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2 Quantum chaos in diluted
weakly coupled field theories

For perturbative scalar field theories, the late-time-limit of the out-of-time-
ordered correlation function that measures (quantum) chaos is shown to be
equal to a Boltzmann-type kinetic equation that measures the total gross
(instead of net) particle exchange between phase space cells, weighted by
a function of energy. This derivation gives a concrete form to numerous
attempts to derive chaotic many-body dynamics from ad hoc kinetic
equations. A period of exponential growth in the total gross exchange
determines the Lyapunov exponent of the chaotic system. Physically, the
exponential growth is a front propagating into an unstable state in phase
space. As in conventional Boltzmann transport, which follows from the
dynamics of the net particle number density exchange, the kernel of this
kinetic integral equation for chaos is also set by the 2-to-2 scattering rate.
This provides a mathematically precise statement of the known fact that
in dilute weakly coupled gases, transport and scrambling (or ergodicity)
are controlled by the same physics.1

2.1 Introduction

The weakly interacting dilute gas is one of the pillars of physics. It
provides a canonical example for the statistical foundation of thermody-
namics and its kinetic description—the Boltzmann equation—allows for a
computation of the collective transport properties from collisions of the
microscopic constituents. Historically, this provided the breakthrough
evidence in favor of the molecular theory of matter. A crucial point in
Boltzmann’s kinetic theory is the assumption of molecular chaos whereby
all n > 2 quasi-particle correlations are irrelevant due to diluteness and
the validity of ensemble averaging, i.e. ergodicity [127, 139–146]. However,
finding a precise quantitative probe of this underlying chaotic behavior in
many-body systems has been a notoriously difficult problem. In the past,

1The contents of this chapter have been published in S. Grozdanov, K. E. Schalm and
V. Scopelliti, Phys.Rev. E 99 (2019) no.1, 012206.
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2 Quantum chaos in diluted weakly coupled field theories

phenomenological approaches positing a Boltzmann-like kinetic equation
(see e.g. [147]) have reproduced numerically computed properties of chaos,
such as the Lyapunov exponents, but a fundamental origin supporting this
approach is lacking.

A measure of chaos applicable to both weakly coupled (kinetic) and
strongly coupled quantum systems (without quasi-particles) is a period of
exponential growth of a thermal out-of-time-ordered correlator (OTOC):

C(t) = θ(t) 〈[Ŵ (t), V̂ (0)]†[Ŵ (t), V̂ (0)]〉β , (2.1)

where W (t) and V (0) are generic operators and β = 1/T . For example,
choosing W (t) = q(t), V (0) = p(0) ≡ −i~ ∂

∂q(0) one immediately sees

that C(t) probes the dependence on initial conditions—and, hence, if this
dependence displays exponential growth, chaos. This OTOC was first
put forth in studies of quantum electron transport in weakly disordered
materials [148–150], which noted that in quantum systems the regime of
classical exponential growth cuts off at the so-called Ehrenfest time, and
of late, it has been used to detect exponential growth of perturbations
characteristic of chaos in strongly coupled quantum systems [12, 15, 16, 151].
This has led in turn to a reconsideration of this OTOC in weakly coupled
field theories [136, 152–157]. A strong impetus for this renewed interest
has been a possible connection between chaotic behavior and transport, in
particular, late-time diffusion (see e.g. recent [66, 128, 158–160]). Many
weakly coupled studies have indeed found such a connection. Intuitively,
this should not be a surprise. In weakly coupled particle-like theories,
chaotic short-time behavior is clearly set by successive uncorrelated 2-to-2
scatterings, but the dilute molecular chaos assumption in Boltzmann’s
kinetic theory shows that 2-to-2 scattering also determines the late-time
diffusive transport coefficients. A mathematically precise relation, however,
between chaos and transport in dilute perturbative systems did not exist.

