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1 Introduction

How does a closed quantum system thermalize? And why do black holes
emit thermal radiation? Over the last decades, these two seemingly
unrelated questions have attracted the attention of researchers in physics
with backgrounds as different as condensed matter, quantum information,
statistical mechanics and high-energy physicists. The reason behind this
renewed interest is the idea that an underlying unknown mechanism might
explain several puzzles that are still open problems in these fields, starting
from the black hole information paradox, to the properties of cold atomic
systems, till the very basic foundations of quantum statistical mechanics.
It all relates to an essential feature of quantum mechanics: the role and the
dynamics of quantum information. Since quantum mechanics is unitary,
the information must be preserved. Nonetheless, experiments on closed
quantum systems and theoretical predictions on black hole dynamics
indicate that these systems have a thermal behaviour. Regardless of
the unitary time evolution, quantum information seems to be degraded,
dissipated. How to reconcile these contradictions is one of the most exciting
challenges of today’s physics. Beyond the purely theoretical appeal, the
solution of these questions may heavily affect the near future technologies
in light of the recent progresses towards building a quantum computer.

The dynamics of quantum information has recently been recast in terms
of the information spreading in a quantum system. This information
scrambling has some properties that reminds one of quantum chaos and
is often referred to as the quantum butterfly effect. Whether these two
concepts are indistinguishable or not is an open question we are not going
to directly address in this thesis, but we believe it deserves caution.

In this thesis we try to understand the microscopic origin of scrambling
in two opposite limits: weakly coupled field theories and strongly coupled
field theories with holographic duals. By doing so, we push forward a very
fascinating idea, namely that this microscopic quantum butterfly effect
leaves imprints in the late-time physics, by affecting transport properties
of the hydrodynamical excitations of the system. This could provide new
techniques to study scrambling and shed some light on the above-mentioned
problems.

As required by the object of investigation, this thesis contains topics
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1 Introduction

from different fields within physics. For this reason, in this chapter we
try to provide the basic elements to enable the reader to understand the
motivations that led our research. In the following two sections, we review
the concepts of classical and quantum thermalization. In section 1.3 we
present a recently proposed observable to study scrambling. We conclude
this chapter by summarizing the results of this thesis and by giving an
overview to the following chapters.

1.1 Classical thermalization

When we focus on a closed classical system, for example a gas of particles,
we know that after some time the velocities of the particles will be described
by the Maxwell-Boltzmann distribution, even though they were randomized
at the very beginning. This property, the fact that everywhere in the box
the distribution function is the same, can be considered as a definition of
classical thermalization. Classical systems reach this state in a dynamical
way. Because of the nonlinear, and hence chaotic, equations of motion,
each particle starts to explore the full phase space manifold allowed by
energy conservation. This ergodization of the motion is such that, after
some time, particles with different velocities will likely have a velocity very
close to the center of the Boltzmann distribution.1 Therefore it is clear
that, in classical physics, one of the main drivers to ergodicity and so to
thermalization is chaos2. A convenient definition of classical chaos is an
extreme sensitivity to the initial conditions. Given two trajectories on the
phase space which are very close to each other at a given time, they will
quickly depart from each other with a rate set by the Lyapunov exponent

λL = lim
t→∞,δX0→0

1

t
Log

( |δX(t)|
|δX(0)|

)
. (1.1)

This property of dynamical systems has been brought to the general public
under the suggestive name of butterfly effect, which is nowadays used also
in the scientific community.

1During the time evolution, a finite size system eventually returns arbitrarily close to
its initial state. This property, representing the statement of the Poincaré recurrence
theorem [1], does not represent a problem for thermalization since the recurrence
time is exponentially long in the system size. Moreover, statistical mechanics allows
for atypical configuration as far as they have exponentially small probability.

2The connection between chaotic dynamics and ergodization is still an open problem.
While chaotic systems are ergodic, the opposite does not necessarily have to be true.

2



1.2 Quantum thermalization

1.2 Quantum thermalization

The dynamical thermalization, occurring in classical mechanics, cannot
be extended in a simple way to quantum mechanics, because this means
that a pure initial state would evolve into a mixed state (thermal), in
contrast with the unitarity of the time evolution. Nevertheless, we expect
the out-of-equilibrium dynamics of closed quantum systems to drive it
into a state whose properties are very similar to what we would naively
define as a thermal state: a stationary value of macroscopic quantities
and stability over a wide range of initial conditions. This expectation is
driven not only by physical intuition, but also by numerical results on
isolated quantum systems [2].3 One definition of thermalization involves
the expectation value of the observable and can be stated as follows. Let’s
consider a closed quantum system driven out-of-equilibrium and let it
evolve in time. If the system was initially prepared in a state with a well
defined mean energy and, during the evolution, the expectation value of
the observable can be well approximated by the microcanonical expression,
we can consider the system as having thermalized [3] . Given an initial
state φ =

∑
n cn|n〉 and the observable O, the expectation value evolves

with time as follows

〈φ(t)|O|φ(t)〉 =
∑
n

|cn|2Onn +
∑

n,n6=m

c∗mcne
i(Em−En)tOmn. (1.2)

Requiring that this correlation function, after some thermalization time τt,
matches a microcanonical result is a highly non trivial constraint. A first
reason is that the time independent part of (1.2), |cn|2Onn, should match
the microcanonical result. Furthermore, we should also impose the second
term to vanish. At first sight, the latter requirement might seem very easy
to satisfy, as in long time limit the second term averages to zero. But clearly
it is very important to estimate the time scale at which it starts to hold.
This is related to the spacing of the energy levels, a property which discerns
whether a system possesses quasiparticle excitations or not. Indeed, the
high energy spectrum of a generic many-body system is characterised by a
level spacing exponentially suppressed in the system size4. The low energy
spectrum, instead, changes. If a system has quasiparticle excitations, the

3A comprehensive list of the literature on the numerical studies can be found in [3].
4This can be easily seen for a quasiparticle system by considering a simple model of

metal (with quasiparticles) with N sites. The energy of the system is described by

E =
∑N
α=1 εαnα + ..., where εα are the single particle energies and nα = 0, 1 the

occupation numbers. As there are 2N many-body levels, the spacing is proportional
to 2−N . This property holds also for systems without quasiparticle excitations [4].
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single-particle level spacing behaves like 1/N . But in a system without
quasiparticles, the spacing is still exponentially suppressed in N .

