by the nearby gene.

given in a RCT. Instead of being a proxy for a clinical treatment, it is often used
as a way to "manipulate" other molecular phenotypes, such as gene expression.
Associating this proxy, often called an instrumental variable, with other omics
data may provide a way of detecting causal relationships (Figure 1.3).

The efficacy of MR depends on the quality of the proxy, i.e., how well
it mimics changes in the exposure. In the case of gene networks (Figure 1.3),
this means how well the expression values can be explained by the instrumental
variable. More data often helps in improving its predictive ability, but may not
be available to any individual researcher. That is why combined efforts are key in
performing this type of research.

The need for more data: combining large-scale efforts

It should come as no surprise that, similar to molecular QTL mapping, Mendelian
Randomization needs large datasets, in two different ways. Firstly, increased
sample sizes are needed to reliably detect any associations when using a genome-
wide approach. Secondly, multiple layers of molecular information are needed
to perform such analyses. A single study, whether molecular QTL mapping or
Mendelian Randomization, may entail performing tens of millions of statistical
hypothesis tests, which is especially true when relating different types of omics
data with each other. Each dataset may contain up to millions of variables,
and the detected effect sizes are often small. Therefore, a prerequisite of these
genome-wide studies, particularly of the types described here, is the availability
of thousands of samples. Ideally, all individual data would be stored in one place,
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allowing the researcher to explore the full dataset, without being limited to only
performing set meta-analyses.

The Biobank-based Integrative Omics Studies (BIOS) Consortium consists
of several biobanks from all over The Netherlands. A biobank collects and
stores data from a large collection of individuals from specific populations for
several research purposes. The gathered data serves as a resource for many
researchers to investigate different epidemiological research questions. Each of
the biobanks from the BIOS Consortium has gathered lots of phenotypic and
molecular information on different Dutch populations, aiming to investigate
specific phenotypes. Despite their differences in specific research questions,
they have shared their resources to be able to better understand how molecular
phenotypes influence phenotypic endpoints. Specifically, genome-wide, individual
level data on the genotypes, methylation levels (Illumina HumanMethylation450),
and gene expression levels (RNA-sequencing) measured in over 4,000 healthy
individuals from the Dutch population are now available to the community.
Combining all the raw data has allowed us, and others, to explore all the raw
data, furthering our understanding of transcriptional regulation using population
genomics.

Outline of thesis

In this thesis, we aim to explore how genetic variation influences transcriptional
regulation, a key process underlying many biological traits, so as to better
understand how genetic variants ultimately influence complex and common
phenotypes. More specifically, we try to investigate the local and distal influences
genetic variants have on several molecular phenotypes, and the mechanism behind
these. Furthermore, we aim to make causal claims about the relationships between
molecular phenotypes, even in the face of confounding factors. We do this
by investigating genetics, DNA methylation, and gene expression, through the
development and deployment of several analysis strategies, including methylation
QTL (meQTL) mapping, expression QTL mapping (eQTL), and Mendelian
randomization-type approaches.

In chapter 2, we investigate meQTL mapping in cis from a methodological
perspective. This shows that cis-effects are very local in nature, more so than
previously appreciated. In addition, we show that a common approach to multiple
testing often leads to an inflated number of CpGs identified as harboring a cis-
meQTL.

In chapter 3 we aim to directly relate genetic variants identified by many
different GWA studies to the methylation levels of both nearby (cis) and distant
(trans) autosomal CpG sites. This large undertaking resulted in the identification
of transmeQTLs for one-third of tested genetic variants. We observe several
variants each influencing the methylation levels of hundreds of CpG sites genome-
wide, and propose these effects are likely due to cis-effects on transcription factor
activity. This is supported by cis-eQTLs of these genetic variants on nearby
transcription factor expression levels, as well as an enrichment of target CpG sites
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overlapping with the corresponding transcription factor binding sites. In addition,
we find one third of all tested CpGs to harbor a cis-meQTL, and are able to link
variation in DNA methylation of CpG sites to the expression of different genes in
cis.

In chapter 4, we further investigate the effects of SNPs on DNA methylation
using X-chromosome inactivation. We describe an approach to identify autosomal
loci influencing X-chromosomal methylation in a female-specific manner. Using
this approach, we identify and replicate three loci that form a genetic basis
of genes variably escaping X-chromosome inactivation (XCI) genes through
hypomethylation of CpG islands (CGIs). These CGIs are located in regions known
to variably escape XCI, and are associated to changes in the expression of nearby
genes.

In chapter 5 we go beyond molecular QTL mapping by utilizing and
improving upon recent developments in data analysis to develop a resource of
possible causal drivers of gene-gene interactions. We use genetics as a causal
anchor, relieving the analysis from confounding. The identified drivers are often
known transcription factors or chromatin remodelers, indirectly validating this
approach. The results provide a resource from where novel biological insights
into gene function and disease etiology can be distilled.

In conclusion, we aim to move towards generating causal hypotheses
regarding transcriptional (dys)regulation using observational data. For example,
we use data on transcription factors and chromatin remodelers to interpret
molecular QTL mapping results (chapter 3, 4, 5), and use MR-type approaches
to possibly directly establish hypotheses about causal relationships between
molecular phenotypes (chapter 5). Together, these studies showcase how genetics
can be utilized to systematically investigate transcriptional (dys)regulation, and
better understand how this key process drives complex phenotypes, including
common diseases.
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