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4 Black Hole scrambling from
hydrodynamics

We argue that the gravitational shock wave computation used to extract the
scrambling rate in strongly coupled quantum theories with a holographic
dual is directly related to probing the system’s hydrodynamic sound modes.
The information recovered from the shock wave can be reconstructed in
terms of purely diffusion-like, linearized gravitational waves at the horizon
of a single-sided black hole with specific regularity-enforced imaginary
values of frequency and momentum. In two-derivative bulk theories, this
horizon “diffusion” can be related to late-time momentum diffusion via
a simple relation, which ceases to hold in higher-derivative theories. We
then show that the same values of imaginary frequency and momentum
follow from a dispersion relation of a hydrodynamic sound mode. The
frequency, momentum and group velocity give the holographic Lyapunov
exponent and the butterfly velocity. Moreover, at this special point along
the sound dispersion relation curve, the residue of the retarded longitudinal
stress-energy tensor two-point function vanishes. This establishes a direct
link between a hydrodynamic sound mode at an analytically continued,
imaginary momentum and the holographic butterfly effect. Furthermore,
our results imply that infinitely strongly coupled, large-Nc holographic
theories exhibit properties similar to classical dilute gasses; there, late-time
equilibration and early-time scrambling are also controlled by the same
dynamics.1

4.1 Introduction

The notion that dynamics at widely separated timescales is governed by
independent processes lies at the heart of modern physics. The emergence
of collective phenomena is a clear example. At very short timescales,
the physics is described by microscopic “far-from-equilibrium” dynamics;
at long timescales, it is the universal statistics-dominated processes that

1The contents of this chapter have been published in S. Grozdanov, K. E. Schalm and
V. Scopelliti, Phys. Rev. Lett. 120 (2018) no.23, 231601.
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4 Black Hole scrambling from hydrodynamics

control the onset of equilibrium. Ironically, the most prevalent textbook
example of collective emergence, the computation by Maxwell of the shear
viscosity of a classical ideal gas, fails this guideline. As is well known, in
dilute gases the shear viscosity and some other transport coefficients are
directly related to the 2-to-2 scattering rates of the microscopic constituents.
In dilute gases, the early-time physics thus also controls the late-time
approach to equilibrium. Our full understanding of kinetic theory explains
why dilute gases violate the canonical notion of separation of scales. The
dilute gas is a special case for which the BBGKY hierarchy that builds
up the long-time behavior from microscopic processes truncates [127, 139–
146].

On the other hand, in generic (e.g. dense) many-body systems, the
early-time physics is distinct from late-time evolution. Of course, this does
not imply that the early-time physics is irrelevant to collective behavior,
as indeed, it crucially ensures ergodicity or mixing (scrambling). Neverthe-
less, one generically distinguishes (at least) two timescales: an early-time
ergodic and a late-time collective scale. In classical systems, ergodicity is
driven by chaotic non-linear dynamics, whereas statistics and universality
drive collective behavior. These two different scales have a direct man-
ifestation in classical dynamical systems analysis. Chaotic dynamics is
characterized by Lyapunov exponents encoding the exponential divergence
of trajectories with infinitesimally different initial conditions—the butterfly
effect. A Gibbs ensemble of such initial conditions, however, equilibrates
with a generically distinct characteristic timescale set by Pollicott-Ruelle
resonances [151, 205, 206], again exemplifying the notion that widely
separated timescales are driven by different physics.

Perturbative quantum field theories are usually studied in the dilute
regime and as in the classical gas, both timescales are driven by the same
physics [44, 69, 136, 152–154]. Strongly coupled, dense, quantum theories
on the other hand are expected to have distinct scales. Triggered by studies
[12, 16, 151, 207, 208] on collective dynamics in strongly coupled large-Nc
quantum systems holographically dual to black holes, Blake observed that
in the simplest such systems, late-time diffusion and early-time ergodic
dynamics do appear to be governed by the same physics [64], similar to the
dilute gas rather than the generic expectation. Follow-up studies extended
the range of systems [33, 65, 67, 209, 210], found counterexamples [211]
and observed that it only applied to thermal diffusivity [66, 212].

