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Chapter 7CONCLUDING REMARKS AND 
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SUMMARY
In this thesis, we provide ample evidence in support of the notion that cytosine-adenine-

guanine (CAG) repeat variations within the ‘normal’ range in polyglutamine disease-

associated genes (PDAGs) can affect various aspects of disease. We found associations 

between CAG repeat polymorphisms in PDAGs and the age of onset in Huntington 

disease (HD), cognitive function, the risk of lifetime depression and body mass index (BMI) 

in patients and participants included in various large cohorts. Finally, we found a relatively 

large prevalence of intermediate and pathological PDAG alleles in the general population.

Age of onset in Huntington disease
We found that the age of onset in HD was associated with CAG repeat variations in 

ATXN3, CACNA1A and AR, and differences in bioenergetic status of HD patients. 

Specifically, larger CAG repeat numbers in the longer ATXN3 allele were associated with 

a later onset of HD symptoms independent of the CAG repeat number in both HTT alleles. 

Furthermore, the age of onset was affected by the interaction between the sequence 

length in the mutated HTT allele and the CAG repeat number in the longer CACNA1A and 

AR alleles. In addition, we found that the adenosine triphosphate (ATP) concentration and 

several indices of mitochondrial respiration were lower in the fibroblasts of patients with 

an earlier age of onset, independent of CAG repeat number, sex, disease duration and 

age. These findings support previous reports that biological interactions between PDAGs 

can influence the age of onset in polyglutamine diseases1,2. Our results also emphasize  

the major importance of bioenergetics in HD pathology. Together, these results suggest 

new pathophysiological mechanisms through which the timing of symptom onset is 

affected and can perhaps be modified. To gain more insight into these mechanisms, 

future research should focus on the effect of ‘normal’ CAG repeat variations within 

ATXN3, CACNA1A and AR on cellular outcomes associated with HD progression and 

symptom onset, including for instance HTT aggregation or striatal neuronal cell death. 

Likewise, the cause of the difference in bioenergetic status between HD patients with 

an earlier and later age of onset should be further investigated. We may discover that 

the mitochondrial DNA of patients with a worse bioenergetic status and an earlier age of 

onset is more vulnerable to lesions.3 The resulting increased understanding of how the age 

of onset in HD is affected and could be modified, would greatly benefit patients for 

instance by developing therapeutic molecules that could perhaps improve the resistance 

of mitochondrial DNA to lesions and thereby delaying the onset of symptoms.

Cognitive function
In Alzheimer disease (AD) patients, we found that memory and atrophy of the medial 

temporal lobes were associated with the CAG repeat number in ATXN1 and AR, 

respectively. ‘Normal’ cognitive ageing was associated with the CAG repeat number in 

six of the nine PDAGs: ATXN2, CACNA1A, ATXN7, TBP, HTT and AR. In both AD and 
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‘normal’ cognitive aging, differences in cognitive function and the size of various brain 

volumes were associated with CAG repeat polymorphisms in AR. Throughout evolution, 

larger CAG repeat numbers in AR were associated with organisms having a more complex 

central nervous system.4-6 In contrast, larger CAG repeat numbers in AR have also been 

associated with a faster decline in cognitive function in older men.7 These findings 

suggest a complex association between cognitive function and CAG repeat variations 

in AR, which is reflected in our findings. The molecular mechanism through which CAG 

repeat polymorphisms in AR affect cognitive function is still unknown. Research has 

found that larger CAG repeat numbers in AR are associated with a decreased sensitivity 

of the androgen receptor and that decreased levels of androgen are associated with 

the accumulation of β-amyloid (Aβ).8-10 Perhaps the decreased sensitivity of the androgen 

receptor allows for the creation of a more complex central nervous system during 

development. However, as people get older and evolutionary selection is no longer 

relevant, this decreased sensitivity might also lead to the accumulation of β-amyloid in 

the same way decreased levels of androgen do, eventually causing AD. Of course, proving 

such hypotheses warrants more detailed investigation in future experiments.

The risk of lifetime depression
In this thesis, we reported that the risk of lifetime depression was associated with 

variations in CAG repeat number within ATXN7, TBP and HTT. Larger CAG repeat 

numbers in both alleles of ATXN7 and TBP were associated with a higher risk of lifetime 

depression, whereas the longer HTT allele had a positive curvilinear association. Depression 

is a common characteristic of polyglutamine disorders. Consequently, the positive 

association between CAG repeat number and depression susceptibility is not surprising. 