This implies that the time at which the second term of (1.2) starts to
vanish, proportional to the inverse level spacing t∗ ∼ (En − Em)−1, in
a many body system can be exponentially long. Moreover the study of
thermalization highly depends on the nature of excitations in the system,
since in absence of quasiparticles even the analysis of the low energy sector
of the spectrum can be non trivial.

A step forward in understanding the quantum thermalization was the
work of Deutsch [5], who used Random Matrix Theory (RMT) to show
that, for a random Hamiltonian, the first term of (1.2) indeed coincides
with the microcanonical result. RMT, though, is a crude approximation
since it washes away all the state dependence of the result, for example
the energy of the state (which is crucial in the microcanonical description).
These results are equivalent to the infinite temperature limit [3, 5].

The more refined explanation for the thermal expectation value of a
local observable is provided by the Eigenstate Thermalization Hypothesis,
conjectured by Srednicki in a series of seminal papers [6, 7]. For quantum
systems that thermalize, the Hypothesis states that the spectrum of the
Hamiltonian H is such that the expectation value of a local observable
over the eigenstates n and m of H is of the following form5

〈m|O|n〉 = O(Ē)δmn + e−S(Ē)/2fO(Ē, ω)Rmn. (1.3)

In the above equation, Ē is the average energy of the states n and m,
Ē = En+Em

2 , and ω the difference, ω = Em − En. Moreover, O(Ē) and
fO(Ē, ω) are smooth functions of the arguments and O(Ē) corresponds to
the microcanonical expectation value at energy Ē of the operator O. Rmn
are random numbers with zero mean and unit variance and S(Ē) is the
microcanonical entropy.

Despite the successes of the ETH ansatz in describing the thermal
behaviour of the correlation functions of local operators, there are still
many open questions. In quantum mechanics a pivotal role is played
by quantum information, which also in this case seems to be crucial [3].
Nevertheless, what ETH is not able to describe is the dynamics behind
thermalization. Thanks to the collective effort of the last decade, we
now understand that, under time evolution, the information spreads and

5The ETH can be formulated also in terms of operators which are not strictly local,
but still subextensive with respect to the number of degrees of freedom, as in [8].
This allows to study ETH also in intrinsically non local systems, as for example
SYK model.
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1.3 Information scrambling and out-of-time ordered correlators (OTOC)

delocalizes (it scrambles) over the system, becoming inaccessible to local
experimental measurements which locally only probe an effectively thermal
state.

This can be considered one of the qualitative explanations behind ETH
and justifies the use of local operators. In more clear terms, it is important
to understand the dynamical process that underlies the ETH ansatz. By
drawing an analogy with the classical case, this might be connected to some
mechanism that naively could be defined quantum chaos. Furthermore, as
we see from equation (1.3), checking thermalization with the ETH ansatz
requires the knowledge of the spectrum and the eigenstate of the system,
which in a many-body systems is remarkably hard to compute.

The problems listed in the previous paragraphs raise the question
whether it is possible to study the dynamics of quantum thermalization us-
ing some new observables or new techniques. In the coming section, we will
review the out-of-time correlation function (OTOC), which has recently
attracted lots of interested in the study of quantum chaos. Afterwards we
will discuss a seemingly exotic idea, representing one of the main drives for
this thesis, which is to understand quantum chaos by looking at properties
of the late-time physics encoded in the hydrodynamical excitations.

1.3 Information scrambling and out-of-time
ordered correlators (OTOC)

In the previous section we reviewed some essential features of the ETH
and stressed how it seems to release the tension between thermalization
and the unitary evolution of quantum mechanics. We can think of it as
a precise understanding of thermalization in energy space, but it would
be interesting to see what it means in the position space and in time.
The way the community understands quantum thermalization nowadays
is highly connected to the concept of local operators. When we perform
an experimental measurement, in many cases we are probing the system
locally, and we have no access to the degrees of freedom in regions far
from the probe. This operation corresponds to tracing those degrees
of freedom out, giving rise to the thermal spectrum. Clearly, if the
information in a quantum system was not subjected to dynamics, i.e. it
stayed localized, it would be easily detected in an experiment and we would
not see thermalization. Our understanding of quantum thermalization
strongly indicates that in quantum systems information has a dynamics
and, consequently, it spreads over the degrees of freedom of the whole
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1 Introduction

system. This process is called information scrambling, and has acquired an
essential role in the studies of Black Hole information paradox, quantum
thermalization and quantum information theory.

In order to probe the information scrambling, a so-called out-of-time
correlations function (OTOC) has been put forward. This 4-point function
was first introduced in the context of superconductivity by Larkin and
Ovchinnikov [9] . There, this correlation function was not put in relation
with quantum chaos but it was shown to measure the difference between
the classical and the quantum results. Only subsequently the connection
with quantum chaos arose [10–16]; since then, this correlation function
has appeared in the context of black holes physics and the Sachdev-Ye-
Kitaev (SYK) model [17] [10, 18] and there has been a big effort to create
experimental protocols to measure it [19–29]. Moreover, several techniques
were used to compute it either numerically or analytically [10, 11, 14,
30–49] and its connections with operator growth were studied in [31, 32,
38, 50–54]

The OTOC is defined as follows: given two operators V and W , oppor-
tunely normalized, it is

C(x, t) = 〈[V (x, t),W (0)]†[V (x, t),W (0)]〉. (1.4)

We can understand the information scrambling in terms of the time
evolution of an operator, in this case V , initially located at the position x.
As a consequence of time evolution, this operator will start spreading over
the system. The spreading of the operator can be easily visualized in a
spin chain where V at time zero is a single site spin operator [55]. In the
Heisenberg picture, the time evolution can be written in terms of nested
commutators of the operator V with the full Hamiltonian H and, because
of these commutators, the time evolution will contain spin operators of
other sites.