In this work, we will show how the holographic computations of quantum
ergodic dynamics—the holographic butterfly effect—and hydrodynamics
are related. In particular, we will show that the characteristic exponential
growth exists on the level of (retarded) two-point functions when the
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4.2 Scrambling and hydrodynamical transport

hydrodynamic sound mode is driven to instability by a choice of a specific
value of momentum. This result indicates an intriguing similarity between
the behavior of infinitely strongly coupled large-Nc theories holographically
dual to two-derivative gravity and classical dilute gases in the sense that
chaotic dynamics is entirely describable by the same physics of hydrody-
namic modes, albeit excited outside of the hydrodynamic regime of small
frequency ω and momentum k compared to the temperature scale T of
the CFT. In this Letter, we will only focus on charge-neutral systems,
although we expect our findings to be valid also for charged states and
for systems with momentum relaxation in which long-lived longitudinal
modes are controlled by diffusion.

4.2 Scrambling and hydrodynamical
transport

By convention, the early-time onset of ergodicity is characterized by the
scrambling rate λ and the butterfly velocity vB , which are defined from the
early-time rate of exponential growth of out-of-time-ordered correlation
function (OTOC) of local (unbounded) operators,

C(t, x) = −〈[Ŵ (t, x), V̂ (0)]†[Ŵ (t, x), V̂ (0)]〉β
2〈Ŵ (t, x)Ŵ (t, x)〉β〈V̂ (0)V̂ (0)〉β

' e2λ(t−x/vB) . (4.1)

Here, V̂ (t, x) and Ŵ (t, x) are generic operators, and expectation values
are taken in the thermal ensemble with temperature T = 1/β. In systems
with a classical analogue for which such growth persists as t → ∞ and
for special (unbounded) operators, this indeed computes the Lyapunov
exponent λL = λ associated with chaotic behavior underpinning classical
ergodicity [148–150].

Not all systems exhibit late-time regime of exponential growth of this
correlator—in fact, most quantum systems do not [155, 156], illustrating
the tension between classical chaos and quantum dynamics. Large-Nc
systems with a holographic dual do exhibit such growth. Extrapolating
from the insight that any perturbation carries energy, it has been argued
that this exponential rate can be read off from a gravitational shock
wave propagating along the double-sided (maximally extended) black hole
horizon [12].

The non-linear shock wave calculation implicitly focusses on energy-
momentum dynamics in the dual theory, rather than generic dynamics, as
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4 Black Hole scrambling from hydrodynamics

this is what purely gravitational spacetime dynamics and waves encode.
On the other hand, the collective late-time dynamics of energy-momentum
is also well-understood with its IR dynamics governed by hydrodynamics.
Its behavior can be computed from linearized gravitational perturbations
(see e.g. [100, 120, 213]). The mere fact that the gravitational shock
wave encoding early-time ergodicity describes the dynamics of energy-
momentum, as do hydrodynamic excitations, is far from sufficient for
establishing any relation between them. A more telling fact is that the
exact non-linear shock wave solution is actually also a solution to linearized
gravitational equations. This is what we show now. This results then leads
to our discovery that when perturbed with a special imaginary momentum,
the late-time hydrodynamic sound mode reflects the leading-order early-
time instability of the system with the exponential growth set by λL and
the butterfly velocity vB .

4.3 Shock waves from linearized
gravitational perturbations

Chaotic properties normally extracted from shock waves can be inferred
directly from a single-sided, linearized analysis of the bulk gravitational
equations. We study five-dimensional, two-derivative, classical gravity
with the action

S =
1

2κ2
5

∫
d5x
√−g

[
R+

12

L2
+ Lmatter

]
, (4.2)

which gives rise to the following Einstein’s equations (in units where
L = 1):

Gµν ≡ Rµν −
1

2
gµνR− 6gµν = κ2

5 T
matter
µν . (4.3)

In the longitudinal sound channel, in the hµz = 0 gauge with momentum
in the z-direction, we write a first-order perturbed metric as

ds2 = −f(r)dt2 +
dr2

f(r)
+ b(r)

(
dx2 + dy2 + dz2

)
(4.4)

−
[
f(r)H1dt

2 − 2H2dtdr +
H3dr

2

f(r)
+H4

(
dx2 + dy2

)]
,

where Hi are functions of t, z and r, and f(rh) = 0. We demand that the
perturbation is null in the radial direction at the horizon, set H4(rh) = 0
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4.3 Shock waves from linearized gravitational perturbations

and write

H1 = H3 = (C+W+(t, z, r) + C−W−(t, z, r)) , (4.5)

