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INTRODUCTION
Huntington disease
In 1872, George Huntington described a peculiar form of chorea which he termed 

‘hereditary chorea’. In his writing, he described three striking characteristics of this 

movement disorder: its heritability, its tendency to insanity and its adult onset. Moreover, 

he stated that ‘once it begins, it clings to the bitter end’, emphasizing its fatality. 

Huntington concludes the article by stating that he wanted to draw attention to this 

form of chorea as a ‘mere medical curiosity’ and that he does not consider it of any great 

practical importance.1

We now know this hereditary form of chorea as Huntington disease (HD). The prevalence 

of HD in the Western population is 10.6-13.7 individuals per 100 000.2 A lower prevalence 

of 1-7 per million is seen in Japan, Taiwan and Hong Kong. Lower rates are also seen in 

black populations.2 The current description of this progressive neurodegenerative disorder 

still compares considerably well to the symptoms presented in 1872. HD is characterized 

by motor, cognitive and neuropsychiatric disturbances. The motor impairments can be 

hyperkinetic with the involuntary dance-like movements known as chorea, as well as 

hypokinetic characterized by bradykinesia, dystonia, balance and gait disturbances.3,4 

Problems with cognitive function include impaired emotion recognition, processing speed, 

visuospatial processing and executive function. In addition, patients are also known to 

suffer from apathy, anxiety, irritability, depression, obsessive compulsive behaviour and 

psychosis.5,6 Both cognitive disturbances and neuropsychiatric symptoms can be observed 

long before the onset of motor symptoms.7 Furthermore, HD patients suffer from 

several peripheral abnormalities, including unintended weight loss, muscle wasting, and 

autonomic failure.8 As Huntington also described, HD patients do not recover and this 

devastating disease is inevitably fatal. Although ample research has been conducted over 

the years, the disease remains incurable.

HD has an autosomal dominant inheritance pattern. The mutation responsible was 

discovered in 1993. HD is caused by a cytosine-adenine-guanine (CAG) triplet repeat 

expansion in exon 1 of the huntingtin gene (HTT) located on chromosome 4p16.3.9 

Once the CAG repeat number exceeds 39 repeats, the development of the disease is 

inevitable, while a reduced penetrance is observed in individuals with repeat numbers 

between 36 and 39. The repeat sequence is highly unstable and genetic anticipation 

can be seen especially when the gene is past down the paternal line.10 Several disease 

characteristics have an inverse association with the CAG repeat expansion: age of onset, 

clinical progression and body mass index (BMI).4,11-15

Polyglutamine diseases
Eight other hereditary neurodegenerative disorders are caused by a similar CAG triplet repeat 

expansion in the protein coding region of the respective mutated genes. The trinucleotide 
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CAG encodes the amino acid glutamine. Therefore, these diseases, including HD, are 

defined as polyglutamine diseases and the affected genes as polyglutamine disease-

associated genes (PDAGs). The associated polyglutamine proteins are primarily expressed 

in the central nervous system. Aside from HD, the polyglutamine diseases include six 

spinocerebellar ataxias (SCAs): SCA1, SCA2, SCA3, SCA6, SCA7 and SCA17 as well as 

dentatorubral-pallidoluysian atrophy (DRPLA) and spinal and bulbar muscular atrophy 

(SBMA). All polyglutamine diseases are inherited in an autosomal dominant manner. 

The only exception is SBMA, which has an X-linked inheritance pattern.16,17

SCA1
The prevalence of SCA1 worldwide is approximately 0.2-2 individuals per 100 000.18,19 

The primary symptom in SCA1 is progressive cerebellar ataxia characterized by disturbances 

in balance and gait. Oculomotor movements are also affected.20 21 Furthermore, patients 

frequently suffer from pyramidal, extrapyramidal and bulbar symptoms.22 In advanced 

stages, muscle atrophy arises. Cognitive disturbances have also been reported in the final 

stages with impaired executive function being the most common defect.23-26 The age 

of symptom onset in SCA1 can vary from 4 to 74 years, but is usually around the third 

decade of life. Disease duration is between 10-20 years.27,28

SCA2
In Europe, about 0.1-5.8 per 100 000 people suffer from SCA2.19,29-34 SCA2 is characterized 

by progressive cerebellar ataxia, dysarthria and oculomotor deficits, including extremely 

slow saccades, nystagmus and sometimes ophthalmoparesis.29 Additionally, patients can 

suffer from intention and postural tremors, myoclonus, parkinsonism, sleep disturbances, 

autonomic dysfunction and initial hyperreflexia followed by peripheral neuropathy with 

hypo- or areflexia.21,35-38 Several studies have reported cognitive deficits in 5-25% of 

the patients.23,39 Psychiatric symptoms have also been described.40 Onset of symptoms is 

usually in the fourth decade of life with a disease duration of 10-15 years.