We can probe the spreading by considering the commutator with an
operator inserted in 0, for example with [V (x, t),W (0)]. At time zero the
commutator vanishes because of causality. However, with time evolution
the operator V (x, t) will become more and more delocalized, and at some
time t∗ its front will hit the insertion W (0) , developing a non trivial value
of the commutator. This simple picture would suggest the following

C ′(x, t) = 〈[V (x, t),W (0)]〉 (1.5)

as a good observable for operator spreading. Such correlation function
corresponds to the retarded (advanced) Green’s function for t positive
(negative). Unfortunately, the time ordered 2-point correlation functions,
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Figure 1.1: Representation of operator spreading. Figure taken from [56].

computed on a thermal state, decay very quickly and they are too con-
strained to carry information about scrambling. In order to extract such
information, (1.4) turns up to be a fruitful choice.

If we focus on hermitian operators W and V , (1.4) can be rewritten as

C(x, t) = 2− 2 ReF (x, t) (1.6)

where
F (x, t) = 〈V (x, t)W (0)V (x, t)W (0)〉. (1.7)

The latter expression represents the out-of-time order contribution to
C(x, t) and it contains all the physics about scrambling. The time depen-
dence of this correlation function for chaotic system can be parametrized
as

F (x, t) = 1− ε eλL(t−g(x)) (1.8)

where λL is conjectured to be the highest Lyapunov exponent of the system,
ε is a small term inversely proportional to the local number of degrees
of freedom and g(x) is a function that represents the spatial profile. For

many large N field theories, g(x) has a linear behaviour g(x) = |x|
vB

, where
vB is the speed at which the front depicted in Fig. (1.1) moves and it is
called the butterfly velocity.

On a thermal state, the OTOC is often defined as follows

C(x, t) = −〈ρ[V (x, t),W (0)]†[V (x, t),W (0)]〉, (1.9)

ρ being the thermal density matrix. A slightly different definition involves
a symmetric insertion of the density matrix in the correlation function

CS(x, t) = −〈ρ1/2[V (x, t),W (0)]†ρ1/2[V (x, t),W (0)]〉. (1.10)
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That (1.9) and (1.10) might have different properties is a topic that has
not been considered in the last few years and will be discussed in chapter 5.
With this configuration, the out-of-time ordered function acquires a new
fundamental property. Under mild hypotheses, such as analyticity of corre-
lation functions and unitarity of time evolution, Maldacena, Shenker and
Stanford proved in [16] that, if the correlation function (1.10) presents an
exponential growth regime, the Lyapunov exponent satisfies the following
upper bound

λL ≤
2πkBT

~
. (1.11)

The bound is saturated by systems which have a gravitational dual; this
proves the fast scrambling conjecture, introduced in [11], which states that
Black Holes are the fastest scramblers in nature. Nevertheless it is not
known yet whether the saturation of the bound represents a sufficient
condition for a theory to have a holographic dual. The right hand side
of (1.11) is intimately connected to the nature of black holes and, in
particular, to their event horizon. It can be shown [12, 14, 15] that, in a
theory with a holographic dual, the OTOC corresponds to the effect on
the geometry of few particles moving from the boundary towards the bulk.
Once in the proximity of the event horizon, the energy of the particle, in
the local frame, will be highly boosted, creating a shock wave along the
horizon. The Lyapunov exponent is a measure of such a boost, which for
any Black Hole results in the value 2πkBT

~ .

The bound (1.11) appears like a fundamental property of quantum
mechanics, and its possible interpretations and consequences are very
fascinating. For the moment, we can rewrite the bound (1.11) in terms of
the Lyapunov time τL = 1/λL

τL ≥
1

2π

~
kBT

. (1.12)

In this form it will soon be clear why the bound has been intensively
studied in the last years, and it has to do with transport in strongly
coupled systems without quasiparticles. This is one of the main open
problems of today’s physics, both from the theoretical and experimental
point of view and in the next section we will try to highlight its connection
with the above mentioned bound.

8



1.4 Quantum systems without quasiparticles

1.4 Quantum systems without quasiparticles

In this section we take an apparent departure from the topics of the
previous pages, which hopefully will be soon clear to the reader. Our
current understanding of transport in ordinary metals is provided by the
Landau theory of Fermi liquids [57], which is built on the concept of
quasiparticles. There, the relevant excitations are long lived and have a
pivotal property: the energy of a state made of quasiparticles is simply
the sum of their energies. These quasiparticles have the same quantum
numbers as electrons, and interact with each other. When the system
is perturbed, the interactions restore thermal equilibrium after a local
equilibration time, which we indicate with τe. If the system is gapless, τe
has a temperature dependence that, in the T → 0 limit, goes as τe ∼ 1/T 2.
In the presence of a gap ∆, instead, the equilibration time is even longer
and scales as τe ∼ e∆/T . Despite its success, there are still materials
which Landau theory is not able to describe, such as cuprates, heavy
fermions, ruthenates, pnictides, vanadium dioxide, fullerenes and organics.
The electrons in these materials are strongly correlated and present a
linear in T resistivity in a wide region of their phase space [58, 59]. The
resistivity scaling suggests that the local equilibration time is exceptionally
short and scales as τe ∼ 1/T . The surprising feature of this scaling is
that, besides being very robust against disorder, it is present in systems
with very different microscopic details. It seems thus that some universal
mechanisms underlies the physics in this regime. This mechanism has
been named Planckian dissipation [60–62] and states that strongly coupled
systems without quasiparticles are the fastest in thermalizing. Furthermore
their local equilibration time saturates the lower “dimensional analysis”
bound

τe ≥ C
~

kBT
, (1.13)

where C is some temperature independent constant of order one. More
recently, measurements on thermal diffusivities [63] showed Planckian
dissipation in YBCO samples.