In this chapter, we will provide this relation. We will show that a direct
analogue of the conventional Boltzmann transport equation, but where one
traces the total gross exchange between phase space cells weighted by an
energy factor, rather than net particle number density, computes the late-
time behavior of chaos in terms of the exponential growth of the OTOC
of a bosonic system before the Ehrenfest time. The resemblance between
the OTOC computation and kinetic equations was already noted in [152],
although with a different interpretation. Our result is explicit in the
physical meaning of the kinetic equation for chaos and makes particularly
clear the relation between chaos and transport in dilute weakly coupled
theories, as the kernel in both cases is the 2-to-2 scattering cross-section,
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2.2 Boltzmann transport and chaos from a gross energy exchange kinetic equation

even though transport is a relaxational process and chaos an exponentially
divergent one. This OTOC-derived gross exchange equation shares many
of the salient features of the earlier postulated chaos-determining kinetic
equations [147, 161], explaining post facto why they obtained the correct
result.

2.2 Boltzmann transport and chaos from a
gross energy exchange kinetic equation

To exhibit the essence of the statement that chaos-driven ergodicity follows
from a gross exchange equation analogous to the Boltzmann equation, we
first construct this equation from first principles and show how it captures
the exponential growth of microscopic energy-weighted exchanges due to
inter-particle collisions. Then, in the next section, we derive this statement
from the late-time limit of the OTOC in perturbative quantum field theory.

Consider the linearized Boltzmann equation for the time dependence of
the change of particle number density per unit of phase space: δn(t,p) =
n(t,p)− n(Ep), where n(p) is the equilibrium Bose-Einstein distribution
n(p) = 1/(eβE(p) − 1) that depends on the energy E(p).2 In terms of the

one-particle distribution function, f(t,p) = δn(t,p)
n(p)(1+n(p)) , the linearized

Boltzmann equation is a homogeneous evolution equation for f(t,p) (see
e.g. [162–164]):3

∂tf(t,p) = −
∫

l

L(p, l)f(t, l), (2.2)

where the kernel of the collision integral

L(p, l) ≡ − [R∧(p, l)−R∨(p, l)] (2.3)

measures the difference between the rates of scattering into the phase-space
cell and scattering out the phase space cell. The factor

R∧(p, l) =
1

n(p)(1 + n(p))

∫
p2,p3,p4

dΣ(p,p2|p3,p4)

× (δ(p3 − l) + δ(p4 − l)) , (2.4)

2For simplicity, we assume spatial homogeneity of the gas with the energy E(p) and
think of all quantities as averaged over space, e.g. n(t,p) =

∫
dxn(t,x,p).

3In relativistic theories
∫
p≡
∫ d3p

(2π)3
1

2E(p)
and

∫
p ≡

∫ d4p
(2π)4

. For a non-relativistic

system,
∫
p ≡

∫ d3p
(2π)3

, and similarly,
∫
x ≡

∫
d3x and

∫
x ≡

∫
d4x.
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2 Quantum chaos in diluted weakly coupled field theories

counts increases of the local density by one unit. The factor

R∨(p, l) =
1

n(p)(1 + n(p))

∫
p2,p3,p4

dΣ(p,p2|p3,p4)

× (δ(p− l) + δ(p2 − l)) , (2.5)

counts decreases of the number density by one unit. Here,

dΣ(p,p2|p3,p4) = n(p)n(p2)
1

2
|Tpp2→p3p4 |2

× (1 + n(p3))(1 + n(p4))

× (2π)4δ4(p+ p2 − p3 − p4) (2.6)

with |Tpp2→p3p4 |2 the transition amplitude squared. By defining an inner
product

〈φ|ψ〉 =

∫
p

n(p)(1 + n(p))φ∗(p)ψ(p) , (2.7)

one can use the symmetries of the cross-section dΣ(p1,p2|p3,p4) =
dΣ(p2,p1|p3,p4) = dΣ(p3,p4|p1,p2) = dΣ(p1,p2|p4,p3) to show that
the operator L(p, l) is not only Hermitian on this inner product, but also
positive semidefinite—all its eigenvalues are real and ξn ≥ 0. Hence, the
solutions to the Boltzmann equation are purely relaxational:

f(p, t) =
∑
n

Ane
−ξntφn(p), (2.8)

where
∑
n formally stands for either a sum over discrete values or an

integral over a continuum (see e.g. [162–165]). Moreover, every ξ = 0
eigenvalue is associated with a symmetry and has an associated conserved
quantity—a collisional invariant.