SCA3
SCA3 or Machado-Joseph disease is considered the most common autosomal dominant 

ataxia. However, prevalence differs greatly per population investigated.41-44 Because 

the symptoms of SCA3 are so variable, its clinical features are divided into four disease 

subtypes.45-48 Type 1 has an early age of onset between 10-30 years and is characterized 

by pyramidal and extrapyramidal symptoms. Cerebellar ataxia is less prominent. Type 2 

is the most common SCA3 subtype with an age of onset between 20-50 years. Type 2 

represents a more classic cerebellar-plus syndrome involving notable cerebellar ataxia, 

dysarthria and pyramidal symptoms. In type 3, aside from cerebellar ataxia, symptoms 

include peripheral neuropathy leading to muscle atrophy and areflexia. Age of onset 

of type 3 is typically later (40-75 years). Type 4 has a variable age of onset and is 

characterized by parkinsonism.49-52 Symptoms that are not restricted to a subtype include 

oculomotor symptoms, cranial nerve deficits, sleep disturbances, involuntary weight 
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loss and autonomic problems.47,48 Furthermore, SCA3 patients are also known to suffer 

from mild cognitive impairments.53-58 Disease duration is reported to range between  

6-29 years.59,60

SCA6
The overall prevalence of SCA6 is between 0.02-0.45 per 100 000 individuals.33,61-69 

The disease is considered a ‘pure’ cerebellar ataxia and is primarily characterized by slow 

progressive cerebellar ataxia, dysarthria and nystagmus.70,71 In 40-50% of the patients, 

pyramidal symptoms such as hyperreflexia and extensor plantar responses have been 

noted.71 Furthermore, signs of basal ganglia involvement including dystonia and 

blepharospasm are reported in 25% of the cases.72 Cognitive function is usually not 

impaired. The mean age of onset of SCA6 is between 43-52 years, (range 19-71 years). 

Although the disease causes a high morbidity, the lifespan of patients is unaltered.73

SCA7
The prevalence of SCA7 is about 0.06-0.23 per 100 000 individuals.19,33,74,75 The mean age 

of onset is about 32 years with a range of 1-72 year. Clinical features differ substantially 

between patients with an adult onset and patients with an onset in infancy or early 

childhood.76 In adulthood, SCA7 is characterized by progressive cerebellar ataxia, slowed 

ocular saccades, dysarthria, dysphagia and pyramidal symptoms, such as hyperreflexia 

and spasticity.77 A distinctive feature of SCA7 is retinal degeneration with progressive 

cone-rod dystrophy leading to eventual blindness.78-80 Decline in cognitive function and 

episodes of psychosis have also been reported.81 When symptoms start in childhood 

the disease has a rapid and aggressive progression. Furthermore, muscle atrophy and 

hypotonia are common features, while cerebellar ataxia and visual impairment may be 

less evident.82 The mean disease duration is about 20 years.83

SCA17
Less than 100 families with SCA17 have been reported. The prevalence in the north east 

of England is about 0.16 per 100 000 individuals and the prevalence in Japan is estimated 

at around 0.47 per 1000 000.84,85 SCA17 is also known as Huntington Disease-Like 4 

and symptoms of this disease indeed resemble HD characteristics. SCA17 presents itself 

with cerebellar ataxia, pyramidal signs and involuntary movements including chorea and 

dystonia. Parkinsonism has also been reported. Furthermore, SCA17 patients are known 

to suffer from psychiatric symptoms, as well as dementia.86-88 The mean age of onset 

is 34.6 years with a broad range of 3-75 years and a mean disease duration of about  

20 years.83,89

Dentatorubral-pallidoluysian atrophy
Dentatorubral-pallidoluysian atrophy (DRPLA) is most common in Japan with 

a prevalence of 0.48 per 100 000 individuals.90 However, individuals with DRPLA have 

also been reported in European and North and South American populations.91-95 Clinical 
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presentation of DRPLA differs with age of onset. When disease onset is before the age of 

20, a progressive myoclonus epilepsy phenotype is observed. Symptoms include various 

forms of generalized seizures, myoclonus, cerebellar ataxia and progressive intellectual 

deterioration.96-98 After the age of 20, a non-progressive myoclonus epilepsy phenotype 

is described. The symptoms of this phenotype include cerebellar ataxia and involuntary 

movements such as choreoathetosis.98 Cognitive impairment and psychosis are also seen 

in adults.97,99 The onset ranges from 0-72 years with a mean age of onset of 31.5 years. 