The similarities between (1.12) and (1.13) might be interpreted as
the existence of a connection among the Lyapunov time and the local
equilibration time. Moreover, in this light, it was proposed by Blake
[64, 65] that charge and thermal diffusivities of critical systems could be
expressed as

DC/T ∝ v2
BτL, (1.14)

where the identity holds up to a numerical prefactor. This proposal
was tested in several systems [66] but soon it became evident that the
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connection with charge diffusion was not as robust as thermal diffusion.
The latter connectio is quite robust. Indeed in [67–69] it was shown that,
in the infrared, the thermal diffusivity of a generic strongly coupled system
with holographic dual satisfies relation (1.14) regardless of charge density,
periodic potential strength, or magnetic field. Those results were obtained
by using the holographic duality, which we are going to quickly review in
the following section.

1.5 Holographic duality

Since its discovery in 1997 by Maldacena [70], AdS/CFT has profoundly
changed the way we look at gravity and strongly coupled field theories.
In this section we will try to give a very general overview on the topic,
mainly focusing on the aspects that are necessary to understand some of
the results of this thesis, and the reason why we have tried to address
certain questions.6

The idea of holography can be traced back to two important results. In
1974, ’t Hooft realized that SU(Nc) gauge theories greatly simplify in the
large Nc limit, keeping the ’t Hooft coupling λ = g2

YMNc fixed [75]. In this
limit, organized as a perturbative expansion in λ, the leading contribution
is given by planar diagrams. In the same work, t’Hooft noticed that this
expansion could be connected to a string theory path integral. On a
completely different perspective, the work of Bekenstein on black holes
thermodynamics [76] showed that the entropy of a Black Hole depends on
its surface, and not on its volume. This indicates that in a gravitational
theory gravitational degrees of freedom rearrange the information on a
surface of codimension one, making possible (in principle) a description of
d+ 1 dimensional gravity in terms of a field theory defined in d dimensions
[77, 78].

AdS/CFT is an exact realization of this idea. In its most essential
definition, the AdS/CFT correspondence is a duality between a conformal
large N supersymmetric Yang-Mills theory (Large N SYM) defined in d
dimensions and a classical gravitational theory defined on a d+1 spacetime
with a negative cosmological constant, namely Anti-de-Sitter. Its origins
lies in string theory, where large N SYM is equivalent to string theory in
AdS. It is a strong-weak duality, i.e. it relates a strongly coupled theory
to a weakly coupled one. This means that it allows to quantitatively

6For a review on the topic, see [71]. Applications to condensed matter physics are
reviewed in the following books [72–74].

10



1.5 Holographic duality

understand properties of strongly coupled field theories by studying classic
gravitational dynamics.

Bekenstein’s argument gives a hint about the holographic nature of
gravity, but a natural question to ask is what does this extra dimension
correspond to from the QFT point of view. Given a QFT defined on a d
dimensional spacetime, we know since Wilson [79] that the theory changes
according to the energy (or spacetime) scale µ we focus on. The way the
theory changes by varying this scale is described by the Renormalization
Group (RG) equation

µ
dg(µ)

dµ
= β(g(µ)), (1.15)

where g(µ) schematically represent the coupling constants of the theory.
A remarkable fact of equation (1.15) describing the renormalization group
flow is that it is local in the energy scale. This might seem a minor aspect
but has strong implications, specially in AdS/CFT. In holography, the
renormalization scale not only becomes dynamical, but also geometrical. Its
dynamics is governed by the Einstein action with a negative cosmological

constant −2Λ = d(d−1)
L2

S =
1

2κ2

∫
dd+1x

√−g
(
R+

d(d− 1)

L2

)
, (1.16)

with κ = 8πGN and GN the Newton’s constant and L is the AdS radius.
The zero temperature solution in vacuum is described by the metric

ds2 =

(
L

z

)2

(ηµνdx
µdxν + dz2), (1.17)

where µ, ν = 0, ..., d− 1. The direction z can be considered as a renormal-
ization group scale and the excitation of the theory are rearranged along
z according to their wavelength, as represented in Fig. (1.2). We see that
motion in z → λz precisely can be accounted for by scaling x→ λx.

On a more quantitative ground, the holographic correspondence can be
stated in terms of an identity of two partition functions, called the GKPW
rule [81, 82]

〈e
∫
ddx

∑
i Ji(x)Oi(x)〉QFT =

∫
DgDφi eiSbulk[g,φi(x,z)]|φ(x,z=0)=J(x) . (1.18)

The left hand side of the equality is the partition function of a QFT
deformed by a source J . The right hand side corresponds to the gravi-
tational partition function, dominated by the saddle point value, where
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IR UVz

d−1,1

z

R
AdSd+1

minkowski

UV
IR

...

Figure 1.2: The emerging dimension in the AdS/CFT correspondence can be though of
as a renormalization scale. The excitations of the dual field theory are rearranged over
the boundary according to their wavelenghts: the long wavelenght, low energy dynamics of
the dual theory is captured by events in the bulk. Short distance, high energy excitations
are described by the gravitational degrees of freedom close to the boundary. The duality
rearranges the excitation. Figure taken from [80].

the boundary value (at z → 0) of the field φ is set by J , the value of the
source of its dual operator O. Including this fundamental identity, the
duality can be summarized in terms of a dictionary, where quantities of
the two theories are related. Some of the entries of the dictionary are
presented in the tabular below. The order used to list them is not casual
since the connection between the gravitational dynamics in the bulk and
stress tensor properties in the boundary will be the essential motivation
to pursue the results of chapter 4 that connect quantum chaos to the
energy-energy correlation function.