Let us instead trace the total gross exchange, rather than the net flux,
by changing the sign of the outflow R∨(p, l) in the kernel of the integral
L(p, l). A distribution function that follows from Eq. (5.4) with the
kernel Ltotal(p, l) = − [R∧(p, l) +R∨(p, l)] counts additively the total in-
and out-flow of particles from a number density inside a unit of phase
space. However, this over-counts because the loss rate R∨(p, l) consists
of a drag (self-energy) term, 2Γp, caused by the thermal environment —
the term proportional to δ(p − l) in Eq. (3.57) — in addition to a true
loss rate term, R∨T (p, l) = R∨(p, l)− 2Γpδ(p− l). Only R∨T changes the
number of particles in f(t,p) due to deviations coming from f(t,p 6= l).
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2.2 Boltzmann transport and chaos from a gross energy exchange kinetic equation

Accounting for this, and changing only the sign of the true outflow, we
arrive at a gross exchange equation

∂tfgross(t,p) = (2.9)∫
l

[R∧(p, l) +R∨(p, l)− 4Γpδ(p− l)] fgross(t, l) .

The central result of this chapter is that tracking the time-evolution of
this gross exchange—weighted additionally by an odd function E(E) of the
energy E to be specified below—is a microscopic kinetic measure of chaos
(or scrambling). It is thus quantified by the distribution fEX ≡ E(E)fgross

and governed by

∂tfEX(t,p) = (2.10)∫
l

E [Ep]

E [El]
[R∧(p, l) +R∨(p, l)− 4Γpδ(p− l)] fEX(t, l) .

Specifically, Eq. (2.10) can be derived from the late-time behavior of the
OTOC of local field operators in perturbative relativistic scalar quantum
field theories. The OTOC selects a specific functional E(E), such that in
the limit of high temperature, E(E) → 1/E. The distribution fEX can
grow exponentially and indefinitely because the Hermitian operator

LEX(p, l) = − El

Ep
(R∧(p, l) +R∨(p, l)− 4Γpδ(p− l)) (2.11)

is no longer positive semi-definite. It permits a set of negative eigenvalues,
ξm < 0, which characterize the exponential growth in the amount of gross
energy exchanged inside the system. This exponential evolution persists
to t→∞ [156], so ξm specify a subset of all Lyapunov exponents λL of
the many-body system, with λL,m = −ξm by definition. Finally, since
choosing a different odd E(E) results in a similarity transformation of the
kernel, the spectrum of fOTOC equals the spectrum of fEX .

The above construction tremendously simplifies the computation of
the Lyapunov exponents for weakly interacting dilute systems. Beyond
providing a physically intuitive picture of chaos, it reduces the calculation
of Lyapunov exponents to a calculation of |Tpp2→p3p4 |2, which is entirely
determined by particle scattering. For example, in a theory of N × N
Hermitian massive scalars Φab,

L = tr

(
1

2
(∂tΦ)

2 − 1

2
(∇Φ)2 − m2

2
Φ2 − 1

4!
g2Φ4

)
, (2.12)
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2 Quantum chaos in diluted weakly coupled field theories

for which the transition probability appropriately traced over external
states equals

|T12→34|2 =
1

6
g4
(
N2 + 5

)
. (2.13)

Eq. (2.10) directly computes the Lyapunov exponents (see Fig. 2.1). In
the β → 0 limit, the leading exponent becomes

λL '
0.025T 2

48m

1

2
|T12→34|2 '

0.025

4

g4(N2 + 5)T 2

144m
. (2.14)

In the large N limit, Eq. (5.47) recovers the explicit OTOC result of [152]
after correcting a factor of a 1/4 miscount (see Appendix 2.A).