However, the causal mechanism of this association has not yet been established. Various 

studies have linked decreased levels of several neurotrophic factors, including brain-

derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3) 

and neurotrophin-4 (NT-4) to depression and upregulation of these factors was associated 

with responses to treatment with antidepressants.6 Interestingly, expression of BDNF 

is regulated by the Huntington protein.7 In addition, HD patients suffer from reduced 

function and expression of striatal BDNF.8 However, how ‘normal’ variations in the length 

of the CAG repeat sequence might affect in this regulation, is still unknown. To better 

understand how the repeat polymorphisms in ATXN7, TBP and HTT affect depression 

susceptibility, future research could focus on assessing the levels of different neurotrophic 

factors in models expressing these PDAGs with different sequence lengths within  

the ‘normal’ range. 

Body mass index
BMI was associated with the CAG repeat number in seven of the nine PDAGs: ATXN1, 

ATXN2, ATXN3, CACNA1A, ATXN7, TBP and AR. The proteins encoded by these PDAGs 
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are primarily expressed in the central nervous system. In particular, neuronal circuits in 

the hypothalamus and brain stem sense and integrate many local and peripheral cues 

to regulate the appropriate neuroendocrine, autonomic and behavioural responses to 

preserve a systemic energy balance.9 Supporting the link between the central nervous 

system and metabolic disturbances, is the fact that BMI has been associated with 

dementia, memory and depression.10-12 In addition, an inverse association was identified 

between BMI and the CAG repeat number in HD and spinocerebellar ataxia type 3 (SCA 3)  

patients.13-16 Future research investigating the effect of CAG repeat polymorphisms in 

the PDAGs on the neural circuits involved in the regulation of metabolism could lead 

to a better understanding of the found associations. Studies could for instance study 

the effect of CAG repeat variations on leptin resistance.17 Furthermore, investigating 

through what metabolic pathways (i.e. appetite, basal metabolic rate, glucose tolerance, 

insulin insensitivity and physical activity) the association between BMI and the CAG repeat 

number in PDAGs is mediated, would allow us to gain more insight into our findings.

Intermediate and pathological polyglutamine disease-associated alleles
For this thesis, we determined the CAG sequence length in both alleles of more than 

14 000 participants from five large cohorts. These participants were devoid of an 

established polyglutamine disease diagnosis, allowing us to determine the prevalence 

of intermediate and pathological PDAG alleles within the general population. We found 

a relatively high prevalence of these alleles among the genotyped participants.This 

finding suggests that a higher proportion of the population may be at risk of developing 

a polyglutamine disease or that certain individuals carry specific unknown traits protecting 

them from the development of polyglutamine disease symptoms. Investigating these 

individuals and their potential protective traits could prove beneficial in understanding  

the pathophysiology of polyglutamine diseases and in the development of polyglutamine 

disease treatments.

REPETITIVE DNA VARIATIONS IN THE HUMAN 
GENOME
CAG repeats are not the only type of repetitive DNA in the human genome. Over half of 

the human genome is estimated to consist of repetitive elements, which together form 

the repeatome (Figure 1).18 Repetitive DNA sequences can be divided into satellite DNA, 

tandem repeats, copy number variants (CNVs) and interspersed repetitive DNA. Satellite 

DNA consists of large arrays of tandemly repeated DNA (5-100 bp), is highly repetitive, 

constitutes about 10% of the human genome and is found primarily in centromeres and 

telomeres.19 Tandem repeats include microsatellites and minisatellites.20 Microsatellites 

consists of 1-6 repeated bp motifs, making trinucleotide CAG repeats a type of 

microsatellites. Minisatellites consists of more than 6 repeated motifs. Collectively, 

tandem repeats constitute around 3% of the human genome.21 CNVs comprise about 
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12% of the human genome and involve variations in copy numbers of chromosomal 

segments larger than 1 kb.22-24 In contrast to tandem repeats and CNVs, repeat sequences 

in interspersed repetitive DNA are not adjacent, but consist of degenerate copies of 

transposable elements spread throughout the genome.25 Transposition of these elements 

can occur via reverse transcription of an RNA intermediate, resulting in retrotransposons 

that can either contain short (100-400 bp) interspersed elements (SINEs) or long (6-8 

kb) interspersed elements (LINEs). Transposition can also occur through excision and 

reintegration of DNA itself, called DNA transposition. In total, interspersed repetitive DNA 

sequences constitute about 36-45% of the human genome.26,27

Considering the enormous potential genetic variation of repetitive sequences of DNA in 

the human genome and the many polygenic disorders found associated with CAG repeat 

polymorphisms, an obvious subsequent step would be to investigate the association of 

polygenic disorders with these additional repetitive DNA variations. Different studies have 

indeed presented associations between different complex genetic disorders and repetitive 