Disease duration on average is 8 years with a range of 0-35 years.100

Spinal and bulbar muscular atrophy
Spinal and bulbar muscular atrophy (SBMA) or Kennedy disease is the only polyglutamine 

disease with an X-linked inheritance pattern. The affected gene encodes the androgen 

receptor. As females have lower levels of circulating androgens and thus lower levels 

of androgen receptor stimulation, SBMA is only fully penetrant in males. The estimated 

prevalence is 1 per 300 000 males.101 SBMA characteristics can be divided into neurological 

and androgen insensitivity symptoms. Neurological symptoms include muscle weakness 

and cramps with eventual atrophy of the proximal and distal muscles, and an action 

tremor. When the bulbar muscles become involved, patients start to exhibit dysarthria 

and dysphagia. The main life-threatening problem in SBMA patients is the risk of 

aspiration pneumonia and ventilation failure due to these deficiencies. Otherwise, life 

expectancy is unaltered.102,103 Neurological symptoms usually begin around middle age  

(30-50 years), whereas androgen sensitivity symptoms start in adolescence.103,104 Androgen 

sensitivity symptoms include, gynecomastia, testicular atrophy and oligospermia or 

azoospermia. These symptoms are often of greater concern to the patients than 

the neurological symptoms.105,106

Characteristics of CAG trinucleotide repeats
The expanded CAG repeat sequences that cause polyglutamine diseases, constitute 

a major class of repetitive nucleotide motifs in DNA called tandem repeats, including 

microsatellites and minisatellites. Microsatellites consist of 1-6 repeated base pair motifs 

and thus the trinucleotide CAG repeats are considered microsatellites. Tandem repeats 

in general constitute ~3% of the human genome, a larger proportion than the entire 

protein coding sequences combined.107 

The number of CAG repeats that result in the development of a polyglutamine disease, 

differ per disease and per affected gene (ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, TBP, 

HTT, ATN1 and AR) (Table 1).31,108-133 However, all polyglutamine diseases have an inverse 

association between the number of CAG repeats and the age of symptom onset. In 

addition, disease severity, progression and clinical presentation are frequently associated 

with the sequence length.38,77,97,127,134-138 These polyglutamine disease characteristics 
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are examples of how variations in the number of repeats within a sequence modulate 

the genetic function of the associated gene. Variations in repeat number cannot only 

change associated protein properties, such as flexibility and binding affinity when located 

within coding sequences, but also alter the local DNA structure and transcription activity 

when present in noncoding regions.139 Consequently, differences in tandem repeat length 

throughout the human genome can affect a variety of biological processes, including 

development, brain function and behaviour.140,141 

Tandem repeats are genetically highly unstable and prone to mutation as a result of DNA 

strand slippage during replication.142 As a result, polyglutamine diseases are subject to 

genetic anticipation, which is the decrease in age of onset with each successive generation 

due to a generational increase in CAG repeat length.143 Mutation rate can be influenced 

by factors such as number of repeats and purity of the repetition (i.e. the presence  

of interruptions).144,145

The capability of CAG repeat polymorphisms and tandem repeat polymorphisms in 

general to affect genetic function and their high mutability as described in the previous 

section, produces an extensive source of genetic variation, which can be exploited for 

rapid evolutionary adaptation.146 Tandem repeats facilitate efficient and continuous 

adaptive adjustment of quantitative traits. Therefore, these polymorphisms have earned 

the metaphorical characterization as ‘evolutionary tuning knobs’.139,147

‘Missing heritability’: unravelling complex genetic disorders
Despite the evident association between CAG repeat number and age of onset in 

polyglutamine diseases described in the previous section, the CAG repeat number in 

the mutated polyglutamine disease-associated gene (PDAG) can only explain 36-80% of 

the variation in age of onset.135,148 Thus, a large amount of variability remains unexplained 

so that other environmental or genetic factors must be involved.148,149 Lacking explanatory 

genetic factors are referred to as ‘missing heritability’. Interestingly, several studies 

have shown that CAG repeat numbers in the unaffected allele in trans,150-154 as well as 

variations in CAG repeat numbers in non-causal PDAGs within the ‘normal’ range had 

an additional effect on the onset of polyglutamine disease symptoms (Table 2).153,155-158 

These findings suggest that CAG repeat numbers within ‘normal’ ranges can also affect 

polyglutamine disease characteristics and clarify part of the ‘missing heritability’ in age 

of symptom onset.