2.3 A derivation of the gross exchange
kinetic equation from the OTOC

To set the stage, we first show how the linearized Boltzmann equation
(5.4) arises in quantum field theory, using the theory in Eq. (2.12) as an
example. The derivation is closely related to the Kadanoff-Baym quantum
kinetic equations [144, 166]. It builds on similar derivations in [101, 126,
167]. A complementary approach to the derivation here, which is closer
in spirit to the Kadanoff–Baym derivation, but makes the physics less
transparent, is the generalized OTOC contour quantum kinetic equation
of [153].

The one-particle distribution function f(t,x,p) follows from the Wigner
transform of the bilocal operator

ρ(x, p) =

∫
y

e−ip·y Tr [Φ(x+ y/2)Φ(x− y/2)]

=

∫
k

eikxTr [Φ(p+ k/2)Φ(p− k/2)] . (2.15)

When the momentum is taken to be on shell, the Wigner function ρ(x, p)
becomes proportional to the relativistic one-particle operator-valued dis-
tribution function ρ(x,p, Ep) = n(x,p) [144]. The expectation value of
the scalar density is then 〈ρ〉β .

We now consider the linearized Boltzmann equation as a dynamical
equation for fluctuations δρ(x, p) = n(p)(1 + n(p))f(x, p) in the bilocal
density operator:

[∂x0δ(x− y)δ(p− q) + L(x, p|y, q)] δρ(y, q) = 0 . (2.16)
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2.3 A derivation of the gross exchange kinetic equation from the OTOC

If the fluctuations are small, and the assumption of molecular chaos
holds, the central limit theorem implies that the two point function of the
fluctuations in the bilocal density is the Green’s function for the linearized
Boltzmann operator

iGρρR (x, p|y, q) = θ(x0 − y0)〈[δρ(x, p), δρ(y, q)]〉
= [∂x0δ(x− y)δ(p− q) + L(x, p|y, q)]−1

. (2.17)

Because the linearized Boltzmann equation is causal and purely relax-
ational, the two-point function in (5.80) is retarded. This implies that it
is possible to extract the collision integral of the linearized Boltzmann
equation directly from the analytic structure of the retarded Green’s func-
tion GρρR (x, p|y, q). As a result, the eigenvalues of the Boltzmann equation
ξn are also the locations of the poles of GρρR . This establishes a direct
connection between weakly coupled quantum field theory and quantum
kinetic theory. From the definition of ρ(k, p), Eq. (5.80) can be expressed
in terms of the connected4 Schwinger-Keldysh (SK) four-point functions

(see Ref. [168]) of the microscopic fields GρρR (k, p; `, q) = −GΦ2Φ2

1111 +GΦ2Φ2

1122 ,
where

GΦ2Φ2

1122 = i 〈Tr [Φ1(p+ k/2)Φ1(−p+ k/2)]

× Tr [Φ2(q + `/2)Φ2(−q + `/2)]〉SK , (2.18)

and similarly forGΦ2Φ2

1111 . Here, Φ1,2 denote the doubled fields on the forward
and backward contours of the SK path integral, respectively. In translation-
ally invariant systems, ` = −k. It is convenient to introduce the Keldysh
basis, Φa = Φ1 − Φ2 and Φr=1

2 (Φ1 + Φ2). Then GρρR is a linear combina-
tion of 16 four-point functions Gα1α2α3α4 = i2nrαi 〈Φα1Φα2Φα3Φα4〉 with
αi = {a, r} and nrαi counting the number of αi indices equal to r. In the

limit of small frequency and momenta, ω ≡ k0 → 0 and k→ 0, however,
it is only a single one of these four-point functions that contributes to the
final expression [133, 168, 169]:

lim
k→0

GρρR (p, q|k) = − lim
k→0

βk0

2
N (p0)G∗aarr(p, q|k)

= − lim
k→0

βk0

4
N (p0)N (q0) 〈f(p, k)f(q,−k)〉 , (2.19)

whereN (p0) = n(p0)
(
1 + n(p0)