DNA variations other than the CAG repeat polymorphisms in PDAGs. For instance, 

hexanucleotide GGGGCC repeat expansions in C9ORF72 were associated with the risk 

of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD) and Alzheimer 

disease.28-31 Furthermore, variations in CNVs have been associated with autism and 

schizophrenia.32,33 Schizophrenia was also associated with variations of microsatellites 

in the genes BDNF, GCLC, JARID2, NOS1 and NUBL.34-38 The risk of depression and 

Figure 1. Overview of different repetitive DNA types. More than 50% of the human genome 
consists of repetitive elements. These repetitive DNA sequences can be divided into satellite DNA 
(~10%), tandem repeats (~3%), copy number variants (~12%) and interspersed repetitive DNA 
(~36-45%). Cytosine-adenine-guanine (CAG) repeats constitute only a small portion of the entire 
repeatome. bp=base pair motifs. CAG=cytosine-adenine-guanine. SINEs=short interspersed 
elements. LINEs=long interspersed elements.
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anxiety was affected by minisatellite variations within 5-HTT and MAOA.39-42 Repeat 

polymorphisms within 5-HTT have additionally been associated with bipolar disorder and 

behavioural and psychological symptoms of Alzheimer disease.43-46 Moreover, the risk 

of bipolar disorder was associated with tandem repeat variations in BDNF and Per3.47,48 

Stroke has been associated with repeat polymorphisms in IL1RN and GPIbα.49-51 Attention 

deficit hyperactivity disorder (ADHD) was associated with minisatellite variations in DAT1 

and DRD4,52,53 and the risk of Alzheimer disease was associated with a dinucleotide 

repeat polymorphisms in the NOS1 gene.54 In addition, repeat polymorphisms have 

been associated with variations in certain traits and endophenotypes, including human 

cognitive function, affective states and behaviours.55-62 However, these studies frequently 

contained small sample sizes and were underpowered. Consequently, well-powered 

validations in large independent cohorts as well as meta-analyses are required to confirm 

these findings.63,64

POTENTIAL THERAPEUTIC MECHANISMS TO 
ALTER REPEAT SEQUENCES
As more evidence accumulates regarding the association between repetitive DNA and 

polygenic disorders, targeting these sequences in order to treat or prevent diseases, 

becomes more relevant. The investigation in the treatment of tandem repeat disorders, 

such as Huntington disease, has resulted in several techniques which could be applied to 

achieve such a therapy (Table 1).64 

First, the affected allele could be altered or silenced by targeting DNA directly through 

zinc finger proteins or via clustered regularly interspaced short palindromic repeat 

(CRISPR)-associated Cas9 nuclease.65 Zinc fingers are naturally occurring structural motifs 

that efficiently bind specific DNA sequences and can be generated synthetically. Various 

functional domains are coupled to these zinc fingers, including repression domains, 

activation domains or endonucleases. Zinc finger peptides fused to a repression or 

activation domain are engineered to selectively switch genes off or on. Zinc fingers coupled 

to an endonuclease introduce double strand breaks at specific DNA sites. Subsequently, 

a donor DNA strand can be incorporated at this location via homologous recombination, 

changing the gene permanently. However, this process is not decidedly precise or 

predictable.66 CRISPR-Cas9 therapeutic strategies can also be employed to inactivate 

or alter affected alleles. The Cas9 nuclease combined with a specific single guide RNA 

produces a construct that causes double strand breaks with high precision at a chosen 

site. The double strand break is repaired via two mechanisms. In absence of a homologous 