H2 = (C+W+(t, z, r)− C−W−(t, z, r)) . (4.6)

First, consider Tmatterµν = 0 to focus on the AdS-Schwarzschild black
brane background with b(r) = r2 dual to thermal N = 4 supersymmetric
Yang-Mills (SYM) theory. We can write W± as

W±(t, z, r) = e
−iω

[
t±

∫ r dr′
f(r′)

]
+ikz

h±(r) , (4.7)

where h±(r) are regular at r = rh. Using Grr = 0, then

h±(r) = e
∫ r k2±9iωr′−12r′2

3r′f(r′) dr′
. (4.8)

Imposing regularity [214, 215] on (4.8) fixes a single relation between ω,
k2 and rh. Ensuring the remaining equations of motion (4.3) are solved at
r = rh, gives a second, (advanced and retarded) diffusive condition,

ω± ≡ ± iDk2 = ± i 1

3πT
k2 . (4.9)

Combined with the horizon-regularity, this fixes the solution in terms of a
specific imaginary momentum mode

k2 ≡ −µ2 = −6π2T 2 , (4.10)

which gives the Lyapunov exponent and the butterfly velocity, i.e. for
modes with e−iωt+ikz,

ω± ≡ ∓iλL , λL = 2πT , (4.11)

vB ≡
∣∣∣ω±
k

∣∣∣ =
√
λLD . (4.12)

Away from the horizon, the corrections to the present solution can be
consistently constructed in a small

√
r − rh expansion, requiring H4 6= 0.

For a regular Tmatterµν 6= 0, one can see the horizon diffusion arise more
generally. For a background metric (4.4), the regularity of Grr implies

b(rh) = b′(rh)f ′(rh)/8 . (4.13)

Assuming that Ttr(rh) = 0, it follows immediately from Gtr(rh) = 0 that
at r = rh,

∂tW± = ∓D ∂2
zW± , (4.14)
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4 Black Hole scrambling from hydrodynamics

with the horizon diffusion coefficient, as in [64]:

D =
v2
B

λL
=

2

3

1

b′(rh)
=

1

12

f ′(rh)

b(rh)
. (4.15)

Assuming that the solution is not supported by Tmatterµν and requiring
regularity in Grr, we again obtain the Lyapunov exponent from Eq. (4.11)
and imaginary momentum

k2 = −3

4
b′(rh)f ′(rh) = −3πT b′(rh) . (4.16)

Therefore, we have recovered all known shock wave results from a linear
gravitational perturbation of a single-sided black brane. The validity of
this solution requires sufficient decoupling of Lmatter at the horizon, which
is implicitly assumed in the shock wave computation. Generically, this will
not be the case. The sound channel couples all scalar excitations, and one
needs to demand that all their equations of motion are satisfied as well.

Higher-derivative gravity corrections encode (inverse) coupling constant
corrections in the dual field theory [165, 216–223]. An analogous calculation
as in two-derivative theories can now be done e.g. in Gauss-Bonnet theory
(for details regarding the theory see e.g. [223]), where we also recover the
known results of Ref. [15], 2

ω± = ∓2iπT , k2 = −6π2T 2

N2
GB

, v2
B =

2

3
N2
GB . (4.17)

Focusing again on the two-derivative action (5.7) dual to N = 4 SYM
at large Nc and infinite coupling, and transforming the metric (4.4) to
Kruskal-Szekeres coordinates, one finds

ds2 =A(UV ) dUdV +B(UV )dx2

−A(UV ) eikz
(
C+

dU2

U
− C−

dV 2

V

)
. (4.18)

Our solution thus takes the form of the exact shock wave solution ds2 =
A(UV )dUdV +B(UV )dx2−A(UV )δ(U)h(x)dU2, but travelling along both
null U = 0 and V = 0. The only difference is that the shock solution has a
Dirac delta function support hUU ∝ δ(U), whereas the solution presented
here has support given by a (smeared) hUU ∝ ∆(U) ≡ 1/U . At the level

2NGB is conventionally set to N2
GB =

(
1 +
√

1− 4λGB
)
/2, which ensures that the

boundary speed of light is one.
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4.4 Hydrodynamics and the sound mode

of the linearized Einstein’s equations, the function ∆(U) ≡ 1/U satisfies
the distributional identities used to construct the shock wave solution:
U∂U∆(U) = −∆(U) and U2∂2