In many common disorders, such as depression, obesity and dementia, a large amount 

of ‘missing heritability’ is also involved. These disorders are heritable, but genetically 

complex. Several genes are thought to play a part in their heritability and genome wide 

association studies (GWAS) have made a substantial contribution to the genetic mapping 

these polygenic disorders. However, a large amount of ‘missing heritability’ remains.159-163  
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Table 2. Disorders associated with ‘normal’ ranged variations in polyglutamine disease-associated genes.

PDAG Disorder Affected aspect Reference

HTT in trans HD age of onset [152,154]
SCA3 age of onset [153]
Cognition grey matter volume globus pallidus [184] 

brain structure [185]
general intelligence [185]

ATXN1 in trans SCA1 age of onset [151,153]
SCA3 age of onset [157,158]
SCA6 age of onset [153]
ALS risk [170,171]

ATXN2 SCA3 age of onset [153,157]
ALS risk [167-170]

ATXN3 in trans SCA3 age of onset [150,157]
SCA2 age of onset [155]
SCA6 age of onset [153]
SCA7 age of onset [153]

CACNA1A in trans SCA6 age of onset [151,153]
SCA2 age of onset [156]

ATXN7 in trans SCA7 age of onset [153]
SCA2 age of onset [153]

TBP SCA7 age of onset [153]
Schizophrenia risk [172,173]

ATN1 SCA3 age of onset [153]

AR AD risk [174]
Cognition cognitive test scores [183]
Metabolism obesity [179]

body fat mass [182]
serum leptin concentration [182]
serum insulin concentration [182]

Ovarian cancer risk [180,181]
Prostate cancer risk [177,178]
Violent criminal behavior risk [175,176]

PDAG=polyglutamine disease-associated genes. SCA=spinocerebellar ataxia. ALS=amyotrophic lateral sclerosis. 
HD=Huntington disease. AD=Alzheimer disease.

An explanation could be that aside from single nucleotide polymorphisms (SNPs), 

GWAS are unable to assess other genetic polymorphisms, including tandem repeat 
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variations. Investigating tandem repeat variations, such as CAG repeat polymorphisms, 

as an additional source of heritability could prove beneficial in explaining the ‘missing 

heritability’ in these polygenic disorders.164-166

Recent research has demonstrated that ‘normal’ CAG repeat polymorphisms in PDAGs 

can indeed modify clinical aspects of polygenic disorders. For instance, intermediate CAG 

repeat numbers in ATXN2 increased the risk of amyotrophic lateral sclerosis (ALS)167-169 

and different studies indicated a similar association between ALS and the CAG repeat 

number in ATXN1.170,171 Larger CAG repeat numbers in TBP were found to be associated 

with schizophrenia.172,173 Furthermore, AR repeat polymorphisms were associated with 

obesity, body fat mass, serum concentrations of leptin and insulin, Alzheimer disease, 

violent criminal behaviour, ovarian and prostate cancer.174-182 In addition, lower scores on 

three cognitive tests in elderly men were associated with longer AR repeat sequences.183 

Moreover, larger CAG repeat numbers in HTT were associated with increased grey matter 

volume in the globus pallidus, and advantageous changes in brain structure and general 

intelligence (IQ) in children aged 6-18 years.184,185 When combined, these results indicate 

that CAG repeat variations below the expanded polyglutamine disease-associated range 

can act as interesting novel genetic modifiers of health and disease (Table 2).166

Scope of this thesis
The primary focus of this thesis was to investigate the relatively untapped potential 

of CAG repeat polymorphisms as genetic modifiers of both Mendelian and polygenic 

disorders. To achieve this objective, we initially examined the association between 

CAG repeat variations within the ‘normal’ range in polyglutamine disease-associated 

genes (PDAGs) and age of onset in HD (Chapter 2.1). In addition, we explored 

whether differences in bioenergetic profile between HD patients could further clarify 

these age of onset differences (Chapter 2.2). Furthermore, we extended our study 

by investigating the association between ‘normal’ ranged CAG repeat variations in 

PDAGs and the heritability of more common polygenic disorders that have symptoms in 

common with the polyglutamine diseases. These symptoms include cognitive impairment 

(Alzheimer disease and age-related cognitive decline, Chapter 3), psychiatric symptoms 

(depression, Chapter 4) and unintended weight loss (BMI, Chapter 5). After genotyping 

the participants from the cohorts included in these studies, we were also able to describe 

the prevalence of intermediate and pathological polyglutamine disease-associated alleles 

in this general population devoid of polyglutamine disease diagnoses (Chapter 6). Finally, 

we discuss the broader role of tandem repeat variations in the search for genetic risk 

factors of hereditary disorders and mechanisms to target these mutations in order to 

prevent and treat disease (Chapter 7).
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