DNA template, non-homologous end joining occurs, which is an error-prone process that 

introduces small insertions or deletions. When a synthetic DNA template is present, this 

template is integrated via homologous recombination, which enables the introduction of 

any desired base-pair changes.67 A disadvantage of zinc finger proteins and CRISPR-Cas9 
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methods as therapeutic agents is that the production of non-native proteins could trigger 

inflammatory responses. However, targeting DNA directly, permanently alters the gene 

and ameliorates all aspects of the respective disorder due to that gene.68 

In addition to DNA, RNA molecules can be therapeutically targeted. RNA is not protected 

by repair mechanisms and has a unique secondary or tertiary structure, making targeting 

these molecules more straightforward. mRNA levels can be reduced by using antisense 

oligonucleotides (ASOs) or RNA interference (RNAi) compounds. Both ASOs and RNAi 

compounds are nucleotide-based molecules that selectively bind to mRNA through 

Watson-Crick complementarity. ASOs are synthetic single-stranded DNA molecules that 

bind pre-mRNA for degradation by RNase H in the nucleus or to modulate its splicing. By 

acting on pre-mRNA, ASOs can target exons as well as introns, allowing for more target 

sequence options.69 RNAi compounds include double stranded RNA-based molecules, 

such as short interfering RNA, short hairpin RNA and microRNA. These molecules bind 

to mature spliced cytosolic mRNA, which is subsequently targeted for degradation by 

argonaute 2, the RNase enzyme within the RNA-induced silencing complex.70

Overall challenges in the development of the above-mentioned treatments include 

distinguishing the target alleles from the healthy alleles, distinguishing the target repeat 

Table 1. Overview of gene silencing or altering mechanisms to target repetitive DNA sequences.

Compound Target Effect Advantages Disadvantages

ZFP DNA transcriptional 
repression

transcriptional 
activation  
genome editing

single administration 
to provide long-term 
treatment; ameliorates 
all pathogenic pathways

permanent; risk 
of inflammatory 
response; not 
precise or 
predictable

CRISPR-Cas9 DNA genome editing permanent removal 
of genetic cause; 
highly specific and 
targeted; ameliorates all 
pathogenic pathways

permanent; risk 
of inflammatory 
response

ASO pre-mRNA pre-mRNA degradation  
splicing modulation

more target sequence 
options; diffuses well 
through the CNS

several  
administrations 
necessary

RNAi mRNA mRNA degradation more straightforward 
targeting; lifelong 
treatment from  
a single dose

enhanced delivery 
methods or  
viral vectors 
necessary for 
compound delivery

ZFP=zinc finger protein. CRISPR-Cas9= clustered regularly interspaced short palindromic repeat (CRISPR)-
associated Cas9 nuclease. ASO=antisense oligonucleotide. RNAi=RNA interference. 
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sequence form similar or identical sequences in other genes, and adequately dispensing 

the drug to the correct tissues. Unique single nucleotide polymorphisms (SNPs) that 

flank the repeat sequence of interest could be used to distinguish target sequences.71,72 

However, this method poses its own problems. The fact that the SNP sequence 

would need to be included in the recognition site of the therapeutic molecule, limits 

the selection options for target motifs. Moreover, the SNP must be linked to the target 

allele and not the ‘healthy’ allele with absolute certainty, and the prevalence of the SNP 

in the affected population greatly determines its feasibility.68 Furthermore, in order to 

assure correct delivery of the developed compound to the target organs and tissues, 

different administration methods should be carefully evaluated. Systemic administration 

for instance, could result in a higher risk of unwanted off-target effects.73,74 In addition, 

the blood brain barrier could prevent the therapeutic agents from reaching target 

neurological structures. Interestingly, the single-stranded DNA of ASOs diffuses quite well 

in the central nervous system and is efficiently absorbed by neurons with a corresponding 

reduction in mRNA and protein levels.75 For this reason administration of ASOs to 

the brain via an injection into the cerebral spinal fluid is an accepted delivery option. 

In contrast, the double stranded RNA of RNAi has low diffusion and cellular uptake in 

the central nervous system. Enhanced delivery methods or the use of viral vectors, such as 

the adeno-associated virus (AAV) are required to administer these compounds to the brain 

parenchyma. However, limited tissue distribution and the immunogenicity of AAVs in 

the human brain pose challenging issues.76-81 Although highly promising, these synthetic 

molecules warrant considerably more research before these agents can be incorporated as 

the standard therapy for tandem repeat diseases and perhaps future treatment of different  

polygenic disorders.

CONCLUSION
In this thesis we demonstrated that investigating the pathogenesis of rare diseases, 

such as polyglutamine diseases, can result in novel insights into more prevalent, but 

genetically complex disorders. In addition, we provided support for the role of repetitive 

DNA polymorphisms in elucidating the ‘missing heritability’ of polygenic disorders and 

emphasized the necessity to include these variations in future genetic research. Although 

treatment of tandem repeat disorders via gene silencing or altering methods remains 

complex, once available these methods could be employed to treat or even prevent 

the more common diseases in which repetitive DNA sequences are implicated. 
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