U∆(U) = 2∆(U). Distributional identities of
the type F (U)∆2(U) ≈ 0, when integrated over U for sufficiently smooth
F (U), are satisfied approximately but not exactly as with δ2(U) (see
e.g. [224]). A distinct difference is that the δ(U)-shock is supported by
energy-momentum at the horizon. The linearized solution (4.18) with a
less singular support is a leading-order in 1/U approximation of an exact
smooth solution to Einstein’s equation with no source of energy-momentum.
It is a longitudinal (sound) mode, which encodes the correct Lyapunov
exponent and the butterfly velocity.

4.4 Hydrodynamics and the sound mode

Sound is well understood as a hydrodynamical phenomenon. In holography,
it is encoded by the low-energy limit of the sound channel spectrum [120,
225] and is described by a pair of longest-lived modes ω∗±(k). Within the
hydrodynamic approximation (expansion of ω∗± for |k|/T � 1),

ω∗±(k) ≈ ±
∞∑
n=0

V2n+1k
2n+1 − i

∞∑
n=0

Γ2n+2k
2n+2, (4.19)

which is analytically known for N = 4 SYM to O(k4) at infinite cou-
pling, i.e. to third order in the hydrodynamic expansion [226]. All Vn
and Γn are real and for N = 4 SYM at infinite coupling, V1 = 1/

√
3,

Γ2 = 1/(6πT ), V3 = (3− 2 ln 2)/(24
√

3π2T 2) and Γ4 = (π2− 24 + 24 ln 2−
12 ln2 2)/(864π3T 3). For real k, Eq. (4.19) describes attenuated propagat-
ing modes. However, for imaginary k, which is required to construct the
above gravitational solution, both ω∗± and k are purely imaginary. To find
ω∗±(k) for imaginary k, we compute the quasinormal mode spectrum (poles
of the retarded sound channel stress-energy tensor two-point function, e.g.
the energy-energy GRT 00T 00(ω, k)) [120], which can be done analytically in
the hydrodynamic expansion (small |ω|/T � 1, |k|/T � 1) or numerically
in the holographic model for any ω and k. Our first observation is that for
imaginary k, the system is driven to instability, which results in at least
one of the two sound modes in (4.19) having Im[ω] > 0. Our main result,
however, is that the fully numerically computed frequency (dispersion
relation) of the most unstable sound mode ω∗+ asymptotically approaches

the Lyapunov exponent growth rate k = iµ =
√

6iπT :

ω∗+(iµ) = iλL . (4.20)
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4 Black Hole scrambling from hydrodynamics

Precisely at k = iµ, the quasinormal mode solution does not exist, even
though it exists infinitesimally close to this point when approached from
either side along the imaginary k dispersion curve. This allows us to
deduce that at the special point ω∗+(iµ), cf. Eqs. (4.10) and (4.11), the
retarded longitudinal two-point function of the stress-energy tensor has
a hydrodynamic pole which contains all information about many-body
chaos, λL and vB . Furthermore, at the point of chaos, its residue vanishes:

ResGRT 00T 00(ω = ω∗+(iµ) = iλL, k = iµ) = 0 . (4.21)

The two-point correlator identity (4.21) is sufficient for uniquely specify-
ing the point of chaos in the CFT, eliminating the need for the OTOC
considerations to find µ.

We note that, intriguingly, the dispersion relation around this point
can be reasonably well approximated by ω = vBk. This is evident from
the numerical computations and from the third-order hydrodynamic ap-
proximation to ω+(k), which reproduces the full dispersion relation of the
dominant mode rather well, giving ω∗+(iµ) ≈ 0.990× iλL. Our results are
presented in Fig. 4.1.

4.5 Discussion

These results show that the holographic butterfly effect and black hole
scrambling can be understood in terms of a hydrodynamic sound mode
at a specific imaginary momentum (exponentially spatially growing fluid
profile), which is fixed by dual Einstein’s equations governing a radially
null sound mode and the condition of regularity (without additional energy-
momentum) at the horizon. At ω∗+(iµ), the sound mode dispersion relation
gives the Lyapunov exponent associated with holographic many-body
chaos. Furthermore, even though |k|/T lies at the edge or outside of
the hydrodynamic regime [165, 227], the full dispersion relation is well
described by the hydrodynamic approximation.