Another feature of gravity that holography incorporates naturally that
deserves attention for this thesis is the fluid/gravity correspondence [83].
This states that the spacetime dynamics, on a AdS background, can be
mapped into the dynamics of a fluid living on the boundary. Since the long
wavelength of the fluid is described by hydrodynamics and, in the AdS/CFT
correspondence, the IR of the boundary theory is described by the bulk
gravitational degrees of freedom, the fluid/gravity correspondence connects
the hydrodynamic behaviour of the fluid living on the boundary with the
gravitational perturbation of the event horizon. After a perturbation,
Einstein’s equations reproduce hydrodynamical equations and allow to
compute the conductivities of the fluid [83, 84]. This does not imply
that the event horizon is purely hydrodynamical, because very far from
equilibrium the hydrodynamic approximation is not valid. Nevertheless,
Black Holes have the surprising feature that they hydrodynamize very
quickly.

12



1.6 A hydrodynamical refresh

The idea of a connection between the dynamics of black hole horizons
and the Navier-Stokes equations of hydrodynamics dates back to the 80’s
when Thorne, Price and MacDonald formulated the so-called membrane
paradigm [85]. They realized that, for an external observer, the behaviour
of black holes would resemble the behaviour of a fluid membrane, sur-
rounding their event horizon, with well-defined properties as viscosity and
conductivity.

Boundary (Operators) Bulk (fields)
stress-energy tensor Tab metric field gµν
global current Ja Maxwell field Aa
scalar operator O scalar field φ
conformal dimension of the oper-
ator

mass of the field

source of the operator boundary value of the field
VEV of the operator boundary value of radial momen-

tum of the field
global symmetry local symmetry
temperature of the field theory Black Hole temperature
phase transition Black Hole instability

1.6 A hydrodynamical refresh

When focusing on the long-wavelength and late-time description of a given
system, often the result is a very old theory, whose origins go back to the
early works of Euler and Bernoulli in the XVIII century: hydrodynamics.
Even though it is a very old theory, there are still many properties that are
not understood, like turbulence for example, and in the last years we have
witnessed a revival of interest about its applications. In the present-day
view, hydrodynamics is an effective field theory that is conventionally
formulated in terms of equations of motion. The action formulation has
recently been addressed in7 [87–98] and, as often happens going from the
equations of motion to the action, it has revealed new symmetries and
constraints. The equations of motions of (relativistic) hydrodynamics are
simply the conservation laws of the systems; for example, if there are no
more conserved currents than the stress energy tensor, the EOMs are

∂µT
µν = 0. (1.19)

7For review on the topic see [86] and references therein.

13



1 Introduction

As stated, this does not represent a well-posed problem in d ≥ 2 since
there are d(d + 1)/2 degrees of freedom and d equations of motion8. A
crucial step in deriving the hydrodynamical equation is the hypothesis of
local thermal equilibrium, which reduces sensibly the number of degrees of
freedom. When the system is perturbed at long wavelength, it is possible
to consider as dynamical variable the temperature T (x) as a function
of space and time, and the velocity four vector uµ(x), subject to the
normalization condition uµuµ = −1. This choice makes the problem well
posed, since there are d unknowns and d equations of motion. As typical
for effective field theories, the stress-energy tensor can be written in terms
of a gradient expansion in spatial derivatives and as a function of the
dynamical variables. At zero-th order the expansion gives

Tµν(x) = ε uµuν + pPµν , (1.20)

where ε is the energy density, p the pressure density and with Pµν =
uµuν + gµν we have indicated the projectors along the direction transverse
to the four-velocity uµ. In this order, the hydrodynamical equations do not
present any dissipation, as can be easily shown [99]. Entropy production
appears in first order, with the introduction of the dissipation tensor and
transport coefficients

Tµν(x) = ε uµuν + pPµν − σµν . (1.21)

The dissipation component of the stress energy tensor can be generally
parametrized as follows

σµν = PµαPνβ
[
η

(
∂αuβ + ∂βuα −

2

3
gαβ∂ρu

ρ

)
+ ζgαβ∂ρu

ρ

]
, (1.22)

the coefficients η and ζ being respectively the shear and the bulk viscosity.
The form (1.22) of the dissipation tensor is not unique, but is chosen in
such a way to affect only the spatial component of the stress-energy tensor
T ij .

The analytical structure of the hydrodynamical correlators, namely the
location of the poles, can be extracted from the normal modes of the
linearised hydrodynamical equations, i.e. by looking at solutions of the
form e−iωt+ik·x. For example, let’s restrict the analysis to the stress-energy
tensor, and choose a frame where the spatial momentum is aligned with
the z direction, k = (0, 0, k). It is possible to show that the stress energy

8In CFT, the case d = 2 is well defined since there is an extra constraint on the stress
energy tensor which has to be traceless.
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1.7 Hydrodynamic transport coefficients at weak coupling and in holography

tensor has two physically different hydrodynamical modes, the shear and
the sound modes [99]. The components T 0i and T zi, with i = (x, y), satisfy
the following linearised hydrodynamic equation

∂tT
0i = − η

ε+ p
∂2
zT

0i, (1.23)

which can be immediately recognized as a diffusion equation. Indeed by
looking for a solution of the form e−iωt+ikz we get

ω(k) = −i η

ε+ p
k2, (1.24)

with diffusion constant Ds = η
ε+p . Besides shear modes, there are also

propagating sound modes, represented by simultaneous excitations of T 00,
T 0z and T zz. After diagonalizing a system of coupled hydrodynamic
equations, the condition these modes have to satisfy is the following [100]

ω(k) = vsk −
i

2

(
4

3
η + ζ

)
k2

ε+ p
, (1.25)

where vs =
√

∂p
∂ε is the speed of sound.