)
. The exact four-point functionG∗aarr(p, q|k)

obeys a system of Bethe-Salpeter equations (BSEs) that nevertheless still

4The disconnected part gives a product of the equilibrium one-point functions 〈ρ〉β .
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2 Quantum chaos in diluted weakly coupled field theories

couples all 16 Gα1α2α3α4
. However, it turns out that in the limit of small

ω and k, G∗aarr decouples and is governed by a single BSE [133, 168]:

G∗aarr(p, q|k) = ∆ra(p+ k)∆ar(p)

[
i(2π)4δ4(p− q)N2

−
∫
l

Rtransp(p, l)G∗aarr(l, q|k)

]
, (2.20)

where ∆α1α2 = −i 2nrαi 〈Φα1Φα2〉 is the Schwinger-Keldysh two-point
function and Rtransp(p, `) = dΣp→l/N (p0), with dΣp→l the transition
probability of an off-shell particle with energy-momentum (p0,p) scattering
of the thermal bath to an off-shell particle with energy-momentum (l0, l).5

Defining G∗aarr(p|k) =
∫
q
G∗aarr(p, q|k), Eq. (2.20) reduces to

G∗aarr(p|k) = ∆ra(p+ k)∆ar(p)

[
iN2

−
∫
l

Rtransp(p, l)G∗aarr(l|k)

]
. (2.21)

The product ∆ra(p+ k)∆ar(p) has four poles with imaginary parts ±iΓp.
However, as k → 0, only a contribution from two poles remains. This
pinching pole approximation, ubiquitous in the study of hydrodynamic
transport coefficients and spectra of finite temperature quantum field
theories [101, 168], gives

G∗aarr(p|k) =
π

Ep

δ(p2
0 − E2

p)

−iω + 2Γp

[
iN2−

∫
l

Rtransp(p, l)G∗aarr(l|k)

]
. (2.22)

To find the solution of the integral equation (2.22), we make the ansatz
whereby G∗aarr(p|k) is supported on-shell:

G∗aarr(p|k) = δ(p2
0 − E2

p)Gff (p|k). (2.23)

Hence,

(−iω + 2Γp)Gff (p|k) =
iπN2

Ep
−
∫

l

1

2Ep

×
[
Rtransp(p, Ep|`, E`) +Rtransp(p, Ep|`,−E`)

]
Gff (l|k) . (2.24)

5Rtransp(p, `) = − sinh(βp0/2)

sinh(β`0/2)
R(l− p) where R(l− p) is the rung function computed

in [152]. Note that the R(l − p) in [152] is not the same as R∧ or R∨ used here.
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2.3 A derivation of the gross exchange kinetic equation from the OTOC

It can be shown that 6

1

2Ep
Rtransp(p, Ep|`, E`) = −R∧(p, l) (2.25)

and [101, 133, 168]

1

2Ep
Rtransp(p, Ep|l,−El) = R∨(p, l)− 2Γpδ(p− l) . (2.26)

Thus, Eq. (2.24) is solved by

Gff (p|k) =
iπN2

Ep

1

−iω −
∫
l
[R∧(p,k)−R∨(p,k)]

. (2.27)

Hence, the spectrum of Gff (p|k0 = ω,k = 0) equals the spectrum of the
one-particle distribution f(t,p) determined by the linearized Boltzmann
equation (5.4).

The derivation of the kinetic equation (2.10) for quantum chaos from
the OTOC now follows from an analogous line of arguments. The OTOC,

C(t) =− i
∫
k

e−ikt
∫
p,q

〈
[Φab(p+ k),Φ†a′b′(−q − k)]

×[Φ†ab(−p),Φa′b′(q)]
〉
, (2.28)

is a four-point function, which, as shown in [152], also obeys a BSE in the
limit of ω → 0. Indicating with GOTOC(p, q|k, p + q − k) the term inside
the integrals in Eq. (5.79), i.e. C(t) ≡

∫
k
e−ikt

∫
p,q
GOTOC(p, q|k, p+ q−k),

we define

G̃(p|k) =

∫
q

GOTOC(p, q|k, p+ q − k) . (2.29)

The correlator G̃(p|k) then obeys the following integral equation:

G̃(p|k) =
π

Ep

δ(p2
0 − E2

p)

−iω + 2Γp

[
iN2

−
∫

d4`

(2π)4

sinh(β`0/2)

sinh(βp0/2)
RtranspG̃(`|k)

]
. (2.30)

6See Appendix 3.G in next chapter.
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2 Quantum chaos in diluted weakly coupled field theories

Eq. (2.30) agrees with the result found in [152], even though it is expressed

here with different notation. The advantage of writing G̃(p|k) as in (2.30)

is that it makes transparent the similarities between G̃(p|k) and G∗aarr(p|k)
from Eq. (2.22), which governs transport. A priori, there is no reason to

expect G̃(p|k) and G∗aarr(p|k) to be related. Nevertheless, by comparing
(2.22) with (2.30), it is clear that in this calculation, the only difference

between the two BSE equations is the factor sinh(β`0/2)
sinh(βp0/2) appearing in the

measure of the kernel of (2.30). As we will see in Section 2.4, this factor
is crucial for the fact that, while related, the spectra of G∗aarr(p|k) and

G̃(p|k) are distinct: the spectrum of G∗aarr(p|k) only possesses relaxational

modes while G̃(p|k) exhibits exponentially growing modes which can be
associated with many-body quantum chaos.

To find a solution of Eq. (2.30), as in the case of Eq. (2.22), we again

introduce an on-shell ansatz G̃(p|k) = δ(p2
0 − E2

p)Gff(p|k). This gives

(−iω + 2Γp)Gff(p|k) =
iπN2

Ep
−
∫

l

sinh(βEl/2)

sinh(βEp/2)

1

2Ep

×
(
Rtransp(p, Ep|l, El)−Rtransp(p, Ep|l,−El)

)
Gff(l|k), (2.31)

where one of the signs in front of K is now reversed due to the fact that

factor sinh(β`0/2)
sinh(βp0/2) in the measure is an odd function of energy. Thus, the

spectrum of Gff(l|k), and hence, of the OTOC, equals the spectrum of the
following kinetic equation

∂tfOTOC(t,p) =

∫
l

sinh(βEl/2)

sinh(βEp/2)

× [R∧(p, l) +R∨(p, l)− 4Γpδ(p− l)] fOTOC(t, l) , (2.32)

which precisely matches with the kinetic equation for the OTOC put for-
ward in Eq. (2.10), with E(Ep) = 1/ sinh(βEp/2), or limβ→0 E(Ep)/E(El) =
El/Ep. As noted there, this spectrum of Eq. (2.10) is in fact independent
of E(E) as long as the function E is odd.

2.4 Results and discussion

In addition to greatly simplifying the computation of chaotic behavior
in dilute weakly interacting systems and providing a physical picture
for the meaning of many-body chaos, the gross energy exchange kinetic
equation recasting of the OTOC makes it conspicuously clear how in such
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2.4 Results and discussion

systems scrambling (or ergodicity) and transport are governed by the
same physics [128]. The kernel of the kinetic equation in both cases is the
2-to-2 scattering cross-section. Nevertheless, the equations for fOTOC, or
equivalently, fEX , and f are subtly different, which allows for the crucial
qualitative difference: a chaotic, Lyapunov-type divergent growth of fEX
versus damped relaxation of f . Their spectra at k = 0 and small ω are
presented in Figure 2.1. As already noted below Eq. (2.30), the two
off-shell late-time BSEs (2.22) and (2.30) are the same upon performing
the following identification:

G̃(p|k) = G∗aarr(p|k)/ sinh(βp0/2). (2.33)

The most general solution to this BSE thus includes the information about
chaos and transport. However, the divergent modes (in time) of the OTOC
are projected out by the on-shell condition and thus do not contribute to
the correlators that compute transport. For example, the shear viscosity
η can be inferred from the following retarded correlator (see e.g. [101]):

〈T xy(k), T xy(−k)〉R =

∫
p,q

pxpyqxqy G
ρρ
R (k|p, q) , (2.34)

where k = (ω, 0, 0, kz). The integrals over p and q, together with the
on-shell condition, project out the odd modes in p0 which govern chaos,
and transport is only sensitive to the even, stable modes [170].