What are the physical implications of our observations? Several recent
papers have speculated on relations between late-time diffusion and the
butterfly effect [64–67, 136, 154, 211, 228, 229]. The late-time behavior of
hydrodynamic excitations in a translationally invariant, uncharged CFTs
is controlled by momentum diffusion. In theories holographically dual to
two-derivative gravity, momentum diffusion D is completely determined
by horizon data [119] while charge diffusion is not. Given a (background)
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4.5 Discussion
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Figure 4.1: Dispersion relations of the hydrodynamic sound modes, plotted for imaginary
dimensionless w ≡ ω/2πT and q ≡ k/2πT . The blue lines depict the third-order hydro-
dynamic result [226] and the red crosses the numerically computed w∗±(q). Dashed lines
indicate the values of ω = iλL and k = iµ. The dotted line is the linear dispersion relation
w = vBq. The inlay depicts a zoomed-in plot around k = iµ.

metric (4.4) and the shock wave diffusivity D (cf. Eq. (4.15)):

D

D
=

3 b′(rh)

8πT
. (4.22)

In large-Nc N = 4 SYM theory at infinite coupling, this reduces to
D/D = 3/4. However, as we move away from infinite coupling and
consider higher-derivative bulk theories, D is no longer computable in
terms of simple horizon data, which results in deviations of η/s from
1/4π. Since the butterfly velocity and the Lyapunov exponent are by
construction computed only at the horizon, we have a-priori no reason to
expect that there continues to exist a simple relation between D and D
in holographic duals with more then two derivatives. Indeed, the ratio of
D/D in Gauss-Bonnet has non-trivial coupling dependence [15, 223], and
is thus not universal 3.
3For a discussion regarding the validity of hydrodynamics in the presence of coupling

constant corrections, see [121, 165, 222, 223, 230, 231].
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4 Black Hole scrambling from hydrodynamics

As we emphasized in the Introduction, a relation, such as (4.22), which
depends only on rh ∼ T , between late-time and early-time physics is
rather unexpected. The exception is the classical dilute gas. Its early-time
chaos and late-time diffusion are controlled by the same process (2-to-2
scattering). Our findings show that the situation is similar in an infinitely
strongly coupled, large-Nc CFT. As a result, early-time scrambling and
late-time hydrodynamics are qualitatively related and appear to be driven
by the same physics—hydrodynamics.

The reason that an obtuse relation between microscopic ergodicity
from shock waves and late-time diffusion is sought after is that black
holes are special in that their ergodicity rate λL saturates a conjectured
bound λL ≤ 2πT [16]. If early-time ergodicity indeed controlled late-time
diffusion, this bound could imply a long-sought fundamental diffusion
bound [229, 232] 4. Such a fundamental bound was re-postulated several
years ago based on early results on collective dynamics in holography by
noting that the shear viscosity in these systems only depends on horizon
data [118, 236]. Expressions such as Eq. (4.22) make it clear, however,
that the Lyapunov exponent bound does not yield a diffusion bound. The
dependence on the temperature through rh or the presence of additional
scales allows this ratio to take any value. We note that such temperature
dependence is also present in the classical dilute gas of particles with mass
m and density ρ through the average velocity v. Its shear viscosity η and
the Lyapunov exponent [161] behave as

η ∼ m
√
〈v2(T )〉
σ2−2

, λL ∼ ρ(T )
√
〈v2(T )〉σ2−2 , (4.23)

with σ2−2 the 2-to-2 scattering rate. As a final comment, we note that the
evolution of the unstable hydrodynamic mode, albeit driven to instability
with a choice of an imaginary momentum, may not only grow with expo-
nential growth faster than Im[ω] > λL = 2πT but can also have a local
group velocity larger than vB at various values of imaginary k (cf. Fig. 4.1).
As also found in [160, 229], this indicates that the butterfly velocity may
not in all generality be a bounding velocity. Understanding the relation
between these observations and bounds on λL and the speed of propagation
of quantum correlations remains an important open problem, as does a
better understanding of the relation between many-body microscopic chaos
and instability-induced collective hydrodynamic turbulence.

4For two examples of rigorous diffusion bounds in one-dimensional systems, see [233].
In holography, one can derive bounds on conductivities in disordered systems [234,
235] but as of yet, not on diffusion.
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