1.7 Hydrodynamic transport coefficients at
weak coupling and in holography

The late-time and long-scale physics of a generic classical or a quantum
many-body system is governed by the long-lived quantities, which are
nothing but the conserved currents. Their conservation laws become
the equation of motion and the theory is called hydrodynamics, which
indeed is nothing but the dynamics of the conserved quantities. This in
turn expresses the universality of its prediction, which heavily rely on
symmetries arguments. Although it has a high degree of universality,
the hydrodynamic prediction is intimately connected to the underlying
microscopic physics via some of the coefficients of this expansion: the
transport coefficients like viscosities and diffusivities. Given a Lagrangian
the computation of these coefficients represents a challenge even at weak
coupling, since they often manifest a nonanalytic dependence on the
coupling parameters. Traditionally, for high-energy applications like QCD
or relativistic QFTs in 3 + 1 dimensions, the main tool has been to solve
the Boltzmann equation [101–108]. Another approach, based on quantum
field theory, can be found in [109, 110].
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Another way to compute transport coefficients, more used in low-energy
many-body physics condensed matter, makes use of the Kubo formulae
for specific correlation functions, like the following ones for shear viscosity
η or electrical conductivity σ [111]

η =
β

20
lim

p0,p→0

∫
d4xeip·x〈Tij(x)T ij(0)〉, (1.26)

σ =
β

6
lim

p0,p→0

∫
d4xeip·x〈Ji(x)J i(0)〉, (1.27)

where Tij is the traceless stress-energy tensor, Ji is the U(1) current and
the sum over repeated indices is intended. In the weakly coupled regime,
the formulae (1.26) and (1.27) might suggest that, by simply performing
loops expansion of the correlation function in the integral, we could get
the proper perturbative results for the shear viscosity. Unfortunately, this
expansion is not reliable due to the appearance of infrared singularities
[112], and a full resummation of a series of diagrams is required [101]. This
becomes an even more challenging task when relativistic gauge theories
are considered. The pioneering computation of the shear viscosity for a
scalar field with φ4 interaction

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − λ

4!
φ4, (1.28)

was performed in [101, 112]. There, by using a finite temperature optical
theorem, Jeon derived the cutting rules at finite temperature and then
showed that an infinite set of ladder diagrams had to be resummed in
order to obtain the correct leading order result. Since then, several works
addressed this question for more complicated field theories and using
different techniques, such as the real time close time-path contour (CTP)
[113, 114] and the Imaginary Time Formalism (ITF) [115] of thermal
field theory. Within the latter approach, a non perturbative resummation
provided by the two-Particle-Irreducible (2PI) formalism was introduced
in the computation of transport quantities in [116, 117] .

In this thesis we will extensively make use of those techniques, developed
to compute the Kubo formulae, to evaluate the following correlation
function

iGR(x, p|y, q) = θ(x0 − y0)〈[ρ(x, p), ρ(y, q)]〉 (1.29)
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1.8 Quantum chaos and hydrodynamics

where we have defined the Wigner transport of the bilocal density operator

ρ(x, p) =

∫
y

e−ipy Tr [φ(x− y/2)φ(x+ y/2)]

=

∫
k

eikx Tr [φ(p+ k/2)φ(p− k/2)] , (1.30)

and the trace is taken over the internal indices of the field φ.
While in a weakly coupled QFT the computation of correlation functions

which appear in the Kubo formulae is very involved, in strongly coupled
field theories with holographic dual things simplify remarkably. By using
the dictionary, it is possible to show that the stress-energy tensor two-point
functions can be extracted by a perturbative gravity computation in the
bulk. This allows an exact numerical solution and, in the hydrodynamic
limit, an analytical solution [99, 100, 118–120]. We will use these techniques
in chapter 4 to derive one of the most important results of this thesis.

1.8 Quantum chaos and hydrodynamics

In the previous sections we have briefly reviewed the conundrum repre-
sented by the thermalization of a closed quantum system. We have also
given the qualitative understanding on how this thermal behaviour emerges,
namely because of the scrambling of quantum information. Nevertheless,
several questions have no satisfactory answer yet. We still lack a com-
prehensive dynamical understanding of how this information-scrambling
happens. Moreover, we don’t know whether scrambling and quantum chaos
are the same phenomenon. We believe that these are essential questions to
address, especially in light of the fast scrambling conjecture. The latter is
likely to be a fundamental result, able to classify different states of matter.
Unfortunately, it does not explain the mechanisms that determine whether
a system can be close to saturation of the bound or not.

On general grounds, we know that, for relativistic theories, the mech-
anisms underlying the way a system (nearly) out-of-equilibrium reaches
the thermal state leaves clear imprints in the analytic structure of the
conserved currents-correlation functions [121, 122]. Since the dynamics
of conserved currents is by definition hydrodynamics, it seems reasonable
to try to understand many-body chaos by looking for signatures in the
analytical structure of hydrodynamic excitations.

There is further evidence in support of this idea. As already mentioned,
the scrambling properties of strongly coupled theories with holographic
duals at finite temperature are set by the gravitational dynamics in the
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bulk. By using the membrane paradigm, we can imagine that this involves
the correlation functions of the stress-energy tensor, which very quickly
assume a form dictated by hydrodynamics.

Furthermore, some insights come from the study of the Sachdev-Ye-
Kitaev (SYK) model. This is a (0 + 1) theory of fermions with quartic
all-to-all interaction, and Lagrangian (in the case of Majorana fermions)

H = −
∑
ijkl

Jijkl χ
iχjχkχl. (1.31)

This model saturates the bound on chaos and is supposed to have a gravity
dual. In the infrared limit, it exhibits a SL(2,R) symmetry, which is
reminiscent of the AdS2 geometry. In [123], Jensen wrote a hydrodynamic
effective field theory which is maximally chaotic and captures some features
of the AdS2 geometry. The fact that the IR physics of the SYK model
can be captured by a hydrodynamical mode which is also maximally
chaotic should be considered as further evidence that, at least for (nearly)
maximally chaotic systems, hydrodynamics carries some information about
scrambling.

1.9 Summary of results

In this thesis we address some of the questions raised so far. In the first
part, we try to understand what is the dynamics of scrambling, or of
quantum chaos. We tackle this problem for weakly coupled quantum
field theories (or large N) and we draw an analogy with the quantum
Boltzmann equation (QBE). Even though the QBE relies on the concept
of quasiparticles, in 1997 Damle and Sachdev showed [124] that the QBE
can be used also to study conductivities and transport properties above
the two-dimensional superfluid-insulator quantum critical point. This
means that, by carefully controlling the QBE, it can give predictions about
excitations of systems in the absence of quasiparticles. The QBE can be
generally written in the form

(∂t + v · ∇)f(t,x,p) = −L[f ] (1.32)

where L is the linearized collision integral, which clearly encodes all the
relevant information about the physics.