The fact that, when off shell, the BSEs (2.22) and (2.30) can be mapped
onto each other is by itself a highly non-trivial result which opens several
questions. In particular, this observation seems to indicate that in some
cases, the information about scrambling and ergodicity, which has so far
been believed to be accessible only by studying a modified, extended SK
contour and OTOCs, can instead be addressed by a suitable analysis
of the analytic properties of correlation functions on the standard SK
contour. How our result implies such new analytical properties, remains
to be discovered. We remark, however, that studies in (holographic)
strongly coupled theories uncovered precisely this type of a relation between
hydrodynamic transport at an analytically continued imaginary momentum
and chaos. In particular, as we discovered in [128], chaos is encoded in
a vanishing residue (“pole-skipping”) of the retarded energy density two-
point function, which tightly constrains the behavior of the dispersion
relation of longitudinal (sound) hydrodynamic excitations. The same
imprint of chaos on properties of transport was later also observed in a
proposed effective (hydrodynamic) field theory of chaos [56]. Despite the
fact that it is at present unknown how general pole-skipping is and whether
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other related analytic signatures of chaos in observables that characterize
transport exist, it may be possible that properties of many-body quantum
chaos in dilute weakly coupled theories are also uncoverable from transport,
as in strongly coupled theories [128]. We defer these questions to future
works.

The kinetic equation for many-body chaos, that we have derived here,
also gives concrete form to past attempts to do so, which were based on
a phenomenological ansatz that one should count additively the number
of collisions [147, 161]. In essence, that is also what our gross exchange
equation does. The exponential divergence can thus be understood as a
front propagation into unstable states [172]. This analogy was already
noted in [153] who derived a kinetic equation for chaos from the Dyson
equation for the 4× 4 matrix of the four-contour SK Green’s functions. By
our arguments above that relate the poles of the OTOC to a dynamical
equation for fOTOC, the resulting equations in [153] should contain a
decoupled subsector that is equivalent to the kinetic equation derived here.

Finally, we wish to note that the small parameter that sets the Ehrenfest
time and controls the regime of exponential growth in the OTOC in all
these systems is the perturbative small ’t Hooft coupling λ = g2N . The
BSE from which the kinetic equation is derived is formally equivalent to a
differential equation of the type

(
d

dt
− g4N2L

)
f = N2 . (2.35)

This is solved by

f = − 1

g4L
+ c0 e

g4N2Lt. (2.36)

The Ehrenfest (or scrambling) time, where the exponential becomes of
order of the constant term, is therefore

tscr =
1

g4N2L
ln(1/g4Lc0). (2.37)

For small g2, this can be an appreciable timescale for any value of N , and
there is no need for a large N number of species.
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2.4 Results and discussion
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Figure 2.1: The spectra of the kernel L(p, l) for the linearized Boltzmann equation (and
also of 〈Txy(kz), Txy(−kz)〉R, cf. Eq. (2.34)) (top left) and of the kernel LEX(p, l) for the
kinetic equation for the OTOC (top right) are plotted over the complex ω plane and in the
limit of βm → 0. In the lower half of the complex ω plane, there is a dense sequence of
numerically obtained poles. In both spectra, these poles are believed to be the signature of
a branch cut. See [170] and also [121, 122, 165, 171]. In the upper half of the complex ω
plane, only the kernel LEX(p, l) has distinct poles which are identified with the Lyapunov
exponents, as explained below equation (2.11). The dependence of these two Lyapunov
exponents and the branch cuts on βm is depicted in the inlay (bottom). For large values of
βm, the Lyapunov exponents decay exponentially. The plots are obtained by diagonalizing
the kernels of the integral equations (2.20) and (2.32) after a discretization with N = 1000
grid points on the domain p ∈ [m/N,N × m]. The discretization is not uniform. This is
done in order for the diagonalization to appropriately account for the contributions of both
the soft momenta and collinear momenta p ≈ l, which are not negligible even when both
p and l are large [101, 133]. The finite size of the branch cuts, i.e. its end point for large
Im(ω), is related to finite domain of the discretization procedure.
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2.A Diagrammatic expansion of |T12→34|2 in
the theory of N ×N Hermitian matrix
scalars