The starting point of our results is that, while the QBE is usually
extracted from two-point functions [125–127], it is possible to obtain the
linearized QBE in a clean way from the 4-point function (1.29). As we
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1.9 Summary of results

explain with (hopefully sufficient) detail in chapter 2, the conceptual
advantage is the immediate matching of the QFT expressions with their
kinetic theory counterparts. In this approach, the operator (∂t+v ·∇)+L,
which defines the QBE, is fully encoded in the analytical structure of
this 4-point Greens function9. Indeed such correlation function f(ω, p, q),
in the spatially homogeneous case, satisfies the following Bethe-Salpeter
equation (BSE)

−iω f(ω, p) = δ(p2
0 − E2

p)

(
1 +

∫
l

R̂transp(p, l)f(ω, l)

)
. (1.33)

where f(ω, p) =
∫
q
f(ω, p, q). Once on-shell, the kernel R̂transp reproduces

exactly the collision operator Ĉ, determining the matching of the QFT
result with the Boltzmann equation. Moreover, all the information about
the relaxation times, eventual branch cuts and hydrodynamic modes are
intrinsically hidden in R̂, as the correlation function is formally obtained
by inverting (1.33)

f(ω, p) =
Ip

−iω −
∫
l
R̂transp(p, l)

. (1.34)

Focusing on the OTOC, f ′(t,x), at weak coupling the computation
requires a resummation of ladder diagrams and it is also performed by a
Bethe-Salpeter equation (BSE). This BSE can be recast into the following
integro-differential equation

−iω f ′(ω, p) = δ(p2
0 − E2

p)

(
1 +

∫
l

R̂OTOC(p, l)C(ω, l)

)
. (1.35)

f ′(ω, p) being the Fourier transform in p and Laplace transform in ω of
the OTOC. Clearly, since in the late time regime (ω → 0 limit) the OTOC
has the form f ′(t) ∝ eλLt, the spectrum of the integral operator R̂′(p, l)
contains all the informations about ergodicity, i.e. the Lyapunov spectrum
is given by its positive eigenvalues.

In order to understand the scrambling dynamics, we can dissect the
OTOC-BSE. The way we have phrased it highlights it on purpose, but the
surprising result is that the OTOC-BSE is also a kinetic equation of the
form

(∂t + v · ∇)f ′(t,x,p) = −L′[f ′] (1.36)

9This can be considered as the analogue of what happens in hydrodynamics. There,
as reviewed in section 1.6, the universality of the equation of motions is translated
in the universal form of the pole structure.
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where the collision integral is nearly the same as (1.32). Instead of mea-
suring the net number of collisions, as the standard QBE, it counts the
gross number of collisions. This is to say that the terms appearing in L
and L′ are the same, with one of the signs flipped. We showed this results
for φ4 matrix model (chapter 2), (bosonic) O(N) vector model in (2 + 1)
dimensions and the Gross-Neveu model in (2 + 1) dimensions (chapter 3) .
Moreover, we also show that the linearised kinetic operator, R̂transp(p, l),
is analytically related to the kernel of the BSE of the OTOC, R̂OTOC(p, l),
as follows

R̂OTOC(p, l) = sinh(βp0/2)−1 R̂transp(p, l) sinh(βl0/2). (1.37)

It is tempting to read the previous expression as a new fluctuation
dissipation relation:

C(ω, p) = sinh(βp0/2)f(ω, p), (1.38)

which would suggest that the OTOC can be obtained as analytical con-
tinuation of the hydrodynamic correlation function governing transport.
However, in this thesis we will not succumb to this temptation and we
will postpone this question to future work. Another reason why we wrote
(1.37) in this form is that it makes clear that the relation is nothing but a
similarity transformation, which preserves the spectrum and other prop-
erties. Nevertheless we warn the incautious reader that, both in (1.35)
and (1.37), there are delta functions which project out some eigenvalues.
Indeed we know that unitarity forbids eigenvalues with positive imaginary
part for the collision integral of the (standard) Boltzmann equation.

We now comment about the consequences of (1.37). Since, as we have
argued before, the full physics of scrambling is encoded in R̂OTOC(p, l) and
most of the hydrodynamical transport physics is encoded in R̂transp(p, l),
this relation has a profound meaning and should be considered as a
starting point for any further attempt to find imprints of ergodicity in the
hydrodynamic spectrum. Moreover, we stress that (1.37) not only holds for
the φ4 model (chapter 2), but also for models which describe the physics
above a QCP (chapter 3), where there are no quasiparticle excitations.10

Therefore this seems to be a quite general result for weakly coupled
systems, or large N QFTs. We have repeatedly hinted the suggestive
similarities between transport computations and scrambling computations.
At infinite coupling and for theories with gravitational dual, the idea that
quantum chaos constrains transport is indeed true and it is realized in

10For fermions, we prove in chapter 3 that (1.37) is modified by replacing sinh→ cosh.
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the phenomenon discovered in chapter 4 of this thesis (based on [128]),
and later termed pole-skipping [56]. In section 1.3, we sketched the
classification of the hydrodynamical modes and we showed that the energy-
energy correlation function contains sound modes, whose perturbative
dispersion relation is given by (1.25). Let us define the following point in
the analytically continued (ω, k) plane

kc = i
λL
vB
, ωc = ω(kc) = iλL, (1.39)

where λL = 2πT and vB is the butterfly velocity, defined in the previous
pages. Pole-skipping is the statement that the fully resummed hydrody-
namic series (1.25), after the analytic continuation ω → iω and k → ik,
passes through the point (ωc, kc). Since the dispersion relation (1.25)
parametrizes the pole structure of the energy-energy two-point function,
this implies that this correlator has the form

GEER (ω, k) =
b(ω, k)

a(ω, k)
(1.40)

and a(ωc, kc) = 0. Moreover, (2) at the point (ωc, kc) also the residue
vanishes,

b(ωc, kc) = 0. (1.41)

This implicates that the pole in the correlator GEER (ω, k) disappears. This
phenomenon has been later understood in terms of an effective field theory
[56] as the fact that both ergodicity and hydrodynamics are governed
by the same mode, which survives at late time. The robustness of such
modes is due to the exsistence of a new symmetry (a shift symmetry) of
the effective action. Whether this is a feature of systems saturating the
bound on chaos is still an open problem. Furthermore, we now know that
mathematically pole-skipping, as described in holographic systems, is a
manifestation of a degeneracy of Einstein equation [129]. Recently, it was
also proven that this phenomenon is present not only for energy density
correlators [130] but persists also away from infinite coupling [131]. New
constraints on thermal correlators (in holographic systems) coming from
pole-skipping (although not immediately relatable to chaos) have been
recently discovered in [132].

What happens going towards the weak-coupling limit, and so departing
from the bound, it is still unknown.
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1.10 This Thesis

1.10.1 Chapter 2

We first write a Boltzmann-like equation for the gross energy exchange
in a bosonic system. We do this by modifying the collision integral
in order to take into account the gross number of interactions between
particles instead of the net number of interaction, which corresponds to
the standard Boltzmann equation. After that, we show how this kinetic
equation matches the BSE satisfied by the OTOC. We then review how
to compute the out-of-time ordered correlation function in quantum field
theory. This can be done by using the Schwinger-Keldysh (SK) formalism
over the closed time path (CTP) contour . After analyzing the properties
of this modified SK contour, we show that the computation of the OTOC
is remarkably simplified. We explicitly use this framework to compute the
OTOC in a N ×N matrix φ4 bosonic theory, without taking any large N
limit.

1.10.2 Chapter 3

In this chapter, we focus our attention to the interplay between chaos and
hydrodynamics in systems close to the quantum critical point (QCP). In
the quantum critical regime, there is no quasiparticle interpretation, but it
was shown that many transport properties can be inferred by analytically
extending the result in the symmetric phase to the quantum critical phase.
This chapter is mainly based on [133]. To understand these questions, we
make an extensive use of some results regarding transport obtained in the
imaginary time formalism (ITF) and we use the two-particle-irreducible
effective action. We first analyze the bosonic O(N) vector model, and we
study the 4-point correlation function which is relevant for transport in
the hydrodynamic limit. This computation generalizes at small external
frequency some previous results by Aarts et Martinez [134, 135] which
were obtained at strict zero frequency. This allows us to compare the
equations governing transport with the BSE for the OTOC, which was
obtained by Chowdhury and Swingle in [136]. Again, the mapping between
the two results holds and confirms our conjectured connection between
chaos and hydrodynamics. By going into the kinetic theory limit, we
observe that indeed the OTOC is nothing but a gross energy exchange
kinetic equation. In the second part of this chapter, we address a similar
analysys to a system in a fermionic quantum critical regime, namely the
2 + 1 the Gross-Neveu model. Here we first use the 2PI formalism to

22



1.10 This Thesis

compute the 4-point function relevant to transport and then we compare
it with the OTOC computation performed in [137]. This case, in a even
more clear way, shows how transport and chaos are described by the same
BSE equation but correspond to two different boundary conditions. Such
difference, in turn, determines the sign flip of the kinetic equation for
chaos with respect to the QBE. We explicitly show how the linearized
Boltzmann equations emerge from a QFT computation of a time ordered
4-point function. By inspecting these results, it is straightforward to see
that indeed the kinetic theory for gross particle exchange reproduces the
BSE for the out-of-time correlation function.

1.10.3 Chapter 4

In this chapter we investigate the connection between quantum chaos and
hydrodynamics in theories with a holographic dual. These theories are
strongly coupled large N theories, and the out-of-time order correlation
function can be computed by means of the AdS/CFT correspondence.
This result was obtained some years ago by Shenker and Stanford in [12],
who showed that the Lyapunov exponent can be extracted by studying a
shockwave geometry in the bulk. We show that this shockwave computa-
tion can be understood in terms of a sound-wave excitation of the bulk
geometry. Since these excitations have a physical interpretation as hydro-
dynamical energy-energy correlation functions of the dual boundary theory,
we prove that for holographic theories the Lyapunov exponent and the
butterfly velocity characterize the response to an highly out-of-equilibrium
perturbation. We moreover identify the imprinting of quantum chaos in
the analytical properties of the energy-energy correlation function which
is now known as pole-skipping.

1.10.4 Chapter 5

In this last chapter we address an important question regarding the out-of-
time correlation function. We try to understand whether this correlation
function is independent of the way it gets regularised on the thermal
circle. This should have been one of the first questions to ask because
of the high interest of the community in this observable. Over the last
years, several authors have computed this correlation function using a
particular regularization, claiming a regularization independence of the
result. Drawing a comparison, it would be like computing a correlation
function in a gauge theory without verifying it is gauge independent.
Based on the results obtained in [138], we show both in weak and strongly
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coupled theories that the OTOC strongly depend on the regularization.
For the weak-coupling analysis we use the φ4 bosonic theory, while for
the strong coupling limit we focus on the SYK model. We explain why
this correlation function depends on the contour and we explain why most
of the investigations by other authors have overlooked this. This result
gives rise to the question of which of the correlation functions is physically
sensible. By using the kinetic theory results of the previous chapters, we
show that the only meaningful OTOC is the symmetrical one (separated
by half the thermal circle), which corresponds to a gross energy exchange.
All the other OTOCs correspond to kinetic equations which give too much
weight to either the gain or the loss terms in the collision integral. This
results indeed shows that the only meaningful OTOC (in QFT) is the one
for which a bound on the Lyapunov exponent has been proven.
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