Here, we present the diagrammatic expansion and the relevant combinato-
rial factors for each of the diagrams that enter into the 2-to-2 transition
amplitude |T12→34| in the theory of N ×N Hermitian matrix scalars (9).
The square of the 2-to-2 transition amplitude, |T12→34|2, is the square of
the amputated connected four-point function. At lowest non-trivial order:

For N = 1 the theory is just scalar φ4 theory and the answer is straight-
forward: |T12→34|2 = g4.

For N > 1 theory, the actual amplitude we wish to compute is addition-
ally traced over the external indices, since,

C(t) =− i
∫
k

e−ikt
∫
p,q

〈
[Φab(p+ k),Φ†a′b′(−q − k)]

×[Φ†ab(−p),Φa′b′(q)]
〉
, (2.38)

The way that the matrix indices need to be contracted is across the cut.
An easy way to see this from the free non-interacting result: C(t)g2=0 =

Gab,cdR Gcd,ab;R. Graphically,
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2.A Diagrammatic expansion of |T12→34|2 in the theory ofN×N Hermitian matrix scalars

Above the arrows denote momentum-flow. We are interested in the way
the weight changes as a function of N .

To find this answer, we use that Hermitian matrices span the adjoint of
U(N). Following ’t Hooft, one can then use double line notation in terms
of fundamental N -“charges”. Using this double line notation, the vertex
equals.

One needs to connect the two vertices across the cut, and then contract,
i.e. trace over the external indices, in all possible ways. We will do so
step-wise.

Consider first the transition probability. Connecting the first leg across
the cut is unambiguous, i.e., each possible choice gives the same answer:

|T12→34|2 =

2

Contracting the next line, however, gives rise to in-equivalent possibilities,
each with the same weight w. They are
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2 Quantum chaos in diluted weakly coupled field theories

|T12→34|2 = w2 + +

2

Now, multiplying out the various combinations, each of the six indepen-
dent combinations can be contracted in two ways over the external indices.
As a result, we obtain the following set of twelve independent diagrams.

Diagram 1 with weight N4 and multiplicity 1:

Diagram 2 with weight N2 and multiplicity 1:

Diagram 3 with weight N2 and multiplicity 2 (a crossterm diagram):
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Diagram 4 with weight N2 and multiplicity 2 (a crossterm diagram).
It equals Diagram 3 mirrored across the horizontal axis:

Diagram 5 with weight N2 and multiplicity 2 (a crossterm diagram):

Diagram 6 with weight N2 and multiplicity 2 (a crossterm diagram):

Diagram 7 with weight N4 and multiplicity 1:
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Diagram 8 with weight N2 and multiplicity 1:

Diagram 9 with weight N2 and multiplicity 2 (a crossterm diagram):

Diagram 10 with weight N2 and multiplicity 2 (a crossterm diagram).
It equals Diagram 9 mirrored across the horizontal axis:

Diagram 11 with weight N4 and multiplicity 1:
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Diagram 12 with weight N2 and multiplicity 1:

In total, we thus have three diagrams with weights N4, each with
multiplicity 1. Moreover, we have nine diagrams with weights N2, three
of which have multiplicity 1, and six have multiplicity 2. This gives us a
total relative weight of

weight = 3N4 + 15N2 . (2.39)

The transition probability therefore equals

1

N2
Tr |T12→34|2 = w2(3N2 + 15) . (2.40)

By demanding that this expression reproduces the result for N = 1 (the
theory of a single real scalar field), we find w2 = g4/18. The total transition
probability is therefore

1

N2
Tr |T12→34|2 =

g4

6
(N2 + 5) , (2.41)

which we used in the kinetic theory prediction, i.e. in Eq. (10), to give us
the leading Lyapunov exponent λL.
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